[go: up one dir, main page]

JP4164313B2 - camera - Google Patents

camera Download PDF

Info

Publication number
JP4164313B2
JP4164313B2 JP2002236794A JP2002236794A JP4164313B2 JP 4164313 B2 JP4164313 B2 JP 4164313B2 JP 2002236794 A JP2002236794 A JP 2002236794A JP 2002236794 A JP2002236794 A JP 2002236794A JP 4164313 B2 JP4164313 B2 JP 4164313B2
Authority
JP
Japan
Prior art keywords
camera
camera shake
shake correction
angle
angular velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002236794A
Other languages
Japanese (ja)
Other versions
JP2004077711A (en
Inventor
圭一郎 平原
純一 篠原
邦久 山口
直紀 越田
浩幸 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2002236794A priority Critical patent/JP4164313B2/en
Publication of JP2004077711A publication Critical patent/JP2004077711A/en
Application granted granted Critical
Publication of JP4164313B2 publication Critical patent/JP4164313B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a camera with a camera shake correcting function capable of improving the ability of camera shake correction by increasing a moving amount in a specified direction by installing a camera shake correction means so that it may be inclined by an optional angle considering the character of the camera from a vertical direction. <P>SOLUTION: The camera is provided with angular velocity detection means (physical sensors 21y and 21p) incorporated in a camera body (camera main body) 11 and detecting an angular velocity around two axes orthogonal to a Z-axis (optical axis), an arithmetic calculation means 17 calculating camera shake correction amount based on the angular velocity around the two axes (X-axis and Y-axis) detected by the angular velocity detection means, and at least two camera shake correction means (camera shake correction devices 23a and 23b) performing camera shake correcting operation in the specified direction based on the camera shake correction amount arithmetically calculated by the arithmetic calculation means 17. Then, two of the camera shake correction means are installed so that they may be inclined by 45 degrees from the vertical direction. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術】
この発明は、例えば手振れ補正機能が設けられたディジタルスチルカメラやビデオカメラ等カメラに関する。
【0002】
【従来の技術】
従来から、撮影光学系により被写体の像を撮像素子の受光面上に結像させ、電気信号に変換して取りこむカメラとしては、ビデオカメラやデジタルスチルカメラとして知られている。
【0003】
例えば、図7(a)に示した様なデジタルスチルカメラでは、カメラボディ1の正面には撮影レンズ2が設けられ、カメラボディ1の上面にはレリーズボタン3が設けられている。この図7(a)の状態で、カメラボディ1の左右方向をX軸、カメラボディ1の上下方向をY軸、撮影レンズ2の光軸方向をZ軸としてカメラボディ1の手振れ状態について説明する。
【0004】
この様なデジタルスチルカメラは、撮像素子の感度の限界により、銀塩写真のような短いシャッタ時間を実現しにくく、手振れにより撮像された画像に「像の流れ」のようなボケが生じやすい。
【0005】
このため、従来のデジタルカメラには、図7(b)に示したように、ヨー方向の手振れを検出する手振れ検出センサ4を設け、ピッチ方向の手振れを検出する手振れ検出センサ5を設けて、このセンサ4,5からヨー方向及びピッチ方向の手振れ情報を検出すると共に、この手振れ情報に基づいて手振れを補正するようにしたものが考えられている。尚、図7(b)中、6はエリアCCD等の二次元固体撮像素子(撮像手段)である。
【0006】
そして、上述の手振れ補正は、通常、カメラに固定された2(X軸、Y軸)軸回りの角速度をセンサ4,5により検出し、上記2軸の回りのカメラの「手振れによる傾き角」を求め、この傾き角を補正するように、撮影レンズ2を含む撮影光学系に含まれる補正レンズ(図示せず)を変位させたり、光軸の向きを調整したり、撮像素子6を移動(ヨー方向及びピッチ方向に回動制御)させたりすることにより行われている。この場合、補正レンズ等の被駆動系の要素は、鉛直方向、水平方向に平行な2軸上を移動するような機構となっている。
【0007】
【発明が解決しようとする課題】
しかし、人間のおこす手振れは、図8に示したように、ヨー方向とピッチ方向で振れ量や振れ方向が異なる。しかも、この手振れは、カメラの形態やカメラの保持状態など様々な条件で変わってくる。
【0008】
例えば、図9(a),(b)は、横薄型のカメラを用いて実際に多数回撮影したときの手振れの様子を示している。尚、図9(a),(b)において、多数の曲線はそれぞれの撮影時における手振れ状態を示している。また、図9(a)は水平方向のぶれを示し、図9(b)は鉛直方向のぶれを示している。
【0009】
この図9(a),(b)のグラフからは明らかに、カメラの保持状態によってぶれの発生方向が変わってくることが分かる。
【0010】
従って、手振れ補正手段を鉛直方向からカメラの特徴などを考慮した任意の角度だけ傾けて設置することで、ある特定方向の移動量を増やし、手振れ補正の能力を向上させることが望ましい。
【0011】
この発明は、手振れ補正手段を鉛直方向からカメラの特徴などを考慮した任意の角度だけ傾けて設置することで、ある特定方向の移動量を増やし、手振れ補正の能力を向上させカメラを提供することを目的とするものである。
【0012】
【課題を解決するための手段】
この目的を達成するため、請求項1の発明は、撮影光学系により被写体の像を撮像素子の受光面上に結像させ、電気信号に変換して取りこむカメラにおいて、カメラ本体に内蔵され、光軸に直交する2つの軸の回りの角速度を検出する角速度検出手段と、該角速度検出手段により検出された上記2軸の回りの角速度に基き、手振れ補正量を算出する演算手段と、該演算手段により演算された手振れ補正量に基き、所定方向の手振れ補正動作を行う少なくとも2つの手振れ補正手段を有し、
前記手振れ補正手段のうちの2つが鉛直方向からそれぞれ所定の角度傾いており、かつカメラの所定の操作もしくはカメラ内部の判断機能に基づき、手振れが大きくなる方向を判断し、判断した方向の補正量が大きくなるように、前記所定の角度から前記手振れ補正手段の設置角度が変化するカメラとしたことを特徴とする。
【0013】
また、上記目的を達成するため、請求項2の発明は、 請求項1に記載のカメラにおいて、前記手振れ補正手段のうちの2つがそれぞれ鉛直方向から45度傾いて設置されているカメラとしたことを特徴とする。
【0014】
更に、上記目的を達成するため、請求項3の発明は、請求項1に記載のカメラにおいて、前記手振れ補正手段のうちの2つが鉛直方向からそれぞれ45度より小さい所定の角度傾いて設置されているカメラとしたことを特徴とする。
【0015】
また、請求項4の発明は、請求項1〜3のいずれか一つに記載カメラにおいて、該角速度センサが検出する角速度の軸が、前記2つの手振れ補正手段の補正方向と各々直交していることを特徴とする。
【0016】
また、請求項5の発明は、請求項1〜4のいずれか一つに記載カメラにおいて、該手振れ補正手段は、撮像素子を受光面に平行な方向へ並進的に変位調整する撮像素子並進調整手段であることを特徴とする。
【0017】
また、請求項6の発明は、請求項1〜4のいずれか一つに記載カメラにおいて、該手振れ補正手段は、撮影光学系に含まれる1以上の補正レンズを、その光軸直交方向へ変位させる補正レンズ駆動手段であることを特徴とする。
【0018】
更に、請求項7の発明は、請求項1〜4のいずれか一つに記載カメラにおいて、該手振れ補正手段は、撮影光学系の光軸上に設けた可変頂角プリズムと、該可変頂角プリズムの頂角を変化させる可変頂角プリズム駆動手段とによって構成されていることを特徴とする。
【0019】
