[go: up one dir, main page]

JP4144703B2 - Tube inspection method using SH waves - Google Patents

Tube inspection method using SH waves Download PDF

Info

Publication number
JP4144703B2
JP4144703B2 JP2003093999A JP2003093999A JP4144703B2 JP 4144703 B2 JP4144703 B2 JP 4144703B2 JP 2003093999 A JP2003093999 A JP 2003093999A JP 2003093999 A JP2003093999 A JP 2003093999A JP 4144703 B2 JP4144703 B2 JP 4144703B2
Authority
JP
Japan
Prior art keywords
tube
wave
probe
pipe
inspection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003093999A
Other languages
Japanese (ja)
Other versions
JP2004301613A (en
Inventor
泰和 横野
薫 新田
務 菊池
美年 四辻
Original Assignee
出光エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光エンジニアリング株式会社 filed Critical 出光エンジニアリング株式会社
Priority to JP2003093999A priority Critical patent/JP4144703B2/en
Publication of JP2004301613A publication Critical patent/JP2004301613A/en
Application granted granted Critical
Publication of JP4144703B2 publication Critical patent/JP4144703B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0421Longitudinal waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超音波SH波による管検査方法に関する。さらに詳しくは、管壁内部を伝播し損傷部を透過し又は反射したSH波を探触子で受信することにより給水配管等の検査を行う管検査方法に関する。
【0002】
【従来の技術】
従来より、管の検査にあっては、縦波又はSV波を用いて検査を行っていた。例えば、特許文献1では、円筒全体が振動する円筒波を用いて管の肉厚を測定することで減肉を評価する方法が記載されている。しかし、同文献に記載の方法にあっては、使用する円筒波は管肉厚方向の振動成分(Lモード)を有するため、管内に水等の液体が存在する状態で検査を行った場合には、その流体により超音波が減衰してしまう。そのため、管内の液体を取り除いた状態で検査を行う必要があった。また、検出可能な損傷部は配管の断面積に対する比率で決まることから、局所的な損傷検査には適さなかった。
【0003】
一方、管表面に対して平行に振動するSH波を使用する管検査方法として、特許文献2に記載のものが知られている。同技術は、探触子に対し管周方向90°離れて位置する管支持用フランジとの溶接部分における損傷検出を主眼においたものである。同文献の段落番号0015には、「超音波の入射角λは、鋼材等の試験体10に入射する超音波の屈折角が丁度90度となる臨界角と呼ばれる角度に略等しい角とする」と記載されている。よって、同技術は、図6(a)に示すように管表面近傍部分を伝播する表面波を用いた方法である。表面SH波は、同図(b)に示すように、容易に全管周方向Yに広がり、全外周表面が振動する波となる。その結果、この表面SH波では、損傷部の管周方向位置を正確に特定することが困難であり、しかも、管壁内部の損傷を検出することができなかった。
【0004】
【特許文献1】
特開2002−328119号公報
【特許文献2】
特開平9−72887号公報
【0005】
【発明が解決しようとする課題】
本発明の目的は、管内に液体が存在する場合でも高精度の管検査を行うことが可能であると共に、損傷部の管周方向に対する位置を特定することが可能なSH波による管検査方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明にかかるSH波を用いた管検査方法の特徴は、探触子から管壁にSH波を送信すると共に、前記管壁を伝播し損傷部を透過し又は反射したSH波を探触子で受信することにより管の検査を行うSH波による管検査方法であって、前記探触子から前記管の長手方向に向かって管壁の内部へ、入射角が前記管壁中でのSH波の臨界角よりも小であり、前記SH波がバースト波であるSHガイド波を送信することにある。ここで、「SHガイド波」とは、上記特許文献2に記載の「表面SH波」とは異なり、管壁の肉厚全体が振動するSH波をいう。SHガイド波の振動方向は、管壁表面に対して平行であるため、管内に液体が存在する場合であっても、その液体によりSHガイド波が減衰することもない。そして、SHガイド波はその指向性の鋭さにより管長手(管軸)方向に送信されることで管周方向の欠陥(損傷)位置を正確に特定することができる。
【0007】
発明者らの実験によれば、管壁にSH波を送信する際の入射角が前記管壁中でのSH波の臨界角よりも小であり、このSH波をバースト波として管壁内部に入射させることで、管壁内部にSHガイド波を伝播させることが可能であることが判明した。
【0008】
上記本発明にかかる管検査方法の特徴に加え、前記探触子により前記管を管周方向に走査するようにしてもよい。上述の如く、SHガイド波の鋭い指向性を利用して、損傷部の位置を簡単に特定することができる。なお、1の探触子により前記SH波の送受信を行うことで、簡素で高精度の検査を行うことができる。
【0009】
【発明の効果】
このように、上記本発明に係るSH波による管検査方法の特徴によれば、SHガイド波を用いることにより、管内の液体によりSH波が減衰することがないので、管内における液体の有無を考慮することなく、鋭い指向性を利用して精密な管検査を行うことが可能となった。その結果、管の使用を中断することなく検査を行うことが可能となり、設備等の信頼性向上及び稼働率向上に貢献し得るに至った。
【0010】
また、指向性の鋭いSHガイド波を用いることから、管周方向に走査することで、損傷部の管周方向位置を簡易かつ正確に特定することが可能となった。
【0011】
なお、本発明の他の目的、構成及び効果については、以下の発明の実施の形態の項から明らかになるであろう。
【0012】
【発明の実施の形態】
次に、添付図面を参照しながら、本発明をさらに詳しく説明する。
本発明にかかるSH波による管検査方法は、主として、プラント等における給水・給湯配管や排水管、給油配管等の検査を対象としたものである。図1に示すように、これらの管10の内外面12,13および管壁11内部に生じる欠陥や減肉等の損傷検出及び損傷位置特定に用いられる。本実施形態では、給水配管10内には水等の流体Wが入ったままである。
【0013】
図1に本発明に係る管検査方法に使用する管検査装置1のブロック図を示す。管検査装置1は、パーソナルコンピューター7により制御される発振器3aでバースト波を発生し、探触子2を介して配管外面12から管壁11にSHガイド波を送信する。送信されたSHガイド波は損傷部にて透過・反射され、再び探触子2で受信される。そして、受信された反射波は、レシーバー3b及びプリアンプ4により増幅され、フィルター5によりノイズが除去された状態でA/Dコンバーター6によりデジタル信号に変換され、パーソナルコンピューター7で処理され、その結果がモニター8に表示される。
【0014】
探触子2は、図2(a)に示すように、大略、振動子21と楔22を有し、振動子21で励起した横波をアクリル製の楔22を介して管壁11にSH波として入射する。その際、楔22と管壁外面12との間には高粘性の横波用接触媒質を介在させてある。この探触子2は、探触子取付中心軸L1と管壁外面12の法線L2とのなす角で与えられる入射角θを適宜調整可能な可変SH探触子である。そして、この管壁11内部にSHガイド波を発生させるためには、この入射角θを、鋼材である管壁11中でのSH波の臨界角である27度よりも十分小さい値に調整する必要がある。発明者らの実験により、管長手方向Xに伝播するSHガイド波を発生させる入射角θとして約19度近傍の角度が適当である旨判明した。
【0015】
ここで、図2,6を参照しながら、SH波の伝播特性と入射角θの関係について簡単に言及する。
まず、図6(a)に示すように、入射角θ’をSH波の臨界角である27度とすると、管壁11に入射したSH波は、SH表面波として管壁外面12を伝播することが確かめられた。よって、管壁11の表面的な損傷を検出するのには適するが、管壁内面13及び管壁11内部における損傷検査には適さない。また、図6(b)に示すように、表面SH波は、管軸方向Xのみならず、管外表面に沿って容易に管周方向Yに回り込む。よって、表面SH波では、損傷部の管周方向位置を特定することはできない。
【0016】
一方、図2(a)に示すように、入射角θをSH波の臨界角である27度に比べ十分小さい19度に調整してSH波を管壁11に入射したところ、入射したSH波は、屈折角45度で管壁11内部に入射し、管壁11の外面12と内面13の間を反射しながら管長手方向Xに伝播するガイド波となる。そのため、このSH波を解析することで、管壁外面12のみならず、管壁内面13及び管壁11内部の損傷検査を行うことが可能となる。ところで、入射したSH波を管内面13にまで至らせるために、入射するSH波をパルス波ではなく、複数の波の集合からなるバースト波を用いている。エネルギーが大きく、波を複数送信することで効率よくSHガイド波を発生させることができるからである。
【0017】
図2(b)は、管壁11内部にSHガイド波を伝播させた際の、肉厚方向各点に作用する力の変位方向及びその大きさを模式的に示すものである。探触子2の管周位置直下の管壁11にはそれぞれ剪断力が作用することとなり、この剪断力は管軸方向Xにのみ伝播する。換言すると、管周方向YにはSHガイド波が伝搬しにくいので、結果として管軸方向Xに対する指向性が強いものとなる。
