JP4131538B2 - Method for quickly and easily measuring the concentration of Cd contained in a small amount of food by prompt gamma ray analysis - Google Patents
Method for quickly and easily measuring the concentration of Cd contained in a small amount of food by prompt gamma ray analysis Download PDFInfo
- Publication number
- JP4131538B2 JP4131538B2 JP2002302666A JP2002302666A JP4131538B2 JP 4131538 B2 JP4131538 B2 JP 4131538B2 JP 2002302666 A JP2002302666 A JP 2002302666A JP 2002302666 A JP2002302666 A JP 2002302666A JP 4131538 B2 JP4131538 B2 JP 4131538B2
- Authority
- JP
- Japan
- Prior art keywords
- gamma ray
- prompt gamma
- food
- energy
- prompt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、原子核科学の分野で利用される多重ガンマ線解析技術と微量分析の分野で用いられる即発ガンマ線分析技術などを組み合わせることにより、即発ガンマ線分析において重大な欠陥となっている定量精度の悪さを克服し、従来の即発ガンマ線分析に対して1000倍以上の分解能が得られるものである。これにより、昨今問題となっている食品中のCd濃度を迅速かつ簡便に測定することができ、食品衛生の分野に大きく貢献できるものと期待される。
【0002】
【従来の技術】
現在、農作物や土壌中に含まれる微量のCdの検出には、誘導結合プラズマ質量分析法(ICP−MS)が一般に用いられている。しかし、ICP−MSは一般的に液体もしくは気体の試料を取り扱うものであり、前処理として食品を溶液にするという作業が必要となる。この作業は熟練が必要となる上に時間がかかるという問題点があった。さらに、ICP−MSでは、測定が粒子検出によるため、測定されたものが本当にCd起因のものかを確認することができず、微量分析を行う場合その信頼性にかけるという問題点がある。
【0003】
一方、即発ガンマ線分析は、試料に中性子やその他の粒子線、ガンマ線を照射した際に直ちに放出される即発ガンマ線のエネルギーを測定することにより元素または同位体を分析する方法であり、測定結果に対する信頼性は高い。
【0004】
この分析法は、1960年代にGe(Li)半導体検出器が開発されたことと、1990年代に低エネルギー中性子ガイドビームが開発されたことから高感度の非破壊検査分析法として大きく発展した。実際、即発ガンマ線分析法はICP−MSでは分析が困難な元素の分析に非常に有効であるとともに、中性子照射量が少なく試料の放射化がほとんど無視できるため非破壊で多元素が分析できるという優れた特徴を持ち、考古学試料のような貴重なものや、隕石・岩石などの分解が困難な試料の分析に広く利用されている。
【0005】
従来の即発ガンマ線分析(例えば、下記非特許文献1、2及び3参照)においては、励起した原子核から放出される即発ガンマ線をGe測定器で測定し、横軸をエネルギー、縦軸をそのガンマ線を検出した回数(カウント数)とした一次元スペクトルを作り測定を行う。即発ガンマ線のエネルギーは原子核により決まっているので、該当するエネルギーの即発ガンマ線のカウント数から該当する元素・同位体の定量を行う。
【0006】
【非特許文献1】
IAEA国際核データ委員会報告書INDC(NDS)−411(2000)及びINDC(NDS)−424(2001)
【非特許文献2】
J.K.Tuli:“Prompt gamma neutron activation analysis”,Edit by Z.B.Alfassi,C Chuna.pp.177(1995)
【非特許文献3】
米沢仲四郎著「原子炉中性子による即発ガンマ線分析」、分析化学 Vol.51,No.2, pp.61−96(2002)
ここで、食品中のCdの分析を考えた場合、113Cdは主に558.5keVと651.3keVに2本のガンマ線(多重)を出す。一方、食品の主成分のひとつである水素は2223.3keVと113Cdよりも高エネルギーなガンマ線を出す(Cは断面積が小さいため大きな影響を与えない)。そのため、図1にあるように、Hからの即発ガンマ線のコンプトン成分が出てくる領域にCdの光電ピーク(中性子が当たった時に出る即発ガンマ線のエネルギーのピーク)が来るため、そのコンプトン成分の揺らぎがノイズとして乗るので、Cdの検出感度が悪化する。
