[go: up one dir, main page]

JP4127780B2 - Radiation measurement equipment - Google Patents

Radiation measurement equipment Download PDF

Info

Publication number
JP4127780B2
JP4127780B2 JP2002249850A JP2002249850A JP4127780B2 JP 4127780 B2 JP4127780 B2 JP 4127780B2 JP 2002249850 A JP2002249850 A JP 2002249850A JP 2002249850 A JP2002249850 A JP 2002249850A JP 4127780 B2 JP4127780 B2 JP 4127780B2
Authority
JP
Japan
Prior art keywords
gas
radiation
electrode
measurement
measurement chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002249850A
Other languages
Japanese (ja)
Other versions
JP2004085497A (en
Inventor
明 佐野
立行 前川
哲夫 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002249850A priority Critical patent/JP4127780B2/en
Publication of JP2004085497A publication Critical patent/JP2004085497A/en
Application granted granted Critical
Publication of JP4127780B2 publication Critical patent/JP4127780B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電離作用を利用した放射線測定装置に関するもので、特にα線によって電離された空気を電離箱内に移送し、イオン化による電離電流を測定することによりα放射線を測定する放射線測定装置に関する。
【0002】
【従来の技術】
原子力発電プラントにおいては、プラントの各プロセスにおける放射能を観測して異常の早期発見をしたり、プラント施設及び作業環境の放射能レベルを監視したりするために放射線測定装置が用いられている。
【0003】
放射線測定装置に使われる放射線検出器にはいろいろな種類のものがあるが、放射線が通過する際に検出器の内部で行われる電離作用を利用して放射線を検出する電離型の検出器が知られている。
【0004】
これは、放射線を空気に入射させ、放射線により電離した空気を吸引して、電離箱により電離電流値を測定して放射線を求めるもので、α線により電離した空気を吸引して、電離箱でα放射線を求めるという米国特許第5194737号明細書記載の技術が知られている。
【0005】
上記特許においては、図12に示すように、イオン化された空気41がファン42によって接地された外板43に囲まれた空間内に吸引され、電源44によって電圧が印加されたグリッド45にイオンが収集され、電流計46によって電離電流を測定することにより放射線の強度、線量、エネルギーが測定される。
【0006】
このように、α線に対しては、従来閉空間内での電離作用に着目し、その限定された空間内の空気の電離量を測定している。α線1崩壊当たりの電離イオン数は多く、α線の飛程は空気中で約5cmと短いため放射線源近傍の空気が高密度で電離されることから、前記の構成でα放射線が測定可能となる。
【0007】
【発明が解決しようとする課題】
上記のような従来の電離作用を利用した放射線測定装置は、定められた条件の廃棄物に関する放射線測定には効果的である。しかし、現実に原子力施設で発生する廃棄物は、多種多様であり、これらに対しても放射線を精度よく測定することが望まれている。
本発明は以上の点に鑑み、さらに、簡便に精度よく放射線を測定することのできる放射線測定装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため請求項1の発明は、放射線を測定すべき測定対象物を収納する測定室と、測定室内の気体を吸引し、気体を測定室内に再循環させる吸引機と、前記気体の再循環経路に設けられ、前記測定対象物の近傍から吸引された気体のイオンを収集する電極部及び収集された前記イオンの電離電流を測定する電流測定手段とからなる電離電流測定装置と、この電離電流測定装置による測定値から放射線量を演算処理するデータ処理装置とを備えた放射線測定装置において、前記電極部は、信号収集用電極板、ガード用電極板及び接地用電極板を 1 組とする3枚の電極板からなり、各電極板は気体透過孔を持つ絶縁基板上に複数の電極が配置されるとともに、前記各電極板を気体の経路に対して基板面が直角となるように配置したことを特徴を特徴とする。
【0014】
請求項2に記載の発明は、請求項に記載の放射線測定装置において、信号収集用電極板、ガード用電極板及び接地用電極板を2組以上配置したことを特徴とする。
【0015】
請求項に記載の発明は、請求項1又は2記載の放射線測定装置において、再循環経路に、前記測定室内の気体を収束する気体収束手段と、前記測定室内に再循環させた気体の速度を加速する送風機と、加速された気体を前記測定室内に拡散させる気体拡散手段と、を設けたことを特徴とする。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
本発明の第1の実施の形態による放射線測定装置を図1(a)、(b)に示す。図1(b)に示すように、本発明の放射線測定装置は放射線を測定すべき測定対象物1を収納する測定室2と、測定室2の内部の気体を吸引し、測定室2内に再循環させるための吸引機3と、吸引機3により吸引した気体を測定室2内に戻すパイプ4と、再循環される気体中のエアロゾルなどの不純物を吸着するフィルタ5と、測定室2内から吸引され、再循環された気体中のイオンを収集するイオン収集手段6及び収集したイオンの電離電流を測定する電流測定手段7とで構成され、前記気体の再循環経路に設けられた電離電流測定装置8と、データ処理装置9とを備えている。ここで、イオン収集手段6は図1(a)に示すように、例えばポリイミド、あるいはフッ素樹脂のような抵抗体として優れた電気的特性を有する材料により形成された絶縁基板10にストリップ型のアノード電極11とカソード電極12とを交互に配置して設けた電極部13と、アノード電極11とカソード電極12とに電圧を印加する電圧供給手段14とで構成され、この電極部13は気体が通過する経路の途中に絶縁基板10が経路を囲むように図示していない固定用絶縁部材により固定し、気体中のイオンをアノード電極11とカソード電極12とで収集する。電流測定手段7は、例えばエレクトロメータ、振動容量電位計などの微少電流測定装置を使用する。
【0020】
以上のような構成において、測定室2の内部の気体を測定対象物1の放射線によりイオン化された電離イオンとともに吸引機3で吸引し、吸引機3を出た気体はパイプ4を通ってフィルタ5に送られ、フィルタ5で不純物粒子を除去した後に、測定室2内に再循環される。この循環過程でイオン収集手段6と電流測定手段7とで構成される電離電流測定装置8により電離電流が測定される。
【0021】
さらに具体的な測定手段について説明すると、まず、電極部13のアノード電極11とカソード電極12とに電圧供給手段14より電圧を印加し、測定対象物1が測定室2内に設置されていない状態で、測定室2内の気体を吸引するとともに、吸引気体の電離電流を電離電流測定装置8で測定する。この結果がバックグラウンド電流として、データ処理装置9に記録される。次に、測定室2内に測定対象物1を設置し、測定室2内の気体を吸引するとともに、吸引気体の電離電流を測定し、この結果を信号電流として、データ処理装置9に記録させる。データ処理装置9では、この信号電流値から、前述のバックグランド電流値を減算し正味電流値を求め、この値と、前もって放射線の校正試験により求められた放射線強度と電流値との関係データを使用して、測定対象物1の放射線強度を求める。
【0022】
このような放射線測定装置によれば、測定対象物1の放射線により電離する気体を吸引機3により吸引して測定室2内に再循環させ、イオン収集手段6に設けられたカソード電極12とアノード電極11により気体中に含まれるプラスイオンはカソード電極12に、マイナスイオンはアノード電極11に移動、収集される。アノード電極11とカソード電極12間の長さ、交互に配置するアノード電極11とカソード電極12の数は、測定対象物1の放射線の種類と強度、測定対象物1の寸法、吸引機3の気体吸引率に応じて適切に設定することができる。
【0023】
このような電極構造による放射線測定装置であると、測定対象物1からの放射線の電離によって生成したイオンが、絶縁基板10上にストリップ型アノード電極10とカソード電極12とを交互に配置し、電圧を印加して設けた電極部13と電流測定手段7とにより測定されるので、交互に配置された電極によりイオンが効率よく収集され、精度の高い放射線測定を行うことができる。
【0024】
次に本発明の第2の実施の形態による放射線測定装置を図2(a)、(b)に示す。すなわち、この実施の形態によれば、図2(a)に示すように、イオン収集手段として、絶縁基板10上にカソード電極12、ガード電極15、アノード電極11、ガード電極15、カソード電極12、ガード電極15の順番で電極を配置した電極部13を図2(b)に示すように、気体が通過する経路の途中のイオン収集手段6の空間内に絶縁基板10が経路を囲むように図示していない固定用絶縁材により固定している。ここで、例えば、カソード電極12を接地電極とし、電圧供給手段14によりガード電極15に正の電圧を印加し、アノード電極11とガード電極15間の電流を電流測定手段7で測定する。
【0025】
このような電極構造による放射線測定装置であると、イオン収集のため印加した電圧による漏れ電流はガード電極15とカソード電極12間を流れる。一方、アノード電極11とガード電極15間には、印加電圧による漏れ電流は発生せず、気体中のイオンによる電離電流のみが測定される。従って、ガード電極15を用いた電極により、漏れ電流の影響を省き、高効率でイオンを収集することができる。このような、ガード電極15を備えた電極部13をイオン収集手段6の内面に設置することにより、流通する気体中のイオンを漏れ電流が少なく、高効率で測定でき、その結果、精度よく放射線を測定することができる。
【0026】
次に本発明の第3の実施の形態による放射線測定装置を図3に示す。すなわち、この実施の形態によれば、イオン収集手段6は、絶縁基板上にアノード電極とカソード電極とを交互に配置した電極部13、あるいは、絶縁基板上にカソード電極、ガード電極、アノード電極、ガード電極、カソード電極、ガード電極の順番で電極を配置した電極部13を気体が通過する経路の途中のイオン収集手段6の空間内に絶縁基板10が経路と並行となるように図示していない固定用絶縁材により固定し、気体中のイオンを収集する。
【0027】
このように、イオンを収集する電極部13を、流動する気体が存在するイオン収集手段6の空間内に配置するので、測定対象物1のイオンに電極を近づけることができ、効率よくイオンを収集することができる。その結果、感度が上がり、精度よく放射線を測定することができる。
【0028】
次に本発明の第4の実施の形態による放射線測定装置を図4に示す。すなわち、この実施の形態によれば、イオン収集手段6は、絶縁基板上にアノード電極とカソード電極とを交互に配置した電極部13、あるいは、絶縁基板上にカソード電極、ガード電極、アノード電極、ガード電極、カソード電極、ガード電極の順番で電極を配置した電極部13を、気体が通過する経路の途中のイオン収集部6の内面に絶縁基板10が経路を囲むように、また、気体が流通する空間内に絶縁基板10が経路と並行になるように図示していない固定用絶縁材によりH型配置となるように固定し、気体中のイオンを収集する。
【0029】
このように、イオンを収集する電極部13を、流動する気体の経路を囲むように、また経路の空間に配置するので、収集対象物1のイオンに電極をさらに近接することができ、効率よくイオンを収集することができる。その結果、感度が上がり、精度よく放射線を測定することができる。
【0030】
次に本発明の第5の実施の形態による放射線測定装置を図5(a)、(b)に示す。すなわちこの実施の形態によれば、図5(a)に示すように絶縁基板10上に複数の電極16を配置し、配置した電極16間の絶縁基板10に気体が通過し易くなるように、気体通過孔17を形成し、図5(b)に示すように気体の通過領域に前もって定めた間隔で3枚で1組を成す少なくとも1組以上の絶縁基板10を基板面が気体の通過方向に対して直角になるように配置する。各電極板の電極は電気的に接続されており、これらを測定室2側から並べて、信号収集用電極板18、ガード用電極板19、接地用電極板20として使用する。接地用電極板20は接地し、電圧供給手段14によりガード用電極板19と接地用電極板20にはプラスの電圧を印加する。そして、信号用電極板18とガード用電極板19との電流を電流測定手段7により測定する。ここで、電圧はガード用電極板19と接地用電極板20間に印加されているので、これによる漏れ電流の影響を受けずに、空気中のイオンを検出することができる。
【0031】
以上のようなイオン収集手段の条件で、測定室2内の気体を吸引機3で吸引すると測定室2内の放射線によって電離された気体は吸引されて、イオン収集手段6内を通過する。ここで、各絶縁基板10に開けられた気体貫通孔17を気体が通過するが、イオンが信号収集用電極板18とガード用電極板19の間に存在するときに、イオンを高い効率で電極板13に収集することができる。収集されたイオンは、電流測定手段7により、電離電流として測定され、データ処理装置9により測定した電流値から放射線強度が測定されるので、高効率、高精度で放射線を測定することができる。
【0032】
以上のような基本機能に加え、各電極板の間隔、気体通過孔17の寸法、各電極板間の設定寸法は任意に設定可能な構造とし、吸引機3の気体吸引容量、印加電圧、放射線強度、測定室2及びイオン収集手段6の内面寸法に応じて、前記の任意設定可能寸法を適切に設定し、測定精度、検出感度を向上する。
【0033】
次に本発明の第6の実施の形態による放射線測定装置を図6(a)、(b)に示す。すなわちこの実施の形態によれば、図6(a)に示すように、図示しないが多数の気体通過孔を形成した絶縁基板22の両面に例えば金属の導体を配置した電極板で、絶縁基板22の気体通過孔と同じ位置に多数の気体通過孔17を備えた電極板21を、図6(b)に示すように、イオン収集手段6の気体通過空間に電極板を気体の経路に対して基板面が直角となるように、すなわち、気体通過孔17の中心軸が気体の経路とほぼ同様な方向となるように配置する。この電極板21間に電圧を印加する電圧供給手段14に接続するとともに、この間の電流を測定するように電流測定手段7を接続する。このような構成で、測定室2に測定対象物1を設置し、測定室2内の気体を吸引機3で吸引すると、イオン収集手段6の電極板21の気体貫通孔17をこの気体が通過する時に、気体中のイオンは気体貫通孔17の入口及び出口の近傍の電極にイオンは収集される。気体貫通孔17が、多数設けられていれば、気体の流量をそれほど大きく減少させることなく通過させることができ、これらの近傍の電極でイオンを効率的に収集することができる。
このように、効率よくイオンを収集できるので、その結果感度が上がり、精度よく放射線を測定することができる。
【0034】
次に本発明の第7の実施の形態による放射線測定装置を図7に示す。すなわちこの実施の形態によれば、測定対象物1を収納する測定室2と、測定室2内の気体を収束して吸引するように例えば吸引口方向に向かって気体を収束させるよう配置された多層の円錐プレートで構成される気体収束手段23と、測定室2内の気体をパイプ4を介して吸引する吸引機3と、パイプ4の途中に設けられ気体のイオンを収集し電離電流を測定する電離電流測定装置8と、データ処理装置9と、吸引した気体をパイプ4とフィルタ5を介して測定室2内に再循環させる再循環系統と、測定室2内に注入した気体の速度を加速する送風機24と、加速された気体を例えば測定室2の吸引口方向に向かって気体を拡散させるよう配置された多層の円錐プレートで構成される流体拡散手段25で構成される。
【0035】