【0018】
後述する発明者らの実験によれば、探触子(送信子)2管周方向位置から管周方向45度ずらした位置にあってはSH波が観測されなかった。この実験結果からも、このSH波は管周方向Yにはほとんど広がらず、管軸方向Xに伝播する極めて指向性の鋭い波であり、他のSH波とは音速も相違する。よって、このSHガイド波を用いることで、探触子2を設置した管周位置における損傷部のみを観測することが可能であり、損傷部の管周方向位置を特定することができる。
【0019】
次に、本発明にかかる管検査方法を用いて管を検査する際の実際の手順について簡単に説明する。先ず、探触子2を接触媒質を介在させた状態で管外面12に設置する。そして、かかる位置で上述の検査を行った後、探触子2を管周方向Yに所定角度毎に移動させ、各移動位置毎に上述の検査を行う。欠陥信号が受信されると、その欠陥エコーS1の発生時間差と探触子2との管周方向Y位置により、損傷部の座標が特定されることとなる。かかる検査を全管周に渡って行うことで、全範囲における損傷を把握することができる。
【0020】
【実施例1】
発明者らは、本発明にかかるSHガイド波を用いる管検査方法が、管内部14に液体Wがある場合にも適用可能であることを実証すべく、SV波(Lモード)を使用した場合と、本発明に係るSHガイド波を用いた場合との比較実験を行った。本実施例では、試験体として管外面12に人工きずを有する3B配管を用い、人工きずまでの距離が1500mmとなる位置の管外面12に探触子2を設置した。
【0021】
図3は、SV波を用いた場合の受信波形であり、同図(a)は管内部14に水Wが存在しない場合、同(b)は管内部14に水Wが存在する場合の振幅値の時系列分布であり、それぞれゲインを36dBとした。同(a)では、0.88msで人工きずのエコーS1が観測され、1.0msで端面エコーS2がそれぞれ観測され、人工きずを明瞭に捉えていることがわかる。一方、管内部14に水Wが存在する場合には、同(b)に示すように、人工きずのエコーS1、端面エコーS2共に観測されなかった。
【0022】
一方、図4は、本発明にかかるSHガイド波を用いた実験により得られた受信波形である。同図(a)は管内部14に水が存在しない場合、同(b)は管内部14に水Wが存在する場合の振幅値の時系列波形であり、それぞれゲインを36dBとした。同図(a)、(b)共に、0.82msで人工きずのエコーS1が、0.93msで端面エコーS2がそれぞれ観測され、SHガイド波は管内部14の液体Wによる減衰を受けることなく管壁11を伝搬する波であることが確かめられた。
【0023】
【実施例2】
発明者らは、SHガイド波が指向性の鋭い波であることを実証すべく、探触子2を人工きずと同じ管周方向位置に配置した場合と、探触子2をその位置から管周方向Yに45度ずらした位置に配置した場合との比較実験を行った。本実施例では、試験体として管外面12に人工きずを有する2B配管を用い、人工きずまでの距離が4000mm、管端面までの距離が4500mmとなる管外面12に探触子2を設置した。
【0024】
図5(a)は、探触子2を人工きずと同じ管周方向位置に配置した場合の受信波形であり、2.55msで人工きずのエコーS1が、2.8msで端面エコーS2がそれぞれ観測された。一方、同図(b)は、図(a)の探触子位置から管周方向Yに45度ずらした位置に探触子2を配置した場合の受信波形であり、2.8msで端面エコーS2が観測されたが、人工きずのエコーは観測されなかった。発明者は、探傷部までの距離や管サイズを適宜変更して同様の比較実験を行ったところ、同様の実験結果を得た。よって、SHガイド波は管周方向Yにほとんど広がらずに伝搬する、指向性の鋭い波であることが判明した。
【0025】
最後に、本発明の他の実施形態の可能性について言及する。また、以下に示す各実施形態を適宜組み合わせて実施することも可能である。なお、上記実施形態と同様の部材には同様の符号を付してある。
【0026】
上記実施形態では、管内部14に液体Wが存在している状態を想起したが、液体Wの有無に関わらず本発明は実施可能である。
【0027】
上記実施形態では、1の探触子で送受信を行う場合について説明したが、送信子及び受信子をそれぞれ別途設置して検査を行うようにすることも可能である。しかし、SHガイド波は指向性の鋭い波であることから、送信子と受信子を管周方向Yに近接させる必要があるため、上記実施形態は実用性に優れている。
【0028】
上記実施例では、2B配管、3B配管の検査を行う場合を例にとって説明したが、管外面に支持部材等を接触させる必要のない小径管であれば高精度な管検査が可能である。発明者らの実験によれば、少なくとも管径が3インチ以内の小径管であれば本発明にかかる管検査方法が十分有用である旨確かめられた。
【0029】
上記実施形態では、損傷部として管外面12における腐食部を検出する場合を例にとって説明した。しかし、管内面13や、管壁11内部における腐食・欠陥・空隙・異物混入等の損傷検査を行うこともできる。
【0030】
上記実施形態では、損傷部として局所的な腐食が生じている場合を例にとって説明した。しかし、管周方向Y及び/又は管長手方向Xに対して適宜走査することで、損傷部の3次元形状を把握することも可能である。
【0031】
なお、特許請求の範囲の項に記入した符号は、あくまでも図面との対照を便利にするためのものにすぎず、該記入により本発明は添付図面の構成に限定されるものではない。
【図面の簡単な説明】
【図1】 本発明にかかるSH波による管検査方法に使用する管検査装置のブロック図である。
【図2】 SHガイド波を説明するための図であり、(a)は管長手方向の断面図、(b)は管軸直交方向断面図である。
【図3】 SV波(Lモード)を用いて管検査を行った際の受信波形であり、(a)は管内に水がない場合、(b)は管内に水がある場合の受信波形をそれぞれ示す。
【図4】 本発明に係るSH波を用いて管検査を行った際の受信波形であり、(a)は管内に水がない場合、(b)は管内に水がある場合の受信波形をそれぞれ示す。
【図5】 探触子の位置を管周方向45°ずらして配置した際のそれぞれの位置における受信波形であり、(a)は探触子を人工きずと同じ管周方向位置に配置した場合、(b)は探触子を人工きずの位置から管周方向へ45度変位させた場合の受信波形をそれぞれ示す。
【図6】 表面SH波を説明するための図であり、(a)は管長手方向の断面図、(b)は管軸直交方向断面図である。
【符号の説明】
1:管検査装置、2:探触子、3a:発振器、3b:レシーバー、4:プリアンプ、5:フィルター、6:A/Dコンバーター、7:パーソナルコンピューター、8:モニター、10:管、11:管壁、12:管壁外面、13:管壁内面、14:管内部、21:振動子、22:楔、W:水(液体)、L1:探触子取付中心軸、L2:管壁外面法線、X:管軸(管長手)方向、Y:管周方向、θ,θ’:入射角
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tube inspection method using ultrasonic SH waves. More specifically, the present invention relates to a pipe inspection method for inspecting a water supply pipe or the like by receiving, with a probe, an SH wave that propagates through a pipe wall and transmits or reflects a damaged portion.
[0002]
[Prior art]
Conventionally, in the inspection of a pipe, an inspection is performed using a longitudinal wave or an SV wave. For example, Patent Document 1 describes a method for evaluating thinning by measuring the wall thickness of a tube using a cylindrical wave that vibrates the entire cylinder. However, in the method described in the same document, since the cylindrical wave to be used has a vibration component (L mode) in the tube thickness direction, when inspection is performed in a state where liquid such as water exists in the tube The ultrasonic wave is attenuated by the fluid. Therefore, it was necessary to perform an inspection with the liquid in the tube removed. In addition, since the detectable damaged part is determined by the ratio to the cross-sectional area of the pipe, it was not suitable for local damage inspection.
[0003]