【0007】
現在でもこのようなコンプトン成分を除去すべく、検出器の外周にシンチレータ検出器等を設置しコンプトン成分がなるべく検出されないようにしているが、それでも十分ではなく、Hのコンプトン成分がCdの検出限界を決定している。そのため、何の対策もなく食品の即発ガンマ線分析を行った場合、適用可能領域に大きな制限があった。
【0008】
【発明が解決しようとする課題】
上記で示したように、食品中の微量Cdを定量しようとした場合、食品の主成分のひとつである水素からの即発ガンマ線のコンプトン成分にCdの光電ピークが隠れてしまい検出感度が悪化する。化学処理により測定の妨害となるHを取り除くという方法も考えられるが、化学分離を行うことにより即発ガンマ線分析の簡便さという長所が失われること、さらに化学分離の操作を経ることにより、収率等の面で誤差が入り分析の制度に影響を与える可能性がある。
【0009】
そこで、本発明においては、Gd箔やチョッパーなどを用いてCdの吸収断面積のピーク値より低い部分の中性子をカットすることにより即発ガンマ線分析において、ノイズとなるHのコンプトン成分の影響を低減させる手法と、113Cdが同時に強い強度の即発ガンマ線を2本出すこととに着目し、多重ガンマ線検出法と即発ガンマ線分析法を組み合わせることによりHからのガンマ線を測定しないようにする手法の二つを提案する。
【0010】
【課題を解決するための手段】
Hの即発ガンマ線のコンプトン成分を低下させる手段として、以下の二つを提唱する。
【0011】
ひとつは、113Cdが他の一般的な原子核と異なりエピサーマルの領域で吸収断面積のピーク(0.2eV)を持つことに着目し、Gd箔やチョッパーなどを用いてCdの吸収断面積のピーク値より低い部分の中性子をカットすることにより、即発ガンマ線分析においてノイズとなるHのコンプトン成分の影響を低減させる手法である。
【0012】
もう一つは113Cdが同時に強い強度の即発ガンマ線を2本出す(Hは1本しかガンマ線を出さない)ことに着目し、多重ガンマ線検出法と即発ガンマ線分析法を組み合わせ、中性子により試料の原子核を励起し、そのときに出す即発ガンマ線を多重ガンマ線検出装置により測定し、Hからのガンマ線を測定しないようにする方法である。
【0013】
前者は、図2に示されるように、Cdの安定同位体のひとつである113Cdが、Hなどほかの一般の原子核と異なり、エピサーマル領域(0.025〜1eV)で吸収断面積に幅広いピークを持つことに着目する(即発ガンマ線の出し易さは、吸収断面積に比例し、この吸収断面積が大きい程即発ガンマ線を出し易い)。
【0014】
一般に原子炉などから導かれる中性子は、熱外からエピサーマルの領域にかけて幅広いピークを持っている。 図3に示されるように、Hなど多くの元素が1/v則と呼ばれる吸収断面積の傾向を持ち、中性子のエネルギーが低くなればなるほど吸収断面積が大きくなる。それに対して、113Cdはエピサーマル領域に吸収断面積の細いピーク(0.2eV)を持つ。原子炉からの中性子をそのまま用いた場合、Hの吸収断面積が大きい中性子もそのまま試料に照射されるため、Hの即発ガンマ線が大量に発生し検出限界を下げてしまう。
【0015】
ここで、0.1eV以下の中性子をカットするようなチョッパーや、1um程度のGd箔を用いれば、試料に当たる中性子はほとんど0.1eV以上になる。この領域では、エピサーマルの領域に比べて、Hの中性子吸収断面積に対してCdの中性子吸収断面積が相対的に大きくなる。つまり、H、Cd両方とも即発ガンマ線の発生量は少なくなるが、Hの即発ガンマ線の方が格段に少なくなり、その結果検出限界が向上する。
【0016】
後者は、113Cdが同時に強い強度の即発ガンマ線を2本出すのに対してHは1本しかガンマ線を出さないことに着目し、図4に示されるように、試料の周辺に複数の検出器を置くことにより即発ガンマ線の同時測定を行い、同時計数したものについてそれぞれのエネルギーを軸にして2次元のマトリクスを形成する。こうすることにより、Hの影響を落せるだけでなく、H以外のものでたまたまある確率で同時計数となってしまったものは、すべてのエネルギーに一様に出るため、ノイズの値が数カウント以下にまで低減され、微弱な信号まで検出することができる。
【0017】
しかし、2次元のマトリクスを作成することは特殊な測定装置を必要とし、測定系に大きな負担をかける。そこで、同時計数を行う2本のガンマ線を、対象となる即発ガンマ線の特定の中性子エネルギーに限定し、そのエネルギーのガンマ線が来たときだけもう一本のガンマ線のエネルギーを記録し、1次元のマトリックスを作成する。この手法により、検出できる原子核は限定したエネルギー(検出器で計測される即発ガンマ線のエネルギー)の範囲にあるものに限定されるが、測定系に大きな負担を与えることなく容易に高分解能を達成することができる。