このような構成の放射線測定装置において、測定対象部1から放出される放射線により電離された気体は、送風機24と気体拡散手段25により、測定室2の吸引口方向に向かって移動し、さらに気体収束手段23により吸引口に向かって移動される。このように、生成したイオンが吸引口方向に向かうように強制的に気体の流れを作るので、効率的に、しかもイオン生成位置による移送効率差を少なくすることができる。吸引口に達した気体は、パイプ4を経て電離電流測定装置8に入り、ここでイオンが電離電流として測定され、電流値からデータ処理装置9により放射線が測定される。電離電流測定装置8を通過した気体は、吸引機3、パイプ4、フィルタ5を経て、測定室2内に再循環される。ここで、測定室2内に入った気体は、送風機24により加速され、前記のような手順の操作が繰り返される。以上記したように、測定室2内の気体を再循環させることにより、空気中に存在するラドン・トロンの放射性崩壊に伴うイオンの生成、空気中に存在するイオン、空気中の湿度、温度などの影響が減少し、測定精度、感度が向上する。また、送風機24、気体拡散手段25、気体収束手段23により、測定室2内のイオン移送効率の向上とともに、効率差を減少することができ、測定感度と精度を向上することができる。
【0036】
次に本発明の第8の実施の形態による放射線測定装置を図8に示す。すなわちこの実施の形態によれば、放射能の汚染の有無を測定すべき被検体を収容する測定室2と、測定室2内の気体を気体吸引口26に向かって移送する送風機24と、右手を収納してその周囲の気体を吸引する右手用気体吸引口27と、左手用気体吸引口28と、靴底用気体吸入口29と、被検体の近傍を通過した空気を吸引する少なくとも2個以上の気体吸引口26と、各気体吸引口26に対応して接続された電離電流測定装置8と、測定された各位置の電離電流計値を演算処理して被検体各部の放射線量を演算処理するデータ処理装置9と、その表示装置30で構成される。
【0037】
このような構成において、放射能汚染を検査する被検体を測定室2に入れ、送風機24により被検体近傍に気体を送ると、仮に被検体に放射能汚染があった場合には、その汚染場所から放出される放射線により気体は電離される。被検体の各部位近傍で生成したイオンは、送風機24により各部位に対応する各々の気体吸引口26に向かって移送され、吸引機3により吸引される。これらの気体吸引口26に対応して設けられた電離電流測定装置8によりイオンが測定される。測定された各電流値はデータ処理装置9により、換算定数を使用して被検体各部の放射能強度に変換され、表示装置30により、各部の放射能強度が表示される。
【0038】
このように、測定対象とする被検体の左手、右手、靴底、少なくとも2個以上に領域分けした被検体の各部の電離電流を精度よく測定することができる。従って、前記被検体各部の放射能汚染を精度よく測定することができる。
【0039】
次に本発明の第9の実施の形態による放射線測定装置を図9に示す。すなわちこの実施の形態によれば図9(b)に示すように、放射能の汚染の有無を測定すべき被検体を収納する排気口31付の測定室2と、右手用の電離電流測定装置32と、左手用電離電流測定装置33と、靴底用電離電流測定装置34と、測定室2内に均等に気体を送る多数の気体噴出口35及び気体圧縮手段36で構成される送風機24と、図9(a)に示すようにアノード電極11とカソード電極12とを交互に配置した誘電板38と、前記アノード電極11、カソード電極12に直交する少なくとも2個以上のバックストリップ電極37とを有する2次元電離電流測定装置と、測定した電流値から被検体各部の放射線量を演算処理するデータ処理装置と、その表示装置30で構成される。
【0040】
このような構成において、放射能汚染を検査する被検体を測定室2内に入れ、例えば、コンプレッサのような気体圧縮手段36により圧縮された気体を多数の気体噴出口35より被検体に向かって直角に噴出させる。
【0041】
仮に被検体に放射能汚染があった場合には、その汚染場所から放出される放射線により気体は電離され、生成したイオンは、前記の2次元電離電流測定装置39の方向に向かい、この2次元電離電流測定装置39で電流値の2次元分布が測定される。
【0042】
ここで、データ処理装置9により、前もって求めた被検体の各部位の位置と2次元電離電流測定装置39の2次元位置の対応関係を使用して、測定した電流値の2次元分布から被検体の各部の汚染放射能分布を求める。このようにして、被検体の汚染状況の2次元分布を精度よく測定することができる。
【0043】
これにより、測定対象とする被検体の左手、右手、靴底、2次元に領域分けした被検体の部分の電流を精度よく測定することができる。従って、前記被検体各部の放射能を精度よく測定することができる。
【0044】
次に本発明の第10の実施の形態による放射線測定装置を図10(a)、(b)に示す。すなわちこの実施の形態によれば、図10(b)に示すように、測定位置の近傍に設置した少なくとも2個以上の気体吸引口29と、これらを接続するパイプ4と、各パイプ4から電離電流測定装置8に送る気体を切替える例えば電磁バルブのような切替手段40と、各気体吸引口29の電離電流測定値から放射線量を演算処理するデータ処理装置9と、気体吸引口29に対応して放射線測定結果を表示する表示装置30と、図10(a)に示すように絶縁基板10上にストリップ型のアノード電極11とカソード電極12とを交互に配置した電極部13、あるいは絶縁基板10上にストリップ型のアノード電極11、ガード電極15、カソード電極12、ガード電極15、アノード電極11、ガード電極15の順番で電極を配置した電極部などを使用した電離電流測定装置8で構成される。
【0045】
この構成において、切替手段40により、気体吸引口29の接続を順次切替え、それぞれの吸引口近傍の気体を吸引機3で吸引しつつ、電離電流測定装置8で電離電流を測定する。測定した電流値と前もって求めた電流値とから放射線強度への換算定数を使用して、各吸引口近傍の放射線強度を求める。このような測定を行えば、効率的にしかも精度よく、測定対象とする場所の放射線強度を測定することができる。
【0046】
次に本発明の第11の実施の形態による放射線測定装置を図11(a)、(b)に示す。すなわち図11(b)に示すように、測定対象物1の表面に直面する面2aを開放した測定室2と、図11(a)に示すように測定室2の内面に取り付けたアノード電極11とカソード電極12とを交互に配置した電極部13と、この電極部13に電圧を印加する電圧印加手段14と、電極が収集したイオンを電離電流として測定する電流測定手段7と、測定した電流値から放射線量を演算処理するデータ処理装置9で構成される。
【0047】
測定対象物1の表面近傍に、測定室2の開口部2aを近接あるいは密着させると、測定室2内の空間2dを、測定対象物1の表面で閉塞することになり、測定対象物1の表面の放射性核種から放出された放射線の電離で生成したイオンは、前記空間内に一定の寿命で滞在する。この空間2dは、例えば、α線の場合には、空気中の飛程が約5cmということから、測定室2の空間2dの厚さを5cm程度に設定すると、電極部13近傍には生成したイオンが存在する。このイオンを前記電極部13で効率的に収集し、電流測定手段12で電流を測定し、データ処理装置9により測定した電流から換算定数を使用して放射線を測定する。
このように、簡便な装置構成で放射能を精度よく測定することができる。
【0048】
【発明の効果】
以上のように本発明によれば、簡便に精度よく、かつ高効率で放射能を測定することのできる放射線測定装置を得ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態による放射能測定装置の構成を示す図で、(a)は電極部分詳細図、(b)は全体斜視図。
【図2】本発明の第2の実施の形態による放射能測定装置の構成を示す図で、(a)は電極部分詳細図、(b)は全体斜視図。
【図3】本発明の第3の実施の形態による放射能測定装置の構成を示す全体斜視図。
【図4】本発明の第4の実施の形態による放射能測定装置の構成を示す全体斜視図。
【図5】本発明の第5の実施の形態による放射能測定装置の構成を示す図で、(a)は電極部分詳細図、(b)は全体斜視図。
【図6】本発明の第6の実施の形態による放射能測定装置の構成を示す図で、(a)は電極部分詳細図、(b)は全体斜視図。
【図7】本発明の第7の実施の形態による放射能測定装置の構成を示す正面図。
【図8】本発明の第8の実施の形態による放射能測定装置の構成を示す正面図。
【図9】本発明の第9の実施の形態による放射能測定装置の構成を示す図で、(a)は電極部分詳細図、(b)は正面図。
【図10】本発明の第10の実施の形態による放射能測定装置の構成を示す図で、(a)は電極部分詳細図、(b)は正面図。
【図11】本発明の第11の実施の形態による放射能測定装置の構成を示す図で、(a)は電極部分詳細図、(b)は正面図。
【図12】従来の放射線測定装置を示す概略構成図。
【符号の説明】
1…測定対象物、2…測定室、3…吸引機、4…パイプ、5…フィルタ、6…イオン収集手段、7…電流測定手段、8…電離電流測定装置、9…データ処理装置、10…基板、11…アノード電極、12…カソード電極、13…電極部、14…電圧供給手段、15…ガード電極、16…電極、17…気体貫通孔、18…信号収集電極、19…ガード電極、20…接地電極、21…電極板、22…絶縁材、23…気体収束手段、24…送風機、25…気体拡散手段、26…気体吸引口、27…右手用気体吸引口 28…左手用気体吸引口、29…靴底用気体吸引口、30…表示装置、31…排気口、32…右手用電離電流測定装置、33…左手用電離電流測定装置、34…靴底用電離電流測定装置、35…多数気体吸引口、36…気体圧縮手段、37…バックストリップ、38…誘電版、39…2次元電離電流測定装置、40…切替手段。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a radiation measurement apparatus using an ionization action, and more particularly to a radiation measurement apparatus that measures α radiation by transferring ionized current by ionization into an ionization chamber and measuring ionization current by ionization. .
[0002]
[Prior art]
In a nuclear power plant, a radiation measuring device is used for observing the radioactivity in each process of the plant to detect an abnormality at an early stage and monitoring the radioactivity level of the plant facility and the work environment.
[0003]
There are various types of radiation detectors used in radiation measurement devices, but ionization-type detectors that detect radiation using the ionization action that occurs inside the detector when radiation passes are known. It has been.
[0004]
In this method, radiation is incident on the air, the air ionized by the radiation is sucked, the ionization current value is measured by the ionization chamber, and the radiation is obtained. The ionized air is sucked by the α-ray and the ionization chamber is used. A technique described in US Pat. No. 5,194,737 for obtaining α radiation is known.
[0005]
In the above patent, as shown in FIG. 12, ionized air 41 is sucked into a space surrounded by an outer plate 43 grounded by a fan 42, and ions are applied to a grid 45 to which a voltage is applied by a power supply 44. The intensity of the radiation, the dose, and the energy are measured by collecting and measuring the ionization current by the ammeter 46.
[0006]
As described above, with respect to α rays, the ionization amount in the limited space is measured by focusing on the ionization effect in the closed space. Since the number of ionized ions per α-ray decay is large and the range of α-rays is as short as about 5 cm in the air, the air near the radiation source is ionized at high density, so α radiation can be measured with the above configuration. It becomes.
[0007]
[Problems to be solved by the invention]
The conventional radiation measuring apparatus using the ionizing action as described above is effective for measuring radiation related to waste under a predetermined condition. However, there are a wide variety of wastes actually generated at nuclear facilities, and it is desired to measure radiation with high accuracy for these wastes.
In view of the above points, an object of the present invention is to provide a radiation measuring apparatus that can easily and accurately measure radiation.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 includes a measurement chamber for storing a measurement object whose radiation is to be measured, a suction device for sucking a gas in the measurement chamber and recirculating the gas into the measurement chamber, and the gas. An ionization current measuring device, which is provided in the recirculation path, and includes an electrode unit that collects gas ions sucked from the vicinity of the measurement object, and a current measurement unit that measures the ionization current of the collected ions , a radiation measuring device comprising a data processing device for processing the radiation dose from the value measured by the ionization current measuring device, the electrode portion, the signal collecting electrode plates, the electrode plates and the ground electrode plate guard set And each electrode plate is arranged on an insulating substrate having a gas permeable hole, and the electrode surface of each electrode plate is perpendicular to the gas path. Placed in And features.