On the other hand, the thing of patent document 2 is known as a pipe inspection method using the SH wave which vibrates in parallel with respect to the pipe surface. This technique focuses on the detection of damage in a welded portion with a flange for supporting a tube located 90 ° away from the probe in the tube circumferential direction. In paragraph 0015 of the same document, “the incident angle λ of the ultrasonic wave is an angle substantially equal to an angle called a critical angle at which the refraction angle of the ultrasonic wave incident on the specimen 10 such as steel is just 90 degrees”. It is described. Therefore, this technique is a method using surface waves propagating in the vicinity of the tube surface as shown in FIG. The surface SH wave easily spreads in the entire tube circumferential direction Y as shown in FIG. As a result, with this surface SH wave, it is difficult to accurately identify the position of the damaged portion in the tube circumferential direction, and damage inside the tube wall cannot be detected.
[0004]
[Patent Document 1]
JP 2002-328119 A [Patent Document 2]
Japanese Patent Laid-Open No. 9-72887
[Problems to be solved by the invention]
An object of the present invention is to provide an SH wave tube inspection method that can perform highly accurate tube inspection even when liquid is present in the tube and can specify the position of the damaged portion in the tube circumferential direction. It is to provide.
[0006]
[Means for Solving the Problems]
The feature of the tube inspection method using the SH wave according to the present invention is that the SH wave is transmitted from the probe to the tube wall, and the SH wave propagated through the tube wall and transmitted or reflected from the damaged portion is probed. A tube inspection method using an SH wave for inspecting a tube by receiving the signal from the probe toward the inside of the tube wall from the probe toward the longitudinal direction of the tube, and an incident angle of the SH wave in the tube wall. Is to transmit an SH guide wave, which is a burst wave. Here, unlike the “surface SH wave” described in Patent Document 2, the “SH guide wave” refers to an SH wave in which the entire wall thickness of the tube wall vibrates. Since the vibration direction of the SH guide wave is parallel to the tube wall surface, the SH guide wave is not attenuated by the liquid even if the liquid exists in the tube. The SH guide wave is transmitted in the tube longitudinal (tube axis) direction due to the sharpness of the directivity, so that the position of the defect (damage) in the tube circumferential direction can be accurately specified.
[0007]
According to the experiments by the inventors, the incident angle when transmitting the SH wave to the tube wall is smaller than the critical angle of the SH wave in the tube wall, and this SH wave is used as a burst wave inside the tube wall. It was found that the SH guide wave can be propagated inside the tube wall by making it incident.
[0008]
In addition to the features of the tube inspection method according to the present invention, the probe may be scanned in the tube circumferential direction by the probe. As described above, the position of the damaged portion can be easily specified using the sharp directivity of the SH guide wave. Note that a simple and highly accurate inspection can be performed by transmitting and receiving the SH wave with one probe.
[0009]
【The invention's effect】
As described above, according to the feature of the tube inspection method using the SH wave according to the present invention, since the SH wave is not attenuated by the liquid in the tube by using the SH guide wave, the presence or absence of the liquid in the tube is taken into consideration. This makes it possible to perform precise pipe inspections using sharp directivity. As a result, it has become possible to perform inspection without interrupting the use of the pipe, and it has been possible to contribute to improving the reliability and operating rate of facilities and the like.
[0010]
In addition, since the SH guide wave having sharp directivity is used, it is possible to easily and accurately specify the position of the damaged portion in the tube circumferential direction by scanning in the tube circumferential direction.
[0011]
Other objects, configurations, and effects of the present invention will become apparent from the following embodiments of the present invention.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in more detail with reference to the accompanying drawings.
The pipe inspection method using SH waves according to the present invention is mainly intended for inspection of water supply / hot water supply pipes, drain pipes, oil supply pipes and the like in plants and the like. As shown in FIG. 1, these are used to detect damages such as defects and thinning in the inner and outer surfaces 12 and 13 of the pipe 10 and the inside of the pipe wall 11 and to specify a damage position. In the present embodiment, a fluid W such as water remains in the water supply pipe 10.
[0013]
FIG. 1 shows a block diagram of a pipe inspection apparatus 1 used in the pipe inspection method according to the present invention. The tube inspection device 1 generates a burst wave with an oscillator 3 a controlled by a personal computer 7, and transmits an SH guide wave from the pipe outer surface 12 to the tube wall 11 via the probe 2. The transmitted SH guide wave is transmitted / reflected at the damaged portion and received again by the probe 2. The received reflected wave is amplified by the receiver 3b and the preamplifier 4, converted into a digital signal by the A / D converter 6 with the noise removed by the filter 5, processed by the personal computer 7, and the result is obtained. Displayed on the monitor 8.
[0014]
As shown in FIG. 2A, the probe 2 generally has a vibrator 21 and a wedge 22, and a shear wave excited by the vibrator 21 is applied to the tube wall 11 via the acrylic wedge 22 as an SH wave. As incident. At that time, a highly viscous transverse wave contact medium is interposed between the wedge 22 and the tube wall outer surface 12. This probe 2 is a variable SH probe capable of appropriately adjusting the incident angle θ given by the angle formed by the probe attachment center axis L1 and the normal L2 of the tube wall outer surface 12. And in order to generate SH guide wave inside this tube wall 11, this incident angle (theta) is adjusted to a value sufficiently smaller than 27 degree | times which is the critical angle of SH wave in the tube wall 11 which is steel materials. There is a need. According to experiments by the inventors, it has been found that an angle of about 19 degrees is appropriate as the incident angle θ for generating the SH guide wave propagating in the tube longitudinal direction X.
[0015]
Here, the relationship between the propagation characteristics of the SH wave and the incident angle θ will be briefly described with reference to FIGS.
First, as shown in FIG. 6A, when the incident angle θ ′ is 27 degrees which is the critical angle of the SH wave, the SH wave incident on the tube wall 11 propagates on the tube wall outer surface 12 as an SH surface wave. It was confirmed. Therefore, although it is suitable for detecting the surface damage of the tube wall 11, it is not suitable for the damage inspection in the tube wall inner surface 13 and the tube wall 11. Further, as shown in FIG. 6B, the surface SH wave easily goes around in the tube circumferential direction Y not only along the tube axis direction X but also along the tube outer surface. Thus, the surface SH wave cannot identify the position of the damaged portion in the tube circumferential direction.
[0016]
On the other hand, as shown in FIG. 2A, when the incident angle θ is adjusted to 19 degrees, which is sufficiently smaller than 27 degrees, which is the critical angle of the SH wave, and the SH wave is incident on the tube wall 11, the incident SH wave is obtained. Becomes a guide wave that enters the tube wall 11 at a refraction angle of 45 degrees and propagates in the tube longitudinal direction X while reflecting between the outer surface 12 and the inner surface 13 of the tube wall 11. Therefore, by analyzing this SH wave, it is possible to inspect not only the tube wall outer surface 12 but also the tube wall inner surface 13 and the tube wall 11 inside. By the way, in order to reach the incident SH wave to the tube inner surface 13, the incident SH wave is not a pulse wave but a burst wave composed of a plurality of waves. This is because the energy is large and an SH guide wave can be generated efficiently by transmitting a plurality of waves.
[0017]
FIG. 2B schematically shows the displacement direction and the magnitude of the force acting on each point in the thickness direction when the SH guide wave is propagated inside the tube wall 11. A shearing force acts on the tube wall 11 immediately below the tube circumferential position of the probe 2, and this shearing force propagates only in the tube axis direction X. In other words, since the SH guide wave does not easily propagate in the tube circumferential direction Y, the directivity with respect to the tube axis direction X is strong as a result.
[0018]