【0018】
【発明の実施の形態】
本発明の検出方法においては、図5に示されるように、原子炉からの中性子ビーム1上にGd箔もしくはチョッパー2を設置し、Cd測定に最適な中性子エネルギーのみを試料に当てるようにする。その後方に試料3を設置し、それを取り囲むように複数のガンマ線検出器4を設置する。そのとき測定されたガンマ線のエネルギーがCdからの即発ガンマ線のうちのどちらかのエネルギーであれば、ゲートを一定時間作成し、ゲートが開いている間に測定されるガンマ線のエネルギーを用いて1次元のスペクトルを作成する。具体的な手法のフローチャートの例を図6に示す。こうすることにより、即発ガンマ線を1本しか出さないHは、偶然同時にCdと同じエネルギーのガンマ線が検出され、ゲートが作成されたときに検出器に入らない限り測定されることはない。
【0019】
即ち、図6では、次の各操作が行われるが、これは検出方法のフローチャートではなく、各検出器ごとのフローチャートであるので、他の検出器で放射線の検出があるかどうかを確認するフェーズが入っている。
【0020】
(1)Ge検出器に信号が入る。
(2)そのガンマ線のエネルギーを求める。
(3)他の検出器からゲート信号が出ているかを確認する(各検出器ごとのフローチャートであるので、他の検出器からの信号の有無を確認する必要がある)。
【0021】
(4)ゲート信号が出ていれば、この信号は二本目で同時計数が成立しているので、検出したエネルギーを一次元スペクトルに記録する(Cdのエネルギー以外の偶発事象も分解能の確認などに必要となるので、記録する。)
(5)ゲート信号が出ていなければ、この信号は一つ目のガンマ線なので、Cdの即発ガンマ線のエネルギーかどうかチェックする。
【0022】
(6)Cdの即発ガンマ線のエネルギーなら、同時計数を測定する必要があるので、すべてのガンマ線検出器に対して一定時間のゲートを作成する(この間にガンマ線が検出されれば、上記(4)の処理でエネルギーが記録される)。
【0023】
(7)Cdエネルギーでなければ、Hなど他の原子核から出たもので、ノイズの事象なので破棄する。
【0024】
【発明の効果】
本発明の測定法は、化学的な前処理が要らないなどの長所を持つため特殊な技術が要らず、昨今問題となっている食品中のCd濃度を迅速かつ軽便に測定することができ、食品衛生の分野に大きく貢献できるものと期待される。
【0025】
又、本発明により従来法に比べて1000倍以上の分解能を達成することができる。さらに、本測定法は、化学的な前処理が要らないなどの長所を持つため特殊な技術が要らず、昨今問題となっている食品中のCd濃度を迅速かつ軽便に測定することができ、食品衛生の分野に大きく貢献できる。
【図面の簡単な説明】
【図1】 コンプトン散乱と検出精度の関係を示す図である。
【図2】 113Cdの中性子エネルギー吸収断面積を示す図である。
【図3】 Hの中性子エネルギー吸収断面積を示す図である。
【図4】 多重ガンマ線検出の原理を示す図である。
【図5】 本発明のGd箔又はチョッパを用いて試料に照射する中性子ビームを部分的にカットする状態を示す図である。
【図6】 本発明の手法により即発ガンマ線の1次元スペクトルを作成するフローチャートを示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention combines the multiple gamma ray analysis technology used in the field of nuclear science and the prompt gamma ray analysis technology used in the field of microanalysis, thereby reducing the poor quantitative accuracy that has become a serious defect in prompt gamma ray analysis. Overcoming this, it is possible to obtain a resolution 1000 times higher than that of conventional prompt gamma ray analysis. As a result, it is expected that the Cd concentration in foods, which has become a problem in recent years, can be measured quickly and easily, and can greatly contribute to the field of food hygiene.