[0014]
According to a second aspect of the invention, the radiation measuring device according to claim 1, the signal collecting electrode plates, characterized in that a electrode plate and the ground electrode plate guard two or more pairs.
[0015]
The invention according to claim 3 is the radiation measuring apparatus according to claim 1 or 2 , wherein the gas converging means for converging the gas in the measurement chamber in the recirculation path, and the velocity of the gas recirculated in the measurement chamber. And a gas diffusion means for diffusing the accelerated gas into the measurement chamber.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
A radiation measuring apparatus according to a first embodiment of the present invention is shown in FIGS. As shown in FIG. 1 (b), the radiation measuring apparatus of the present invention sucks the gas in the measuring chamber 2 that houses the measuring object 1 to be measured for radiation and the measuring chamber 2, and enters the measuring chamber 2. A suction machine 3 for recirculation, a pipe 4 for returning the gas sucked by the suction machine 3 into the measurement chamber 2, a filter 5 for adsorbing impurities such as aerosol in the recirculated gas, and the measurement chamber 2 An ion collecting means 6 for collecting ions in the gas that has been sucked and recirculated, and a current measuring means 7 for measuring the ionization current of the collected ions, and provided in the gas recirculation path A measuring device 8 and a data processing device 9 are provided. Here, as shown in FIG. 1A, the ion collecting means 6 is a strip-type anode formed on an insulating substrate 10 formed of a material having excellent electrical characteristics such as a resistor such as polyimide or fluororesin. The electrode unit 13 is provided with electrodes 11 and cathode electrodes 12 arranged alternately, and voltage supply means 14 for applying a voltage to the anode electrode 11 and the cathode electrode 12, and gas passes through the electrode unit 13. The insulating substrate 10 is fixed by a fixing insulating member (not shown) so as to surround the path in the middle of the path to be collected, and ions in the gas are collected by the anode electrode 11 and the cathode electrode 12. The current measuring means 7 uses a minute current measuring device such as an electrometer or a vibration capacitance potentiometer.
[0020]
In the configuration as described above, the gas inside the measurement chamber 2 is sucked by the suction machine 3 together with the ionized ions ionized by the radiation of the measurement object 1, and the gas exiting the suction machine 3 passes through the pipe 4 and passes through the filter 5. After the impurity particles are removed by the filter 5, they are recirculated in the measurement chamber 2. In this circulation process, the ionizing current is measured by the ionizing current measuring device 8 constituted by the ion collecting means 6 and the current measuring means 7.
[0021]
More specific measurement means will be described. First, a voltage is applied from the voltage supply means 14 to the anode electrode 11 and the cathode electrode 12 of the electrode section 13, and the measurement object 1 is not installed in the measurement chamber 2. Thus, the gas in the measurement chamber 2 is sucked, and the ionization current of the suction gas is measured by the ionization current measuring device 8. This result is recorded in the data processor 9 as a background current. Next, the measurement object 1 is installed in the measurement chamber 2, the gas in the measurement chamber 2 is sucked, the ionization current of the suction gas is measured, and this result is recorded in the data processing device 9 as a signal current. . The data processing device 9 subtracts the above-mentioned background current value from this signal current value to obtain a net current value, and obtains the relationship data between this value and the radiation intensity and current value obtained in advance by a radiation calibration test. Used to determine the radiation intensity of the measurement object 1.
[0022]
According to such a radiation measuring apparatus, the gas ionized by the radiation of the measuring object 1 is sucked by the suction device 3 and recirculated into the measuring chamber 2, and the cathode electrode 12 and the anode provided in the ion collecting means 6 The positive ions contained in the gas are moved to and collected by the cathode electrode 12 and the negative ions are moved to the anode electrode 11 by the electrode 11. The length between the anode electrode 11 and the cathode electrode 12, the number of the anode electrodes 11 and the cathode electrodes 12 arranged alternately, the type and intensity of the radiation of the measurement object 1, the dimensions of the measurement object 1, the gas of the suction device 3 It can be set appropriately according to the suction rate.
[0023]
In the radiation measuring apparatus having such an electrode structure, ions generated by ionization of radiation from the measurement target 1 alternately arrange the strip-type anode electrodes 10 and the cathode electrodes 12 on the insulating substrate 10, and voltage Is measured by the electrode portion 13 and the current measuring means 7 provided by applying ion, so that ions are efficiently collected by the alternately arranged electrodes, and highly accurate radiation measurement can be performed.
[0024]
Next, a radiation measuring apparatus according to the second embodiment of the present invention is shown in FIGS. That is, according to this embodiment, as shown in FIG. 2A, as an ion collecting means, a cathode electrode 12, a guard electrode 15, an anode electrode 11, a guard electrode 15, a cathode electrode 12, As shown in FIG. 2B, the electrode portion 13 in which the electrodes are arranged in the order of the guard electrodes 15 is shown so that the insulating substrate 10 surrounds the path in the space of the ion collecting means 6 in the middle of the path through which the gas passes. It is fixed with an insulating material not shown. Here, for example, the cathode electrode 12 is a ground electrode, a positive voltage is applied to the guard electrode 15 by the voltage supply means 14, and the current between the anode electrode 11 and the guard electrode 15 is measured by the current measurement means 7.
[0025]