According to experiments by the inventors described later, no SH wave was observed at a position shifted by 45 degrees in the tube circumferential direction from the position of the probe (transmitter) 2 tube circumferential direction. Also from this experimental result, the SH wave hardly spreads in the tube circumferential direction Y, is a very directional wave propagating in the tube axis direction X, and the sound speed is different from other SH waves. Therefore, by using this SH guide wave, it is possible to observe only the damaged part at the pipe circumferential position where the probe 2 is installed, and the pipe circumferential direction position of the damaged part can be specified.
[0019]
Next, an actual procedure for inspecting a pipe using the pipe inspection method according to the present invention will be briefly described. First, the probe 2 is installed on the pipe outer surface 12 with a contact medium interposed. Then, after performing the above-described inspection at this position, the probe 2 is moved in the tube circumferential direction Y by a predetermined angle, and the above-described inspection is performed for each movement position. When the defect signal is received, the coordinates of the damaged part are specified by the difference in generation time of the defect echo S1 and the tube circumferential direction Y position of the probe 2. By performing such inspection over the entire pipe circumference, it is possible to grasp the damage in the entire range.
[0020]
[Example 1]
The inventors have used the SV wave (L mode) in order to demonstrate that the tube inspection method using the SH guide wave according to the present invention is also applicable when the liquid inside the tube 14 is present. And a comparison experiment with the case of using the SH guide wave according to the present invention. In this example, 3B piping having an artificial flaw on the pipe outer surface 12 was used as a test body, and the probe 2 was installed on the pipe outer surface 12 at a position where the distance to the artificial flaw was 1500 mm.
[0021]
3A and 3B show received waveforms when SV waves are used. FIG. 3A shows the amplitude when water W does not exist inside the tube 14 and FIG. 3B shows the amplitude when water W exists inside the tube 14. It is a time-series distribution of values, and the gain is 36 dB for each. In FIG. 6A, an artificial flaw echo S1 is observed at 0.88 ms, and an end face echo S2 is observed at 1.0 ms, respectively, which clearly shows that the artificial flaw is captured. On the other hand, when water W was present inside the tube 14, neither artificial flaw echo S <b> 1 nor end face echo S <b> 2 was observed as shown in FIG.
[0022]
On the other hand, FIG. 4 shows a received waveform obtained by an experiment using the SH guide wave according to the present invention. FIG. 4A shows a time-series waveform of amplitude values when water is not present in the pipe interior 14 and FIG. 4B is a time series waveform of amplitude values when water W is present in the pipe interior 14, and the gain is set to 36 dB. In both (a) and (b), an artificial flaw echo S1 is observed at 0.82 ms, and an end face echo S2 is observed at 0.93 ms. The SH guide wave is not attenuated by the liquid W inside the tube 14. It was confirmed that the wave propagated through the tube wall 11.
[0023]
[Example 2]
In order to demonstrate that the SH guide wave is a directional sharp wave, the inventors have arranged the probe 2 at the same circumferential position as the artificial flaw and the probe 2 from the position to the tube. A comparative experiment was performed with the case where it was arranged at a position shifted by 45 degrees in the circumferential direction Y. In this example, a 2B pipe having an artificial flaw on the tube outer surface 12 was used as a test body, and the probe 2 was installed on the tube outer surface 12 having a distance to the artificial flaw of 4000 mm and a distance to the tube end surface of 4500 mm.
[0024]
FIG. 5 (a) shows a received waveform when the probe 2 is arranged at the same circumferential position as the artificial flaw, and the artificial flaw echo S1 is 2.55 ms and the end face echo S2 is 2.8 ms. Observed. On the other hand, FIG. 5B shows a received waveform when the probe 2 is arranged at a position shifted by 45 degrees in the tube circumferential direction Y from the probe position of FIG. S2 was observed, but no artificial flaw echo was observed. The inventor conducted similar comparative experiments by appropriately changing the distance to the flaw detection part and the tube size, and obtained similar experimental results. Therefore, it was found that the SH guide wave is a wave having a sharp directivity that propagates in the tube circumferential direction Y almost without spreading.
[0025]
Finally, reference is made to the possibilities of other embodiments of the invention. Moreover, it is also possible to implement by combining each embodiment shown below suitably. In addition, the same code | symbol is attached | subjected to the member similar to the said embodiment.
[0026]
In the above embodiment, the state in which the liquid W is present in the pipe interior 14 is recalled, but the present invention can be implemented regardless of the presence or absence of the liquid W.
[0027]
In the above-described embodiment, a case where transmission / reception is performed by one probe has been described. However, it is also possible to perform inspection by separately installing a transmitter and a receiver. However, since the SH guide wave is a wave having a sharp directivity, the transmitter and the receiver need to be close to each other in the tube circumferential direction Y. Therefore, the above embodiment is excellent in practicality.
[0028]
In the above-described embodiment, the case of inspecting 2B piping and 3B piping has been described as an example. However, if a small-diameter tube that does not require a support member or the like to be in contact with the outer surface of the tube, high-accuracy tube inspection is possible. According to the experiments by the inventors, it has been confirmed that the pipe inspection method according to the present invention is sufficiently useful if the pipe diameter is at least a small diameter pipe of 3 inches or less.
[0029]
In the said embodiment, the case where the corrosion part in the pipe outer surface 12 was detected as a damaged part was demonstrated as an example. However, it is also possible to perform damage inspections such as corrosion, defects, voids, and foreign matter contamination in the tube inner surface 13 and the tube wall 11.
[0030]
In the above embodiment, the case where local corrosion has occurred as a damaged portion has been described as an example. However, it is also possible to grasp the three-dimensional shape of the damaged portion by appropriately scanning the tube circumferential direction Y and / or the tube longitudinal direction X.
[0031]
In addition, the code | symbol entered in the term of the claim is only for the convenience of contrast with drawing, and this invention is not limited to the structure of an accompanying drawing by this entry.
[Brief description of the drawings]
FIG. 1 is a block diagram of a tube inspection apparatus used in a tube inspection method using SH waves according to the present invention.
2A and 2B are diagrams for explaining an SH guide wave, in which FIG. 2A is a cross-sectional view in the longitudinal direction of the tube, and FIG. 2B is a cross-sectional view in the direction perpendicular to the tube axis.
FIG. 3 is a reception waveform when a tube inspection is performed using an SV wave (L mode), (a) shows a reception waveform when there is no water in the tube, and (b) shows a reception waveform when there is water in the tube. Each is shown.
4A and 4B are reception waveforms when a tube inspection is performed using an SH wave according to the present invention. FIG. 4A shows a reception waveform when there is no water in the tube, and FIG. 4B shows a reception waveform when there is water in the tube. Each is shown.
FIG. 5 is a received waveform at each position when the position of the probe is shifted by 45 ° in the pipe circumferential direction, and (a) is a case where the probe is placed at the same pipe circumferential position as the artificial flaw. , (B) respectively show received waveforms when the probe is displaced 45 degrees from the position of the artificial flaw in the pipe circumferential direction.
6A and 6B are diagrams for explaining a surface SH wave, where FIG. 6A is a cross-sectional view in the longitudinal direction of the tube, and FIG. 6B is a cross-sectional view in the direction perpendicular to the tube axis.
[Explanation of symbols]
1: tube inspection device, 2: probe, 3a: oscillator, 3b: receiver, 4: preamplifier, 5: filter, 6: A / D converter, 7: personal computer, 8: monitor, 10: tube, 11: Tube wall, 12: Tube wall outer surface, 13: Tube wall inner surface, 14: Inside tube, 21: Vibrator, 22: Wedge, W: Water (liquid), L1: Probe mounting center axis, L2: Tube wall outer surface Normal, X: Pipe axis (pipe longitudinal) direction, Y: Pipe circumferential direction, θ, θ ′: Incident angle

