JP4270244B2 - 測位装置、測位装置の制御方法及びプログラム - Google Patents
測位装置、測位装置の制御方法及びプログラム Download PDFInfo
- Publication number
- JP4270244B2 JP4270244B2 JP2006228770A JP2006228770A JP4270244B2 JP 4270244 B2 JP4270244 B2 JP 4270244B2 JP 2006228770 A JP2006228770 A JP 2006228770A JP 2006228770 A JP2006228770 A JP 2006228770A JP 4270244 B2 JP4270244 B2 JP 4270244B2
- Authority
- JP
- Japan
- Prior art keywords
- altitude
- positioning
- estimated
- dimensional
- height
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 27
- PWPJGUXAGUPAHP-UHFFFAOYSA-N lufenuron Chemical compound C1=C(Cl)C(OC(F)(F)C(C(F)(F)F)F)=CC(Cl)=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F PWPJGUXAGUPAHP-UHFFFAOYSA-N 0.000 title 1
- 238000011156 evaluation Methods 0.000 claims description 13
- 230000007423 decrease Effects 0.000 claims description 8
- 230000005684 electric field Effects 0.000 description 34
- 230000003044 adaptive effect Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- 230000010354 integration Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C5/00—Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Navigation (AREA)
Description
GPS受信機は、複数のGPS衛星から信号を受信し、信号が各GPS衛星から発信された時刻とGPS受信機に到達した時刻との差(以後、遅延時間と呼ぶ)によって、各GPS衛星とGPS受信機との間の距離(以後、擬似距離と呼ぶ)を求める。そして、各GPS衛星から受信した信号に乗せられている各GPS衛星の衛星軌道情報と、上述の擬似距離を使用して、現在位置の測位演算を行うようになっている。
GPS受信機は、4個以上のGPS衛星から信号を受信することができるときは、現在位置の緯度、経度、高度を算出する3次元測位を行うことができる。
そして、GPS受信機は、3個のGPS衛星から信号を受信することができるときは、現在位置の緯度及び経度を算出する2次元測位を行うことができる。GPS受信機は、例えば、地球の中心を一つのGPS衛星とみなし、地球の中心からの現在位置までの距離を擬似距離とする。そして、3次元測位と同様の測位演算を行う。このため、2次元測位においては、GPS受信機は、現在位置の高度情報を予め保持している必要がある。
これに対して、地図データから取得した高度を使用して2次元測位を行う技術(例えば、特許文献1)や、前回測位時にVDOP(Vertical Dilution of Precision)が最小のGPS衛星の組を使用して算出した高度、又は、前回の3次元測位によって算出した高度を使用して2次元測位を行う技術(例えば、特許文献2)が提案されている。
また、前回測位時にVDOPが最小のGPS衛星の組を使用して算出した高度を使用するとしても、前回測位時の不良な測位条件(信号強度が弱い環境、マルチパスが多い環境など)によって、その高度の誤差が大きい場合がある。さらに、前回の3次元測位によって算出した高度を使用する方法においても、前回測位時の不良な測位条件によって、高度の誤差が大きい場合があるという問題がある。
これに対して、出願人は、前回測位時の測位条件を考慮して保持している高度情報を更新する技術についての出願をした(特願2005−151048)。この技術は、3次元高度情報の信頼性が一定の信頼性を有する場合に保持している高度情報を更新するから、例えば、マルチパス環境下等、3次元高度情報の信頼性が低い場合には、保持している高度情報を更新することができない。この結果、高度情報を早期に更新することができない場合があるという問題がある。
前記測位装置は、前記3次元高度算出手段を有するから、前記2次元測位に際して、前記予備3次元測位を行って、前記3次元高度を算出することができる。3次元測位が妥当でない場合であっても3次元測位が可能である場合があり、測位位置の算出に際しては2次元測位が妥当であるとしても、前記推定高度の更新のためには前記3次元高度の方が妥当である場合がある。このため、前記測位装置は、前記2次元高度と前記3次元高度の双方を算出するのである。これは、前記推定高度を更新するための高度の選択肢を増やすことを意味する。
なお、本明細書における「2次元測位」は、緯度及び経度だけではなくて、高度も算出する。すなわち、本明細書の「2次元測位」は、緯度、経度及び高度を算出する3次元測位の一種である。ただし、3次元測位においては、4個以上の衛星の軌道上の位置と各衛星と前記測位装置との擬似距離を使用して測位するのに対して、2次元測位においては、地球中心を一つの衛星とみなして測位に使用する。すなわち、2次元測位においては、前記推定高度を地球中心と前記測位装置との擬似距離であると仮定して測位する。このため、前記推定高度の精度が高い場合には、2次元測位の方が測位精度が高い。
しかし、例えば、前記測位装置が一定の速度以上で移動している等の受信状態においては、真の高度も変動していると考えられるから、前記推定高度を使用しない3次元測位の方が真の移動状態に対する追従性が良好であり、測位精度が高い。
このため、前記推定高度の精度が高い場合であっても、受信状態によっては、前記2次元高度よりも前記3次元高度の方が精度が高い。
この点、前記測位装置は、前記高度選択手段を有するから、前記推定高度情報を更新するために、例えば、前記2次元測位時の受信状態によって、前記2次元高度又は前記3次元高度を選択することができる。
また、前記2次元高度及び前記3次元高度は、測位によって生成した新しい情報であるから、前記2次元高度又は前記3次元高度を使用して前記推定高度を更新することは、既に保持している前記推定高度を新たな情報によって補正することを意味する。これにより、前記推定高度を、より真の高度に近づけることができる。しかも、前記測位装置は、前記2次元高度と前記3次元高度の双方を算出し、より妥当な高度を選択することができるから、前記推定高度を、一層真の高度に近づけることができる。
なお、真の高度に近い高度を、正確な高度と呼ぶ。そして、真の高度に近い高度を示す情報を、正確な高度情報と呼ぶ。
ここで、前記測位装置は、前記推定高度を例えば、一つだけ保持し、前記更新手段によって更新することができるから、高度データを保持する記憶負担は少ない。
これにより、前記測位装置によれば、高度データを保持する記憶負担を低減し、かつ、前回測位時の不良な測位条件の影響を低減しつつ、2次元測位に使用するための正確な高度情報を取得することができ、さらに、高度情報を早期に更新することができる。
これに対して、前記2次元高度は、前記推定高度を使用して算出されているから、不良な受信環境の影響が緩和された状態で算出されている。このため、不良な受信環境下においては、前記3次元高度よりも前記2次元高度の方が、精度が高い。
この点、第2の発明の構成によれば、前記測位装置は、前記測位環境に基づいて、前記2次元測位又は前記3次元測位を適切に選択することができるから、前記受信環境に応じて精度が高い測位位置を算出することができる。
そして、精度が高い測位位置に含まれる高度は精度が高いから、前記3次元測位によって算出した3次元高度を使用して前記推定高度を更新することによって、前記推定高度を真の高度により近接させることができる。
前記測位装置の移動状態、及び、前記2次元測位において算出した測位情報の信頼性に基づいて、前記2次元高度又は前記3次元高度のいずれを使用するかを選択する構成となっていることを特徴とする測位装置である。
この点、第3の発明の構成によれば、前記高度選択手段は、前記移動状態のみならず、前記2次元高度と前記3次元高度の信頼性を詳細に比較した上で、前記2次元高度又は前記3次元高度のいずれを使用するかを選択することができる。
ここで、前記高度差が一定範囲内であれば、前記推定高度は真の高度に近いと考えられる。すなわち、前記推定高度の信頼性は大きい。このため、前記推定高度の重みを大きくして前記推定高度を更新することによって、前記推定高度を真の高度に近づけることができる。
この点、第4の発明の構成によれば、前記更新手段は、前記基本更新条件を満たさない場合であっても、前記高度差が前記高度差許容範囲内である場合には、前記推定高度の重みを大きくして前記推定高度を更新する構成となっているから、前記推定高度を真の高度に近づけることができる。
この点、第5の発明の構成によれば、前記更新手段は、前記推定高度が前記基本更新条件を満たさない場合であっても、前記高度差が前記高度差許容範囲内ではない場合には、前記推定高度の重みを小さくして前記推定高度を更新する構成となっているから、前記推定高度を真の高度に近づけることができる。
前記測位装置が、前記高度選択手段によって選択した前記2次元高度又は前記3次元高度によって、前記推定高度を更新する更新ステップと、を実行させることを特徴とする測位装置の制御プログラムによって達成される。
尚、以下に述べる実施の形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。
図1に示すように、測位システム10は、端末20を有する。端末20は、SPS衛星である例えば、GPS衛星12a,12b,12c及び12dからの信号である信号S1,S2,S3及びS4を受信することができる。この信号S1等は、衛星信号の一例である。そして、端末20は、測位装置の一例である。
端末20は、その使用者甲に保持されて、地面G上を移動している。
また、端末20は、例えば、3つのGPS衛星12a,12b,12cから信号S1,S2及びS3を受信して、2次元測位を行うことができる。2次元測位において、端末20は、地球の中心Eを一つの衛星とみなし、高度Hを中心Eと端末20との擬似距離とする。端末20は、2次元測位によって、現在位置の座標を緯度、経度及び高度で示す情報を生成することができる。上述のように、本明細書における、「2次元測位」は、3次元測位の一種であるが、1つのGPS衛星の替わりに地球の中心Eを使用し、擬似距離として高度Hを使用するのである。
2次元測位においては、端末20は、高度Hを示す情報を予め取得しておく必要がある。そして、高度Hが正確であるほど、精度の高い2次元測位を行うことができる。
なお、高度Hは、地球の中心Eから端末20までの距離である。以後、本明細書において、「高度」は、地球の中心Eから端末20までの距離を意味するものとして使用する。
なお、本実施の形態とは異なり、GPS衛星12a等は4個に限らず例えば、3個でもよいし、5個以上でもよい。
また、本実施の形態とは異なり、SPS衛星はGPS衛星に限らず、Galileoにおいて使用される衛星や準天頂衛星等を含む。
図2は端末20の主なハードウエア構成を示す概略図である。
図2に示すように、端末20は、コンピュータを有しており、コンピュータは、バス22を有する。
このバス22には、CPU(Central Processing Unit)24、記憶装置26等が接続されている。記憶装置26は例えば、RAM(Random Access Memory)、ROM(Read Only Memory)等である。
また、このバス22には、外部と通信するための通信装置32、各種情報を表示するための表示装置34が接続されている。
図3は、端末20の主なソフトウエア構成を示す概略図である。
図3に示すように、端末20は、各部を制御する制御部100、図2の端末GPS装置30に対応するGPS部102、通信装置32に対応する通信部104、速度計測部106等を有する。
この速度計測部106は、GPS部102によって受信した複数の信号S1等のドップラー偏移等に基づいて、端末20の移動速度を示す速度情報176を生成する(例えば、特開平8−68651の段落〔0016〕乃至〔0018〕参照)。
制御部100は、速度計測部106が生成した速度情報176を第2記憶部150に格納する。
端末20は、また、各種プログラムを格納する第1記憶部110、各種情報を格納する第2記憶部150を有する。
なお、本実施の形態とは異なり、端末20にハードウエアとしての速度計を備え、その速度計によって端末20の移動速度を計測するようにしてもよい。
アルマナック154は、すべてのGPS衛星12a等(図1参照)の概略の軌道を示す情報である。アルマナック154は、例えば、7日間は有効である。このため、端末20は、いずれかのGPS衛星12a等の信号S1等から、7日間ごとにアルマナック154をデコードして更新している。
エフェメリス156は、各GPS衛星12a等(図1参照)の精密な軌道を、その取得時刻とともに示す情報である。エフェメリス156の有効期間は、例えば、4時間(h)である。このため、端末20は、4時間ごとに、観測可能な各GPS衛星12a等のエフェメリス156をデコードして更新している。
なお、推定高度H1を高度H1とも呼ぶ。
具体的には、端末20は、例えば、4個のGPS衛星12a等から信号S1等を受信し、信号S1等が各GPS衛星12a等から発信された時刻と端末20に到達した時刻との差である遅延時間に基づいて、各GPS衛星12a等と端末20との間の距離である擬似距離を求める。そして、各GPS衛星12a等についてのエフェメリス156と、上述の擬似距離を使用して、現在位置の測位演算を行う。
3次元座標情報160は、端末20の現在位置の緯度及び経度を示す3次元緯度経度情報162、及び、端末20の現在位置の高度H2aを示す3次元高度情報164を含む。
制御部100は、生成した3次元座標情報160を第2記憶部150に格納する。
図3に示すように、2次元測位プログラム114は、予備3次元測位プログラム114aを含む。 予備3次元測位プログラム114aは、制御部100が、2次元測位に先立って、3次元測位を行って、端末20の現在位置の高度H2bを算出するためのプログラムである。予備3次元測位プログラム114aに基づいて実施される3次元測位を予備3次元測位と呼ぶ。高度H2bは、3次元高度の一例である。予備3次元測位プログラム114aと制御部100は、3次元高度算出手段の一例である。高度H2bを3次元高度H2bとも呼ぶ。
制御部100は、高度H2bを示す予備3次元高度情報166を第2記憶部150に格納する。
制御部100は、2次元測位によって、端末20の現在位置を緯度、経度、及び高度H2cを算出する。高度H2cは、2次元高度の一例である。高度H2cを2次元高度H2cとも呼ぶ。
具体的には、端末20は、例えば、3個のGPS衛星12a等から信号S1等を受信し、信号S1等が各GPS衛星12a等から発信された時刻と端末20に到達した時刻との差である遅延時間に基づいて、各GPS衛星12a等と端末20との間の距離である擬似距離を求める。そして、端末20は、地球の中心E(図1参照)を1つのGPS衛星と見なして、推定高度H1を地球の中心Eとの擬似距離と見なす。
次に、各GPS衛星12a等についてのエフェメリス156によって各GPS衛星12a等の現在時刻における衛星軌道上の位置を算出する。地球の中心Eの位置は既知である。そして、端末20は、各GPS衛星12a等の衛星軌道上の位置、地球の中心Eの位置、擬似距離及び推定高度H1に基づいて、現在位置の測位演算を行う。このように、端末20は、2次元測位において、地球の中心Eと推定高度H1を使用する。このため、2次元測位における測位結果は、推定高度H1の影響を受ける。
制御部100は、2次元測位によって2次元座標情報168を生成し、第2記憶部150に格納する。2次元座標情報168は、緯度及び経度を示す2次元緯度経度情報170と、高度H2cを示す2次元高度情報172を含む。2次元座標情報168は、測位情報の一例である。
なお、高度H2a,H2b及びH2cを総称して高度H2又は測位高度H2と呼ぶ。
すなわち、信号S1等の受信状態は刻々と変化しているから、制御部100が、後述の測位方法選択プログラム120によって2次元測位を選択した場合であっても、3次元測位が可能な場合がある。制御部100は、2次元測位を選択した場合であっても、可能であれば、予備3次元測位を実施し、3次元高度H2bを算出するのである。
測位条件情報174は、例えば、PODP、測位衛星数、測位誤差を示す情報である。
なお、本実施の形態とは異なり、測位条件情報は、PODP、測位衛星数、測位誤差のうち、1つ又は2つを示す情報であってもよい。
図4に示すように、端末20は、サーチモードM1、第1トラッキングモードM2及び第2トラッキングモードM3を実施することができる。
サーチモードM1は、信号S1等を捕捉するためのモードである。このため、サーチモードM1は、例えば、3キロヘルツ(kHz)という広い周波数範囲をサーチする。
モードM2における積算時間(インコヒーレント時間)t1は、例えば、1秒である。
モードM3における積算時間(インコヒーレント時間)t2は、例えば、2秒である。
上述のように、端末20は、動作する信号強度が異なる複数の測位モードを有する。
図5に示すように、制御部100は、環境判定プログラム118に基づいて、信号S1等の電界強度(信号強度)を、強電界と弱電界に区分する。強電界はモードM2が動作する電界強度である。弱電界はモードM3が動作する電界強度である。
さらに、制御部100は、強電界を第1強電界、第2強電界及び第3強電界に区分する。
第1強電界はa1以上a2未満の電界強度である。第2強電界はa2以上a3未満の電界強度である。第3強電界はa3以上の電界強度である。a1、a2及びa3は、電界強度の閾値であって、a1よりもa2が大きく、a2よりもa3が大きい。a1は、例えば、マイナス(−)140である。a2は、例えば、マイナス(−)130である。a3は、例えば、マイナス(−)124である。
第1弱電界はb1以上b2未満の電界強度である。第2弱電界はb2以上b3未満の電界強度である。b1、b2及びb3は、電界強度の閾値であって、b1よりもb2が大きく、b2よりもb3が大きい。b1は、例えば、マイナス(−)160dBmである。b2は、例えば、マイナス(−)150dBmである。b3は、例えば、マイナス(−)140dBmである。
動作モード及び電界強度に応じて、測位環境を第1環境乃至第9環境に区別する。そして、各測位環境に応じて、測位仕様が規定されている。
具体的には、制御部100は、第3環境、第4環境、第5環境、第6環境又は第7環境であって、かつ、後述のゲインが5以上である場合には、2次元測位を選択する。
第3環境、第4環境、第5環境、第6環境及び第7環境は、マルチパスが発生し易い環境である。マルチパスが発生している環境においては、測位によって算出した高度の信頼性は低い。また、ゲインが5以上であれば、推定高度H1が一定回数以上更新されているので、真の高度に近い状態で安定していると考えられるからである。
これに対して、制御部100は、第1環境、第2環境、第8環境又は第9環境であるか、又は、後述のゲインが5未満である場合には、3次元測位を選択する。
第1環境及び第2環境においては、受信環境が良好であるから、測位によって算出した高度の信頼性が高いから3次元測位の方が2次元測位よりも好適である。
また、第8環境及び第9環境においては、受信環境が劣悪であるから、測位によって算出した高度の信頼性(精度)は極めて低い。このため、推定高度H1を測位によって算出した高度で更新し続けると、推定高度H1は極めて精度が劣化する。この場合、精度の悪い測位高度で複数回更新されて精度が極めて劣化した推定高度H1よりは、測位によって算出した高度の方が精度劣化が累積していない分、精度が高い。このため、制御部100は、第8環境及び第9環境においては、3次元測位を選択するのである。すなわち、第8環境及び第9環境においては、2次元測位も3次元測位も精度が悪いのであるが、それでも、3次元測位の方が2次元測位よりも精度が高い可能性が大きいのである。
また、ゲインが5未満であれば、推定高度H1の更新回数が不十分なので、真の高度にから遠いと考えられるから、制御部100は、3次元測位を選択するのである。
なお、2次元測位を選択するための条件を「2次元測位実行条件」と呼ぶ
以下に説明するように、表示装置34に表示するための座標情報の生成と並行して、推定高度H1を更新するための測位高度H2の選択、及び、推定高度H1の更新が実施される。
制御部100は、3次元測位を行った場合には、高度H2aを選択する
そして、制御部100は、2次元測位を行った場合に、高度H2b又はH2cのいずれかを選択する。
制御部100は、端末20の移動状態と、2次元座標情報168の信頼性に基づいて、高度H2b又はH2cのいずれかを選択する。
具体的には、制御部100は、端末20が移動していない場合(静止状態の場合)には、高度H2cを選択する。制御部100は、速度情報176に示される速度Vが0であれば、端末20が移動していないと判断する。
静止状態においては、真の高度は変動しないはずであるから、高度H2cを使用する方が、受信環境が不良な場合であってもその影響を低減することができる。
これに対して、端末20が移動している場合には、真の高度は変動する可能性がある。このため、制御部100は、さらに、2次元座標情報168の信頼性に基づいて、高度H2b又はH2cのいずれかを選択する。
例えば、制御部100は、測位に4個以上の衛星を使用しており、かつ、収束度が予め規定した閾値d1未満であれば、2次元座標情報168の信頼性は十分であると判断し、高度H2cを選択する。これに対して、制御部100は、測位に4個以上の衛星を使用していないか、又は、収束度が予め規定した閾値d1以上であれば、2次元座標情報168の信頼性は不十分であると判断し、高度H2bを選択する。
収束度は、位置計算の収束の度合いであり、1回の測位の中で実施される複数回の位置計算ごとに1回算出される。収束度が高いほど、収束度を示す数値は小さくなるようになっている。ここで判断基準として使用する収束度は、複数回の位置計算から選ばれた1つの位置計算の収束度である。
なお、測位に使用する衛星数が多いほど、2次元座標情報168の信頼性は高い。これは、測位に使用する衛星数が多いほど、多くの衛星組による測位演算が可能であるからである。また、収束度が高いほど、2次元座標情報168の信頼性は高い。
図3に示すように、端末20は、第1記憶部110に、推定高度更新プログラム126を格納している。推定高度更新プログラム126は、制御部100が、高度H2a,H2b又はH2cに基づいて高度H1を更新するためのプログラムである。推定高度更新プログラム126と制御部100は、更新手段の一例である。
推定高度更新プログラム126は、基本更新プログラム126aと、適応制御プログラム126bと、初期更新プログラム126cとを含む。
なお、基本更新条件は上述の条件に限らず、例えば、推定高度を3回以上更新しており、かつゲインが5以上であることにしてもよい。
推定高度更新プログラム126と制御部100は、推定高度評価手段の一例でもある。
これに対して、初期更新プログラム126cは、上述の基本更新を行う条件が満たされない場合の更新プログラムである。
基本更新プログラム126aは、制御部100が、以下に説明する基本更新を行うためのプログラムである。
制御部100は、高度H2a,H2b又はH2cに基づいて高度H1を更新するときの、高度H2a等に対する推定高度H1の重みα(以後、ゲインαと呼ぶ)を決定する。
以下に示す基本更新は、推定高度H1が基本更新条件を満たす場合に実施される。
図7(a)に示すように、端末20は、基本更新プログラム126aとして、ゲインカウンタとゲインとで構成されるゲインテーブルを記憶している。ゲインは、推定高度H1の重みを示す情報である。ゲインカウンタは、ゲインを指定するための情報である。ゲイン決定プログラム126は、初期設定として、例えば、ゲインカウンタを5に設定し、ゲインαが3.5になるようにしている。
そして、制御部100は、基本更新条件を満たす場合には、上述の速度情報176に示される速度Vが、毎時60キロメートル(km/h)以内であれば、ゲインカウンタを1つ大きくして、ゲインαを大きくするようにしている(以後、原則動作と呼ぶ)。例えば、第1回目の更新のときには、制御部100は、ゲインカウンタを6に設定し、ゲインαが4になるようにする。そして、第2回目の更新のときには、制御部100は、ゲインカウンタを7に設定し、ゲインαが4.5になるようにする。このように、制御部100は、推定高度H1の更新回数が増えるにつれてゲインαを大きくするようになっている。なお、ゲインαを大きくすることを、ゲインαを強めるともいう。また、ゲインαを小さくすることを、ゲインαを弱めるともいう。制御部100は、推定高度H1の更新の度にゲインカウンタを1つづつ大きくすることによって、ゲインを徐々に大きくする。これにより、推定高度H1を真の高度の近傍に、徐々に固定させることができる。
これに対して、制御部100は、上述の速度情報176に示される速度Vが、毎時60キロメートル(km/h)以内でなければ、推定高度H1を更新するときには、ゲインカウンタを1つ小さくして、推定高度H1の更新を行う。これにより、高度H1の更新の際の測位高度H2の影響を最小限にしつつ、新たな測位高度H2等の要素を取り入れて推定高度H1を更新することができる。
図7(b)に示すように、ゲインαが大きくなるほど、更新後の推定高度H1は、保持している推定高度H1に近くなる。そして、ゲインαが小さくなるほど、更新後の推定高度H1は、高度H2に近くなる。このため、端末20は、推定高度H1の重みを大きくする方が妥当な場合にはゲインカウンタを大きくし、測位高度H2の重みを大きくする方が妥当な場合にはゲインカウンタを小さくするようになっている。
具体的には、制御部100は、設定したゲインαを使用して、推定高度H1を更新し、更新後高度H1aを算出する。この更新後高度H1aは新たな推定高度H1となる。
制御部100は、更新後高度H1aを示す更新後高度情報178を第2記憶部150に格納する。なお、本明細書において、更新後高度H1aの算出と推定高度H1の更新は同義で使用する。
また、制御部100は、更新後高度情報178を生成すると、更新回数情報180に示される更新回数nを1つ増やす。
適応制御プログラム126bは、制御部100が、高度差dH及び測位信頼度に基づいて、ゲインカウンタは維持しつつ、更新方法のみを基本更新から変更するためのプログラムである。適応制御プログラム126bに基く制御は、上述の基本更新に際して実施される。
測位信頼度は高度H2b又は高度H2cを算出するための測位を行ったときの測位の信頼度を示す値であり、測位誤差、衛星配置(PDOP)、測位に使用した衛星数等によって規定される。測位信頼度は、例えば、0,1,2,3,4,5,6,7の7段階の指数で表され、数値が小さいほど、信頼度は高い。閾値d2は、第2段階、すなわち、「2」である。測位誤差が小さいほど指数は小さい。PDOPが小さいほど指数は小さい。そして、測位に使用した衛星数が多いほど指数は小さい。
まず、制御部100は、適応制御プログラム126bに基づいて、ゲイン暫定変更条件を満たすか否かを判断する。ゲイン暫定変更条件は、推定高度H1の今回の更新時だけに適用されるようにゲインを変更するための条件である。ゲイン暫定変更条件は、今回算出した高度H2の信頼性が高いことであり、例えば、測位に使用した衛星が5個以上であり、PDOPが3以下であることである。
制御部100は、測位条件がゲイン暫定変更条件を満たすと判断した場合には、ゲインカウンタを維持して、ゲインを1つ下げる。これにより、今回の高度H2の信頼性が高い場合には、高度H2の信頼性に応じてゲインを一時的に変更することができる。これにより、刻々と変化する高度H2の信頼性を反映しつつ、推定高度H1を更新することができる。
これに対して、制御部100は、ゲイン暫定変更条件を満たさないと判断した場合には、ゲインを維持する。
このため、制御部100は、高度差dHが1000メートル(m)以上であって、指数が所定の閾値d2以上であれば、高度差dHの64分の1をあらかじめ推定高度H1に加算して、その推定高度H1を更新する。これにより、測位高度H2の影響をある程度加味しつつも、高度差dHが大きい場合には、測位高度H2の影響を低減して、推定高度H1を更新することができる。これにより、推定高度H1が、真の値と乖離して、急激に変動することを防止することができる。
これに対して、制御部100は、高度差dHが1000メートル(m)以上であっても、指数が閾値d2未満であれば、高度差dHの4分の1をあらかじめ推定高度H1に加算して、その推定高度H1を更新する。これにより、測位高度H2の測位信頼度が高い場合に、より測位高度H2の影響を大きくすることができる。
基本更新条件を満たしており、推定高度H1の信頼性が高い場合には、測位信頼度が閾値d2以上であって、推定高度H1と高度H2の高度差が1000メートルという大きなものであれば、測位によって算出した高度H2の影響を考慮しつつも、高度H2の影響を低減しつつ、推定高度H1を更新するほうが推定高度H1を真の高度に近接させることができると考えられる。
そして、高度H2をどの程度信頼するかを決定して推定高度H1を更新する場合に、どのくらい信頼するかについて、測位信頼度を示す指数が閾値d2よりも大きいか否かによって決定する。指数が閾値d2よりも小さければ高度H2を信頼する程度を大きくし、指数が閾値d2よりも大きければ高度H2を信頼する程度を小さくする。
上述のように、端末20は、指数が閾値d2以上であると判断した場合には、高度差の64分の1を推定高度H1に加算する。
これに対して、端末20は、指数が閾値d2未満であると判断した場合には、高度差の4分の1を推定高度H1に加算する。
これに対して、制御部100は、高度差dHが500メートル(m)以上であっても、測位信頼度が閾値d2未満であれば、高度差dHの2分の1をあらかじめ推定高度H1に加算して、その推定高度H1を更新する。
高度差が500メートル(m)以上である場合は、上述のように高度差が1000メートル(m)以上である場合に比べて、高度H2の信頼性は高い。この場合、測位信頼度を示す指数は小さい。このため、上述のように高度差が1000メートル(m)以上である場合よりも、高度H2の影響を大きくするために、64分の1ではなくて、32分の1を反映させるのである。
これに対して、制御部100は、高度差dHが100メートル(m)以上であっても、測位信頼度が閾値d2未満であれば、高度差dHの2分の1をあらかじめ推定高度H1に加算して、その推定高度H1を更新する。
制御部100は、初期更新プログラム126cに基づいて、推定高度H1と上述の高度選択プログラム124によって選択した高度H2b又はH2cとの高度差dHを算出する。初期更新プログラム126cと制御部100は、高度差算出手段の一例である。
そして、制御部100は、測位信頼度に応じて、ゲインカウンタを大きくする。測位信頼度は、測位に使用している衛星数や、測位誤差によって決定する。例えば、測位に使用した衛星数が5個以上で、測位誤差が30メートル(m)以内であれば、ゲインカウンタを2つ大きくする。すなわち、基本更新とは異なり、ゲインを1づつ大きくするのではなくて、基本更新よりもゲインの上げ幅を大きくする。このため、早期にゲインを一定値である例えば、5以上にすることができる。これにより、早期に上述の基本更新条件を満たすようにすることができる。
そして、制御部100は、ゲインカウンタを初期化する。すなわち、ゲインカウンタをゲインカウンタを初期設定である「5」に戻す。
以上が、推定高度H1の更新方法である。
図8に示すように、高度情報158に示される高度H1は、高度H2によって更新される回数が増えるにつれて、真の高度Hに近づき、かつ、真の高度Hに近い状態で安定する。
上述のように、端末20は、2次元高度H2cを算出することができる。このため、2次元測位実行条件を満たす場合(3次元測位が妥当でない場合)であっても、高度を算出することができる。
また、端末20は、2次元測位に際して、予備3次元測位を行って、3次元高度H2bを算出することができる。3次元測位が妥当でない場合であっても3次元測位が可能である場合があり、測位位置の算出及び表示装置34への出力については2次元測位が妥当であるとしても、推定高度H1の更新のためには3次元高度H2bの方が妥当である場合がある。
2次元測位に際して、予備3次元測位を行うことが、本実施の形態の特徴の1つである。2次元測位実行条件を満たす限り、3次元測位よりも2次元測位の方が、測位に使用することができる衛星組が増えるから、測位精度が向上する。これは、3次元測位の場合には1回の測位計算に4個の衛星が必要なのに対して、2次元測位の場合には、1回の測位計算に必要な衛星数は3個で足りるからである。また、3次元測位の場合、測位計算に必要な衛星数を確保するために、信号強度が弱い等、劣悪な受信状態の衛星信号を使用する必要がある場合があるのに対して、2次元測位の場合には測位計算に必要な衛星数が1個少ないため、そのような劣悪な受信状態の衛星信号を排除することができる可能性が高く、測位精度が向上するからである。
そして、そして、推定高度H1の更新のために予備3次元測位で算出した3次元高度H2bを使用する場合があるのは、2次元測位の場合には、2次元相違に使用した推定高度H1がほとんど変化せずに測位結果の高度として算出されるため、高度の追従性が悪くなる場合がある。このため、予備3次元測位で算出した3次元高度H2bを使用することによって、真の高度変化への追従性を向上しているのである。
このため、端末20は、2次元高度H2cと3次元高度H2bの双方を算出するのである。これは、推定高度H1を更新するための高度の選択肢を増やすことを意味する。
そして、端末20は、推定高度H1を更新するために高度H2a,H2b又はH2cのいずれを使用するかを選択することができる。
2次元測位においては、地球中心を一つの衛星とみなして測位に使用する。すなわち、2次元測位においては、推定高度H1を地球中心と端末20との擬似距離であると仮定して測位する。このため、推定高度H1の精度が高い場合には、2次元測位の方が測位精度が高い。
しかし、端末20が一定の速度以上で移動している等の受信状態においては、真の高度も変動していると考えられるから、推定高度H1を使用しない3次元測位の方が真の移動状態に対する追従性が良好であり、測位精度が高い。
このため、推定高度H1の精度が高い場合であっても、受信状態によっては、2次元測位によって算出した高度H2cよりも予備3次元測位によって算出した高度H2cの方が精度が高い。
この点、端末20は、例えば、2次元測位時の受信環境によって、H2b又は高度H2cを選択することができる。
また、端末20は、3次元測位を行った場合には、高度H2aを選択することができる。
また、高度H2は、測位によって生成した新しい情報であるから、高度H2を使用して高度H1を更新することは、既に保持している高度H1を新たな情報によって補正することを意味する。これにより、高度H1を、より真の高度に近づけることができる。
しかも、端末20は、2次元高度H2cと3次元高度H2bの双方を算出し、より妥当な高度を選択することができるから、推定高度H1を、一層真の高度に近づけることができる。
ここで、端末20は、推定高度H1を、一つだけ保持し、それを更新することができるから、高度データを保持する記憶負担は少ない。
これにより、端末20によれば、高度データを保持する記憶負担を低減し、かつ、前回測位時の不良な測位条件の影響を低減しつつ、2次元測位に使用するための正確な高度情報を取得することができ、さらに、高度情報を早期に更新することができる。
高度H1を複数回更新した結果、精度の高い高度情報になった後においては、新たな高度H2を使用して高度H1を更新する必要はあるにしても、新たな高度H2の重みを軽くして、保持している高度H1の重みを重くすることによって、高度H1を正確な情報にすることができる。
この点、端末20は、高度H1の更新回数が増えるに連れて、既に保持している高度H1の重みを重くして、高度H1を更新する構成になっているから高度H1を、一層正確な情報にすることができる。
一般に、物が地表を移動するときには、高速で移動する場合に比べて、より低速で移動する場合の方が、上下方向の移動量は少ない。言い換えると、物が地表を移動するときには、低速で移動する場合に比べて、より高速で移動する場合の方が、上下方向の移動量は多い。
このため、端末20が高速で移動する場合に比べて、より低速で移動する場合においては、新たな高度H2の重みを軽くして、保持している高度H1の重みを重くして高度H1を更新することによって、高度H1を正確な情報にすることができる。
この点、端末20は、高速で移動する場合に比べて、より低速で移動する場合において、ゲインαを大きくして高度H1を更新する。これとは逆に、端末20は、低速で移動する場合に比べて、より高速で移動する場合において、ゲインαを小さくして高度H1を更新する。このため、端末20は、速度に応じたゲインαによって高度H1を更新し、正確な情報にすることができる。
そして、端末20は、高度H1の更新の回数が、例えば、5回以上であって、ゲインが5以上である場合に、GPS衛星12aからの信号S1等及び高度H1に基づく2次元測位を行って、2次元座標情報168を生成することができる。新たな高度H2を使用して高度H1を更新することによって、高度H1をより正確な高度を示す情報にすることができる。高度H1を複数回更新することで、個々の高度H2の誤差が相殺される。このため、例えば、5回以上更新した後の高度H1は真の高度に近くなるのである。そして、その高度H1を使用する2次元測位の測位精度は高いものになる。そして、ゲインが5以上になったということは、推定高度H1の信頼性が高くなったことを意味する。
また、正確な高度H1を使用して行う2次元測位は、3次元測位よりも測位精度が高い。これは、観測可能なGPS衛星12a等のうち、測位に使用するGPS衛星の組が2次元測位の方が多いため、多数の測位結果から現在位置をより正確に示すものを選択することができるからである。例えば、観測可能なGPS衛星12a等の数が5個の場合、3次元測位の場合には一度の測位演算に使用するGPS衛星は4個以上であるから、測位に使用するGPS衛星の組は、GPS衛星が4個の組が5組、GPS衛星が5個の組が1組の合計6組である。これに対して、観測可能なGPS衛星12a等の数が5個の場合、2次元測位の場合には一度の測位演算に使用するGPS衛星は3個以上であるから、測位に使用するGPS衛星の組は、GPS衛星が3個の組が10組、GPS衛星が4個の組が5組、GPS衛星が5個の組が1組の合計16組である。
図9乃至図12を使用して説明する。
図9乃至図12は本実施の形態に係る測位システム10の動作例を示す概略フローチャートである。
なお、端末20が、高度H2によって、高度H1を更新する動作を、フィルタとも呼ぶ。そして、ゲインαを、フィルタのゲインαとも言う。
図9乃至図12においては、端末20は既にGPS衛星12a等から信号S1等を受信し、測位を継続している。図9乃至図12においては、測位継続中において、高度H1を更新する方法が示されている。
続いて、端末20は、2次元測位を実行し、2次元測位が成功したか否かを判断する(ステップST4)。端末20は、測位演算が収束し、測位位置を算出することができた場合に、2次元測位が成功したと判断する。ステップST4は、2次元高度算出ステップの一例である。
なお上述のステップST2において、端末20は、予備3次元測位が成功しないと判断した場合には、3次元高度H2bを算出することができないので、そのままステップST4へ進む。
これに対し、端末20は、2次元測位が成功しなかったと判断した場合には、推定高度H1を更新しない(ステップST8B)。2次元測位が成功しなかった場合には、測位自体が失敗であるので、推定高度H1の更新をすることができないのである。
まず、端末20は、端末20が移動しているか否かを判断する(図10のステップST101)。
端末20は、端末20が移動していないと判断した場合には、2次元高度H2cを選択する(ステップST104)。
端末20は、4個以上の衛星を使用していないと判断した場合には、3次元高度H2bを選択する(ステップST104A)。
端末20は、収束度が閾値d1未満ではないと判断した場合には、3次元高度H2bを選択する(ステップST104A)。
これに対して、端末20は、収束度が閾値d1未満であると判断した場合には、2次元高度H2cを選択する(ステップST104)。
まず、端末20は、弱電界であって、かつ、サーチ中の衛星が1個以上あるか否かを判断する(図11のステップST21)。このステップST21は、上述のステップST8又はステップST8A(図9参照)に続くステップである。サーチ中の衛星とは、端末20がまだ信号S1等を捕捉することができず、端末20がトラッキングすることができない衛星を意味する。「弱電界」とは、第8環境及び第9環境を意味する。サーチ中の衛星についてのメジャメント(コードフェーズ、信号強度)が算出されたとしても、その信頼度は低い。
これに対して、端末20は、弱電界であって、かつ、サーチ中の衛星が1個以上であるという条件を満たさないと判断した場合には、基本更新条件を満たすか否かを判断する(ステップST22)。
端末20は、まず、推定高度H1と今回の高度H2の高度差が閾値h(50メートル(m))未満か否かを判断する(ステップST32)。
続いて、端末20は、測位信頼度に応じて、ゲインカウンタを大きくする(ステップST34)。
続いて、端末20は、ゲインカウンタを初期化する(ステップST42)。すなわち、ゲインカウンタを「3」(図7(a)参照)。
続いて、端末20は、適応制御を行う(ステップST24)。
端末20は、測位条件がゲイン暫定変更条件を満たすと判断した場合には、ゲインカウンタを維持して、ゲインを1つ下げる(ステップST202)。
続いて、端末20は、ステップST203に進む。端末20は、上述のステップST201において、ゲイン暫定変更条件を満たさないと判断した場合には、そのままステップST203に進む。
端末20は、高度差が1000メートル(m)以上であると判断した場合には、測位信頼度が閾値d2以上か否かを判断する(ステップST204)。この測位信頼度は、今回の2次元測位又は3次元測位における測位信頼度である。
端末20は、測位信頼度が閾値d2以上であると判断した場合には、高度差の64分の1を推定高度H1に加算する(ステップST205A)。
これに対して、端末20は、測位信頼度が閾値d2未満であると判断した場合には、高度差の4分の1を推定高度H1に加算する(ステップST205B)。
端末20は、高度差が500メートル(m)以上であると判断した場合には、測位信頼度が閾値d2以上か否かを判断する(ステップST207)。
端末20は、測位信頼度が閾値d2以上であると判断した場合には、高度差の32分の1を推定高度H1に加算する(ステップST208A)。
これに対して、端末20は、測位信頼度が閾値d2未満であると判断した場合には、高度差の2分の1を推定高度H1に加算する(ステップST208B)。
端末20は、高度差が100メートル(m)以上であると判断した場合には、測位信頼度が閾値d2以上であるか否かを判断する(ステップST210)。
端末20は、測位信頼度が閾値d2以上であると判断した場合には、高度差の16分の1を推定高度H1に加算する(ステップST211A)。
これに対して、端末20は、測位信頼度が閾値d2未満であると判断した場合には、高度差の2分の1を推定高度H1に加算する(ステップST211B)。
上述のように、測位条件がゲイン暫定変更件を満たす場合には、ゲインカウンタは維持されつつ、ゲインだけが下げられる。
また、ステップST212においては、高度差が100メートル(m)以上であれば、推定高度H1は、その高度差に応じて予め変更を加えられて、更新されることになる。これに対して、高度差が100メートル(m)未満であれば、推定高度H1は、予め変更を加えられることなく、更新されることになる。
コンピュータに上述の動作例の第1高度算出ステップと、第2高度算出ステップと、高度選択ステップと、更新ステップ等を実行させるための測位装置の制御プログラムとすることができる。
また、このような測位装置の制御プログラム等を記録したコンピュータ読み取り可能な記録媒体等とすることもできる。
Claims (5)
- 推定高度を示す推定高度情報を格納する推定高度情報格納手段と、
SPS(Satellite Positioning System)衛星からの信号である衛星信号を受信する信号受信手段と、
前記SPS衛星の他に、地球中心を1つの衛星とみなして地球中心から前記推定高度までの距離を擬似距離として、前記SPS衛星からの擬似距離とともに使用して緯度、経度及び高度を算出する測位(以下、特許請求の範囲において「2次元測位」という。)を行う2次元測位手段と、
地球中心を1つの衛星として用いずに前記SPS衛星からの衛星信号を使用した測位(以下、特許請求の範囲において「3次元測位」という。)を前記2次元測位の際に予備的に行う予備3次元測位手段と、
前記推定高度情報を更新するために前記2次元測位手段の測位により算出された高度又は前記予備3次元測位手段の測位により算出された高度のいずれか一方を選択する高度選択手段と、
前記高度選択手段によって選択した高度を使用して前記推定高度を更新する更新手段と、
前記推定高度の重みを示す情報であるゲインを指定するためのゲインカウンタを記憶するゲインカウンタ記憶手段と、
前記推定高度の更新回数及び前記ゲインカウンタ記憶手段に記憶されたゲインカウンタによって指定されるゲインが、予め規定した基本更新条件を満たすか否かを判断する推定高度評価手段と、
前記推定高度と、前記更新手段が更新に使用する高度との高度差を算出する高度差算出手段と、
を有し、
前記更新手段は、
(1)前記推定高度評価手段によって前記基本更新条件を満たさないと判断され、且つ、前記高度差が予め規定した高度差許容範囲内である場合には、前記更新に使用する高度と前記推定高度とを平均することで前記推定高度を更新するとともに、前記ゲインカウンタを大きくし、
(2)前記推定高度評価手段によって前記基本更新条件を満たさないと判断され、且つ、前記高度差が前記高度差容範囲内ではない場合には、前記更新に使用する高度でもって前記推定高度を更新するとともに、前記ゲインカウンタを小さくし、
(3)前記推定高度評価手段によって前記基本更新条件を満たすと判断された場合に、前記ゲインカウンタを前記測位装置の移動速度に応じて変更するとともに、前記高度差と前記更新に使用する高度を算出した際の測位信頼度とに基づいて前記推定高度を更新する、
測位装置。 - 測位環境を判断する測位環境判断手段と、
前記測位環境に基づいて、前記2次元測位又は前記3次元測位のいずれかを選択する測位方法選択手段と、
前記測位方法選択手段により前記3次元測位が選択された場合に前記3次元測位を行う3次元測位手段と、
を有し、
前記2次元測位手段は、前記測位方法選択手段により前記2次元測位が選択された場合に前記2次元測位を行い、
前記更新手段は、さらに、前記3次元測位手段による前記3次元測位が行われた場合には、当該3次元測位によって算出された高度を使用して前記推定高度を更新する構成となっていることを特徴とする請求項1に記載の測位装置。 - 前記高度選択手段は、
前記測位装置の移動状態、及び、前記2次元測位において算出した測位情報の信頼性に基づいて、前記2次元測位手段の測位により算出された高度又は前記予備3次元測位手段の測位により算出された高度のいずれを使用するかを選択する構成となっていることを特徴とする請求項1又は2に記載の測位装置。 - 推定高度を示す推定高度情報を格納する推定高度情報格納手段と、SPS衛星からの信号である衛星信号を受信する信号受信手段と、前記推定高度の重みを示す情報であるゲインを指定するためのゲインカウンタを記憶するゲインカウンタ記憶手段とを有する測位装置の制御方法であって、
2次元測位を行う2次元測位ステップと、
3次元測位を前記2次元測位の際に予備的に行う予備3次元測位ステップと、
前記推定高度情報を更新するために前記2次元測位ステップの測位で算出された高度又は前記予備3次元測位ステップの測位で算出された高度のいずれか一方を選択する高度選択ステップと、
前記高度選択ステップで選択された高度を使用して前記推定高度を更新する更新ステップと、
前記推定高度の更新回数及び前記ゲインカウンタ記憶手段に記憶されたゲインカウンタによって指定されるゲインが、予め規定した基本更新条件を満たすか否かを判断する推定高度評価ステップと、
前記推定高度と、前記更新ステップにおいて更新に使用する高度との高度差を算出する高度差算出ステップと、
を有し、更に、
前記更新ステップは、
(1)前記推定高度評価ステップにおいて前記基本更新条件を満たさないと判断され、且つ、前記高度差が予め規定した高度差許容範囲内である場合には、前記更新に使用する高度と前記推定高度とを平均することで前記推定高度を更新するとともに、前記ゲインカウンタを大きくし、
(2)前記推定高度評価ステップにおいて前記基本更新条件を満たさないと判断され、且つ、前記高度差が前記高度差容範囲内ではない場合には、前記更新に使用する高度でもって前記推定高度を更新するとともに、前記ゲインカウンタを小さくし、
(3)前記推定高度評価ステップにおいて前記基本更新条件を満たすと判断された場合に、前記ゲインカウンタを前記測位装置の移動速度に応じて変更するとともに、前記高度差と前記更新に使用する高度を算出した際の測位信頼度とに基づいて前記推定高度を更新する、
ステップである、
測位装置の制御方法。 - 推定高度を示す推定高度情報を格納する推定高度情報格納手段と、SPS衛星からの信号である衛星信号を受信する信号受信手段と、前記推定高度の重みを示す情報であるゲインを指定するためのゲインカウンタを記憶するゲインカウンタ記憶手段とを有する測位装置に内蔵されたコンピュータに、
2次元測位を行う2次元測位ステップと、
3次元測位を前記2次元測位の際に予備的に行う予備3次元測位ステップと、
前記推定高度情報を更新するために前記2次元測位ステップの測位で算出された高度又は前記予備3次元測位ステップの測位で算出された高度のいずれか一方を選択する高度選択ステップと、
前記高度選択ステップで選択された高度を使用して前記推定高度を更新する更新ステップと、
前記推定高度の更新回数及び前記ゲインカウンタ記憶手段に記憶されたゲインカウンタによって指定されるゲインが、予め規定した基本更新条件を満たすか否かを判断する推定高度評価ステップと、
前記推定高度と、前記更新ステップにおいて更新に使用する高度との高度差を算出する高度差算出ステップと、
を実行させるとともに、更に、
前記更新ステップを、
(1)前記推定高度評価ステップにおいて前記基本更新条件を満たさないと判断され、且つ、前記高度差が予め規定した高度差許容範囲内である場合には、前記更新に使用する高度と前記推定高度とを平均することで前記推定高度を更新するとともに、前記ゲインカウンタを大きくし、
(2)前記推定高度評価ステップにおいて前記基本更新条件を満たさないと判断され、且つ、前記高度差が前記高度差容範囲内ではない場合には、前記更新に使用する高度でもって前記推定高度を更新するとともに、前記ゲインカウンタを小さくし、
(3)前記推定高度評価ステップにおいて前記基本更新条件を満たすと判断された場合に、前記ゲインカウンタを前記測位装置の移動速度に応じて変更するとともに、前記高度差と前記更新に使用する高度を算出した際の測位信頼度とに基づいて前記推定高度を更新する、
ステップとして前記コンピュータに実行させるためのプログラム。
Priority Applications (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2006228770A JP4270244B2 (ja) | 2006-08-25 | 2006-08-25 | 測位装置、測位装置の制御方法及びプログラム |
| US11/882,734 US7557750B2 (en) | 2006-08-25 | 2007-08-03 | Positioning device, method of controlling positioning device, and recording medium |
| DE602007012802T DE602007012802D1 (de) | 2006-08-25 | 2007-08-08 | Positioniervorrichtung, Verfahren zur Steuerung der Positioniervorrichtung und Aufzeichnungsmedium |
| EP07015600A EP1892540B1 (en) | 2006-08-25 | 2007-08-08 | Positioning device, method of controlling positioning device, and recording medium |
| KR1020070085421A KR20080018836A (ko) | 2006-08-25 | 2007-08-24 | 측위 장치, 측위 장치의 제어 방법 및 기록 매체 |
| CN2007101387990A CN101131427B (zh) | 2006-08-25 | 2007-08-24 | 定位装置、定位装置的控制方法 |
| US12/477,683 US20090273516A1 (en) | 2006-08-25 | 2009-06-03 | Positioning device, method of controlling positioning device, and recording medium |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2006228770A JP4270244B2 (ja) | 2006-08-25 | 2006-08-25 | 測位装置、測位装置の制御方法及びプログラム |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2008051680A JP2008051680A (ja) | 2008-03-06 |
| JP4270244B2 true JP4270244B2 (ja) | 2009-05-27 |
Family
ID=38705051
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2006228770A Expired - Fee Related JP4270244B2 (ja) | 2006-08-25 | 2006-08-25 | 測位装置、測位装置の制御方法及びプログラム |
Country Status (6)
| Country | Link |
|---|---|
| US (2) | US7557750B2 (ja) |
| EP (1) | EP1892540B1 (ja) |
| JP (1) | JP4270244B2 (ja) |
| KR (1) | KR20080018836A (ja) |
| CN (1) | CN101131427B (ja) |
| DE (1) | DE602007012802D1 (ja) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102109349B (zh) * | 2010-12-13 | 2013-03-13 | 北京航空航天大学 | 一种具有ecef模型的mimu系统 |
| US9031572B2 (en) * | 2010-12-22 | 2015-05-12 | Qualcomm Incorporated | Method and apparatus for estimating satellite positioning reliability |
| CN103033822B (zh) * | 2011-09-30 | 2014-09-24 | 迈实电子(上海)有限公司 | 移动信息确定装置、方法以及接收机 |
| WO2013161211A1 (ja) * | 2012-04-25 | 2013-10-31 | 日本電気株式会社 | 携帯端末、位置情報検索システム及びそれらに用いる位置情報検索方法 |
| TWI498581B (zh) * | 2014-01-03 | 2015-09-01 | Ind Tech Res Inst | 衛星定位方法、衛星定位裝置與電腦可讀取媒體 |
| KR102152156B1 (ko) * | 2017-12-01 | 2020-09-04 | 국방과학연구소 | 측위 장치 및 그 제어 방법 |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0675103B2 (ja) | 1986-05-26 | 1994-09-21 | 日産自動車株式会社 | Gps位置計測装置 |
| JPH04369492A (ja) * | 1991-06-18 | 1992-12-22 | Pioneer Electron Corp | Gps測位装置 |
| US5434574A (en) | 1993-01-13 | 1995-07-18 | Pioneer Electronic Corporation | System for detecting an altitude of a vehicle dependent on a global positioning system |
| JP3448976B2 (ja) | 1994-08-30 | 2003-09-22 | 株式会社デンソー | 車両用現在位置検出装置 |
| US6453237B1 (en) * | 1999-04-23 | 2002-09-17 | Global Locate, Inc. | Method and apparatus for locating and providing services to mobile devices |
| US6429814B1 (en) * | 2000-11-17 | 2002-08-06 | Global Locate, Inc. | Method and apparatus for enhancing a global positioning system with terrain model |
| JP2002341012A (ja) | 2001-05-16 | 2002-11-27 | Aisin Seiki Co Ltd | Gps受信機 |
| JP4304293B2 (ja) * | 2003-11-12 | 2009-07-29 | 日本電気株式会社 | Gps測位システム、携帯端末装置、gps受信機及びそれらに用いる測位モード切替え方法 |
| FR2875899B1 (fr) * | 2004-09-24 | 2006-12-01 | Thales Sa | Dispositif et procede de signalisation de marges laterales de manoeuvre |
| JP4259490B2 (ja) | 2005-05-24 | 2009-04-30 | セイコーエプソン株式会社 | 測位装置 |
-
2006
- 2006-08-25 JP JP2006228770A patent/JP4270244B2/ja not_active Expired - Fee Related
-
2007
- 2007-08-03 US US11/882,734 patent/US7557750B2/en not_active Expired - Fee Related
- 2007-08-08 DE DE602007012802T patent/DE602007012802D1/de active Active
- 2007-08-08 EP EP07015600A patent/EP1892540B1/en not_active Not-in-force
- 2007-08-24 KR KR1020070085421A patent/KR20080018836A/ko not_active Ceased
- 2007-08-24 CN CN2007101387990A patent/CN101131427B/zh not_active Expired - Fee Related
-
2009
- 2009-06-03 US US12/477,683 patent/US20090273516A1/en not_active Abandoned
Also Published As
| Publication number | Publication date |
|---|---|
| EP1892540B1 (en) | 2011-03-02 |
| US20080051999A1 (en) | 2008-02-28 |
| KR20080018836A (ko) | 2008-02-28 |
| DE602007012802D1 (de) | 2011-04-14 |
| JP2008051680A (ja) | 2008-03-06 |
| US20090273516A1 (en) | 2009-11-05 |
| US7557750B2 (en) | 2009-07-07 |
| CN101131427A (zh) | 2008-02-27 |
| EP1892540A1 (en) | 2008-02-27 |
| CN101131427B (zh) | 2011-05-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN108700670B (zh) | 定位装置及定位方法 | |
| CN110226108B (zh) | 定位装置及定位方法 | |
| TWI524083B (zh) | 衛星導航接收機、設備和定位方法 | |
| CN111913201B (zh) | 一种gnss差分定位方法、装置及计算机可读存储介质 | |
| JP4270244B2 (ja) | 測位装置、測位装置の制御方法及びプログラム | |
| US20070203647A1 (en) | Positioning device, method of controlling positioning device, program for controlling positioning device, and computer-readable recording medium having program for controlling positioning device recorded thereon | |
| US7633436B2 (en) | Satellite-based positioning of mobile terminals | |
| JP2007316034A (ja) | 測位装置、測位装置の制御方法、その制御プログラム及び記録媒体 | |
| KR20130024181A (ko) | Gps 수신기 및 항법해 산출 방법 | |
| WO2009061824A1 (en) | Systems and methods for synthesizing gps measurements to improve gps location availability | |
| US20120176270A1 (en) | Method for providing reliability of reckoning location and mobile terminal therefor | |
| CN100580478C (zh) | 定位装置、定位装置的控制方法 | |
| JP2007232635A (ja) | 測位装置、測位装置の制御方法、測位装置の制御プログラム、測位装置の制御プログラムを記録したコンピュータ読み取り可能な記録媒体 | |
| JP5070771B2 (ja) | 測位装置及び制御方法 | |
| JP2003500656A (ja) | レシーバ位置の決定装置及び方法 | |
| JP4151677B2 (ja) | 測位システム、端末装置、端末装置の制御方法及び端末装置の制御プログラム | |
| Tien et al. | Adaptive strategy-based tightly-coupled INS/GNSS integration system aided by odometer and barometer | |
| JP5109788B2 (ja) | 測位制御方法 | |
| CN108107458B (zh) | 实现gnss接收机首次定位的方法、装置及移动终端 | |
| HK1118339A (en) | Positioning device, method of controlling positioning device, and recording medium | |
| JP2007240367A (ja) | 測位装置、測位装置の制御方法、測位装置の制御プログラム、測位装置の制御プログラムを記録したコンピュータ読み取り可能な記録媒体 | |
| Yi et al. | Enhancing Smartphone Positioning with Galileo HAS Corrections and an Environmentally-Aware PPP/IMU Approach | |
| JP2006090839A (ja) | 端末装置、端末装置の制御方法、端末装置の制御プログラム、端末装置の制御プログラムを記録したコンピュータ読み取り可能な記録媒体 | |
| EP2706382A1 (en) | Apparatuses and methods for tracking a navigation receiver | |
| JP2005337791A (ja) | 端末装置、端末装置の制御方法、端末装置の制御プログラム及び端末装置の制御プログラムを記録したコンピュータ読み取り可能な記録媒体 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080819 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081020 |
|
| RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20081020 |
|
| RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20081020 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081111 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090109 |
|
| A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20090116 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090203 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090216 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120306 Year of fee payment: 3 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120306 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130306 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140306 Year of fee payment: 5 |
|
| S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| LAPS | Cancellation because of no payment of annual fees |