In the radiation measuring apparatus having such an electrode structure, leakage current due to the voltage applied for ion collection flows between the guard electrode 15 and the cathode electrode 12. On the other hand, no leakage current due to the applied voltage is generated between the anode electrode 11 and the guard electrode 15, and only the ionization current due to ions in the gas is measured. Therefore, the electrode using the guard electrode 15 can collect ions with high efficiency while eliminating the influence of leakage current. By installing the electrode part 13 having the guard electrode 15 on the inner surface of the ion collecting means 6 as described above, it is possible to measure ions in the flowing gas with low leakage current and high efficiency. Can be measured.
[0026]
Next, FIG. 3 shows a radiation measuring apparatus according to the third embodiment of the present invention. That is, according to this embodiment, the ion collecting means 6 includes an electrode portion 13 in which anode electrodes and cathode electrodes are alternately arranged on an insulating substrate, or a cathode electrode, a guard electrode, an anode electrode, The insulating substrate 10 is not shown in parallel with the path in the space of the ion collecting means 6 in the middle of the path through which the gas passes through the electrode portion 13 in which the electrodes are arranged in the order of the guard electrode, the cathode electrode, and the guard electrode. Fixing with fixing insulating material and collecting ions in gas.
[0027]
Thus, since the electrode part 13 which collects ions is arranged in the space of the ion collecting means 6 where the flowing gas exists, the electrode can be brought close to the ions of the measurement object 1 and ions are efficiently collected. can do. As a result, sensitivity is improved and radiation can be measured with high accuracy.
[0028]
Next, a radiation measuring apparatus according to a fourth embodiment of the present invention is shown in FIG. That is, according to this embodiment, the ion collecting means 6 includes an electrode portion 13 in which anode electrodes and cathode electrodes are alternately arranged on an insulating substrate, or a cathode electrode, a guard electrode, an anode electrode, In the electrode part 13 in which the electrodes are arranged in the order of the guard electrode, the cathode electrode, and the guard electrode, the insulating substrate 10 surrounds the path on the inner surface of the ion collecting part 6 in the middle of the path through which the gas passes, and the gas flows. The insulating substrate 10 is fixed in an H-type arrangement by a fixing insulating material (not shown) so that the insulating substrate 10 is parallel to the path, and ions in the gas are collected.
[0029]
Thus, since the electrode part 13 for collecting ions is arranged so as to surround the path of the flowing gas and in the space of the path, the electrode can be further brought closer to the ions of the collection target 1 and efficiently. Ions can be collected. As a result, sensitivity is improved and radiation can be measured with high accuracy.
[0030]
Next, a radiation measuring apparatus according to a fifth embodiment of the present invention is shown in FIGS. That is, according to this embodiment, as shown in FIG. 5A, a plurality of electrodes 16 are arranged on the insulating substrate 10 so that gas can easily pass through the insulating substrate 10 between the arranged electrodes 16. A gas passage hole 17 is formed, and as shown in FIG. 5 (b), at least one set of the insulating substrates 10 forming a set of three at a predetermined interval in the gas passage region, the substrate surface is in the gas passage direction. It is arranged so as to be perpendicular to The electrodes of each electrode plate are electrically connected. These are arranged from the measurement chamber 2 side and used as the signal collecting electrode plate 18, the guard electrode plate 19, and the ground electrode plate 20. The ground electrode plate 20 is grounded, and a positive voltage is applied to the guard electrode plate 19 and the ground electrode plate 20 by the voltage supply means 14. Then, the current measurement means 7 measures the current between the signal electrode plate 18 and the guard electrode plate 19. Here, since the voltage is applied between the guard electrode plate 19 and the ground electrode plate 20, ions in the air can be detected without being affected by the leakage current.
[0031]
When the gas in the measurement chamber 2 is sucked by the suction device 3 under the conditions of the ion collecting means as described above, the gas ionized by the radiation in the measurement chamber 2 is sucked and passes through the ion collecting means 6. Here, gas passes through the gas through-holes 17 formed in each insulating substrate 10, but when ions are present between the signal collecting electrode plate 18 and the guard electrode plate 19, the ions are electroded with high efficiency. It can be collected on a plate 13. The collected ions are measured as an ionization current by the current measuring means 7 and the radiation intensity is measured from the current value measured by the data processing device 9, so that the radiation can be measured with high efficiency and high accuracy.
[0032]
In addition to the basic functions as described above, the distance between the electrode plates, the size of the gas passage hole 17, and the set size between the electrode plates can be arbitrarily set, and the gas suction capacity, applied voltage, radiation of the suction machine 3 can be set. The arbitrarily settable dimensions are appropriately set according to the strength, the inner dimensions of the measurement chamber 2 and the ion collecting means 6 to improve measurement accuracy and detection sensitivity.
[0033]
Next, a radiation measuring apparatus according to a sixth embodiment of the present invention is shown in FIGS. That is, according to this embodiment, as shown in FIG. 6A, the insulating substrate 22 is an electrode plate in which, for example, metal conductors are arranged on both surfaces of the insulating substrate 22 in which a large number of gas passage holes are formed. The electrode plate 21 having a large number of gas passage holes 17 at the same position as the gas passage holes of FIG. 6B is arranged in the gas passage space of the ion collecting means 6 with respect to the gas path as shown in FIG. It arrange | positions so that a board | substrate surface may become a right angle, ie, the center axis | shaft of the gas passage hole 17 may become the direction substantially the same as a gas path | route. While connecting to the voltage supply means 14 which applies a voltage between this electrode plate 21, the current measurement means 7 is connected so that the electric current in the meantime may be measured. With such a configuration, when the measurement object 1 is installed in the measurement chamber 2 and the gas in the measurement chamber 2 is sucked by the suction device 3, the gas passes through the gas through holes 17 of the electrode plate 21 of the ion collecting means 6. At this time, ions in the gas are collected at electrodes near the inlet and outlet of the gas through-hole 17. If a large number of gas through-holes 17 are provided, the gas flow rate can be allowed to pass through without being greatly reduced, and ions can be efficiently collected at the electrodes in the vicinity thereof.
As described above, since ions can be collected efficiently, the sensitivity increases as a result, and the radiation can be measured with high accuracy.
[0034]