Claims (4)

探触子から管壁にSH波を送信すると共に、前記管壁を伝播し損傷部を透過し又は反射したSH波を探触子で受信することにより管の検査を行うSH波による管検査方法であって、前記探触子から前記管の長手方向に向かって管壁の内部へ、入射角が前記管壁中でのSH波の臨界角よりも小であり、前記SH波がバースト波であるSHガイド波を送信するSH波による管検査方法。  An SH wave tube inspection method for inspecting a tube by transmitting an SH wave from the probe to the tube wall and receiving the SH wave transmitted through the tube wall and transmitted through or reflected from the damaged portion by the probe. The incident angle from the probe toward the inside of the tube wall in the longitudinal direction of the tube is smaller than the critical angle of the SH wave in the tube wall, and the SH wave is a burst wave. A tube inspection method using an SH wave that transmits an SH guide wave. 管内部に液体が存在する請求項1に記載のSH波による管検査方法。  The tube inspection method using SH waves according to claim 1, wherein a liquid is present inside the tube. 前記探触子により前記管を管周方向に走査する請求項1又は2に記載のSH波による管検査方法。  3. The tube inspection method using SH waves according to claim 1, wherein the tube is scanned in the tube circumferential direction by the probe. 1の探触子により前記SH波の送受信を行う請求項1〜3のいずれかに記載のSH波による管検査方法。  The tube inspection method using an SH wave according to claim 1, wherein the SH wave is transmitted and received by one probe.
JP2003093999A 2003-03-31 2003-03-31 Tube inspection method using SH waves Expired - Lifetime JP4144703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003093999A JP4144703B2 (en) 2003-03-31 2003-03-31 Tube inspection method using SH waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003093999A JP4144703B2 (en) 2003-03-31 2003-03-31 Tube inspection method using SH waves

Publications (2)

Publication Number Publication Date
JP2004301613A JP2004301613A (en) 2004-10-28
JP4144703B2 true JP4144703B2 (en) 2008-09-03

Family

ID=33406664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003093999A Expired - Lifetime JP4144703B2 (en) 2003-03-31 2003-03-31 Tube inspection method using SH waves

Country Status (1)

Country Link
JP (1) JP4144703B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4674753B2 (en) * 2005-06-27 2011-04-20 バブコック日立株式会社 Tube group inspection device
JP4963087B2 (en) * 2006-12-18 2012-06-27 株式会社千代田テクノル Drum can inspection method and apparatus
WO2008075477A1 (en) * 2006-12-18 2008-06-26 Chiyoda Technol Corporation Method of inspecting metal drum and apparatus therefor
US7886604B2 (en) 2007-01-26 2011-02-15 Idemitsu Kosan Co., Ltd. Electromagnetic ultrasonic flaw detection method and electromagnetic ultrasonic transducer to be used therefor
JP5455293B2 (en) * 2007-07-19 2014-03-26 青山 元章 Drum inspection device
JP2009250822A (en) * 2008-04-08 2009-10-29 Tokyo Energy & Systems Inc Inspection method for seawater piping
JP5345103B2 (en) * 2010-04-27 2013-11-20 株式会社Ihi検査計測 Guided wave inspection method using solidification of liquid layer
JP5883605B2 (en) * 2011-10-03 2016-03-15 金川 典代 Drum can inspection method and apparatus
KR101403216B1 (en) 2012-11-15 2014-06-03 재단법인 포항산업과학연구원 Apparatus and method of detecting surface defect of wire rod using ultrasonic wave
EP3572806A4 (en) * 2017-03-06 2020-10-07 Nippon Steel Corporation ULTRASONIC FAULT DETECTION DEVICE AND ULTRASONIC FAULT DETECTION METHOD

Also Published As

Publication number Publication date
JP2004301613A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
KR101134431B1 (en) Ultrasonic scanning device and method
JP4094464B2 (en) Nondestructive inspection method and nondestructive inspection device
JP4589280B2 (en) Pipe inspection method using guide wave and pipe inspection apparatus
Alleyne et al. Rapid, long range inspection of chemical plant pipework using guided waves
JP2008209364A (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
JP4116483B2 (en) Tubular ultrasonic inspection method and apparatus
Bustamante et al. Hybrid laser and air-coupled ultrasonic defect detection of aluminium and CFRP plates by means of Lamb mode
KR100716593B1 (en) Non-contact ultrasonic pipe inspection device by ring array laser irradiation
JP4144703B2 (en) Tube inspection method using SH waves
JP5663319B2 (en) Guide wave inspection method and apparatus
CN113874721B (en) A method and device for non-destructive testing of plate materials
JP3198840U (en) Prop road boundary inspection system
JP2011529170A (en) Improved ultrasonic non-destructive inspection using coupling check
KR101949875B1 (en) Apparatus and method for detecting defects of structures
RU2153163C1 (en) Method of intratube ultrasonic diagnostics of condition of pipe-line
JP4241529B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
CN114402197A (en) Apparatus and method for pipeline inspection using EMAT-generated shear waves
KR101351315B1 (en) Line-contact surface wave guide wedge apparatus
JP2005083907A (en) Defect inspection method
Lee et al. Single-mode guided wave technique using ring-arrayed laser beam for thin-tube inspection
JP2007263956A (en) Ultrasonic flaw detection method and apparatus
Edwards et al. Detection of corrosion in offshore risers using guided ultrasonic waves
Gauthier et al. EMAT generation of horizontally polarized guided shear waves for ultrasonic pipe inspection
US8375795B2 (en) Non-destructive inspection of high-pressure lines
JP2019060676A (en) Method of evaluating soundness of oblique ultrasonic flaw detection, and oblique ultrasonic flaw detection method using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080513

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080516

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080611

R150 Certificate of patent or registration of utility model

Ref document number: 4144703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140627

Year of fee payment: 6

EXPY Cancellation because of completion of term