[0002]
[Prior art]
Currently, inductively coupled plasma mass spectrometry (ICP-MS) is generally used to detect trace amounts of Cd contained in agricultural products and soil. However, ICP-MS generally handles liquid or gas samples, and requires an operation of making food into a solution as a pretreatment. This operation has a problem that it requires skill and time. Further, since ICP-MS is based on particle detection, it cannot be confirmed whether the measured value is really due to Cd, and there is a problem that the reliability is required when performing microanalysis.
[0003]
Prompt gamma analysis, on the other hand, is a method of analyzing elements or isotopes by measuring the energy of prompt gamma rays that are released immediately when a sample is irradiated with neutrons, other particle beams, and gamma rays. The nature is high.
[0004]
This analysis method has greatly advanced as a highly sensitive nondestructive inspection analysis method since the Ge (Li) semiconductor detector was developed in the 1960s and the low energy neutron guide beam was developed in the 1990s. In fact, prompt gamma ray analysis is very effective for the analysis of elements that are difficult to analyze by ICP-MS, and the ability to analyze many elements in a non-destructive manner because of the low neutron irradiation and negligible activation of the sample. It is widely used for analysis of precious materials such as archaeological samples and difficult samples such as meteorites and rocks.
[0005]
In conventional prompt gamma ray analysis (for example, see Non-Patent Documents 1, 2 and 3 below), prompt gamma rays emitted from excited nuclei are measured with a Ge measuring device, the horizontal axis is energy, and the vertical axis is the gamma ray. A one-dimensional spectrum with the number of detections (count) is made and measured. Since the energy of prompt gamma rays is determined by the nucleus, the relevant elements and isotopes are quantified based on the count of the prompt gamma rays of the relevant energy.
[0006]
[Non-Patent Document 1]
IAEA International Nuclear Data Committee Report INDC (NDS) -411 (2000) and INDC (NDS) -424 (2001)
[Non-Patent Document 2]
J. et al. K. Tuli: “Prompt gamma neutron activation analysis”, Edit by Z. B. Alfassi, C Chuna. pp. 177 (1995)
[Non-Patent Document 3]
Yonezawa Nakashiro "Prompt gamma-ray analysis with reactor neutrons", Analytical Chemistry Vol. 51, no. 2, pp. 61-96 (2002)
Here, when considering the analysis of Cd in food, 113 Cd emits two gamma rays (multiple) mainly at 558.5 keV and 651.3 keV. On the other hand, hydrogen, which is one of the main components of food, emits gamma rays with higher energy than 2223.3 keV and 113 Cd (C has no significant effect because of its small cross-sectional area). Therefore, as shown in FIG. 1, the Cd photoelectric peak (the peak of the energy of the prompt gamma ray that is emitted when neutron hits) comes in the region where the Compton component of the prompt gamma ray from H appears. As a noise, Cd detection sensitivity deteriorates.
[0007]
Even now, in order to remove such Compton components, a scintillator detector or the like is installed on the outer periphery of the detector so that the Compton components are not detected as much as possible. However, this is not enough, and the Compton component of H is the detection limit of Cd. Is determined. For this reason, there was a significant limitation on the applicable area when prompt gamma analysis of food was performed without any countermeasures.
[0008]
[Problems to be solved by the invention]
As described above, when a small amount of Cd in food is to be quantified, the photoelectric peak of Cd is hidden in the Compton component of prompt gamma rays from hydrogen, which is one of the main components of food, and the detection sensitivity deteriorates. Although a method of removing H that interferes with measurement by chemical treatment is also conceivable, the advantage of easy gamma ray analysis is lost by performing chemical separation, and further, the yield etc. are obtained through the operation of chemical separation. There is a possibility that an error will be introduced and the analysis system will be affected.
[0009]
Therefore, in the present invention, by using a Gd foil, a chopper or the like to cut a neutron in a portion lower than the peak value of the absorption cross section of Cd, in the prompt gamma ray analysis, the influence of the Compton component of H that becomes noise is reduced. Focusing on the technique and the fact that 113 Cd emits two prompt gamma rays of strong intensity at the same time, combining the multiple gamma ray detection method and the prompt gamma ray analysis method to prevent gamma rays from H from being measured. suggest.
[0010]
[Means for Solving the Problems]
The following two are proposed as means for reducing the Compton component of H prompt gamma rays.
[0011]
One is that 113 Cd has an absorption cross section peak (0.2 eV) in the epithermal region unlike other general nuclei, and the Cd absorption cross section is measured using a Gd foil or chopper. This is a technique for reducing the influence of the Compton component of H that becomes noise in prompt gamma ray analysis by cutting neutrons in a portion lower than the peak value.
[0012]
The other is that 113 Cd emits two strong prompt gamma rays at the same time (H emits only one gamma ray) and combines the multiple gamma ray detection method with the prompt gamma ray analysis method. The prompt gamma rays emitted at that time are measured by a multiple gamma ray detector, and the gamma rays from H are not measured.
[0013]
As shown in FIG. 2, the former is 113 Cd, which is one of the stable isotopes of Cd, and has a wide absorption cross section in the epithermal region (0.025 to 1 eV) unlike other general nuclei such as H. Focus on having a peak (the ease of emitting prompt gamma rays is proportional to the absorption cross section, and the larger the absorption cross section, the easier it is to generate prompt gamma rays).
[0014]
In general, neutrons derived from nuclear reactors have a wide range of peaks from the outside to the epithermal region. As shown in FIG. 3, many elements such as H have a tendency of an absorption cross section called 1 / v rule, and the absorption cross section becomes larger as the energy of neutron becomes lower. In contrast, 113 Cd has a thin peak (0.2 eV) with an absorption cross section in the epithermal region. When neutrons from a nuclear reactor are used as they are, neutrons having a large H absorption cross section are also irradiated to the sample as they are, and a large amount of prompt gamma rays of H are generated, which lowers the detection limit.
[0015]
Here, if a chopper that cuts neutrons of 0.1 eV or less or a Gd foil of about 1 um is used, the neutrons hitting the sample are almost 0.1 eV or more. In this region, the neutron absorption cross section of Cd is relatively larger than the neutron absorption cross section of H compared to the epithermal region. That is, the amount of prompt gamma rays generated in both H and Cd is reduced, but the prompt gamma rays of H are significantly reduced, and as a result, the detection limit is improved.
[0016]
The latter, focusing on the fact that 113 Cd emits two prompt gamma rays of strong intensity at the same time, while H emits only one gamma ray, and as shown in FIG. The simultaneous gamma rays are measured simultaneously, and a two-dimensional matrix is formed for each of the coincidence counts with each energy as an axis. In this way, not only the influence of H can be reduced, but also those other than H that happen to be coincidentally counted at a certain probability are uniformly distributed to all energies, so the noise value is counted several times. It is reduced to the following, and even a weak signal can be detected.
[0017]
However, creating a two-dimensional matrix requires a special measurement device and places a heavy burden on the measurement system. Therefore, the two gamma rays for simultaneous counting are limited to the specific neutron energy of the target prompt gamma ray, and the energy of the other gamma ray is recorded only when the gamma ray of that energy comes, and a one-dimensional matrix is recorded. Create With this method, the nuclei that can be detected are limited to those in the limited energy range (energy of prompt gamma rays measured by the detector), but high resolution can be easily achieved without placing a heavy burden on the measurement system. be able to.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
In the detection method of the present invention, as shown in FIG. 5, a Gd foil or chopper 2 is installed on a neutron beam 1 from a nuclear reactor so that only the optimum neutron energy for Cd measurement is applied to the sample. A sample 3 is installed on the rear side, and a plurality of gamma ray detectors 4 are installed so as to surround it. If the gamma ray energy measured at that time is one of the prompt gamma rays from Cd, the gate is created for a certain period of time, and the gamma ray energy measured while the gate is open is used for one dimension. Create a spectrum of. An example of a flowchart of a specific method is shown in FIG. By doing this, H, which emits only one prompt gamma ray, is not measured unless a gamma ray having the same energy as Cd is detected coincidentally and enters the detector when the gate is created.
[0019]
That is, in FIG. 6, each of the following operations is performed, but this is not a flowchart of the detection method but a flowchart for each detector, and therefore a phase for confirming whether or not radiation is detected by other detectors. Is included.
[0020]
(1) A signal enters the Ge detector.
(2) Obtain the energy of the gamma ray.
(3) It is confirmed whether or not a gate signal is output from another detector (since it is a flowchart for each detector, it is necessary to confirm the presence or absence of a signal from another detector).
[0021]
(4) If a gate signal is output, the coincidence count is established for the second signal, so the detected energy is recorded in a one-dimensional spectrum (contingent events other than Cd energy are also used for confirmation of resolution, etc.) Record it as it will be needed.)
(5) If no gate signal is output, since this signal is the first gamma ray, it is checked whether it is the energy of the prompt gamma ray of Cd.
[0022]
(6) Since the coincidence gamma ray energy of Cd needs to be measured, gates for a certain period of time are created for all gamma ray detectors (if gamma rays are detected during this time, the above (4) Energy is recorded in the process.)
[0023]
(7) If it is not Cd energy, it originates from other nuclei such as H and is discarded because it is a noise event.
[0024]
【The invention's effect】
Since the measuring method of the present invention has advantages such as no need for chemical pretreatment, no special technique is required, and the Cd concentration in foods, which has recently become a problem, can be measured quickly and easily. It is expected to contribute greatly to the field of food hygiene.
[0025]
Further, the present invention can achieve a resolution of 1000 times or more compared with the conventional method. Furthermore, since this measurement method has the advantage that no chemical pretreatment is required, no special technique is required, and the Cd concentration in foods, which has recently become a problem, can be measured quickly and easily. It can greatly contribute to the field of food hygiene.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between Compton scattering and detection accuracy.
FIG. 2 is a diagram showing a neutron energy absorption cross section of 113 Cd.
FIG. 3 is a diagram showing a neutron energy absorption cross section of H.
FIG. 4 is a diagram showing the principle of multiple gamma ray detection.
FIG. 5 is a diagram showing a state in which a neutron beam irradiated to a sample is partially cut using the Gd foil or chopper of the present invention.
FIG. 6 is a diagram showing a flowchart for creating a one-dimensional spectrum of prompt gamma rays by the method of the present invention.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002302666A JP4131538B2 (en) | 2002-10-17 | 2002-10-17 | Method for quickly and easily measuring the concentration of Cd contained in a small amount of food by prompt gamma ray analysis |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002302666A JP4131538B2 (en) | 2002-10-17 | 2002-10-17 | Method for quickly and easily measuring the concentration of Cd contained in a small amount of food by prompt gamma ray analysis |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2007334117A Division JP2008089610A (en) | 2007-12-26 | 2007-12-26 | METHOD FOR RAPIDLY AND CONVENIENTLY MEASURING CONCENTRATION OF MINUTE QUANTITY OF Cd CONTAINED IN FOOD ITEMS USING PROMPT GAMMA RAY ANALYSIS |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2004138471A JP2004138471A (en) | 2004-05-13 |
| JP4131538B2 true JP4131538B2 (en) | 2008-08-13 |
Family
ID=32450671
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2002302666A Expired - Fee Related JP4131538B2 (en) | 2002-10-17 | 2002-10-17 | Method for quickly and easily measuring the concentration of Cd contained in a small amount of food by prompt gamma ray analysis |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4131538B2 (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006113010A (en) * | 2004-10-18 | 2006-04-27 | Japan Atomic Energy Agency | Discriminational measuring method of prompt and disintegration gamma rays by time list measurement |
| CN109765426B (en) * | 2019-01-28 | 2020-12-04 | 哈尔滨工业大学 | A fast identification method of system model parameters based on wide-spectrum excitation signal |
-
2002
- 2002-10-17 JP JP2002302666A patent/JP4131538B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JP2004138471A (en) | 2004-05-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4576368B2 (en) | Neutron moderator, neutron irradiation method, and hazardous substance detection apparatus | |
| US10393915B2 (en) | Integrated primary and special nuclear material alarm resolution | |
| US8084748B2 (en) | Radioactive material detecting and identifying device and method | |
| Guerrero et al. | Monte carlo simulation of the n_TOF total absorption calorimeter | |
| JP2001235546A (en) | Radioactive gas measuring device and fuel damage detection system | |
| JP2015087115A (en) | Neutron count analyzer and radiation measuring device | |
| US12228530B2 (en) | Method for moisture measurement | |
| CN102109474A (en) | Method and system for detecting defect of material based on electron pair effect | |
| JPH07209493A (en) | Radioactive waste sorting device and its sorting method | |
| JP5414033B2 (en) | Nuclear analysis method and nuclear analyzer | |
| Bentoumi et al. | Investigation of in-beam prompt and delayed neutron counting techniques for detection and characterization of special nuclear material | |
| JP4543195B2 (en) | Highly sensitive nuclide analysis method by multiple gamma ray detection | |
| JP4131538B2 (en) | Method for quickly and easily measuring the concentration of Cd contained in a small amount of food by prompt gamma ray analysis | |
| EP1376109B1 (en) | Material defect evaluation apparatus and method by measurements of positron lifetimes | |
| JP4091358B2 (en) | Apparatus and method for measuring radioactivity in waste | |
| JP2008089610A (en) | METHOD FOR RAPIDLY AND CONVENIENTLY MEASURING CONCENTRATION OF MINUTE QUANTITY OF Cd CONTAINED IN FOOD ITEMS USING PROMPT GAMMA RAY ANALYSIS | |
| WO2015020710A2 (en) | Integrated primary and special nuclear material alarm resolution | |
| JPH1164528A (en) | Non-destructive method and apparatus for measuring fissile material in radioactive waste solids | |
| JP2013130418A (en) | Nuclear material detection device and nuclear material detection method | |
| JP2010101663A (en) | Multiple radiation analyzing apparatus and multiple radiation analyzing method | |
| CN112764080A (en) | Nuclide detection device and nuclide detection method | |
| JP2013120123A (en) | Nuclide composition analyzer, and nuclide composition analysis method | |
| Ludewigt et al. | Delayed gamma-ray spectroscopy for non-destructive assay of nuclear materials | |
| Ryzhikov et al. | A new multi-layer scintillation detector for detection of neutron-gamma radiation | |
| GB2475958A (en) | Identification of explosives by means of rapid neutron bombardment and gamma-radiation detection as a function of time |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050415 |
|
| A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20060223 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071105 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071226 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080303 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080403 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080424 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080523 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110606 Year of fee payment: 3 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120606 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130606 Year of fee payment: 5 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| LAPS | Cancellation because of no payment of annual fees |