Next, a radiation measuring apparatus according to a seventh embodiment of the present invention is shown in FIG. That is, according to this embodiment, the measurement chamber 2 that houses the measurement object 1 and the gas in the measurement chamber 2 are arranged so as to converge, for example, toward the suction port so as to converge and suck the gas in the measurement chamber 2. A gas converging means 23 composed of a multi-layered conical plate, a suction device 3 for sucking the gas in the measurement chamber 2 through the pipe 4, and collecting ion ions in the middle of the pipe 4 to measure the ionization current The ionizing current measuring device 8, the data processing device 9, the recirculation system for recirculating the sucked gas into the measuring chamber 2 through the pipe 4 and the filter 5, and the velocity of the gas injected into the measuring chamber 2. An air blower 24 that accelerates and a fluid diffusion means 25 composed of a multi-layered conical plate arranged to diffuse the accelerated gas toward the suction port of the measurement chamber 2, for example.
[0035]
In the radiation measuring apparatus having such a configuration, the gas ionized by the radiation emitted from the measurement target unit 1 is moved toward the suction port of the measurement chamber 2 by the blower 24 and the gas diffusing means 25, and further the gas. It is moved toward the suction port by the converging means 23. In this way, the gas flow is forcibly created so that the generated ions are directed in the direction of the suction port, so that the difference in transfer efficiency depending on the ion generation position can be reduced efficiently. The gas that has reached the suction port enters the ionization current measuring device 8 through the pipe 4, where ions are measured as an ionization current, and radiation is measured by the data processing device 9 from the current value. The gas that has passed through the ionization current measuring device 8 is recirculated into the measurement chamber 2 through the suction device 3, the pipe 4, and the filter 5. Here, the gas that has entered the measurement chamber 2 is accelerated by the blower 24, and the above-described procedure is repeated. As described above, by recirculating the gas in the measurement chamber 2, generation of ions accompanying the radioactive decay of radon and thoron existing in the air, ions existing in the air, humidity in the air, temperature, etc. The measurement accuracy and sensitivity are improved. Further, the blower 24, the gas diffusion means 25, and the gas converging means 23 can improve the ion transfer efficiency in the measurement chamber 2, reduce the efficiency difference, and improve the measurement sensitivity and accuracy.
[0036]
Next, a radiation measuring apparatus according to an eighth embodiment of the present invention is shown in FIG. That is, according to this embodiment, the measurement chamber 2 that houses the subject to be measured for the presence or absence of radioactive contamination, the blower 24 that transfers the gas in the measurement chamber 2 toward the gas suction port 26, and the right hand A right-hand gas suction port 27 for sucking the surrounding gas, a left-hand gas suction port 28, a shoe-sole gas suction port 29, and at least two for sucking air that has passed through the vicinity of the subject. The above-described gas suction port 26, the ionization current measuring device 8 connected corresponding to each gas suction port 26, and the ionization ammeter value at each measured position are processed to calculate the radiation dose of each part of the subject. It comprises a data processing device 9 for processing and a display device 30 for the data processing device 9.
[0037]
In such a configuration, when a subject to be examined for radioactive contamination is placed in the measurement chamber 2 and gas is sent to the vicinity of the subject by the blower 24, if the subject is radioactively contaminated, the contamination location The gas is ionized by the radiation emitted from. Ions generated in the vicinity of each part of the subject are transferred by the blower 24 toward each gas suction port 26 corresponding to each part and sucked by the suction machine 3. Ions are measured by the ionization current measuring device 8 provided corresponding to these gas suction ports 26. Each measured current value is converted into the radioactivity intensity of each part of the subject by using the conversion constant by the data processing device 9, and the radioactivity intensity of each part is displayed by the display device 30.
[0038]
As described above, the ionization current of each part of the subject divided into at least two regions, that is, the left hand, the right hand, and the shoe sole of the subject to be measured can be accurately measured. Therefore, the radioactive contamination of each part of the subject can be accurately measured.
[0039]
Next, a radiation measuring apparatus according to a ninth embodiment of the present invention is shown in FIG. That is, according to this embodiment, as shown in FIG. 9 (b), the measurement chamber 2 with the exhaust port 31 for storing the subject to be measured for the presence or absence of radioactive contamination, and the ionization current measuring device for the right hand 32, an ionization current measurement device 33 for the left hand, an ionization current measurement device 34 for the shoe sole, and a blower 24 composed of a number of gas jets 35 and a gas compression means 36 for sending gas evenly into the measurement chamber 2. As shown in FIG. 9A, dielectric plates 38 in which anode electrodes 11 and cathode electrodes 12 are alternately arranged, and at least two or more back strip electrodes 37 orthogonal to the anode electrodes 11 and cathode electrodes 12 are provided. A two-dimensional ionization current measuring device, a data processing device for calculating the radiation dose of each part of the subject from the measured current value, and a display device 30 thereof.
[0040]
In such a configuration, a subject to be examined for radioactive contamination is placed in the measurement chamber 2, and for example, the gas compressed by the gas compression means 36 such as a compressor is directed to the subject from a number of gas jets 35. It is ejected at a right angle.
[0041]
If the subject is radioactively contaminated, the gas is ionized by the radiation emitted from the contaminated site, and the generated ions are directed toward the two-dimensional ionization current measuring device 39, and this two-dimensional The ionization current measuring device 39 measures a two-dimensional distribution of current values.
[0042]
Here, the data processing device 9 uses the correspondence relationship between the position of each part of the subject obtained in advance and the two-dimensional position of the two-dimensional ionization current measuring device 39 to determine the subject from the two-dimensional distribution of the measured current values. Obtain the contamination radioactivity distribution of each part. In this way, the two-dimensional distribution of the contamination status of the subject can be measured with high accuracy.
[0043]