また、請求項8の発明は、請求項1〜7のいずれか一つに記載カメラにおいて、カメラの所定の操作とは、カメラの複数の撮影モードのいずれかをモード選択手段により選択すると共に、前記モード選択手段により選択された撮影モードに応じて手振れ補正手段の設置角度が撮影モードに適した角度に変化させることであることを特徴とする。
【0020】
また、請求項9の発明は、請求項1〜7のいずれか一つに記載カメラにおいて、カメラ内部の判断機能とは、カメラ姿勢検知手段によって検出されるカメラの姿勢検出信号からカメラの構え方を判断すると共に、このカメラの構え方の方向に応じて前記手振れ補正手段の設置角度を可変させることであることを特徴とする。
【0021】
また、請求項10の発明は、請求項1〜7のいずれか一つに記載カメラにおいて、カメラ内部の判断機能とは、カメラ保持状態又はレリーズ釦半押し状態のときに手振れ検出手段で検出される手振れ量を判断すると共に、前記手振れ補正手段の設置角度を変化させることであることを特徴とする。
【0022】
【発明の実施の形態】
以下、この発明の実施の形態を図面に基づいて説明する。
[構成]
図1は、本発明の手振れ補正機能付きデジタルカメラ(撮影装置)を実施する場合の1つの形態を説明するための図である。
【0023】
図1において、11はデジタルカメラのカメラボディ(カメラ本体)、12はカメラボディ11の前側に設けられた撮影レンズ、13はレリーズボタンである。このレリーズボタン13には2段押し式のものが用いられる。そして、このレリーズボタン13を半押し状態では、後述するように手振れ情報を検出したりするようになっている。また、レリーズボタン13を全押ししたときには撮影が行われるようになっている。
【0024】
ここで、図1の様にカメラボディ11を水平にしたとき、カメラボディ11の左右方向をX軸、カメラボディ11の上下方向をY軸、撮影レンズ2の光軸方向をZ軸、X軸及びY軸に対して45°の軸線を傾斜軸O1,O2として説明する。
【0025】
このカメラボディ11内には、図2,図4に示したような撮像手段(撮影手段)14が配設されている。この撮像手段14は、撮像制御基板15と、この撮像制御基板15に設けられた(搭載された)撮像手段としてのCCD等の二次元個体撮像素子(撮像素子)16を有する。
【0026】
この撮像制御基板15には、演算手段(演算制御回路)17により作動制御される露光制御手段18が接続されている。この演算手段17は、露光制御手段18を作動制御して撮像制御基板15を露光制御することにより撮像する。そして、演算手段17は、撮像制御基板15を制御することにより、二次元個体撮像素子16の多数の画素を走査して、映像信号を二次元個体撮像素子16から取り出すようになっている。この二次元個体撮像素子16の制御のための撮像制御基板15の構成には、周知の構成が採用できるので、その詳細な説明は省略する。
【0027】
この撮像制御基板15は、弾性体19,20を介してカメラボディ11のブラケット11a,11bに保持されている。この弾性体19,20の配置位置は、二次元個体撮像素子16の中心(撮影レンズ12の光軸)を通るX軸及びY軸に対して45°の角度位置に配置されている。従って、撮像制御基板15は、弾性体19により傾斜軸O1を中心に回動可能にカメラボディ11内に支持されていると共に、弾性体20により傾斜軸O2を中心に回動可能にカメラボディ11内に支持されている。
【0028】
また、カメラボディ11内には、図3,図4に示したように、手振れ検出手段21が取り付けられている。この手振れ検出手段21は、ヨー方向の振れ量を検出するジャイロセンサ(圧電振動ジャイロ)等の物理量センサ(角速度検出手段としての角速度センサ1)21yと、ピッチ方向の振れ量を検出するジャイロセンサ(圧電振動ジャイロ)等の物理量センサ(角速度検出手段としての角速度センサ2)21pと、各々の物理センサ21y,21pの検出出力の増幅やフィルタ処理等を施す振れ検出センサ回路22を備えている。
【0029】
また、撮像制御基板15は、手振れ補正手段23により振れ補正が行われるようになっている。この手振れ補正手段23は、上述の弾性体19,20と、撮像制御基板15の左斜め下縁部を傾斜軸O1回りに回転制御する手振れ補正装置(第1の手振れ補正手段)23aと、撮像制御基板15の右斜め上縁部を傾斜軸O2回りに回転制御する手振れ補正装置(第2の手振れ補正手段)23bを備えている。
【0030】
この手振れ補正装置23a,23bは、カメラボディ1内の図示しない位置に保持されている。また、この手振れ補正装置23a,23bは、圧電素子と、この圧電素子の厚さ変化を機械的に拡大する変位拡大機構を備える。この変位拡大機構にはテコの原理が用いられる。また、手振れ補正装置23a,23bの圧電素子は補正手段駆動手段(補正手段駆動回路)24により駆動制御される様になっている。この補正手段駆動手段24は演算手段17により動作制御されるようになっている。
【0031】
なお、図2において、物理センサ(角速度センサ1,2)21y,21pをそれぞれ、X,Y軸上に描いたのは、説明の便宜上であり、角速度センサは必ずしも角速度を検出すべき軸上に設置されるとは限らない。
【0032】
物理センサ(角速度センサ1,2)21y,21pとしては、上述したように圧電振動ジャイロなどを用いることが出来る。図3に示すように、物理センサ(角速度センサ1,2)21y,21pの出力は演算手段17に送られる(入力される)。演算手段17は「マイクロプロセッサ」等により構成され物理センサ(角速度センサ1,2)21y,21pからの入力に応じて「手振れ補正量」を算出し、手振れ補正手段23に送る(入力する)。手振れ補正手段24は、手振れ補正量に応じて撮像手段14を変位駆動し、手振れの影響を軽減させる。
[作用]
次に、この様な構成のデジタルカメラの作用を説明する。
【0033】
上述したカメラボディ11を撮影者が掴んで撮影を行う場合、カメラボディ11はX軸回りのピッチ方向とY軸回りのヨー方向に手振れが生じる。この際、ヨー方向の振れ量は物理センサ(角速度センサ1)21yによりヨー方向の角速度として検出され、ピッチ方向の振れ量は物理センサ(角速度センサ2)21pによりピッチ方向の角速度として検出される。
【0034】
この物理センサ21y,21pは、検出した検出信号を出力して演算手段17に入力する。この演算手段17は、物理センサ21y,21pからの入力に応じて「手振れ補正量」を算出して、この「手振れ補正量」に応じた制御信号を手振れ補正手段23の補正手段駆動手段24に入力する。この補正手段駆動手段24は、入力される制御信号に基づいて手振れ補正装置23a,23bの圧電素子(図示せず)に制御電圧を印加する。
【0035】
これにより、手振れ補正装置23a,23bの圧電素子は厚さ変化を生じて、この圧電素子の厚さ変化は手振れ補正装置23a,23bの図示しないテコの原理を応用した拡大機構を介して撮像制御基板15に伝達される。これにより、撮像制御基板15は、手振れ補正装置23aにより傾斜軸O1の回りに回動駆動され、手振れ補正装置23bにより傾斜軸O2の回りに回動駆動される。この様にして、手振れ補正手段23は、手振れ補正量に応じて撮像手段14を傾斜軸O1,O2の回りに変位駆動し、手振れの影響を軽減させる。
【0036】
図5は従来の手振れ補正手段によってCCD等の撮像素子が並進移動する方向を示したものであり、図6は手振れ補正手段23によってCCD等の撮像素子16が並進移動する方向を示したものである。この図5では撮像素子の補正範囲がA,Bで示した範囲となり、図6では撮像素子16の補正範囲がA1,B1で示した範囲となる。この図5,図6の撮像素子の補正範囲を比較すると、図6の撮像素子16の補正範囲A1,B1は図5撮像素子の補正範囲A,Bの約1.4倍となる。
【0037】
以上説明した発明の実施の形態によれば、撮影レンズ2を含む撮影光学系により被写体の像を撮像素子(二次元固体撮像素子16)の受光面上に結像させ、電気信号に変換して取りこむカメラにおいて、カメラ本体(カメラボディ11)に内蔵され、光軸に直交する2つの軸(X軸,Y軸)の回りの角速度を検出する角速度検出手段(物理センサ21y,21p)と、該角速度検出手段(物理センサ21y,21p)により検出された上記2軸(X軸,Y軸)の回りの角速度に基き、手振れ補正量を算出する演算手段17と、該演算手段17により演算された手振れ補正量に基き、所定方向の手振れ補正動作を行う少なくとも2つの手振れ補正手段(手振れ補正装置23a,23b)を有し、該手振れ補正手段(手振れ補正装置23a,23b)のうちの2つがそれぞれ鉛直方向から45度傾いて設置されている構成としている。
【0038】
この様に手振れ補正手段を鉛直方向から45度傾けて設置する場合、図6に示すように、鉛直方向、水平方向の補正エリアが、斜めの方向の約1.4倍大きくなる。反面、斜め方向のエリアが少なくなるが、両手でカメラを支えることを考慮すると、斜め方向に動くことは考えにくい。従って、手振れ補正手段を45度傾けて設置することは効果があるといえる。
(変形例1)
また、上述した実施例では、2つの手振れ補正手段(手振れ補正装置23a,23b)がそれぞれ鉛直方向から45度傾いて設置されている構成としているが、必ずしもこの構成に限定されるものではない。例えば、2つの手振れ補正手段(手振れ補正装置23a,23b)を鉛直方向からそれぞれ45°より小さい所定の角度傾いて設置されている構成とすることができる。
【0039】
このことは、図9を参照すると理解できる。即ち、図9は実際の手振れの様子を示したグラフで、横薄型のカメラを数人のモニターが撮影したときの手振れをプロットしたものである。また、図9において、横軸は時間、縦軸は手振れの角度を示している。しかも、この図9の(a)は縦方向の手振れ、(b)は横方向の手振れである。この図9から明らかなように、縦方向の手振れがに大きいことが分かる。
【0040】
この様な場合、縦方向の補正量が大きければ、その効果が上がることが推測できる。このためには、2つの手振れ補正手段(手振れ補正装置23a,23b)を鉛直方向からそれぞれ45°より小さい所定の角度に傾けて設置することにより、可能となる。
【0041】
この様にすることで、縦方向の手振れの補正量が大きくなり、縦方向の手振れが大きくなる傾向にあるカメラにおいて手振れ防止効果がある。
(変形例2)
また、2つの手振れ補正手段(手振れ補正装置23a,23b)は、鉛直方向からそれぞれ所定の角度傾いて配設されていると共に、カメラの所定の操作もしくはカメラ内部(カメラボディ11内部)の判断機能(演算手段17による判断機能)に基き、カメラ(カメラボディ11)の所定の角度から変化させられる様に設定することもできる。
【0042】
この場合、手振れ補正手段23をX軸,Y軸に対して傾き調整可能に設け、この手振れ補正手段23の傾き調整手段を設けると共に、カメラボディ11の傾きに応じて傾き調整手段を演算手段17により作動制御することにより、この傾き調整手段で手振れ補正手段23のX軸,Y軸に対する傾きをカメラボディ11の傾きに応じて調整させるようにすると良い。
【0043】
この様にすることで、ユーザーによる所定の操作、もしくは、カメラ内部の判断機能に基き、2つの手振れ補正手段の設置角度を変化させるため、より適切な手振れ補正が行える。
【0044】
次に、ユーザーによる所定の操作、もしくは、カメラ内部の判断機能による手振れ補正手段の角度設定の具体的な例を説明する。
(i)カメラの所定の操作による手振れ補正手段23の角度設定
ここで、カメラの所定の操作とは、例えばカメラが複数の撮影モードを有し、この撮影モードのいずれかを選択することを言う。
【0045】
この撮影モードとしては、例えばカメラの構え方(カメラの姿勢)による撮影モードがある。しかも、カメラの構え方による撮影モードには、例えばカメラのカメラボディ11を横向き(撮影画面が横長の通常の撮影)に構える通常の構え方、カメラボディ11が縦向き(撮影画像が縦長)の構え方、カメラボディ11を斜めに構える構え方等が考えられる。この様なカメラボディ11の構え方により、手振れ状態が異なる。
【0046】
従って、この様なカメラの構え方すなわち撮影モードを選択するモード釦(モード選択手段)をカメラボディ(カメラ本体)11に設けて、このモード釦等でカメラの構え方による撮影モードを選択するなどして、カメラの構え方による撮影モードを設定し、このカメラの構え方のモードに応じた角度に手振れ補正手段23を傾き調子手段で傾ける様にしてもよい。即ち、この様に、カメラの構え方による撮影モードに応じた(適した)角度に手振れ補正手段23の設置角度を変化させる様にしてもよい。この様にすることで、手振れ補正の効果をあげる様にすることができる。尚、この設置角度を変化させることも所定の操作に含めることができる。
【0047】
この場合、カメラの形態(姿勢)によって手振れがより大きくなる方向の補正量が大きくなるように、手振れ補正手段23の設置角度を変化させることで、より適切な撮影が行える。
【0048】
この様にカメラを縦方向や横方向に構えてレリーズ(撮影)をする場合、カメラが有するモード釦で構え方を選択することで、カメラの形態(姿勢)によって手振れがより大きくなる方向の補正量が大きくなるように、手振れ補正手段23の設置角度を変化させることで、より適切な撮影が行える。
(ii)カメラ内部の判断機能による手振れ補正手段23の設置角度の設定1
また、カメラ内部の判断機能とはカメラボディ11内の演算手段17による判断機能を意味する。この演算手段17による判断機能として、カメラ(カメラボディ11)の姿勢を判断する機能を持たせることができる。
【0049】
ここで、カメラの撮影時の姿勢としては、上述したように例えばカメラのカメラボディ11を横向き(撮影画面が横長の通常の撮影)に構える通常の構え方、カメラボディ11が縦向き(撮影画像が縦長)の構え方、カメラボディ11を斜めに構える構え方等が考えられる。この様なカメラボディ11の構え方により、手振れ状態が異なる。
【0050】
従って、この様なカメラの姿勢の判断のためには、カメラボディ11内にカメラ姿勢検知手段(カメラの構え方検出センサ)を設けて、該カメラ姿勢検知手段によってカメラ(カメラボディ11)の構え方即ちカメラの向きや傾斜等の姿勢を検出させて、このカメラ姿勢検知手段からカメラ姿勢検出信号を出力させ、このカメラ姿勢検出信号を演算手段17に入力させるようにする。
【0051】
そして、演算手段17は、入力されるカメラ姿勢検出信号からカメラ(カメラボディ11)の向きや傾斜等の姿勢を判断する様に設定する。
【0052】
しかも、演算手段17は、カメラ姿勢検知手段で検出されたカメラ姿勢検出信号からカメラの姿勢を判断すると、カメラの姿勢に応じた適切な手振れ補正が行える様に、傾斜調整手段をカメラの姿勢に応じて作動制御して、手振れ補正手段23の設置角度をカメラの姿勢に応じて自動的に変化させる様にしてもよい。尚、カメラ内部の判断機能には、手振れ補正手段23の設置角度をカメラの姿勢に応じて自動的に変化させることも含めることができる。
【0053】
この場合、カメラの形態(姿勢)によって手振れがより大きくなる方向の補正量が大きくなるように、手振れ補正手段23の設置角度を変化させることで、より適切な撮影が行える。
【0054】
この様にカメラを縦方向や横方向に構えてレリーズ(撮影)をする場合、カメラが有するモード釦で構え方を選択することで、カメラの形態(姿勢)によって手振れがより大きくなる方向の補正量が大きくなるように、手振れ補正手段23の設置角度を変化させることで、より適切な撮影が行える。
(iii)カメラ内部の判断機能による手振れ補正手段23の設置角度の設定2
更に、カメラ内部の判断機能とは、上述したようにカメラボディ11内の演算手段17による判断機能を意味する。この演算手段17による判断機能として、カメラ保持状態または、レリーズ釦半押し状態で検出される手振れ量、即ち手振れ情報がどのようなものであるかを判断する機能を持たせることができる。
【0055】
上述したように例えばカメラのカメラボディ11を横向き(撮影画面が横長の通常の撮影)に構える通常の構え方、カメラボディ11が縦向き(撮影画像が縦長)の構え方、カメラボディ11を斜めに構える構え方等が考えられる。この様なカメラボディ11の構え方により、手振れ状態が異なる。
【0056】
この様な手振れ状態の手振れ情報を検出して、この手振れ情報に基づいて手振れ補正手段の設置角度を変化させる様にすることもできる。
【0057】
即ち、カメラボディ11内にカメラ保持状態検出センサ(カメラ姿勢検出手段)を設けて、カメラボディ11の保持状態を検出するか、あるいは、レリーズ釦3を半押しした状態の段階で、物理センサ21y,21pにより手振れ量を測定し、それに対して適切に手振れ補正が行えるよう、手振れ補正手段23の設置角度を自動的に変化させることで、適切な撮影を行う様にしてもよい。尚、カメラ内部の判断機能には、手振れ補正手段23の設置角度をカメラの姿勢に応じて自動的に変化させることも含めることができる。
【0058】
通常、両手でカメラボディ(カメラ)11を構えて撮影する場合、カメラボディ11を支える手の位置関係から、縦方向、横方向のぶれが一般的で、斜め方向のぶれは少ないことが予測される。したがって、例えば、図2,図4のように鉛直方向から45度傾けて、手振れ補正手段23を設置すると、手振れ補正手段23によって駆動される被駆動体(例えば、撮像素子16や、撮影光学系に含まれる補正レンズや、撮影光学系の光軸上に設けた可変頂プリズム)の最大移動量は、斜め方向の移動量の約1.4倍にすることが出来、結果、鉛直方向、水平方向に関する補正が大きくなる。また、傾きを任意に変えることで、ある特定方向の補正量を増加させることが出来る。
(iV)このようにカメラの形態(構え方)によって、ある特定の方向の手振れが大きい場合、手振れ補正手段を、鉛直方向から任意の角度をなすように設置することで特定方向の手振れに対しての効果が大きくなる。
(その他1)
また、上述した様に2つの角速度センサ(物理センサ21y,21p)が検出する角速度の軸(X軸,Y軸)が、前記2つの手振れ補正手段(手振れ補正装置23a,23b)の補正方向と各々直交している構成とすることで、その補正量を算出する演算が容易になる。
(その他2)
また、以上説明したように、手振れ補正手段(手振れ補正装置23a,23b)は、撮像素子(二次元固体撮像素子16)を受光面に平行な方向へ並進的に変位調整する撮像素子並進調整手段である。
【0059】
しかし、手振れ補正手段23により変位駆動させるものが撮像素子16であったが、必ずしもこの構成に限定されるものではない。
【0060】
例えば、手振れ補正手段は、撮影レンズ2を有する撮影光学系に含まれる1以上の補正レンズを、その光軸直交方向へ変位させる補正レンズ駆動手段であっても良い。この場合、手振れ補正手段として手振れ補正装置23a,23bを用いることができる。
【0061】
また、手振れ補正手段は、撮影レンズ2を有する撮影光学系の光軸上に設けた可変頂角プリズム(図示せず)と、該可変頂角プリズムの頂角を変化させる可変頂角プリズム駆動手段とによって構成しても良い。この場合、手振れ補正手段として手振れ補正装置23a,23bを用いることができる。
【0062】
この様に、手振れ補正手段で変位駆動させるものが撮影光学系に含まれる補正レンズや、撮影光学系の光軸上に設けた可変頂プリズムであっても、二次元固体撮像素子16を手振れ補正手段で手振れ補正したときと同様の効果が得られる。
【0063】
また、撮像素子16の受光面に平行な方向の手振れ補正を、撮像素子16の揺動や、補正レンズ或いは可変頂角プリズム等の変位により行う様にした場合、手振れ補正手段の機構が簡略化される。
【0064】
或いは、撮像素子16の受光面に平行な方向の手振れ補正を、撮像素子16の揺動と、補正レンズ或いは可変頂角プリズム等の変位とに分けて行う様にすることもできる。この場合にも、手振れ補正手段の機構が簡略化される。
【0065】
【発明の効果】
以上説明したように、請求項1のカメラにおいては、手振れ補正手段のうちの2つが鉛直方向からそれぞれ所定の角度傾いており、かつカメラの所定の操作もしくはカメラ内部の判断機能に基づき、手振れが大きくなる方向を判断し、判断した方向の補正量が大きくなるように、前記所定の角度から前記手振れ補正手段の設置角度が変化するため、より適切な手振れ補正が行える。
【0066】
また、請求項2カメラにおいては、2つの手振れ補正手段が鉛直方向から45傾いて設置されているため、鉛直方向、水平方向の手振れ補正量が、補正手段の移動量の約1.4倍となる。
【0067】
更に、請求項3カメラにおいては、2つの手振れ補正手段が鉛直方向から45度より小さい角度傾いて設置されているため、縦方向の手振れの補正量が大きくなり、縦方向の手振れが大きくなる傾向にあるカメラにおいて効果がある。
【0068】
また、請求項4カメラにおいては、角速度センサの軸と、手振れ補正手段の補正方向が直交しているため、その補正量を演算しやすい。
【0069】
また、請求項5,6,7に記載のカメラにおいては、撮像素子の受光面に平行な方向の手振れ補正を撮像素子の揺動や補正レンズ或いは可変頂角プリズム等の変位により行う場合、手振れ補正手段の機構が簡略化される。
【0070】
更に、請求項8カメラにおいては、モード釦によって、レリーズする際のカメラの構え方を選び、それに応じた手振れ補正手段の設置角度を決めるため、より適切な手振れ補正が行える。
【0071】
また、請求項9カメラにおいては、カメラ内部に設置されたセンサにより、カメラの構え方を検出し、それに応じた手振れ補正手段の設置角度を決めるため、より適切な手振れ補正が行える。
【0072】
また、請求項10カメラにおいては、カメラ内部に設置されたセンサにより、カメラを構えた状態もしくは、レリーズ釦を半押しした状態で手振れ量を検出し、これに応じた手振れ補正手段の設置角度を決定するため、より適切な手振れ補正が行える。
【図面の簡単な説明】
【図1】この発明に係る手振れ補正機能付きカメラの概略斜視図である。
【図2】図1のカメラボディ内に配設される撮像手段及び手振れ補正手段の一例を示す説明図である。
【図3】図2の手振れ補正手段の制御のためのブロック図(制御回路図)である。
【図4】図2,図3の手振れ補正手段及び制御回路の説明図である。
【図5】従来の手振れ補正手段による撮像素子の補正範囲を示す説明図である。
【図6】従来の手振れ補正手段による撮像素子の補正範囲とこの発明の手振れ補正手段による札ぞしの補正範囲との関係を示す説明図である。
【図7】(a)は従来の手振れ補正手段を有する手振れ補正機能付きカメラの概略斜視図、(b)は(a)のカメラボディ内の撮像素子と手振れ検出手段との簡易系を示す説明図である。
【図8】図7のカメラの手振れ量の変化の一例を示す説明図(グラフ)である。
【図9】(a)は図7のカメラの水平方向(ヨー方向)の振れを多数同時に表示して示した説明図、(b)は図7のカメラの垂直方向(ピッチ方向)の振れを多数同時に表示して示した説明図である。
【符号の説明】
11・・・カメラボディ(カメラ本体)
14・・・撮像手段
16・・・二次元固体撮像素子(撮像素子)
17・・・演算手段
21・・・手振れ検出手段
21y,21p・・・物理センサ(角速度検出手段)
23・・・手振れ補正手段
23a,23b・・・手振れ補正装置(手振れ補正手段)
24・・・補正手段駆動手段
[0001]
[Technology to which the invention belongs]
The present invention is, for example, a digital still camera or a video camera provided with a camera shake correction function.ofRelated to the camera.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a camera that forms an image of a subject on a light receiving surface of an image sensor by a photographing optical system and converts the image into an electric signal is known as a video camera or a digital still camera.
[0003]
For example, in a digital still camera as shown in FIG. 7A, a photographing lens 2 is provided on the front surface of the camera body 1, and a release button 3 is provided on the upper surface of the camera body 1. In the state of FIG. 7A, the camera shake state of the camera body 1 will be described with the left-right direction of the camera body 1 as the X axis, the vertical direction of the camera body 1 as the Y axis, and the optical axis direction of the photographing lens 2 as the Z axis. .
[0004]
Such a digital still camera is difficult to realize a short shutter time such as a silver halide photograph due to the sensitivity limit of the image sensor, and blurs such as “image flow” are likely to occur in an image captured due to camera shake.
[0005]
For this reason, as shown in FIG. 7B, the conventional digital camera is provided with a camera shake detection sensor 4 for detecting camera shake in the yaw direction, and with a camera shake detection sensor 5 for detecting camera shake in the pitch direction. It is conceivable that camera shake information in the yaw direction and pitch direction is detected from the sensors 4 and 5 and the camera shake is corrected based on the camera shake information. In FIG. 7B, reference numeral 6 denotes a two-dimensional solid-state imaging device (imaging means) such as an area CCD.
[0006]
In the above-described camera shake correction, the angular velocities around the 2 (X axis, Y axis) axes fixed to the camera are usually detected by the sensors 4 and 5, and the “tilt angle due to camera shake” of the cameras around the two axes is detected. The correction lens (not shown) included in the photographic optical system including the photographic lens 2 is displaced, the direction of the optical axis is adjusted, and the image pickup element 6 is moved ( (Rotation control in the yaw direction and the pitch direction). In this case, a driven system element such as a correction lens has a mechanism that moves on two axes parallel to the vertical direction and the horizontal direction.
[0007]
[Problems to be solved by the invention]
However, as shown in FIG. 8, the amount of shake and the shake direction of human hand shake differ between the yaw direction and the pitch direction. In addition, the camera shake varies depending on various conditions such as the form of the camera and the holding state of the camera.
[0008]
For example, FIGS. 9A and 9B show the state of camera shake when images are actually taken many times using a horizontally thin camera. In FIGS. 9A and 9B, a large number of curves indicate camera shake states at the time of photographing. Further, FIG. 9A shows horizontal shake, and FIG. 9B shows vertical shake.
[0009]
From the graphs of FIGS. 9A and 9B, it can be clearly seen that the direction of occurrence of shaking varies depending on the holding state of the camera.
[0010]
Therefore, it is desirable to increase the amount of movement in a specific direction and improve the ability of camera shake correction by tilting the camera shake correction unit from the vertical direction by an arbitrary angle considering the characteristics of the camera.
[0011]
  This invention increases the amount of movement in a specific direction and improves the ability of camera shake correction by tilting the camera shake correction means from the vertical direction by an arbitrary angle considering the features of the camera.RuThe purpose is to provide a camera.
[0012]
[Means for Solving the Problems]
  In order to achieve this object, a first aspect of the present invention is a camera in which an image of a subject is formed on a light receiving surface of an image sensor by a photographing optical system, and is converted into an electrical signal. Angular velocity detection means for detecting angular velocities around two axes orthogonal to the axis, calculation means for calculating a camera shake correction amount based on the angular velocities around the two axes detected by the angular velocity detection means, and the calculation means And at least two camera shake correction means for performing a camera shake correction operation in a predetermined direction based on the camera shake correction amount calculated by
  AboveTwo of the camera shake correction means are respectively inclined at a predetermined angle from the vertical direction, and based on a predetermined operation of the camera or a judgment function inside the camera,The direction in which the camera shake increases is determined, and the correction amount in the determined direction is increased.From a certain angleThe installation angle of the camera shake correction means isIt is characterized by a changing camera.
[0013]
  In order to achieve the above object, the invention of claim 22. The camera according to claim 1, wherein two of the camera shake correction means are respectively inclined by 45 degrees from the vertical direction.It is a camera.
[0014]
  In order to achieve the above object, the invention of claim 32. The camera according to claim 1, wherein two of the camera shake correction means are installed at a predetermined angle smaller than 45 degrees from the vertical direction.It is a camera.
[0015]
  Moreover, invention of Claim 4 is described in any one of Claims 1-3.ofIn the camera, the angular velocity axis detected by the angular velocity sensor is orthogonal to the correction directions of the two camera shake correction means.
[0016]
  Moreover, invention of Claim 5 is described in any one of Claims 1-4.ofIn the camera, the camera shake correction unit is an image sensor translation adjustment unit that adjusts the displacement of the image sensor in a translational direction in a direction parallel to the light receiving surface.
[0017]
  Further, the invention of claim 6 is described in any one of claims 1 to 4.ofIn the camera, the camera shake correction unit is a correction lens driving unit that displaces one or more correction lenses included in the photographing optical system in a direction orthogonal to the optical axis.
[0018]
  Furthermore, invention of Claim 7 is described in any one of Claims 1-4.ofIn the camera, the camera shake correction means is composed of a variable apex angle prism provided on the optical axis of the photographing optical system and a variable apex angle prism driving means for changing the apex angle of the variable apex angle prism. Features.
[0019]
  Further, the invention of claim 8 is a claim.Any one of 1-7Described inofIn the camera, the predetermined operation of the camera means that one of a plurality of shooting modes of the camera is selected by the mode selection unit, and the installation angle of the camera shake correction unit is shot according to the shooting mode selected by the mode selection unit. It is characterized by changing to an angle suitable for the mode.
[0020]
  Further, the invention of claim 9 is a claim.Any one of 1-7Described inofIn the camera, the determination function inside the camera determines how to hold the camera from the camera attitude detection signal detected by the camera attitude detection means, and installs the camera shake correction means according to the direction of the camera holding direction. It is characterized by varying the angle.
[0021]
Further, the invention of claim 10 is a claim.Any one of 1-7Described inofIn the camera, the determination function inside the camera is to determine the amount of camera shake detected by the camera shake detection means when the camera is held or when the release button is half-pressed, and to change the installation angle of the camera shake correction means. It is characterized by that.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Constitution]
FIG. 1 is a diagram for explaining one embodiment in the case of implementing a digital camera (shooting apparatus) with a camera shake correction function of the present invention.
[0023]
In FIG. 1, 11 is a camera body (camera body) of the digital camera, 12 is a photographing lens provided on the front side of the camera body 11, and 13 is a release button. The release button 13 is a two-stage push button. When the release button 13 is pressed halfway, camera shake information is detected as will be described later. In addition, when the release button 13 is fully pressed, shooting is performed.
[0024]
Here, when the camera body 11 is horizontal as shown in FIG. 1, the left-right direction of the camera body 11 is the X axis, the vertical direction of the camera body 11 is the Y axis, the optical axis direction of the photographing lens 2 is the Z axis, and the X axis. An axis line of 45 ° with respect to the Y axis will be described as tilt axes O1 and O2.
[0025]
In this camera body 11, an image pickup means (photographing means) 14 as shown in FIGS. The imaging means 14 includes an imaging control board 15 and a two-dimensional individual imaging element (imaging element) 16 such as a CCD as imaging means provided (mounted) on the imaging control board 15.
[0026]
The imaging control board 15 is connected to an exposure control means 18 that is controlled by a computing means (arithmetic control circuit) 17. The arithmetic means 17 controls the operation of the exposure control means 18 and controls the exposure of the image pickup control board 15 to pick up an image. The arithmetic means 17 controls the imaging control board 15 to scan a large number of pixels of the two-dimensional individual image pickup device 16 and take out the video signal from the two-dimensional individual image pickup device 16. Since a well-known configuration can be adopted as the configuration of the imaging control board 15 for controlling the two-dimensional individual imaging element 16, detailed description thereof is omitted.
[0027]
The imaging control board 15 is held by brackets 11a and 11b of the camera body 11 via elastic bodies 19 and 20. The arrangement positions of the elastic bodies 19 and 20 are arranged at an angular position of 45 ° with respect to the X axis and the Y axis passing through the center of the two-dimensional individual image pickup device 16 (the optical axis of the photographing lens 12). Accordingly, the imaging control board 15 is supported in the camera body 11 by the elastic body 19 so as to be rotatable around the tilt axis O1, and is also rotatable by the elastic body 20 around the tilt axis O2. Is supported within.
[0028]
In addition, as shown in FIGS. 3 and 4, camera shake detection means 21 is attached in the camera body 11. This hand shake detection means 21 includes a physical quantity sensor (angular velocity sensor 1 as an angular velocity detection means) 21y such as a gyro sensor (piezoelectric vibration gyro) that detects a shake amount in the yaw direction, and a gyro sensor that detects a shake amount in the pitch direction. A physical quantity sensor (angular velocity sensor 2 as an angular velocity detecting means) 21p such as a piezoelectric vibration gyro) and a shake detection sensor circuit 22 that amplifies and filters the detection outputs of the physical sensors 21y and 21p are provided.
[0029]
In addition, the image pickup control board 15 is subjected to shake correction by the shake correction unit 23. The camera shake correction unit 23 includes the elastic bodies 19 and 20 described above, a camera shake correction device (first camera shake correction unit) 23a that controls the rotation of the lower left oblique edge of the imaging control board 15 about the tilt axis O1, and an imaging. A camera shake correction device (second camera shake correction means) 23b that controls the rotation of the upper right edge of the control board 15 about the tilt axis O2 is provided.
[0030]
The camera shake correction devices 23a and 23b are held at positions in the camera body 1 (not shown). Further, the camera shake correction devices 23a and 23b include a piezoelectric element and a displacement enlarging mechanism that mechanically enlarges the thickness change of the piezoelectric element. The lever principle is used for this displacement enlarging mechanism. Further, the piezoelectric elements of the camera shake correction devices 23a and 23b are driven and controlled by a correction means driving means (correction means driving circuit) 24. The operation of the correcting means driving means 24 is controlled by the calculating means 17.
[0031]
In FIG. 2, the physical sensors (angular velocity sensors 1, 2) 21y and 21p are drawn on the X and Y axes, respectively, for convenience of explanation. The angular velocity sensor is not necessarily on the axis on which the angular velocity is to be detected. It is not always installed.
[0032]
As the physical sensors (angular velocity sensors 1, 2) 21y, 21p, piezoelectric vibration gyros or the like can be used as described above. As shown in FIG. 3, the outputs of the physical sensors (angular velocity sensors 1, 2) 21y, 21p are sent (inputted) to the computing means 17. The calculation means 17 is constituted by a “microprocessor” or the like, calculates a “camera shake correction amount” in accordance with inputs from the physical sensors (angular velocity sensors 1 and 2) 21y and 21p, and sends (inputs) it to the camera shake correction means 23. The camera shake correction unit 24 drives the image pickup unit 14 in accordance with the amount of camera shake correction to reduce the influence of camera shake.
[Action]
Next, the operation of the digital camera having such a configuration will be described.
[0033]
When the photographer holds the above-described camera body 11 and performs shooting, camera shake occurs in the pitch direction around the X axis and the yaw direction around the Y axis. At this time, the shake amount in the yaw direction is detected as an angular velocity in the yaw direction by the physical sensor (angular velocity sensor 1) 21y, and the shake amount in the pitch direction is detected as an angular velocity in the pitch direction by the physical sensor (angular velocity sensor 2) 21p.
[0034]
The physical sensors 21y and 21p output the detected detection signals and input them to the calculation means 17. The calculation means 17 calculates a “camera shake correction amount” in accordance with inputs from the physical sensors 21 y and 21 p, and sends a control signal corresponding to the “camera shake correction quantity” to the correction means drive means 24 of the camera shake correction means 23. input. The correction means driving means 24 applies a control voltage to the piezoelectric elements (not shown) of the camera shake correction devices 23a and 23b based on the input control signal.
[0035]
As a result, the piezoelectric elements of the camera shake correction apparatuses 23a and 23b change in thickness, and the thickness change of the piezoelectric elements is controlled by an imaging mechanism through an enlargement mechanism that applies the lever principle (not shown) of the camera shake correction apparatuses 23a and 23b. It is transmitted to the substrate 15. Thereby, the imaging control board 15 is rotationally driven around the tilt axis O1 by the camera shake correction device 23a, and is rotationally driven around the tilt axis O2 by the camera shake correction device 23b. In this manner, the camera shake correction unit 23 drives the imaging unit 14 to be displaced around the tilt axes O1 and O2 in accordance with the camera shake correction amount, thereby reducing the influence of camera shake.
[0036]
FIG. 5 shows the direction in which an image pickup device such as a CCD is translated by the conventional camera shake correction means, and FIG. 6 shows the direction in which the image pickup element 16 such as a CCD is translated by the camera shake correction means 23. is there. In FIG. 5, the correction range of the image sensor is a range indicated by A and B, and in FIG. 6, the correction range of the image sensor 16 is a range indicated by A1 and B1. Comparing the correction ranges of the image sensor shown in FIGS. 5 and 6, the correction ranges A1 and B1 of the image sensor 16 shown in FIG. 6 are about 1.4 times the correction ranges A and B of the image sensor shown in FIG.
[0037]
According to the embodiment of the invention described above, an image of a subject is formed on the light receiving surface of the image sensor (two-dimensional solid-state image sensor 16) by the photographing optical system including the photographing lens 2, and converted into an electrical signal. In the camera to be captured, angular velocity detection means (physical sensors 21y, 21p) that are incorporated in the camera body (camera body 11) and detect angular velocities around two axes (X axis, Y axis) orthogonal to the optical axis, Based on the angular velocities around the two axes (X axis and Y axis) detected by the angular velocity detection means (physical sensors 21y and 21p), the calculation means 17 for calculating the amount of camera shake correction is calculated by the calculation means 17. Based on the camera shake correction amount, the camera has at least two camera shake correction means (camera shake correction apparatuses 23a and 23b) that perform a camera shake correction operation in a predetermined direction, and the camera shake correction means (camera shake correction apparatuses 23a and 23b). Tilted 45 degrees from the 2 turn, each vertically has a configuration which is installed out of).
[0038]
When the camera shake correction means is installed at an angle of 45 degrees from the vertical direction, the vertical and horizontal correction areas are about 1.4 times larger than the diagonal direction, as shown in FIG. On the other hand, the area in the diagonal direction is reduced, but considering that the camera is supported with both hands, it is difficult to move in the diagonal direction. Therefore, it can be said that it is effective to install the camera shake correction means at 45 degrees.
(Modification 1)
In the above-described embodiment, the two camera shake correction units (camera shake correction devices 23a and 23b) are each inclined by 45 degrees from the vertical direction. However, the present invention is not necessarily limited to this configuration. For example, the two camera shake correction means (camera shake correction devices 23a and 23b) may be installed at a predetermined angle smaller than 45 ° from the vertical direction.
[0039]
This can be understood with reference to FIG. That is, FIG. 9 is a graph showing the actual state of camera shake, in which camera shake is plotted when several monitors photograph a horizontally thin camera. In FIG. 9, the horizontal axis indicates time, and the vertical axis indicates the angle of camera shake. Moreover, (a) in FIG. 9 is a vertical camera shake, and (b) is a horizontal camera shake. As is apparent from FIG. 9, it can be seen that the camera shake in the vertical direction is large.
[0040]
In such a case, it can be estimated that the effect increases if the amount of correction in the vertical direction is large. For this purpose, two camera shake correction means (camera shake correction devices 23a and 23b) are installed at a predetermined angle smaller than 45 ° from the vertical direction.
[0041]
By doing so, there is an effect of preventing camera shake in a camera in which the amount of correction of camera shake in the vertical direction increases and the camera shake in the vertical direction tends to increase.
(Modification 2)
In addition, the two camera shake correction means (camera shake correction devices 23a and 23b) are respectively inclined at a predetermined angle from the vertical direction, and have a predetermined operation of the camera or a determination function inside the camera (inside the camera body 11). Based on the (determination function by the calculation means 17), it can also be set to be changed from a predetermined angle of the camera (camera body 11).
[0042]
In this case, the camera shake correction means 23 is provided so as to be adjustable in inclination with respect to the X axis and the Y axis, the tilt adjustment means of the camera shake correction means 23 is provided, and the tilt adjustment means is calculated according to the tilt of the camera body 11. By controlling the operation of the camera body 11, it is preferable to adjust the tilt of the camera shake correction unit 23 with respect to the X axis and the Y axis according to the tilt of the camera body 11.
[0043]
In this way, since the installation angle of the two camera shake correction means is changed based on a predetermined operation by the user or a determination function inside the camera, more appropriate camera shake correction can be performed.
[0044]
Next, a specific example of a predetermined operation by the user or an angle setting of the camera shake correction unit by a determination function inside the camera will be described.
(i) Angle setting of camera shake correction means 23 by predetermined operation of camera
Here, the predetermined operation of the camera means that, for example, the camera has a plurality of shooting modes and any one of the shooting modes is selected.
[0045]
As this shooting mode, for example, there is a shooting mode based on how the camera is held (camera posture). In addition, in the shooting mode depending on how the camera is held, for example, a normal way of holding the camera body 11 of the camera sideways (normal shooting with the shooting screen being landscape), and a camera body 11 being portrait (portrait image is portrait). It is conceivable to hold the camera body 11 at an angle. The camera shake state varies depending on how the camera body 11 is held.
[0046]
Accordingly, the camera body (camera body) 11 is provided with a mode button (mode selection means) for selecting such a camera holding method, that is, a shooting mode, and a shooting mode depending on how the camera is held is selected by this mode button or the like. Then, a shooting mode depending on how the camera is held may be set, and the camera shake correction means 23 may be tilted by the tilt adjusting means at an angle corresponding to the camera holding mode. That is, in this way, the installation angle of the camera shake correction unit 23 may be changed to a (suitable) angle corresponding to the shooting mode depending on how the camera is held. By doing in this way, the effect of camera shake correction can be improved. Note that changing the installation angle can also be included in the predetermined operation.
[0047]
In this case, more appropriate shooting can be performed by changing the installation angle of the camera shake correction unit 23 so that the correction amount in the direction in which the camera shake becomes larger is increased depending on the form (posture) of the camera.
[0048]
When releasing (photographing) with the camera held in the vertical or horizontal direction in this way, the direction in which camera shake becomes larger depending on the camera form (posture) can be selected by selecting the mode with the mode button of the camera. By changing the installation angle of the camera shake correction unit 23 so that the amount increases, more appropriate shooting can be performed.
(ii) Setting of the installation angle of the camera shake correction means 23 by the judgment function inside the camera 1
The determination function inside the camera means a determination function by the calculation means 17 in the camera body 11. As a determination function by the calculation means 17, a function of determining the posture of the camera (camera body 11) can be provided.
[0049]
Here, as the posture at the time of shooting of the camera, as described above, for example, a normal holding method in which the camera body 11 of the camera is held sideways (normal shooting in which the shooting screen is horizontally long), and the camera body 11 is held vertically (shot image) Or vertically), a method of holding the camera body 11 at an angle, and the like. The camera shake state varies depending on how the camera body 11 is held.
[0050]
Therefore, in order to determine the posture of such a camera, a camera posture detection means (camera posture detection sensor) is provided in the camera body 11, and the camera (camera body 11) is held by the camera posture detection means. In other words, the camera posture detection means outputs a camera posture detection signal, and the camera posture detection signal is input to the calculation means 17.
[0051]
Then, the calculation means 17 is set so as to determine the orientation of the camera (camera body 11), the orientation, etc. from the input camera orientation detection signal.
[0052]
In addition, when the calculation unit 17 determines the camera posture from the camera posture detection signal detected by the camera posture detection unit, the calculation unit 17 changes the tilt adjustment unit to the camera posture so that appropriate camera shake correction can be performed according to the camera posture. In response to the operation control, the installation angle of the camera shake correction unit 23 may be automatically changed according to the posture of the camera. Note that the determination function inside the camera can include automatically changing the installation angle of the camera shake correction means 23 according to the posture of the camera.
[0053]
In this case, more appropriate shooting can be performed by changing the installation angle of the camera shake correction unit 23 so that the correction amount in the direction in which the camera shake becomes larger is increased depending on the form (posture) of the camera.
[0054]
When releasing (photographing) with the camera held in the vertical or horizontal direction in this way, the direction in which camera shake becomes larger depending on the camera form (posture) can be selected by selecting the mode with the mode button of the camera. By changing the installation angle of the camera shake correction unit 23 so that the amount increases, more appropriate shooting can be performed.
(iii) Setting of the installation angle of the camera shake correction means 23 by the judgment function inside the camera 2
Further, the determination function inside the camera means a determination function by the calculation means 17 in the camera body 11 as described above. As a determination function by the calculation means 17, it is possible to provide a function for determining the amount of camera shake detected when the camera is held or when the release button is half pressed, that is, what kind of camera shake information is.
[0055]
As described above, for example, a normal way of holding the camera body 11 of the camera horizontally (normal shooting where the shooting screen is horizontally long), a way of holding the camera body 11 vertically (photographed image is vertically long), and a slant of the camera body 11 It can be considered how to prepare for. The camera shake state varies depending on how the camera body 11 is held.
[0056]
It is also possible to detect the shake information in such a shake state and change the installation angle of the shake correction means based on the shake information.
[0057]
That is, a camera holding state detection sensor (camera posture detection means) is provided in the camera body 11 to detect the holding state of the camera body 11 or when the release button 3 is half-pressed, the physical sensor 21y. , 21p, the camera shake amount may be measured, and appropriate setting may be made by automatically changing the installation angle of the camera shake correction means 23 so that camera shake correction can be performed appropriately. Note that the determination function inside the camera can include automatically changing the installation angle of the camera shake correction means 23 according to the posture of the camera.
[0058]
Usually, when taking a picture with the camera body (camera) 11 with both hands, it is predicted that the shake in the vertical direction and the horizontal direction is common and the shake in the oblique direction is small from the positional relationship of the hand supporting the camera body 11. The Therefore, for example, when the camera shake correction unit 23 is installed at an angle of 45 degrees from the vertical direction as shown in FIGS. 2 and 4, a driven body (for example, the image sensor 16 or the imaging optical system) driven by the camera shake correction unit 23 is installed. The maximum movement amount of the correction lens included in the lens and the variable vertex prism provided on the optical axis of the photographing optical system) can be about 1.4 times the movement amount in the oblique direction. Directional correction is increased. In addition, the amount of correction in a specific direction can be increased by arbitrarily changing the inclination.
(iV) When the camera shake in a specific direction is large depending on the form of the camera (how to hold it) as described above, the camera shake correction means can be installed at an arbitrary angle from the vertical direction to prevent the camera shake in the specific direction. The effect will increase.
(Other 1)
As described above, the axes of the angular velocities (X axis and Y axis) detected by the two angular velocity sensors (physical sensors 21y and 21p) are the correction directions of the two camera shake correction means (the camera shake correction devices 23a and 23b). By making the configurations orthogonal to each other, the calculation for calculating the correction amount becomes easy.
(Other 2)
Further, as described above, the camera shake correction means (the camera shake correction devices 23a and 23b) is an image sensor translational adjustment means that adjusts the displacement of the image sensor (two-dimensional solid-state image sensor 16) in a direction parallel to the light receiving surface. It is.
[0059]
However, although the image pickup element 16 is driven to be displaced by the camera shake correction unit 23, it is not necessarily limited to this configuration.
[0060]
For example, the camera shake correction unit may be a correction lens driving unit that displaces one or more correction lenses included in a photographing optical system having the photographing lens 2 in a direction orthogonal to the optical axis. In this case, the camera shake correction devices 23a and 23b can be used as the camera shake correction means.
[0061]
The camera shake correction means includes a variable apex angle prism (not shown) provided on the optical axis of the taking optical system having the taking lens 2 and variable apex angle prism driving means for changing the apex angle of the variable apex angle prism. You may comprise by. In this case, the camera shake correction devices 23a and 23b can be used as the camera shake correction means.
[0062]
In this way, even if the image is corrected by the camera shake correction means, even if the correction lens included in the photographic optical system or the variable top prism provided on the optical axis of the photographic optical system, the two-dimensional solid-state imaging device 16 is corrected for camera shake. The same effect as that obtained when the camera shake is corrected by the means can be obtained.
[0063]
Further, when the camera shake correction in the direction parallel to the light receiving surface of the image sensor 16 is performed by the swing of the image sensor 16 or the displacement of the correction lens or the variable apex angle prism, the mechanism of the camera shake correction means is simplified. Is done.
[0064]
Alternatively, the camera shake correction in the direction parallel to the light receiving surface of the image sensor 16 can be performed separately for the swing of the image sensor 16 and the displacement of the correction lens or the variable apex angle prism. Also in this case, the mechanism of the camera shake correction means is simplified.
[0065]
【The invention's effect】
  As described above, in the camera of claim 1,Two of the camera shake correction means are each inclined at a predetermined angle from the vertical direction, andPredetermined camera operationOrBased on the judgment function inside the camera,Since the installation angle of the camera shake correction means changes from the predetermined angle so as to determine the direction in which camera shake increases and the correction amount in the determined direction increases.More appropriate camera shake correction can be performed.
[0066]
  Claim 2ofIn the camera, the two camera shake correction means are 45 from the vertical direction.Every timeBecause it is installed at an angle,The amount of camera shake correction in the vertical and horizontal directions is about 1.4 times the amount of movement of the correction means.
[0067]
  Furthermore, claim 3ofIn the cameraSince the two camera shake correction means are installed at an angle smaller than 45 degrees from the vertical direction, the amount of correction of the camera shake in the vertical direction becomes large, and this is effective in a camera that tends to increase the camera shake in the vertical direction.
[0068]
  Claim 4ofIn the camera, since the axis of the angular velocity sensor and the correction direction of the camera shake correction means are orthogonal, it is easy to calculate the correction amount.
[0069]
  Claims 5, 6, and 7Described inIn the camera, when the camera shake correction in the direction parallel to the light receiving surface of the image sensor is performed by the swing of the image sensor or the displacement of the correction lens or the variable apex angle prism, the mechanism of the camera shake correction means is simplified.
[0070]
  Further, claim 8.ofIn the camera, the mode button is used to select the way the camera is held at the time of release, and the installation angle of the camera shake correction means is determined accordingly, so that more appropriate camera shake correction can be performed.
[0071]
  Claim 9ofIn the camera, a camera installed inside the camera detects how to hold the camera and determines the installation angle of the camera shake correction means according to the detection method, so that more appropriate camera shake correction can be performed.
[0072]
  Claim 10ofIn the camera, the sensor installed in the camera detects the amount of camera shake while holding the camera or the release button is pressed halfway, and determines the installation angle of the camera shake correction means according to this. Appropriate image stabilization can be performed.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of a camera with a camera shake correction function according to the present invention.
FIG. 2 is an explanatory diagram showing an example of an image pickup unit and a camera shake correction unit arranged in the camera body of FIG.
FIG. 3 is a block diagram (control circuit diagram) for controlling the camera shake correction unit of FIG. 2;
4 is an explanatory diagram of camera shake correction means and a control circuit in FIGS. 2 and 3. FIG.
FIG. 5 is an explanatory diagram showing a correction range of an image sensor by a conventional camera shake correction unit.
FIG. 6 is an explanatory diagram showing a relationship between a correction range of an image sensor by a conventional camera shake correction unit and a correction range of a bill holder by a camera shake correction unit of the present invention.
7A is a schematic perspective view of a camera with a camera shake correction function having a conventional camera shake correction unit, and FIG. 7B is an explanatory diagram showing a simplified system of an image sensor in the camera body and a camera shake detection unit in FIG. FIG.
8 is an explanatory diagram (graph) showing an example of a change in camera shake amount of the camera in FIG. 7;
9A is an explanatory view showing a large number of shakes in the horizontal direction (yaw direction) of the camera of FIG. 7 displayed simultaneously, and FIG. 9B is a view showing shakes of the camera of FIG. 7 in the vertical direction (pitch direction). It is explanatory drawing which displayed and showed many simultaneously.
[Explanation of symbols]
11 ... Camera body (Camera body)
14: Imaging means
16 ... Two-dimensional solid-state imaging device (imaging device)
17 ... Calculation means
21. Hand shake detection means
21y, 21p ... physical sensor (angular velocity detection means)
23. Shake correction means
23a, 23b ... shake correction device (shake correction means)
24 ... Correcting means driving means

Claims (10)

撮影光学系により被写体の像を撮像素子の受光面上に結像させ、電気信号に変換して取りこむカメラにおいて、カメラ本体に内蔵され、光軸に直交する2つの軸の回りの角速度を検出する角速度検出手段と、該角速度検出手段により検出された上記2軸の回りの角速度に基き、手振れ補正量を算出する演算手段と、該演算手段により演算された手振れ補正量に基き、所定方向の手振れ補正動作を行う少なくとも2つの手振れ補正手段を有し、
前記手振れ補正手段のうちの2つが鉛直方向からそれぞれ所定の角度傾いており、かつカメラの所定の操作もしくはカメラ内部の判断機能に基づき、手振れが大きくなる方向を判断し、判断した方向の補正量が大きくなるように、前記所定の角度から前記手振れ補正手段の設置角度が変化することを特徴とするカメラ。
In a camera in which an image of a subject is formed on a light receiving surface of an image sensor by an imaging optical system and converted into an electrical signal, the angular velocity around two axes orthogonal to the optical axis is detected. An angular velocity detecting means, a calculating means for calculating a camera shake correction amount based on the angular velocities around the two axes detected by the angular velocity detecting means, and a camera shake in a predetermined direction based on the camera shake correction amount calculated by the calculating means. Having at least two camera shake correction means for performing a correction operation;
Two are are inclined each a given angle from the vertical direction, and based on a predetermined operation of the camera or camera inside the determination function determines the direction in which the camera shake is large, the correction amount of the determined direction of the camera shake correction means The camera is characterized in that an installation angle of the camera shake correction means is changed from the predetermined angle so that the angle becomes larger .
請求項1に記載のカメラにおいて、前記手振れ補正手段のうちの2つがそれぞれ鉛直方向から45度傾いて設置されていることを特徴とするカメラ。 2. The camera according to claim 1, wherein two of the camera shake correction means are respectively inclined at 45 degrees from the vertical direction . 請求項1に記載のカメラにおいて、前記手振れ補正手段のうちの2つが鉛直方向からそれぞれ45度より小さい所定の角度傾いて設置されていることを特徴とするカメラ。 2. The camera according to claim 1, wherein two of the camera shake correcting means are installed at a predetermined angle smaller than 45 degrees from the vertical direction . 請求項1〜3のいずれか一つに記載カメラにおいて、該角速度センサが検出する角速度の軸が、前記2つの手振れ補正手段の補正方向と各々直交していることを特徴とすカメラ。A camera according to any one of claims 1 to 3, the camera angular velocity of the shaft angular velocity sensor detects is you characterized in that to correct the direction and each orthogonal the two shake correction means. 請求項1〜4のいずれか一つに記載カメラにおいて、該手振れ補正手段は、撮像素子を受光面に平行な方向へ並進的に変位調整する撮像素子並進調整手段であることを特徴とすカメラ。5. The camera according to claim 1, wherein the camera shake correction unit is an image sensor translational adjustment unit that translates and adjusts the image sensor in a direction parallel to the light receiving surface. camera that. 請求項1〜4のいずれか一つに記載カメラにおいて、該手振れ補正手段は、撮影光学系に含まれる1以上の補正レンズを、その光軸直交方向へ変位させる補正レンズ駆動手段であることを特徴とすカメラ。5. The camera according to claim 1, wherein the camera shake correction unit is a correction lens driving unit that displaces one or more correction lenses included in the photographing optical system in a direction orthogonal to the optical axis. the camera said. 請求項1〜4のいずれか一つに記載カメラにおいて、該手振れ補正手段は、撮影光学系の光軸上に設けた可変頂角プリズムと、該可変頂角プリズムの頂角を変化させる可変頂角プリズム駆動手段とによって構成されていることを特徴とすカメラ。5. The camera according to claim 1, wherein the camera shake correction unit includes a variable apex angle prism provided on an optical axis of the photographing optical system, and a variable that changes an apex angle of the variable apex angle prism. camera you characterized in that it is constituted by the apex angle prism drive means. 請求項1〜7のいずれか一つに記載カメラにおいて、カメラの所定の操作とは、カメラの複数の撮影モードのいずれかをモード選択手段により選択すると共に、前記モード選択手段により選択された撮影モードに応じて手振れ補正手段の設置角度が撮影モードに適した角度に変化させることであカメラ。 The camera according to any one of claims 1 to 7, wherein the predetermined operation of the camera is selected by the mode selection unit and one of a plurality of shooting modes of the camera is selected by the mode selection unit. der Ru camera that installation angle of the camera shake correction means in accordance with the shooting mode is changed to the angle that is suitable for shooting mode. 請求項1〜7のいずれか一つに記載カメラにおいて、カメラ内部の判断機能とは、カメラ姿勢検知手段によって検出されるカメラの姿勢検出信号からカメラの構え方を判断すると共に、このカメラの構え方の方向に応じて前記手振れ補正手段の設置角度を可変させることであカメラ。 The camera according to any one of claims 1 to 7, wherein the determination function inside the camera determines how to hold the camera from a camera attitude detection signal detected by the camera attitude detection means, and Holding der Ru camera to a setting angle varying of the shake correction means in accordance with the direction of. 請求項1〜7のいずれか一つに記載カメラにおいて、カメラ内部の判断機能とは、カメラ保持状態又はレリーズ釦半押し状態のときに手振れ検出手段で検出される手振れ量を判断すると共に、前記手振れ補正手段の設置角度を変化させることであカメラ。In the camera according to any one of claims 1 to 7, the determination function inside the camera determines the amount of camera shake detected by the camera shake detection means when the camera is held or the release button is half pressed, der Ru camera changing the installation angle of the camera shake correction means.
JP2002236794A 2002-08-15 2002-08-15 camera Expired - Fee Related JP4164313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002236794A JP4164313B2 (en) 2002-08-15 2002-08-15 camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002236794A JP4164313B2 (en) 2002-08-15 2002-08-15 camera

Publications (2)

Publication Number Publication Date
JP2004077711A JP2004077711A (en) 2004-03-11
JP4164313B2 true JP4164313B2 (en) 2008-10-15

Family

ID=32020815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002236794A Expired - Fee Related JP4164313B2 (en) 2002-08-15 2002-08-15 camera

Country Status (1)

Country Link
JP (1) JP4164313B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043504A1 (en) 2005-10-11 2007-04-19 Matsushita Electric Industrial Co., Ltd. Vibration-type inertia force sensor and electronic apparatus using the same
JP4747864B2 (en) 2006-02-09 2011-08-17 コニカミノルタオプト株式会社 Imaging device
WO2008012868A1 (en) 2006-07-25 2008-01-31 Tamron Co., Ltd. Image blur correction device and imaging device with the same
JP6590539B2 (en) * 2015-06-09 2019-10-16 キヤノン株式会社 Imaging device

Also Published As

Publication number Publication date
JP2004077711A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
JP4272863B2 (en) Camera and camera system
JP6486656B2 (en) Imaging device
EP2707775B1 (en) Image capturing apparatus with management and correction of inclinations
JP4994756B2 (en) Anti-vibration control device, optical apparatus including the same, imaging device, and control method of anti-vibration control device
JP6135848B2 (en) Imaging apparatus, image processing apparatus, and image processing method
JP2005003719A (en) Photographing device
JP4734824B2 (en) projector
JP6128458B2 (en) Imaging apparatus and image processing method
JP4302696B2 (en) Ordered responsiveness of image stabilization
US20110158617A1 (en) Device for providing stabilized images in a hand held camera
WO2016002355A1 (en) Image capturing device and image capturing method
JP2006324948A (en) Imaging device
JP2023076452A (en) Blur detection device, imaging device, lens device, imaging device body, blur detection method, blur detection program, and recording medium
JP5724057B2 (en) Imaging device
JP4164313B2 (en) camera
JP2015099216A (en) Optical device
JP2000147586A (en) Camera with image stabilization function
JP2006209133A (en) Adaptive response for image stabilization
JP7324284B2 (en) Imaging device, camera shake correction device, imaging method, and camera shake correction method
CN112752020A (en) Image stabilization apparatus and method, image photographing apparatus, and readable storage medium
JP4609183B2 (en) Imaging device
JP2013243552A (en) Imaging apparatus, control method of the same, program, and storage medium
JP2003189164A (en) Imaging device
JP2015108689A (en) Optical instrument and method for controlling the same
JP7308696B2 (en) Image blur correction device, its control method, program, and imaging device provided with image blur correction device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees