JP4172165B2 - Method for producing organohalogenated silane compound having phenolic hydroxyl group protected with t-butoxy group - Google Patents
Method for producing organohalogenated silane compound having phenolic hydroxyl group protected with t-butoxy group Download PDFInfo
- Publication number
- JP4172165B2 JP4172165B2 JP2001155776A JP2001155776A JP4172165B2 JP 4172165 B2 JP4172165 B2 JP 4172165B2 JP 2001155776 A JP2001155776 A JP 2001155776A JP 2001155776 A JP2001155776 A JP 2001155776A JP 4172165 B2 JP4172165 B2 JP 4172165B2
- Authority
- JP
- Japan
- Prior art keywords
- silane compound
- reaction
- group
- compound
- phenolic hydroxyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- -1 organohalogenated silane compound Chemical class 0.000 title claims description 118
- 125000002887 hydroxy group Chemical group [H]O* 0.000 title claims description 27
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 title claims description 27
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 238000006243 chemical reaction Methods 0.000 claims description 66
- 239000003054 catalyst Substances 0.000 claims description 21
- 238000006459 hydrosilylation reaction Methods 0.000 claims description 16
- 125000005843 halogen group Chemical group 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 8
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 229910052794 bromium Inorganic materials 0.000 claims description 5
- 229910052801 chlorine Inorganic materials 0.000 claims description 5
- 229910052731 fluorine Inorganic materials 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 4
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 claims description 3
- 150000002894 organic compounds Chemical class 0.000 claims description 2
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 claims 1
- 239000000047 product Substances 0.000 description 22
- QABCGOSYZHCPGN-UHFFFAOYSA-N chloro(dimethyl)silicon Chemical compound C[Si](C)Cl QABCGOSYZHCPGN-UHFFFAOYSA-N 0.000 description 15
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 13
- 238000004821 distillation Methods 0.000 description 11
- 239000000126 substance Substances 0.000 description 10
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 125000000217 alkyl group Chemical group 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 238000009835 boiling Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 230000014759 maintenance of location Effects 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- 238000004817 gas chromatography Methods 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 5
- 239000006227 byproduct Substances 0.000 description 5
- 238000004040 coloring Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 238000006384 oligomerization reaction Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 0 *c1ccccc1 Chemical compound *c1ccccc1 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 150000004756 silanes Chemical class 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- FXRQXYSJYZPGJZ-UHFFFAOYSA-N 2-[(2-methylpropan-2-yl)oxy]ethenylbenzene Chemical compound CC(C)(C)OC=CC1=CC=CC=C1 FXRQXYSJYZPGJZ-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910008051 Si-OH Inorganic materials 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910006358 Si—OH Inorganic materials 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- KUALOJXZGGTYOD-UHFFFAOYSA-N chloro(3,3,3-trifluoropropyl)silane Chemical compound FC(F)(F)CC[SiH2]Cl KUALOJXZGGTYOD-UHFFFAOYSA-N 0.000 description 1
- BWROMPNXPAWQEP-UHFFFAOYSA-N chloro(chloromethyl)silane Chemical compound ClC[SiH2]Cl BWROMPNXPAWQEP-UHFFFAOYSA-N 0.000 description 1
- SOYVLBDERBHIME-UHFFFAOYSA-N chloro(diethyl)silicon Chemical compound CC[Si](Cl)CC SOYVLBDERBHIME-UHFFFAOYSA-N 0.000 description 1
- VNJCDDZVNHPVNM-UHFFFAOYSA-N chloro(ethyl)silane Chemical compound CC[SiH2]Cl VNJCDDZVNHPVNM-UHFFFAOYSA-N 0.000 description 1
- YGZSVWMBUCGDCV-UHFFFAOYSA-N chloro(methyl)silane Chemical compound C[SiH2]Cl YGZSVWMBUCGDCV-UHFFFAOYSA-N 0.000 description 1
- CRIVIYPBVUGWSC-UHFFFAOYSA-N chloro(propan-2-yl)silane Chemical compound CC(C)[SiH2]Cl CRIVIYPBVUGWSC-UHFFFAOYSA-N 0.000 description 1
- BGPCFXZWLWDDDU-UHFFFAOYSA-N chloro(propyl)silane Chemical compound CCC[SiH2]Cl BGPCFXZWLWDDDU-UHFFFAOYSA-N 0.000 description 1
- ZCJSXNPBZLWTCC-UHFFFAOYSA-N chloro-(chloromethyl)-methylsilane Chemical compound C[SiH](Cl)CCl ZCJSXNPBZLWTCC-UHFFFAOYSA-N 0.000 description 1
- JFTHRUMWJGTYLX-UHFFFAOYSA-N chloro-methyl-(3,3,3-trifluoropropyl)silane Chemical compound C[SiH](Cl)CCC(F)(F)F JFTHRUMWJGTYLX-UHFFFAOYSA-N 0.000 description 1
- BSXATJGGEPYACB-UHFFFAOYSA-N chloro-methyl-propan-2-ylsilane Chemical compound CC(C)[SiH](C)Cl BSXATJGGEPYACB-UHFFFAOYSA-N 0.000 description 1
- ABZPYWSPNKZTOI-UHFFFAOYSA-N chloro-methyl-propylsilane Chemical compound CCC[SiH](C)Cl ABZPYWSPNKZTOI-UHFFFAOYSA-N 0.000 description 1
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical class Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 description 1
- DGUPEYLBWVTFTE-UHFFFAOYSA-N chlorosilylmethyl(trimethyl)silane Chemical compound C[Si](C)(C)C[SiH2]Cl DGUPEYLBWVTFTE-UHFFFAOYSA-N 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- LCZXHHWLLUALLU-UHFFFAOYSA-N dichloro(3,3,3-trifluoropropyl)silane Chemical compound FC(F)(F)CC[SiH](Cl)Cl LCZXHHWLLUALLU-UHFFFAOYSA-N 0.000 description 1
- NPYRNNDTSBRCSK-UHFFFAOYSA-N dichloro(chloromethyl)silane Chemical compound ClC[SiH](Cl)Cl NPYRNNDTSBRCSK-UHFFFAOYSA-N 0.000 description 1
- PFMKUUJQLUQKHT-UHFFFAOYSA-N dichloro(ethyl)silicon Chemical compound CC[Si](Cl)Cl PFMKUUJQLUQKHT-UHFFFAOYSA-N 0.000 description 1
- KTQYJQFGNYHXMB-UHFFFAOYSA-N dichloro(methyl)silicon Chemical compound C[Si](Cl)Cl KTQYJQFGNYHXMB-UHFFFAOYSA-N 0.000 description 1
- HAKOAQCVDUCPTM-UHFFFAOYSA-N dichloro(propan-2-yl)silane Chemical compound CC(C)[SiH](Cl)Cl HAKOAQCVDUCPTM-UHFFFAOYSA-N 0.000 description 1
- SJTARAZFCVDEIM-UHFFFAOYSA-N dichloro(propyl)silane Chemical compound CCC[SiH](Cl)Cl SJTARAZFCVDEIM-UHFFFAOYSA-N 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000005048 methyldichlorosilane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000006884 silylation reaction Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 description 1
- 239000005052 trichlorosilane Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Landscapes
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
本発明はt−ブトキシ基で保護されたフェノール性水酸基を有する有機ハロゲン化シラン化合物の製造方法に関し、更に詳しくは、着色の要因となり得る副生成物の生成と触媒の使用量を抑えると共に、工業的に高純度で収率よく製造することができるt−ブトキシ基で保護されたフェノール性水酸基を有する有機ハロゲン化シラン化合物の製造方法に関する。
【0002】
【従来の技術】
官能性クロロシラン化合物等の有機ハロゲン化シラン化合物は、シランカップリング剤や変性シリコーンの原料等として広く工業的に利用されるケイ素含有化合物である。特にフェノール性水酸基を有する有機ハロゲン化シラン化合物は、アルカリに可溶な性質を有することから、アルカリ可溶性ケイ素樹脂を調製するために用いることができるので、工業的に重要な化合物である。
【0003】
従来より、有機ハロゲン化シラン化合物の製造方法としては、例えば、白金触媒の存在下、ジメチルクロロシランとスチレンとを用いるヒドロシリレーション反応が知られている。そして、かかる反応を応用して、フェノール性水酸基を有する有機ハロゲン化シラン化合物を製造する方法として、下記一般式(3)に示すように、スチレンの代わりにt−ブトキシ基を有するスチレンを用いて、t−ブトキシ基で保護されたフェノール性水酸基を有する有機ハロゲン化シラン化合物を得る方法が検討されている。
【0004】
【化3】
【0005】
しかし、上記反応過程において、反応系内に微量の水分が存在すると、下記式(4)に示すように、水分とジメチルクロロシランが反応してSi−Cl結合が外れることにより、ジメチルクロロシランが分解し、しかも、この反応により生じるHClが、t−ブトキシ基を有するスチレンと反応することにより連鎖的にt−ブチル基を脱離させる。その結果、t−ブトキシ基で保護されたフェノール性水酸基を有する有機ハロゲン化シラン化合物の収率及び純度低下を招くという問題がある。
【0006】
【化4】
【0007】
また、反応系内に水分がほとんど無くても、ヒドロシリレーション反応を促進させたり、あるいは蒸留による精製を行うために反応系内の温度を高温にすると、上記と同様に連鎖的にt−ブチル基が脱離し、モノマーのオリゴメリゼーションが以下の式(5)のように促進させる結果、副生成物が生成し、やはりt−ブトキシ基で保護されたフェノール性水酸基を有する有機ハロゲン化シラン化合物の収率及び生成物中における純度の低下を招くという問題がある。このような問題があることから、工業的に高純度のt−ブトキシ基で保護されたフェノール性水酸基を有する有機ハロゲン化シラン化合物を得ることが困難であるという問題がある。
【0008】
【化5】
【0009】
更に、上記反応により得られるt−ブトキシ基で保護されたフェノール性水酸基を有する有機ハロゲン化シラン化合物は、通常、沸点が非常に高いことから、純度を高めるために蒸留により精製しようとしてもかなり高温にしないと蒸留による精製が困難である。しかも、反応系内をあまり高温にすると、連鎖的にt−ブチル基が脱離し、モノマーのオリゴメリゼーションが進行して副生成物が生成する結果、収率及び純度が低下するという問題が生じる。また、有機ハロゲン化シラン化合物を製造する際には、ヒドロシリレーション反応を促進するために白金等を触媒として用いるが、かかる触媒自身が、得られる生成物を茶褐色に着色させることもあるという問題もある。
【0010】
そこで従来より、工業的に重要なt−ブトキシ基で保護されたフェノール性水酸基を有する有機ハロゲン化シラン化合物を製造する方法として、着色の要因となり得る副生成物の生成と触媒の使用量を抑えると共に、工業的に高純度で収率よく製造することができる方法が求められていた。
【0011】
【発明が解決しようとする課題】
本発明は上記実情に鑑みてなされたものであり、着色の要因となり得る副生成物の生成と触媒の使用量を抑えると共に、工業的に高純度で収率よく製造することができるt−ブトキシ基で保護されたフェノール性水酸基を有する有機ハロゲン化シラン化合物の製造方法に関する。
【0012】
【課題を解決するための手段及び作用】
本発明者らは、t−ブトキシ基で保護されたフェノール性水酸基を有する有機ハロゲン化シラン化合物の製造方法について鋭意検討した結果、所定構造のt−ブトキシベンゼン化合物とハロゲン化シラン化合物とを120℃以下の反応温度でヒドロシリレーション反応させ、反応終了後、反応系内を100℃以下に保ちながら減圧状態として不純物を除去することにより、上記課題を解決できることを見出して本発明を完成した。
【0013】
本発明のt−ブトキシ基で保護されたフェノール性水酸基を有する有機ハロゲン化シラン化合物の製造方法は、下記一般式(1)で示されるハロゲン化シラン化合物及び下記一般式(2)で示されるt−ブトキシベンゼン化合物で構成される反応基質を、該反応基質に対して0.01〜100ppmの触媒の存在下、反応系内の温度を120℃以下としてヒドロシリレーション反応させ、該ヒドロシリレーション反応終了後、反応系内を100℃以下に保ちながら減圧状態として不純物を除去することを特徴とする。
【0014】
【化6】
【0015】
【化7】
【0016】
上記「一般式(1)で示されるハロゲン化シラン化合物」(以下、単に「ハロゲン化シラン化合物」という。)において、XはCl、Br及びFから選ばれるハロゲン原子を示す。また、R1及びR2はそれぞれ独立にアルキル基又はCl、Br及びFから選ばれるハロゲン原子を示す。ここで、上記R1及びR2同士は同じアルキル基又はハロゲン原子でも、異なるアルキル基又はハロゲン原子でもよい。上記X、R1、R2のハロゲン原子としては、通常はClが用いられる。また、上記R1及び/又はR2を構成するアルキル基としては、C1〜C3のアルキル基(メチル基、エチル基、n−プロピル基、イソプロピル基等)が用いられる。また、このアルキル基は、炭化水素基中にハロゲン原子(F、Cl、Br、I)等、炭素原子及び水素原子以外の原子を含むものでもよい。上記R1及び/又はR2を構成するアルキル基としては、通常はメチル基が用いられる。
【0017】
上記「ハロゲン化シラン化合物」として具体的には、例えば、トリクロロシラン、メチルジクロロシラン、エチルジクロロシラン、n−プロピルジクロロシラン、イソプロピルジクロロシラン、(トリフルオロプロピル)ジクロロシラン、(クロロメチル)ジクロロシラン、ジメチルクロロシラン、ジエチルクロロシラン、n−プロピルメチルクロロシラン、イソプロピルメチルクロロシラン、トリフルオロプロピルメチルクロロシラン、(クロロメチル)メチルクロロシラン、メチルクロロシラン、エチルクロロシラン、n−プロピルクロロシラン、イソプロピルクロロシラン、トリフルオロプロピルクロロシラン、(クロロメチル)クロロシラン、(トリメチルシリルメチル)クロロシラン等が挙げられる。
【0018】
上記「一般式(2)で示されるt−ブトキシベンゼン化合物」(以下、単に「t−ブトキシベンゼン化合物」という。)において、R3はビニル基又はアリル基を示す。この中で、通常はビニル基が用いられる。また、tBuはt−ブチル基を示す。また、上記「t−ブトキシベンゼン化合物」において、t−ブトキシ基の数(m)は1〜3個、特に好ましくは1個である。更に、上記「t−ブトキシベンゼン化合物」において、t−ブトキシ基の位置はいずれであっても構わないが、保護基を外してフェノール性水酸基とした場合のアルカリ可溶性が良好となるので、パラ位が好ましい。
【0019】
本発明の上記「触媒」の種類としては、上記「ハロゲン化シラン化合物」と上記「t−ブトキシベンゼン化合物」とのヒドロシリレーション反応を促進させるために通常用いられる種類のものであれば特に限定はない。このような触媒としては通常、第8族金属触媒が用いられる。該第8族金属触媒としては、コバルト、ニッケル、ルテニウム、ロジウム、パラジウム、イリジウム及び白金等の第8族金属の単体、有機金属錯体、金属塩及び金属酸化物等が挙げられる。これらの中で、触媒活性の高さや取り扱いの容易さ等の理由から、白金の金属単体、有機金属錯体、金属塩及び金属酸化物が好ましく、有機白金錯体を用いることが特に好ましい。そして、本発明において、上記「触媒」の量は、反応基質、即ち、上記「ハロゲン化シラン化合物」及び上記「t−ブトキシベンゼン化合物」の合計重量に対して、第8族金属の重量として0.01〜100重量ppm、好ましくは0.05〜100重量ppm、更に好ましくは0.1〜50重量ppm、より好ましくは0.5〜40重量ppm、特に好ましくは1〜20重量ppm、最も好ましくは2〜10重量ppmである。上記「触媒」の濃度が0.01ppm未満であると、ヒドロシリレーション反応が促進されず、収率が低下するので好ましくなく、一方、100ppmを越えると、得られる生成物が着色するおそれがあるので好ましくない。
【0020】
本発明では、次いで、反応系内の温度を120℃以下として、上記「ハロゲン化シラン化合物」と上記「t−ブトキシベンゼン化合物」とをヒドロシリレーション反応させる。この場合、上記「ハロゲン化シラン化合物」と上記「t−ブトキシベンゼン化合物」に直接上記「触媒」を添加して反応を行ってもよいが、反応系の温度制御及び触媒成分の添加を容易にするため、適当な溶媒に上記「ハロゲン化シラン化合物」、上記「t−ブトキシベンゼン化合物」、及び上記「触媒」を添加して反応させてもよい。このような溶媒としては、例えば、ベンゼン、トルエン、キシレン、ヘキサン、シクロヘキサン、テトラヒドロフラン等を用いることができる。
【0021】
本発明において、上記「ハロゲン化シラン化合物」及び「t−ブトキシベンゼン化合物」の割合については特に限定はなく、同量でも、あるいは上記「t−ブトキシベンゼン化合物」を過剰量用いてもよく、あるいは、上記「ハロゲン化シラン化合物」を上記「t−ブトキシベンゼン化合物」の必要理論量より過剰に用いることができる。上記「ハロゲン化シラン化合物」は通常、低沸点であることから、反応終了後、反応系から容易に除去できるのに対し、上記「t−ブトキシベンゼン化合物」は通常、沸点が高く、高温にすると生成物が熱分解するために、蒸留により反応系から除去することが困難である。そこで、上記「ハロゲン化シラン化合物」を上記「t−ブトキシベンゼン化合物」の必要理論量より過剰に用いることにより、反応系からの除去が困難な上記「t−ブトキシベンゼン化合物」を理論上ほぼ完全に反応させ、反応系における残留を極めて低減することができるので好ましい。上記「ハロゲン化シラン化合物」を過剰に用いる場合、その割合は通常、上記「t−ブトキシベンゼン化合物」に対して、1〜50%過剰、より好ましくは2〜20%過剰、最も好ましくは5〜10%過剰な割合である。上記割合が50%過剰を超える場合には、過剰な上記「ハロゲン化シラン化合物」が無駄となってコスト高となる。
【0022】
本発明における上記反応系内の温度は、120℃以下、好ましくは0〜100℃、より好ましくは20〜100℃、更に好ましくは30〜100℃、特に好ましくは50〜90℃である。上記反応系内の温度が120℃を超えると、上記のように、上記「t−ブトキシベンゼン化合物」のt−ブチル基が連鎖的に脱離し、モノマーのオリゴメリゼーションが促進される結果、収率及び純度低下、副生成物の生成による着色等を引き起こすおそれがあるので好ましくない。一方、上記反応系内の温度を20℃以上とすると、収率向上の観点から、ヒドロシリレーション反応の反応速度を適切な範囲とすることができるので好ましい。
【0023】
また、本発明のヒドロシリレーション反応は、通常、大気圧下に行われるが、加圧下で行うこともできる。また、反応雰囲気中に酸素が存在すると、白金等の触媒の存在下、酸素が上記「ハロゲン化シラン化合物」と反応してSi−H結合がSi−OHとなり、これがSi−Cl結合と反応して上記「ハロゲン化シラン化合物」を分解し、しかも、この反応により生じるHClが、上記「t−ブトキシベンゼン化合物」と反応することにより連鎖的にt−ブチル基を脱離させてt−ブトキシ基で保護されたフェノール性水酸基を有する有機ハロゲン化シラン化合物の収率及び純度低下を招くことから、通常は窒素、アルゴン等の不活性雰囲気下で、上記ヒドロシリレーション反応を開始する前の上記反応系内の酸素濃度を0.5%以下、好ましくは0.3%以下、更に好ましくは0.1%以下とすることができる。
【0024】
更に、本発明において反応系内の水分濃度は、通常は1%以下、好ましくは0.5%以下、更に好ましくは0.1%以下、より好ましくは0.01%以下、特に好ましくは0.005%以下である。反応系内の水分濃度を1%以下とすると、水分と上記「ハロゲン化シラン化合物」が反応・分解し、それによって発生するHClガスが上記「t−ブトキシベンゼン化合物」のt−ブチル基を脱離させることを抑え、その結果、収率及び純度低下を防止できるので好ましい。水分濃度を低くする手段については特に限定はなく、通常、反応系を乾燥ガス(乾燥窒素又は乾燥アルゴン等の乾燥不活性ガス等)雰囲気下にすることにより達成できる。
【0025】
本発明において、上記「ハロゲン化シラン化合物」及び上記「t−ブトキシベンゼン化合物」がヒドロシリレーション反応をすることにより、下記一般式(6)に示すように、t−ブトキシ基で保護されたフェノール性水酸基を有する有機ハロゲン化シラン化合物を得ることができる。尚、式中、R4はC2H4又はC3H6を示す。本発明の製造方法により得られる化合物は、R3がビニル基にあっては、下記一般式(7)で示されるようなα付加体であっても、下記一般式(8)で示されるようなβ付加体であってもよく、R3がアリル基にあっては、下記一般式(9)で示されるようなα付加体であっても、下記一般式(10)で示されるようなβ付加体であってもよい。
【0026】
【化8】
【0027】
【化9】
【0028】
本発明において、上記ヒドロシリレーション反応後、反応系に残留する不純物、特に、上記のように反応基質である上記「ハロゲン化シラン化合物」や上記「t−ブトキシベンゼン化合物」を過剰に用いた場合、残留している未反応の反応基質を除去するため、反応終了後に、反応系内を100℃以下に保ちながら減圧状態とする。
【0029】
上記反応系の圧力は減圧下であることが必要であるが、通常は70Pa以下、好ましくは50Pa以下、更に好ましくは30Pa以下である。かかる範囲とすることにより、生成物の分解を防止しつつ、反応系の不純物、例えば未反応の上記「ハロゲン化シラン化合物」等を容易に除去することができる結果、収率及び純度をより向上させることができるので好ましい。そして、上記反応系内の温度は100℃以下、好ましくは上記反応系の圧力が70Pa以下の場合に70〜100℃、更に好ましくは上記反応系の圧力が70Pa以下の場合に80〜100℃、より好ましくは上記反応系の圧力が50Pa以下の場合に80〜100℃、特に好ましくは上記反応系の圧力が30Pa以下の場合に80〜100℃である。上記反応系の温度が100℃を超えると、以下の式(11)に示すように、反応生成物が分解し、イソブテンとフェノール系化合物が生成する結果、収率と生成物の純度低下を引き起こす場合があるので好ましくない。また、上記反応系の温度を上記範囲とすると、蒸留による低沸点物の除去効果の低減を防止することができるので好ましい。
【0030】
【化10】
【0031】
以上のような反応条件に従って反応を行うことにより本発明における目的化合物をほぼ化学量論的に得ることができ、このようにして得られたt−ブトキシ基で保護されたフェノール性水酸基を有する有機ハロゲン化シラン化合物は、高温で蒸留せずとも副反応が少なく、純度が高い。このため、釜残をそのまま高純度の製品として用いることができる。純度は、反応生成物中、好ましくは95%以上、更に好ましくは97%、より好ましくは98%以上のものとすることができる。また、得られた生成物は着色も少なく、製品に色の問題がほとんどない。このため、ケイ素系モノマーとして工業的に有用である。更に、本発明の製造方法により得られるt−ブトキシ基で保護されたフェノール性水酸基を有する有機ハロゲン化シラン化合物は、t−ブトキシ基で保護されたフェノール性水酸基を有するため、酸処理又は熱処理により、t−ブチル基を外してフェノール性水酸基とすることができ、アルカリ可溶性ケイ素樹脂の調製等に用いることができる。
【0032】
【発明の実施の形態】
以下、実施例及び比較例によって本発明を更に詳しく説明する。
(1)t−ブトキシフェニルクロロシラン化合物の製造方法
原料として、t−ブトキシスチレン(F.W.=176.26、d=0.936、以下「BOST」という。)を370.2g(2.1モル)及びジメチルクロロシラン(F.W.=94.62、d=0.852、以下「DMCS」という。)を210.0g(2.2モル)使用した。そして、磁気スターラー、冷却管、滴下ロート、温度計を備えた1Lの反応装置の系内を十分な乾燥窒素雰囲気下(水分濃度:10ppm以下)とした(工程▲1▼)。続いて、上記BOSTを全量、上記DMCSを約50g及び白金触媒(Pt−ジビニルテトラメチルジシロキサン錯体/キシレン)0.05〜0.1ml(反応基質に対して2〜4ppm)を仕込み、系内を撹拌させながら、オイルバスで徐々に60〜80℃に加熱した(工程▲2▼)。発熱により反応の進行を確認したら、系内の温度が85〜100℃になるように、上記DMCSの残量を滴下量を調節しながら反応系に添加して反応を進行させた(工程▲3▼)。反応終了後、100℃未満の釜温度で70Paの減圧蒸留により、主に未反応のDMCS等の低沸点物を留去し(工程▲4▼)、実施例のt−ブトキシフェニルクロロシラン化合物を製造した。また、比較例として、上記工程▲4▼において、釜温度を100℃を超える温度とした他は、上記実施例と同じ方法でt−ブトキシフェニルクロロシラン化合物を製造した。
【0033】
(2)t−ブトキシフェニルクロロシラン化合物の分析
実施例の上記工程▲3▼終了直後の生成物並びに上記工程▲4▼終了直後の実施例及び比較例の生成物について、ガスクロマトグラフィーによる分析を行った。分析は、カラム:パックドカラムSE30 2mカラム、キャリアーガス:Heガス(圧力:1kg/cm2)、初期温度:100℃(上記工程▲3▼終了直後及び比較例)、50℃(上記工程▲4▼終了直後の実施例)、昇温速度:10℃/minの条件下で行った。その結果を図1〜図3に示す。また、t−ブトキシフェニルクロロシラン化合物が生成していることを確認するため、生成物について、GC−MSによる分析を行った。その結果を図4に示す。
【0034】
(3)実施例及び比較例の効果
図1に示すように、合成直後の生成物では、ガスクロマトグラフィーによる分析においてリテンションタイム11.36と12.35の強いピークが認められた。これは、原料であるDMCSとBOSTが反応して、下記構造式(12)及び(13)のα付加体とβ付加体が得られていることを示している。一方、BOSTのピーク位置は図1において矢印にて示しているが、ピークが認められていないことから、生成物中にBOSTの残留が認められないことが判る。更に、図1において、リテンションタイム0.75のピークは、BOSTよりも5%過剰に用いたDMCSを示し、若干未反応のDMCSが残留していることが判る。
このように、本発明の方法によれば、反応系に仕込んだ原料化合物を化学量論的に反応させることができ、実施例においてはBOSTに対してほぼ100%の収率である。
【0035】
【化11】
【0036】
一方、図2より、製造工程終了後、上記図1のガスクロマトグラフィーに認められていたDMCSのピークが消失していることから、低沸点のDMCSが蒸留により除去されていることが分かる。一方、リテンションタイム1.77のピークは、シリンダー注入時のガス又はイソブチレンと考えられる。そして、この図2のガスクロマトグラフィーによる分析の結果から、t−ブトキシフェニルクロロシラン化合物は98.8%の高純度で得られていることが判る。しかも、得られたt−ブトキシフェニルクロロシラン化合物は、目視で観察した結果、ほとんど透明で極めて着色度が低いものであり、製品として問題はないことが判った。また、図4に示すように、生成物についてGC−MSによる分析を行った結果、t−ブトキシフェニルクロロシラン化合物のピークである270のピークが認められ、また、イソブチレンが脱離したことを示す214のピークが認められた。
【0037】
一方、図3より、比較例では、低沸点のDMCSは蒸留により除去され、上記t−ブトキシフェニルクロロシラン化合物のα付加体とβ付加体を示すリテンションタイム11.32と12.36の強いピークが認められたが、一方で実施例と異なり、リテンションタイム0.80と7.60にも強いピークが認められた。これは、蒸留温度が100℃を超えるため、式(14)に示すように、生成したt−ブトキシフェニルクロロシラン化合物が分解し、イソブチレン(リテンションタイム0.80)とフェノール性化合物(リテンションタイム7.60)が生成していることを示している。このため、得られたt−ブトキシフェニルクロロシラン化合物の純度が約72.8%と実施例よりも低いものであることが判る。
【0038】
【化12】
【0039】
尚、本発明においては、上記具体的実施例に示すものに限られず、目的、用途に応じて種々変更した実施例とすることができる。例えば、本発明において、得られた生成物をさらに精製するために、吸着物質、例えば、活性炭やシリカゲル等を用いて処理することができる。この精製により、触媒残渣等の金属不純物を取り除いて、より純度を高めると共に、着色の要因となり得る触媒残渣等の金属不純物を取り除いて、生成物の着色度を低減させることができるので好ましい。
【0040】
【発明の効果】
本発明のt−ブトキシ基で保護されたフェノール性水酸基を有する有機ハロゲン化シラン化合物の製造方法によれば、所定構造のt−ブトキシベンゼン化合物とハロゲン化シラン化合物とを120℃以下の温度でヒドロシリレーション反応させ、反応終了後、反応系内を100℃以下に保ちながら減圧状態として不純物を除去することにより、高温で蒸留せずにも副反応が少なく高純度で着色が少ないt−ブトキシ基で保護されたフェノール性水酸基を有する有機ハロゲン化シラン化合物を得ることができる。また、反応系の水分濃度及び酸素濃度を適切な範囲とすることにより、t−ブトキシベンゼン化合物やハロゲン化シラン化合物の分解を抑制し、収率及び純度を向上させることができるので好ましい。
【図面の簡単な説明】
【図1】実施例の工程▲3▼終了直後の生成物のガスクロマトグラフィーによる分析結果を示す図である。
【図2】実施例の工程▲4▼終了直後の生成物のガスクロマトグラフィーによる分析結果を示す図である。
【図3】比較例の生成物のガスクロマトグラフィーによる分析結果を示す図である。
【図4】実施例の生成物のGC−MSによる分析結果を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an organohalogenated silane compound having a phenolic hydroxyl group protected with a t-butoxy group. More specifically, the present invention suppresses the production of by-products that can cause coloring and the amount of the catalyst used. In particular, the present invention relates to a method for producing an organohalogenated silane compound having a phenolic hydroxyl group protected with a t-butoxy group, which can be produced with high purity and high yield.
[0002]
[Prior art]
Organohalogenated silane compounds such as functional chlorosilane compounds are silicon-containing compounds that are widely used industrially as raw materials for silane coupling agents and modified silicones. In particular, an organic halogenated silane compound having a phenolic hydroxyl group is an industrially important compound because it can be used for preparing an alkali-soluble silicon resin because it has an alkali-soluble property.
[0003]
Conventionally, as a method for producing an organic halogenated silane compound, for example, a hydrosilylation reaction using dimethylchlorosilane and styrene in the presence of a platinum catalyst is known. As a method for producing an organohalogenated silane compound having a phenolic hydroxyl group by applying such reaction, as shown in the following general formula (3), styrene having a t-butoxy group is used instead of styrene. A method for obtaining an organohalogenated silane compound having a phenolic hydroxyl group protected with a t-butoxy group has been studied.
[0004]
[Chemical 3]
[0005]
However, in the above reaction process, if a very small amount of water is present in the reaction system, as shown in the following formula (4), the water reacts with dimethylchlorosilane to release the Si-Cl bond, thereby decomposing dimethylchlorosilane. In addition, HCl generated by this reaction reacts with styrene having a t-butoxy group, thereby detaching t-butyl groups in a chain. As a result, there is a problem in that the yield and purity of the organohalogenated silane compound having a phenolic hydroxyl group protected with a t-butoxy group is reduced.
[0006]
[Formula 4]
[0007]
Even if there is almost no moisture in the reaction system, if the temperature in the reaction system is increased to promote the hydrosilylation reaction or to perform purification by distillation, t-butyl is chain-linked in the same manner as described above. Organohalogenated silane compound having a phenolic hydroxyl group that is protected by a t-butoxy group as a result of the elimination of the group and the oligomerization of the monomer being promoted as shown in the following formula (5) There is a problem in that the yield and the purity in the product are reduced. Since there is such a problem, there is a problem that it is difficult to obtain an organohalogenated silane compound having a phenolic hydroxyl group protected with an industrially high purity t-butoxy group.
[0008]
[Chemical formula 5]
[0009]
Furthermore, since the organic halogenated silane compound having a phenolic hydroxyl group protected with a t-butoxy group obtained by the above reaction usually has a very high boiling point, even if it is attempted to purify it by distillation in order to increase the purity, the temperature is considerably high. Otherwise, purification by distillation is difficult. In addition, if the temperature in the reaction system is too high, the t-butyl group is eliminated in a chain, the oligomerization of the monomer proceeds, and a by-product is generated, resulting in a problem that yield and purity are reduced. . Further, when producing an organohalogenated silane compound, platinum or the like is used as a catalyst in order to promote a hydrosilylation reaction. However, such a catalyst itself may cause the resulting product to be colored brown. There is also.
[0010]
Therefore, conventionally, as a method for producing an organic halogenated silane compound having a phenolic hydroxyl group protected with an industrially important t-butoxy group, the production of by-products that may cause coloring and the amount of catalyst used are suppressed. At the same time, there has been a demand for a method that can be industrially produced with high purity and high yield.
[0011]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and it is possible to suppress the generation of by-products that can cause coloring and the amount of the catalyst used, and t-butoxy that can be produced industrially with high purity and high yield. The present invention relates to a method for producing an organohalogenated silane compound having a phenolic hydroxyl group protected with a group.
[0012]
[Means and Actions for Solving the Problems]
As a result of intensive studies on a method for producing an organic halogenated silane compound having a phenolic hydroxyl group protected with a t-butoxy group, the present inventors have obtained a t-butoxybenzene compound and a halogenated silane compound having a predetermined structure at 120 ° C. The present invention was completed by finding that the above-mentioned problems can be solved by carrying out a hydrosilylation reaction at the following reaction temperature and removing impurities by reducing the pressure while maintaining the inside of the reaction system at 100 ° C. or lower.
[0013]
The method for producing an organic halogenated silane compound having a phenolic hydroxyl group protected with a t-butoxy group according to the present invention includes a halogenated silane compound represented by the following general formula (1) and a t represented by the following general formula (2). -Hydrosilylation reaction of a reaction substrate composed of a butoxybenzene compound in the presence of a catalyst of 0.01 to 100 ppm with respect to the reaction substrate at a temperature in the reaction system of 120 ° C or lower. After the completion, the impurities are removed under reduced pressure while maintaining the reaction system at 100 ° C. or lower.
[0014]
[Chemical 6]
[0015]
[Chemical 7]
[0016]
In the “halogenated silane compound represented by the general formula (1)” (hereinafter simply referred to as “halogenated silane compound”), X represents a halogen atom selected from Cl, Br and F. R 1 and R 2 each independently represents an alkyl group or a halogen atom selected from Cl, Br and F. Here, R 1 and R 2 may be the same alkyl group or halogen atom, or may be different alkyl groups or halogen atoms. As the halogen atom for X, R 1 and R 2 , Cl is usually used. The alkyl group constituting the R 1 and / or R 2, an alkyl group of C 1 -C 3 (methyl group, ethyl group, n- propyl group, an isopropyl group, etc.) are used. Moreover, this alkyl group may contain atoms other than a carbon atom and a hydrogen atom, such as a halogen atom (F, Cl, Br, I), in a hydrocarbon group. As the alkyl group constituting R 1 and / or R 2 , a methyl group is usually used.
[0017]
Specific examples of the “halogenated silane compound” include, for example, trichlorosilane, methyldichlorosilane, ethyldichlorosilane, n-propyldichlorosilane, isopropyldichlorosilane, (trifluoropropyl) dichlorosilane, and (chloromethyl) dichlorosilane. , Dimethylchlorosilane, diethylchlorosilane, n-propylmethylchlorosilane, isopropylmethylchlorosilane, trifluoropropylmethylchlorosilane, (chloromethyl) methylchlorosilane, methylchlorosilane, ethylchlorosilane, n-propylchlorosilane, isopropylchlorosilane, trifluoropropylchlorosilane, ( Chloromethyl) chlorosilane, (trimethylsilylmethyl) chlorosilane, and the like.
[0018]
In the above “t-butoxybenzene compound represented by the general formula (2)” (hereinafter simply referred to as “t-butoxybenzene compound”), R 3 represents a vinyl group or an allyl group. Of these, a vinyl group is usually used. T Bu represents a t-butyl group. In the “t-butoxybenzene compound”, the number (m) of t-butoxy groups is 1 to 3, particularly preferably 1. Furthermore, in the above “t-butoxybenzene compound”, the position of the t-butoxy group may be any, but since the alkali solubility is improved when the protecting group is removed to form a phenolic hydroxyl group, the para-position Is preferred.
[0019]
The type of the “catalyst” of the present invention is not particularly limited as long as it is a type usually used for promoting the hydrosilylation reaction between the “halogenated silane compound” and the “t-butoxybenzene compound”. There is no. As such a catalyst, a Group 8 metal catalyst is usually used. Examples of the Group 8 metal catalyst include simple substances of Group 8 metals such as cobalt, nickel, ruthenium, rhodium, palladium, iridium and platinum, organometallic complexes, metal salts and metal oxides. Of these, platinum metal simple substance, organometallic complex, metal salt and metal oxide are preferred for reasons such as high catalytic activity and ease of handling, and it is particularly preferred to use an organic platinum complex. In the present invention, the amount of the “catalyst” is 0 as the weight of the Group 8 metal with respect to the total weight of the reaction substrate, that is, the “halogenated silane compound” and the “t-butoxybenzene compound”. 0.01 to 100 ppm by weight, preferably 0.05 to 100 ppm by weight, more preferably 0.1 to 50 ppm by weight, more preferably 0.5 to 40 ppm by weight, particularly preferably 1 to 20 ppm by weight, and most preferably Is 2 to 10 ppm by weight. If the concentration of the “catalyst” is less than 0.01 ppm, the hydrosilylation reaction is not promoted and the yield is lowered, which is not preferable. On the other hand, if the concentration exceeds 100 ppm, the resulting product may be colored. Therefore, it is not preferable.
[0020]
In the present invention, the temperature in the reaction system is then set to 120 ° C. or lower, and the above “halogenated silane compound” and the above “t-butoxybenzene compound” are subjected to a hydrosilylation reaction. In this case, the “catalyst” may be added directly to the “halogenated silane compound” and the “t-butoxybenzene compound” to carry out the reaction, but the temperature control of the reaction system and the addition of catalyst components can be easily performed. Therefore, you may make it react by adding the said "halogenated silane compound", the said "t-butoxybenzene compound", and the said "catalyst" to a suitable solvent. As such a solvent, for example, benzene, toluene, xylene, hexane, cyclohexane, tetrahydrofuran and the like can be used.
[0021]
In the present invention, the ratio of the “halogenated silane compound” and the “t-butoxybenzene compound” is not particularly limited, and the same amount or an excess amount of the “t-butoxybenzene compound” may be used. The “halogenated silane compound” can be used in excess of the required theoretical amount of the “t-butoxybenzene compound”. Since the “halogenated silane compound” usually has a low boiling point, it can be easily removed from the reaction system after completion of the reaction, whereas the “t-butoxybenzene compound” usually has a high boiling point and is heated to a high temperature. Since the product is thermally decomposed, it is difficult to remove it from the reaction system by distillation. Therefore, the above “t-butoxybenzene compound”, which is difficult to remove from the reaction system, is theoretically almost complete by using the “halogenated silane compound” in excess of the required theoretical amount of the “t-butoxybenzene compound”. This is preferable because the residual in the reaction system can be extremely reduced. When the “halogenated silane compound” is used in excess, the ratio is usually 1 to 50% excess, more preferably 2 to 20% excess, most preferably 5 to 5% with respect to the “t-butoxybenzene compound”. 10% excess. When the ratio exceeds 50% excess, the excessive “halogenated silane compound” is wasted and the cost is increased.
[0022]
The temperature in the reaction system in the present invention is 120 ° C. or less, preferably 0 to 100 ° C., more preferably 20 to 100 ° C., still more preferably 30 to 100 ° C., and particularly preferably 50 to 90 ° C. When the temperature in the reaction system exceeds 120 ° C., as described above, the t-butyl group of the “t-butoxybenzene compound” is chain-eliminated and the oligomerization of the monomer is promoted. This is not preferable because it may cause a reduction in rate and purity and coloring due to the formation of by-products. On the other hand, it is preferable to set the temperature in the reaction system to 20 ° C. or higher because the reaction rate of the hydrosilylation reaction can be within an appropriate range from the viewpoint of improving yield.
[0023]
The hydrosilylation reaction of the present invention is usually performed under atmospheric pressure, but can also be performed under pressure. In addition, when oxygen is present in the reaction atmosphere, oxygen reacts with the above “halogenated silane compound” in the presence of a catalyst such as platinum, and the Si—H bond becomes Si—OH, which reacts with the Si—Cl bond. Then, the above-mentioned “halogenated silane compound” is decomposed, and HCl generated by this reaction reacts with the above “t-butoxybenzene compound”, thereby detaching the t-butyl group in a chain manner to form a t-butoxy group. Since the yield and purity of the organohalogenated silane compound having a phenolic hydroxyl group protected with benzene are reduced, the reaction before starting the hydrosilylation reaction usually under an inert atmosphere such as nitrogen or argon The oxygen concentration in the system can be 0.5% or less, preferably 0.3% or less, and more preferably 0.1% or less.
[0024]
Furthermore, in the present invention, the water concentration in the reaction system is usually 1% or less, preferably 0.5% or less, more preferably 0.1% or less, more preferably 0.01% or less, and particularly preferably 0.00. 005% or less. When the water concentration in the reaction system is 1% or less, the water and the “halogenated silane compound” react and decompose, and the HCl gas generated thereby desorbs the t-butyl group of the “t-butoxybenzene compound”. This is preferable because it can be prevented from being released, and as a result, a decrease in yield and purity can be prevented. The means for lowering the moisture concentration is not particularly limited, and can usually be achieved by placing the reaction system in a dry gas atmosphere (dry inert gas such as dry nitrogen or dry argon).
[0025]
In the present invention, the above-mentioned “halogenated silane compound” and the above “t-butoxybenzene compound” undergo a hydrosilylation reaction, whereby a phenol protected with a t-butoxy group as shown in the following general formula (6). An organic halogenated silane compound having a functional hydroxyl group can be obtained. In the formula, R 4 represents C 2 H 4 or C 3 H 6 . The compound obtained by the production method of the present invention is represented by the following general formula (8) even if it is an α adduct as represented by the following general formula (7) when R 3 is a vinyl group. Β adducts may be used, and when R 3 is an allyl group, α adducts represented by the following general formula (9) may be represented by the following general formula (10): It may be a β adduct.
[0026]
[Chemical 8]
[0027]
[Chemical 9]
[0028]
In the present invention, when impurities remaining in the reaction system after the hydrosilylation reaction, in particular, the “halogenated silane compound” or the “t-butoxybenzene compound” as the reaction substrate as described above is excessively used. In order to remove the remaining unreacted reaction substrate, the pressure in the reaction system is reduced to 100 ° C. or less after completion of the reaction.
[0029]
The pressure in the reaction system needs to be reduced, but is usually 70 Pa or less, preferably 50 Pa or less, and more preferably 30 Pa or less. By setting it within this range, it is possible to easily remove impurities in the reaction system, for example, the unreacted “halogenated silane compound”, etc., while preventing the decomposition of the product. As a result, the yield and purity are further improved. This is preferable. The temperature in the reaction system is 100 ° C. or less, preferably 70 to 100 ° C. when the pressure of the reaction system is 70 Pa or less, more preferably 80 to 100 ° C. when the pressure of the reaction system is 70 Pa or less, More preferably, it is 80 to 100 ° C. when the pressure of the reaction system is 50 Pa or less, and particularly preferably 80 to 100 ° C. when the pressure of the reaction system is 30 Pa or less. When the temperature of the reaction system exceeds 100 ° C., as shown in the following formula (11), the reaction product is decomposed to produce isobutene and a phenol compound, resulting in a decrease in yield and purity of the product. Since it may be, it is not preferable. In addition, it is preferable that the temperature of the reaction system be in the above range because a reduction in the removal effect of low-boiling substances due to distillation can be prevented.
[0030]
Embedded image
[0031]
By carrying out the reaction according to the above reaction conditions, the target compound in the present invention can be obtained almost stoichiometrically, and the thus obtained organic compound having a phenolic hydroxyl group protected with a t-butoxy group is obtained. Halogenated silane compounds have few side reactions and high purity without distillation at high temperatures. For this reason, the pot residue can be used as it is as a high-purity product. The purity of the reaction product is preferably 95% or more, more preferably 97%, more preferably 98% or more. Also, the resulting product is less colored and the product has little color problems. For this reason, it is industrially useful as a silicon-based monomer. Furthermore, since the organic halogenated silane compound having a phenolic hydroxyl group protected with a t-butoxy group obtained by the production method of the present invention has a phenolic hydroxyl group protected with a t-butoxy group, it can be obtained by acid treatment or heat treatment. , T-butyl group can be removed to make phenolic hydroxyl group, which can be used for preparation of alkali-soluble silicon resin.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
(1) Production method of t-butoxyphenylchlorosilane compound As a raw material, 370.2 g (2.1) of t-butoxystyrene (FW = 176.26, d = 0.936, hereinafter referred to as “BOST”). Mol) and 210.0 g (2.2 mol) of dimethylchlorosilane (FW = 94.62, d = 0.852, hereinafter referred to as “DMCS”). Then, the inside of a 1 L reactor equipped with a magnetic stirrer, a cooling tube, a dropping funnel, and a thermometer was placed in a sufficiently dry nitrogen atmosphere (moisture concentration: 10 ppm or less) (step (1)). Subsequently, the total amount of the BOST, about 50 g of the DMCS and 0.05 to 0.1 ml of platinum catalyst (Pt-divinyltetramethyldisiloxane complex / xylene) (2 to 4 ppm with respect to the reaction substrate) were charged. The mixture was gradually heated to 60 to 80 ° C. in an oil bath while stirring (Step (2)). After confirming the progress of the reaction by exotherm, the remaining amount of DMCS was added to the reaction system while adjusting the dropping amount so that the temperature in the system would be 85 to 100 ° C., and the reaction was allowed to proceed (step ▲ 3). ▼). After completion of the reaction, low boiling point substances such as unreacted DMCS are mainly distilled off by distillation under reduced pressure of 70 Pa at a kettle temperature of less than 100 ° C. (step (4)) to produce the t-butoxyphenylchlorosilane compound of the example. did. As a comparative example, a t-butoxyphenylchlorosilane compound was produced in the same manner as in the above example, except that the temperature in the kettle was higher than 100 ° C. in the step (4).
[0033]
(2) Analysis of t-butoxyphenylchlorosilane compound Gas chromatographic analysis was performed on the product immediately after the completion of step (3) and the product of the example and comparative example immediately after the completion of step (4). It was. Analyzes were as follows: column: packed column SE30 2m column, carrier gas: He gas (pressure: 1 kg / cm 2 ), initial temperature: 100 ° C. (immediately after the above step (3) and comparative example), 50 ° C. (above step (4) ▼ Example immediately after completion), temperature rising rate: 10 ° C./min. The results are shown in FIGS. Moreover, in order to confirm that the t-butoxyphenyl chlorosilane compound was producing | generating, the analysis by GC-MS was performed about the product. The result is shown in FIG.
[0034]
(3) Effects of Examples and Comparative Examples As shown in FIG. 1, strong peaks with retention times of 11.36 and 12.35 were observed in the product immediately after synthesis in the analysis by gas chromatography. This indicates that the α-adduct and β-adduct of the following structural formulas (12) and (13) are obtained by the reaction between the raw material DMCS and BOST. On the other hand, the peak position of BOST is indicated by an arrow in FIG. 1, but since no peak is observed, it can be seen that no BOST remains in the product. Furthermore, in FIG. 1, the peak with a retention time of 0.75 indicates DMCS used 5% in excess of BOST, and it can be seen that some unreacted DMCS remains.
Thus, according to the method of the present invention, the raw material compound charged in the reaction system can be reacted stoichiometrically, and in the examples, the yield is almost 100% with respect to BOST.
[0035]
Embedded image
[0036]
On the other hand, FIG. 2 shows that the DMCS peak observed in the gas chromatography of FIG. 1 disappears after the production process is completed, and thus the low boiling DMCS is removed by distillation. On the other hand, the peak of retention time 1.77 is considered to be gas or isobutylene at the time of cylinder injection. Then, from the result of analysis by gas chromatography in FIG. 2, it can be seen that the t-butoxyphenylchlorosilane compound is obtained with a high purity of 98.8%. Moreover, as a result of visual observation, the obtained t-butoxyphenylchlorosilane compound was found to be almost transparent and very low in coloration, and has no problem as a product. Further, as shown in FIG. 4, as a result of analyzing the product by GC-MS, a peak of 270 which is a peak of the t-butoxyphenylchlorosilane compound was observed, and 214 indicating that isobutylene was eliminated. The peak was observed.
[0037]
On the other hand, from FIG. 3, in the comparative example, low boiling point DMCS was removed by distillation, and strong peaks of retention times 11.32 and 12.36 indicating the α-adduct and β-adduct of the t-butoxyphenylchlorosilane compound were observed. However, unlike the examples, strong peaks were also observed at retention times of 0.80 and 7.60. Since the distillation temperature exceeds 100 ° C., as shown in the formula (14), the produced t-butoxyphenylchlorosilane compound is decomposed, and isobutylene (retention time 0.80) and phenolic compound (retention time 7. 60) shows that it is generated. For this reason, it turns out that the purity of the t-butoxyphenyl chlorosilane compound obtained is about 72.8%, which is lower than that of the examples.
[0038]
Embedded image
[0039]
In addition, in this invention, it can restrict to what is shown to the said specific Example, It can be set as the Example variously changed according to the objective and the use. For example, in the present invention, the product obtained can be treated with an adsorbent material, such as activated carbon or silica gel, for further purification. This purification is preferable because metal impurities such as catalyst residues can be removed to increase purity, and metal impurities such as catalyst residues that can cause coloring can be removed to reduce the degree of coloration of the product.
[0040]
【The invention's effect】
According to the method for producing an organic halogenated silane compound having a phenolic hydroxyl group protected with a t-butoxy group according to the present invention, a t-butoxybenzene compound having a predetermined structure and a halogenated silane compound are hydrolyzed at a temperature of 120 ° C. or lower. Silylation reaction is carried out, and after completion of the reaction, by removing impurities in a reduced pressure state while keeping the reaction system at 100 ° C. or lower, a t-butoxy group with little side reaction and high purity and little coloration without distillation at high temperature An organohalogenated silane compound having a phenolic hydroxyl group protected with can be obtained. In addition, it is preferable to set the water concentration and oxygen concentration in the reaction system to appropriate ranges, since decomposition of the t-butoxybenzene compound and the halogenated silane compound can be suppressed and the yield and purity can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing the results of gas chromatography analysis of a product immediately after completion of step (3) in an example.
FIG. 2 is a diagram showing the results of gas chromatography analysis of a product immediately after completion of step (4) in the example.
FIG. 3 is a diagram showing the results of gas chromatography analysis of a product of a comparative example.
FIG. 4 is a diagram showing the results of GC-MS analysis of the products of Examples.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001155776A JP4172165B2 (en) | 2001-05-24 | 2001-05-24 | Method for producing organohalogenated silane compound having phenolic hydroxyl group protected with t-butoxy group |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001155776A JP4172165B2 (en) | 2001-05-24 | 2001-05-24 | Method for producing organohalogenated silane compound having phenolic hydroxyl group protected with t-butoxy group |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2002348294A JP2002348294A (en) | 2002-12-04 |
| JP4172165B2 true JP4172165B2 (en) | 2008-10-29 |
Family
ID=18999899
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2001155776A Expired - Fee Related JP4172165B2 (en) | 2001-05-24 | 2001-05-24 | Method for producing organohalogenated silane compound having phenolic hydroxyl group protected with t-butoxy group |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4172165B2 (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4086283B2 (en) | 2002-07-31 | 2008-05-14 | 信越石英株式会社 | Silica glass crucible for pulling silicon single crystal and method for producing the same |
| US8580994B2 (en) * | 2008-03-06 | 2013-11-12 | Dow Corning Corporation | Process for the preparation of haloalkylalkoxysilanes and haloalkylhalosilanes |
-
2001
- 2001-05-24 JP JP2001155776A patent/JP4172165B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JP2002348294A (en) | 2002-12-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2978435B2 (en) | Method for producing acryloxypropyl silane | |
| JP2000095785A (en) | High-yield hydrosilylation | |
| JP3651572B2 (en) | Process for producing partially added cyclic organohydrogensiloxane | |
| JPH08208838A (en) | Method of hydrosilylation by using unsaturated ketone as accelerator | |
| EP0423948B1 (en) | Removal of hydrogen-containing silanes from organosilane mixtures | |
| JPH0794464B2 (en) | Method for removing silanes having hydrogen atoms directly bonded to silicon from a product mixture formed during the synthesis of methylchlorosilane | |
| JP4172165B2 (en) | Method for producing organohalogenated silane compound having phenolic hydroxyl group protected with t-butoxy group | |
| US5084591A (en) | Method for the preparation of cyclopentyl trichlorosilane | |
| JP6040254B2 (en) | Method for preparing diorganodihalosilane | |
| JP4435572B2 (en) | Method for producing phenylorganosilicon intermediate | |
| JP2864973B2 (en) | Co-production method of dimethylchlorosilane and triorganochlorosilane | |
| JP3122358B2 (en) | Method for producing 3-chloropropylsilanes | |
| JPS63198692A (en) | Method for producing cycloalkylsilane | |
| CA2279739A1 (en) | Process for the preparation of silanes with a tertiary hydrocarbon group in the a-position relative to the silicon atom | |
| JPH09194483A (en) | Improved heat fractionation of organic silanes | |
| JPS6341919B2 (en) | ||
| JP5290386B2 (en) | Process for the production of alkoxy-substituted 1,2-bis-silyl-ethane | |
| JP4025384B2 (en) | Method for purifying 3-methacryloxypropyldimethylhalosilane or 3-methacryloxypropylmethyldihalosilane | |
| JPH04128292A (en) | Method for producing γ-methacryloxypropylsilane compound | |
| JP2907046B2 (en) | Hydrocarbonation of chlorosilanes | |
| JP4081572B2 (en) | Method for silylating a compound having a hydroxyl group | |
| JP3874073B2 (en) | Method for producing chlorosilane compound having texyl group | |
| KR100469945B1 (en) | Manufacturing Method of Vinyl Chlorosilane | |
| JP3427145B2 (en) | Method for producing 3-chloropropyltrimethoxysilane | |
| US7741504B2 (en) | Method for preparing an ω-haloalkyl dialkylhalosilane |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050706 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080722 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080804 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110822 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110822 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110822 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110822 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120822 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120822 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120822 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130822 Year of fee payment: 5 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| LAPS | Cancellation because of no payment of annual fees |