As a result, the current in the portion of the subject divided into two dimensions can be accurately measured. Therefore, the radioactivity of each part of the subject can be accurately measured.
[0044]
Next, a radiation measuring apparatus according to a tenth embodiment of the present invention is shown in FIGS. That is, according to this embodiment, as shown in FIG. 10B, at least two or more gas suction ports 29 installed in the vicinity of the measurement position, the pipe 4 connecting them, and the ionization from each pipe 4 Corresponding to a switching means 40 such as an electromagnetic valve for switching the gas sent to the current measuring device 8, a data processing device 9 for calculating the radiation dose from the ionization current measurement value of each gas suction port 29, and the gas suction port 29. Display device 30 for displaying the radiation measurement result, and electrode section 13 in which strip-type anode electrodes 11 and cathode electrodes 12 are alternately arranged on insulating substrate 10 as shown in FIG. An electrode portion in which electrodes are arranged in the order of strip-type anode electrode 11, guard electrode 15, cathode electrode 12, guard electrode 15, anode electrode 11, guard electrode 15. Etc. consisting of the ionization current measuring device 8 was used.
[0045]
In this configuration, the switching means 40 sequentially switches the connection of the gas suction ports 29, and the ionization current measuring device 8 measures the ionization current while sucking the gas near each suction port with the suction device 3. The radiation intensity in the vicinity of each suction port is obtained by using a conversion constant for the radiation intensity from the measured current value and the current value obtained in advance. If such measurement is performed, the radiation intensity at the location to be measured can be measured efficiently and accurately.
[0046]
Next, a radiation measuring apparatus according to an eleventh embodiment of the present invention is shown in FIGS. That is, as shown in FIG. 11B, the measurement chamber 2 having an open surface 2a facing the surface of the measurement object 1, and the anode electrode 11 attached to the inner surface of the measurement chamber 2 as shown in FIG. Electrode portions 13 having alternating electrodes and cathode electrodes 12 arranged thereon, voltage applying means 14 for applying a voltage to the electrode portions 13, current measuring means 7 for measuring ions collected by the electrodes as an ionization current, and measured current It comprises a data processing device 9 for calculating the radiation dose from the value.
[0047]
When the opening 2a of the measurement chamber 2 is brought close to or in close contact with the surface of the measurement object 1, the space 2d in the measurement chamber 2 is blocked by the surface of the measurement object 1. Ions generated by ionization of radiation emitted from the surface radionuclide stay in the space with a certain lifetime. For example, in the case of α rays, the space 2d has a range in the air of about 5 cm. Therefore, when the thickness of the space 2d in the measurement chamber 2 is set to about 5 cm, the space 2d is generated in the vicinity of the electrode portion 13. Ions are present. The ions are efficiently collected by the electrode unit 13, the current is measured by the current measuring unit 12, and the radiation is measured from the current measured by the data processing device 9 using a conversion constant.
In this way, radioactivity can be accurately measured with a simple apparatus configuration.
[0048]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a radiation measuring apparatus capable of measuring radioactivity simply and accurately with high efficiency.
[Brief description of the drawings]
1A and 1B are diagrams showing a configuration of a radioactivity measuring apparatus according to a first embodiment of the present invention, in which FIG. 1A is a detailed view of an electrode portion, and FIG.
FIGS. 2A and 2B are diagrams showing a configuration of a radioactivity measuring apparatus according to a second embodiment of the present invention, in which FIG. 2A is a detailed view of an electrode portion, and FIG.
FIG. 3 is an overall perspective view showing a configuration of a radioactivity measuring apparatus according to a third embodiment of the present invention.
FIG. 4 is an overall perspective view showing a configuration of a radioactivity measuring apparatus according to a fourth embodiment of the present invention.
FIGS. 5A and 5B are diagrams showing a configuration of a radioactivity measuring apparatus according to a fifth embodiment of the present invention, where FIG. 5A is a detailed view of an electrode portion, and FIG.
6A and 6B are diagrams showing a configuration of a radioactivity measuring apparatus according to a sixth embodiment of the present invention, where FIG. 6A is a detailed view of an electrode portion, and FIG. 6B is an overall perspective view.
FIG. 7 is a front view showing a configuration of a radioactivity measuring apparatus according to a seventh embodiment of the present invention.
FIG. 8 is a front view showing a configuration of a radioactivity measuring apparatus according to an eighth embodiment of the present invention.
FIGS. 9A and 9B are diagrams showing a configuration of a radioactivity measuring apparatus according to a ninth embodiment of the present invention, where FIG. 9A is a detailed view of an electrode portion, and FIG. 9B is a front view;
10A and 10B are diagrams showing a configuration of a radioactivity measuring apparatus according to a tenth embodiment of the present invention, where FIG. 10A is a detailed view of an electrode portion, and FIG. 10B is a front view.
11A and 11B are diagrams showing a configuration of a radioactivity measuring apparatus according to an eleventh embodiment of the present invention, where FIG. 11A is a detailed view of an electrode portion, and FIG. 11B is a front view.
FIG. 12 is a schematic configuration diagram showing a conventional radiation measuring apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Measurement object, 2 ... Measurement chamber, 3 ... Suction machine, 4 ... Pipe, 5 ... Filter, 6 ... Ion collection means, 7 ... Current measurement means, 8 ... Ionization current measurement apparatus, 9 ... Data processing apparatus, 10 DESCRIPTION OF SYMBOLS ... Board | substrate, 11 ... Anode electrode, 12 ... Cathode electrode, 13 ... Electrode part, 14 ... Voltage supply means, 15 ... Guard electrode, 16 ... Electrode, 17 ... Gas through-hole, 18 ... Signal collection electrode, 19 ... Guard electrode, DESCRIPTION OF SYMBOLS 20 ... Ground electrode, 21 ... Electrode plate, 22 ... Insulating material, 23 ... Gas converging means, 24 ... Air blower, 25 ... Gas diffusion means, 26 ... Gas suction port, 27 ... Gas suction port for right hand 28 ... Gas suction for left hand Mouth, 29 ... Shoe sole gas suction port, 30 ... Display device, 31 ... Exhaust port, 32 ... Right hand ionization current measurement device, 33 ... Left hand ionization current measurement device, 34 ... Shoe bottom ionization current measurement device, 35 ... many gas suction ports, 36 ... gas compression means, 37 ... back strip, 38 ... dielectric plate, 39 ... two-dimensional ionization current measuring device, 40 ... switching means.

Claims (3)

放射線を測定すべき測定対象物を収納する測定室と、測定室内の気体を吸引し、気体を測定室内に再循環させる吸引機と、前記気体の再循環経路に設けられ、前記測定対象物の近傍から吸引された気体のイオンを収集する電極部及び収集された前記イオンの電離電流を測定する電流測定手段とからなる電離電流測定装置と、この電離電流測定装置による測定値から放射線量を演算処理するデータ処理装置とを備えた放射線測定装置において、
前記電極部は、信号収集用電極板、ガード用電極板及び接地用電極板を1組とする3枚の電極板からなり、各電極板は気体透過孔を持つ絶縁基板上に複数の電極が配置されるとともに、前記各電極板を気体の経路に対して基板面が直角となるように配置したことを特徴とする放射線測定装置。
A measurement chamber for storing a measurement object to be measured for radiation; a suction device for sucking a gas in the measurement chamber and recirculating the gas into the measurement chamber; and a recirculation path for the gas, An ionization current measuring device comprising an electrode part for collecting gaseous ions sucked from the vicinity and a current measuring means for measuring the ionization current of the collected ions, and calculating a radiation dose from a measurement value by the ionizing current measuring device In a radiation measurement device comprising a data processing device for processing,
The electrode section is composed of three electrode plates, each of which includes a signal collecting electrode plate, a guard electrode plate, and a ground electrode plate. Each electrode plate has a plurality of electrodes on an insulating substrate having a gas permeable hole. A radiation measuring apparatus, wherein each of the electrode plates is arranged such that a substrate surface is perpendicular to a gas path.
前記信号収集用電極板、ガード用電極板及び接地用電極板を2組以上配置したことを特徴とする請求項記載の放射線測定装置。The signal collecting electrode plates, radiation measurement device according to claim 1, characterized in that arranged two or more pairs of electrode plates and the ground electrode plate guard. 前記再循環経路に、前記測定室内の気体を収束する気体収束手段と、前記測定室内に再循環させた気体の速度を加速する送風機と、加速された気体を前記測定室内に拡散させる気体拡散手段と、を設けたことを特徴とする請求項1又は2記載の放射線測定装置。Gas converging means for converging the gas in the measurement chamber to the recirculation path, a blower for accelerating the speed of the gas recirculated in the measurement chamber, and gas diffusion means for diffusing the accelerated gas into the measurement chamber And the radiation measuring apparatus according to claim 1 or 2 .
JP2002249850A 2002-08-29 2002-08-29 Radiation measurement equipment Expired - Fee Related JP4127780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002249850A JP4127780B2 (en) 2002-08-29 2002-08-29 Radiation measurement equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002249850A JP4127780B2 (en) 2002-08-29 2002-08-29 Radiation measurement equipment

Publications (2)

Publication Number Publication Date
JP2004085497A JP2004085497A (en) 2004-03-18
JP4127780B2 true JP4127780B2 (en) 2008-07-30

Family

ID=32056828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002249850A Expired - Fee Related JP4127780B2 (en) 2002-08-29 2002-08-29 Radiation measurement equipment

Country Status (1)

Country Link
JP (1) JP4127780B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4679246B2 (en) * 2005-05-27 2011-04-27 日本原子力発電株式会社 Dust collector and dust monitor
JP4563928B2 (en) * 2005-12-08 2010-10-20 三菱電機株式会社 Beam position monitor
JP2008032510A (en) * 2006-07-28 2008-02-14 Toshiba Corp Radioactivity measuring apparatus and radioactivity measuring method
JP4893958B2 (en) * 2007-07-19 2012-03-07 独立行政法人放射線医学総合研究所 Radioactivity detection method and radioactivity detector
CN110392550B (en) * 2016-07-25 2023-10-03 撒哈拉·凯瑟林·帕奇 System and method for radiation beam range verification using sonic measurements
WO2021040112A1 (en) * 2019-08-30 2021-03-04 서정수 Real-time radon measuring device

Also Published As

Publication number Publication date
JP2004085497A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
JP3408543B2 (en) High gas flow alpha detector
EP2979115B1 (en) Radiation detection apparatus
JP2010133879A (en) Radiation measuring apparatus
US5194737A (en) Single and double grid long-range alpha detectors
US5525804A (en) Background canceling surface alpha detector
US5311025A (en) Fan-less long range alpha detector
JP4127780B2 (en) Radiation measurement equipment
CN104570038A (en) Method and device for quickly measuring radon concentration
JP2003194946A (en) Radioactivity measuring method and apparatus and radioactive waste treatment system
JPWO2014171378A1 (en) Mass spectrometer
GB2255671A (en) Drift field type mass spectrometer
JP2004239762A (en) Radiation measuring device and radiation measuring method
CN103487824A (en) Radon daughter sampling device based on high-voltage corona discharge
JP2008519260A (en) Ion balance monitor
JPH0335634B2 (en)
JPH08136660A (en) Radioactive ray measuring instrument
JP4427175B2 (en) β radioactivity analyzer
GB2301222A (en) Surface radioactivity monitor
JP4679246B2 (en) Dust collector and dust monitor
JP5121739B2 (en) Sodium leak detection system
KR101136894B1 (en) Apparatus for charging unipolar particle using soft X-ray
JP2002328084A (en) Ion concentration measuring device
US5942757A (en) Monitor for measuring the radioactivity of a surface
RU2010265C1 (en) Method of determination of concentration of radon and its daughter products in air
JP2005134239A (en) Radiation measurement equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060927

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080509

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees