JP4278481B2 - Manufacturing method of semiconductor device - Google Patents
Manufacturing method of semiconductor device Download PDFInfo
- Publication number
- JP4278481B2 JP4278481B2 JP2003362961A JP2003362961A JP4278481B2 JP 4278481 B2 JP4278481 B2 JP 4278481B2 JP 2003362961 A JP2003362961 A JP 2003362961A JP 2003362961 A JP2003362961 A JP 2003362961A JP 4278481 B2 JP4278481 B2 JP 4278481B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- insulating film
- hole
- semiconductor device
- wiring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims description 56
- 238000004519 manufacturing process Methods 0.000 title claims description 35
- 239000010949 copper Substances 0.000 claims description 115
- 238000009792 diffusion process Methods 0.000 claims description 61
- 230000002265 prevention Effects 0.000 claims description 42
- 238000000034 method Methods 0.000 claims description 30
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 26
- 229910052802 copper Inorganic materials 0.000 claims description 26
- 238000004544 sputter deposition Methods 0.000 claims description 22
- 238000005530 etching Methods 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 18
- 230000004888 barrier function Effects 0.000 claims description 14
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 10
- 229910052786 argon Inorganic materials 0.000 claims description 7
- 239000004020 conductor Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 238000004140 cleaning Methods 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 229910052715 tantalum Inorganic materials 0.000 claims description 5
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 5
- 230000002093 peripheral effect Effects 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 claims 1
- 239000011229 interlayer Substances 0.000 description 42
- 239000011800 void material Substances 0.000 description 6
- 239000010410 layer Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- 239000005751 Copper oxide Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 229910000431 copper oxide Inorganic materials 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 2
- 229910021594 Copper(II) fluoride Inorganic materials 0.000 description 1
- -1 Phospho Tetra Ethyl Ortho Silicate Chemical class 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- GWFAVIIMQDUCRA-UHFFFAOYSA-L copper(ii) fluoride Chemical compound [F-].[F-].[Cu+2] GWFAVIIMQDUCRA-UHFFFAOYSA-L 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
- H01L21/76805—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics the opening being a via or contact hole penetrating the underlying conductor
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Description
本発明は、半導体装置およびその製造方法に関し、特に、銅を含む導電体よりなる配線を備えた半導体装置およびその製造方法に関する。 The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly, to a semiconductor device provided with a wiring made of a conductor containing copper and a manufacturing method thereof.
LSI(Large‐Scale Integrated circuit)の微細化、高速化に伴ない、LSIの配線材料として従来用いられていたアルミニウムに代わり、電気抵抗の低い銅が用いられようとしている。LSIの配線材料として銅を用いることにより、電気抵抗を低く抑えながら配線を微細化することができ、また、LSIの動作速度を向上することができる。しかしながら、銅は絶縁膜中に拡散しやすい性質を有している。銅が絶縁膜中に拡散すれば配線の信頼性が低くなってしまう。また、銅はプラズマイオンとの反応速度が非常に遅いという性質を有している。このため、エッチングにより配線を形成しようとすると十分な生産性が得られない。 As LSI (Large-Scale Integrated circuit) is miniaturized and speeded up, copper having low electrical resistance is being used instead of aluminum which has been conventionally used as an LSI wiring material. By using copper as the wiring material of the LSI, the wiring can be miniaturized while keeping the electric resistance low, and the operation speed of the LSI can be improved. However, copper has a property of easily diffusing into the insulating film. If copper diffuses into the insulating film, the reliability of the wiring is lowered. Copper also has the property that the reaction rate with plasma ions is very slow. For this reason, sufficient productivity cannot be obtained if wiring is formed by etching.
そこで、これらの問題を解決することのできる銅配線の形成方法として、近年、ダマシン法が採用されている。通常のダマシン法を用いた場合、銅よりなる配線は以下のように形成される。 Therefore, in recent years, a damascene method has been adopted as a method for forming a copper wiring that can solve these problems. When the normal damascene method is used, the wiring made of copper is formed as follows.
まず、銅よりなる下部配線を覆うように、第1の拡散防止膜(絶縁体)と、層間絶縁膜とが積層して形成される。次に、通常の写真製版技術およびエッチング技術により、層間絶縁膜および第1の拡散防止膜に接続孔が開口される。これにより、接続孔の底面には下部配線が露出する。そして、開口された接続孔内が洗浄される。続いて、層間絶縁膜に形成された接続孔の上部をエッチングすることにより、接続孔の上部に溝が形成される。次に、溝の側面および底面と、接続孔の側面および底面と、層間絶縁膜の上面とを覆うように、第2の拡散防止膜(導電体)が形成され、溝および接続孔を埋めるように、第2の拡散防止膜の上に銅膜が形成される。第2の拡散防止膜は、銅膜との間に隙間が生じないように、銅との密着性が良好な材料で形成される。そして、層間絶縁膜上の第2の拡散防止膜および銅膜が除去される。これにより、溝および接続孔内にのみ第2の拡散防止膜と銅膜とが残存されて、銅よりなる上部配線部分およびコンタクト部が形成される。その後、上部配線部分を覆うように層間絶縁膜上に第3の拡散防止膜(絶縁体)が形成される。 First, a first diffusion prevention film (insulator) and an interlayer insulation film are laminated so as to cover the lower wiring made of copper. Next, connection holes are opened in the interlayer insulating film and the first diffusion prevention film by a normal photolithography technique and etching technique. As a result, the lower wiring is exposed on the bottom surface of the connection hole. And the inside of the opened connection hole is wash | cleaned. Subsequently, by etching the upper portion of the connection hole formed in the interlayer insulating film, a groove is formed in the upper portion of the connection hole. Next, a second diffusion prevention film (conductor) is formed so as to cover the side surface and bottom surface of the groove, the side surface and bottom surface of the connection hole, and the top surface of the interlayer insulating film so as to fill the groove and connection hole. In addition, a copper film is formed on the second diffusion barrier film. The second diffusion barrier film is formed of a material having good adhesion to copper so that no gap is generated between the second diffusion barrier film and the copper film. Then, the second diffusion prevention film and the copper film on the interlayer insulating film are removed. As a result, the second diffusion prevention film and the copper film remain only in the groove and the connection hole, and an upper wiring portion and a contact portion made of copper are formed. Thereafter, a third diffusion barrier film (insulator) is formed on the interlayer insulating film so as to cover the upper wiring portion.
なお、ダマシン法を開示する文献として、たとえば特開平10−340865号公報(特許文献1)、特開2001−118846号公報(特許文献2)、特開平5−234973号公報(特許文献3)、特開平11−330246号公報(特許文献4)、特開平9−82798号公報(特許文献5)、特開2000−164712号公報(特許文献6)などがある。
通常、層間絶縁膜および第1の拡散防止膜に接続孔が開口される際には、はじめに層間絶縁膜をエッチングすることにより層間絶縁膜の部分に接続孔が開口され、次にエッチングガスなどのエッチング条件を変えて第1の拡散防止膜をエッチングすることにより第1の拡散防止膜の部分に接続孔が開口される。このうち、第1の拡散防止膜に接続孔を開口する際には、層間絶縁膜よりも第1の拡散防止膜の方がエッチングされやすくなる条件で、第1の拡散防止膜がエッチングされる。このため、第1の拡散防止膜に接続孔を開口する際には、層間絶縁膜の側面に比べて第1の拡散防止膜の側面がより大きくエッチングされるので、第1の拡散防止膜にサイドエッチングが生じやすい。さらに、接続孔が開口された後で接続孔内が洗浄される際にも、下部配線の表面にサイドエッチングが生じやすい。このように第1の拡散防止膜や下部配線においてサイドエッチングが生じた部分には、第2の拡散防止膜が形成されにくく(途切れやすく)、銅膜も形成されにくい(途切れやすい)。これにより、第1の拡散防止膜や下部配線においてサイドエッチングが生じた部分にボイドが生成し、電気抵抗の増加や断線などが起こりやすくなる。その結果、半導体装置の信頼性が低下するという問題があった。 Usually, when a connection hole is opened in the interlayer insulating film and the first diffusion prevention film, the connection hole is opened in the interlayer insulating film by first etching the interlayer insulating film, and then an etching gas or the like By changing the etching conditions and etching the first diffusion barrier film, a connection hole is opened in the first diffusion barrier film. Among these, when the connection hole is opened in the first diffusion preventing film, the first diffusion preventing film is etched under the condition that the first diffusion preventing film is more easily etched than the interlayer insulating film. . For this reason, when the connection hole is opened in the first diffusion barrier film, the side surface of the first diffusion barrier film is etched larger than the side surface of the interlayer insulating film. Side etching is likely to occur. Furthermore, when the inside of the connection hole is cleaned after the connection hole is opened, side etching tends to occur on the surface of the lower wiring. As described above, the second diffusion prevention film is hardly formed (easy to be interrupted) and the copper film is difficult to be easily formed (easy to be interrupted) in the first diffusion prevention film and the portion where the side etching occurs in the lower wiring. As a result, voids are generated in the portion where side etching occurs in the first diffusion prevention film and the lower wiring, and an increase in electrical resistance and disconnection are likely to occur. As a result, there is a problem that the reliability of the semiconductor device is lowered.
したがって、本発明の目的は、半導体装置の信頼性を向上することのできる半導体装置およびその製造方法を提供することである。 Accordingly, an object of the present invention is to provide a semiconductor device capable of improving the reliability of the semiconductor device and a manufacturing method thereof.
本発明の一の局面に従う半導体装置の製造方法は以下の工程を備えている。銅を含む導電体で形成される配線が形成される。配線上を覆うように第1の絶縁膜が形成される。第1の絶縁膜上に第2の絶縁膜が形成される。第2の絶縁膜に第1の絶縁膜に達する第1の孔が形成される。第1の孔から露出する部分を除去することにより、配線に達する第2の孔が第1の絶縁膜に形成されるとともに、第2の孔の壁面が第1の孔の壁面よりも外周側に削られる。第1および第2の孔によって露出した配線表面をスパッタにより部分的に除去し、第2の孔の壁面全面に向けて配線表面から除去された除去物を飛ばし、除去物が付着される。第1の孔の側面、第2の孔内の除去物上、及び溝の側面および底面にタンタルを含有するバリアメタルが形成される。溝内、第1および第2の孔内が導電膜で埋められる。第1の孔の上部と溝の底部は互いに繋がるようにされ、第2の絶縁膜内に溝の底面が形成されるようにされている。
本発明の他の局面に従う半導体装置の製造方法は以下の工程を備えている。銅を含む導電体で形成される配線が形成される。配線上を覆うように第1の絶縁膜が形成される。第1の絶縁膜上に第2の絶縁膜が形成される。第2の絶縁膜に前記第1の絶縁膜に達する第1の孔が形成される。第1の絶縁膜の第1の孔によって露出する部分を除去することにより、配線に達する第2の孔が第1の絶縁膜に形成される。第2の孔が形成されることにより露出した配線を洗浄処理することにより、第1の孔の壁面よりも外周部に削られた凹部が配線に形成される。凹部に対してスパッタによりエッチング処理を行なうことにより、露出した配線表面から除去された除去物が第2の孔の壁面全面に向けて飛ばされ、除去物が付着される。第1の孔の側面、第2の孔内の除去物上、及び溝の側面および底面にタンタルを含有するバリアメタルが形成される。溝内、第1および第2の孔内が導電膜で埋められる。第1の孔の上部と溝の底部は互いに繋がるようにされ、第2の絶縁膜内に溝の底面が形成されるようにされている。
A method for manufacturing a semiconductor device according to one aspect of the present invention includes the following steps. A wiring formed of a conductor containing copper is formed. A first insulating film is formed so as to cover the wiring. A second insulating film is formed on the first insulating film. A first hole reaching the first insulating film is formed in the second insulating film. By removing the portion exposed from the first hole, the second hole reaching the wiring is formed in the first insulating film, and the wall surface of the second hole is more peripheral than the wall surface of the first hole. It is shaved by. The surface of the wiring exposed by the first and second holes is partially removed by sputtering, the removed material removed from the wiring surface is blown toward the entire wall surface of the second hole , and the removed material is attached . A barrier metal containing tantalum is formed on the side surface of the first hole, on the removed material in the second hole, and on the side surface and bottom surface of the groove. The groove and the first and second holes are filled with the conductive film. The upper part of the first hole and the bottom part of the groove are connected to each other, and the bottom surface of the groove is formed in the second insulating film.
A method for manufacturing a semiconductor device according to another aspect of the present invention includes the following steps. A wiring formed of a conductor containing copper is formed. A first insulating film is formed so as to cover the wiring. A second insulating film is formed on the first insulating film. A first hole reaching the first insulating film is formed in the second insulating film. By removing a portion exposed by the first hole of the first insulating film, a second hole reaching the wiring is formed in the first insulating film. By cleaning the wiring exposed by the formation of the second hole, a recess is formed in the wiring that is scraped to the outer periphery rather than the wall surface of the first hole. By performing the etching process on the concave portion by sputtering, the removed material removed from the exposed wiring surface is blown toward the entire wall surface of the second hole, and the removed material is attached. A barrier metal containing tantalum is formed on the side surface of the first hole, on the removed material in the second hole, and on the side surface and bottom surface of the groove. The groove and the first and second holes are filled with the conductive film. The upper part of the first hole and the bottom part of the groove are connected to each other, and the bottom surface of the groove is formed in the second insulating film.
本発明の半導体装置の製造方法によれば、第1の孔の壁面よりも外周側に削られた第2の孔が除去物で埋められるので、第2の孔内に導電膜が途切れずに形成されやすくなり、第2の孔内へのボイドの生成が抑止される。また、除去物が第2の孔内を埋める分だけ、第2の絶縁膜における第1の孔の側面に付着する除去物の量は少なくなるので、除去物が第2の絶縁膜中に拡散することにより配線間リークを引き起こすという問題を抑止することができる。したがって、半導体装置の信頼性を向上することができる。 According to the method for manufacturing a semiconductor device of the present invention, since the second hole cut to the outer peripheral side from the wall surface of the first hole is filled with the removed material, the conductive film is not interrupted in the second hole. It becomes easy to form, and the production | generation of the void in a 2nd hole is suppressed. Further, since the amount of the removed material adhering to the side surface of the first hole in the second insulating film is reduced by the amount that the removed material fills the second hole, the removed material diffuses into the second insulating film. By doing so, it is possible to suppress a problem of causing a leak between wirings. Therefore, the reliability of the semiconductor device can be improved.
以下、本発明の一実施の形態について図に基づいて説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
図1は、本発明の一実施の形態における半導体装置の構成を示す断面図である。 FIG. 1 is a cross-sectional view showing a configuration of a semiconductor device according to an embodiment of the present invention.
図1を参照して、本実施の形態の半導体装置1は、以下のような構成を有している。
Referring to FIG. 1,
層間絶縁膜3には溝5が形成されており、拡散防止膜7が溝5の側面および底面を覆うように形成されている。そして、溝5を埋めるように拡散防止膜7の上にCu(銅)膜9が形成されている。これにより、下部配線6(配線)が構成されている。さらに、Cu膜9を覆うように層間絶縁膜3の上に拡散防止膜11(第1の絶縁膜)が形成されており、拡散防止膜11の上には層間絶縁膜13(第2の絶縁膜)が形成されている。
A
層間絶縁膜13および拡散防止膜11には、下部配線6のCu膜9に達する接続孔15(接続孔)が開口されている。さらに、層間絶縁膜13の接続孔15の上部には溝18が形成されている。拡散防止膜11に生じるサイドエッチングに起因して、拡散防止膜11における接続孔15の側面には凹部26が形成されている。これにより、拡散防止膜11における接続孔15の口径(図1中横方向の長さ)は層間絶縁膜13における接続孔15の口径よりも大きくなっている。また、接続孔15の底部のCu膜9には凹部16が形成されている。接続孔15の側面にはCuが付着しており、Cu膜9aが形成されている。Cu膜9aは層間絶縁膜13における接続孔15の側面および凹部26および凹部16の側部に連続膜となって形成されており、凹凸の少ない均一な膜の状態となっている。また、層間絶縁膜13における接続孔15の側面のCu膜9aの膜厚は薄くなっており、Cu膜9aの長さも短くなっている。Cu膜9aにより、凹部26と、凹部16の側部とが埋められており、ボイドは生成していない。
A connection hole 15 (connection hole) reaching the
溝18の側面および底面と、接続孔15の側面および底面(凹部16の底面)と、Cu膜9aとを覆うように、拡散防止膜17が形成されている。そして、溝18および接続孔15を埋めるように、拡散防止膜17上にCu膜19(導電膜)が形成されている。Cu膜19を覆うように層間絶縁膜13の上に拡散防止膜21が形成されている。溝18内における拡散防止膜17とCu膜19とにより上部配線4が構成されており、接続孔15内における拡散防止膜17とCu膜19とによりコンタクト部8が構成されている。
A
続いて、本実施の形態の半導体装置の製造方法について説明する。 Subsequently, a method for manufacturing the semiconductor device of the present embodiment will be described.
図2〜6は、本発明の一実施の形態における半導体装置の製造方法を工程順に示す断面図である。 2 to 6 are cross-sectional views showing a method of manufacturing a semiconductor device according to an embodiment of the present invention in the order of steps.
図2を参照して、従来のダマシン法により、拡散防止膜7とCu膜9とにより構成される下部配線6が層間絶縁膜3の溝5に形成されている。この層間絶縁膜3の上に、拡散防止膜11と、層間絶縁膜13とが積層して形成される。層間絶縁膜3および層間絶縁膜13は、たとえばPTEOS(Phospho Tetra Ethyl Ortho Silicate)よりなっている。また、拡散防止膜11は、たとえばプラズマCVD(Chemical Vapor Deposition)法により形成されたシリコン窒化膜よりなっている。
Referring to FIG. 2,
図3を参照して、通常の写真製版技術およびエッチング技術により、層間絶縁膜13に接続孔15(第1の孔)が開口される。これにより、接続孔15の底部に拡散防止膜11が露出する。次に、層間絶縁膜13に開口された接続孔15を介して接続孔15から露出する拡散防止膜11をエッチングすることにより、拡散防止膜11に接続孔15(第2の孔)が開口される。これにより、接続孔15の底部にCu膜9が露出する。ここで、拡散防止膜11をエッチングする際には、層間絶縁膜13よりも拡散防止膜11の方がエッチングされやすくなるような条件でエッチングが行なわれる。このため、拡散防止膜11をエッチングする際に、層間絶縁膜13はエッチングされずに拡散防止膜11のみがエッチングされる。その結果、拡散防止膜11にサイドエッチングが生じ、拡散防止膜11における接続孔15の壁面が層間絶縁膜13における接続孔15の壁面よりも外周側(図3中横方向)に削られる。つまり、拡散防止膜11における接続孔15の側面に凹部26が形成される。続いて、接続孔15内が洗浄され、接続孔15内に残った残渣などが除去される。ここで、接続孔15の開口の際には、接続孔15の底部およびその付近のCu膜9の表面には結晶性の乱れた銅結晶、酸化銅、および不純物を含んだCu膜(以下、ダメージ層)などが局所的に形成されている。Cu膜9の表面に形成されたこのようなダメージ層が、開口後に洗浄液により除去される。その結果、Cu膜9の表面には凹部16が形成される。凹部16は、接続孔15の底部から拡散防止膜11との界面にまで広がっている。
Referring to FIG. 3, connection hole 15 (first hole) is opened in
図4を参照して、接続孔15から露出した下部配線6のCu膜9表面がスパッタにより部分的に除去される。Cu膜9表面から除去されたCuは、凹部26の全面と、凹部16の側部とに付着する。具体的には、Ar(アルゴン)を用いて0℃以上100℃以下、好ましくは50℃以下の温度でCu膜9のスパッタが行なわれる。また、好ましくはArおよびH(水素)を用いてスパッタが行なわれる。これにより、スパッタにより除去されたCu膜9が、凹部26の全面と、凹部16の側部とに再付着する。その結果、凹部26と、凹部16の側部とを埋めるように、接続孔15の側面にCu膜9aが形成される。続いて、通常の写真製版技術およびエッチング技術により、層間絶縁膜13が一定の深さまでエッチングされ、溝18が形成される。
Referring to FIG. 4, the surface of
図5を参照して、溝18の側面および底面と、接続孔15の側面および底面(凹部16の底面)と、Cu膜9aとを覆うように、層間絶縁膜13の上に拡散防止膜17が形成される。拡散防止膜17は、たとえばスパッタ法を用いて、Ta(タンタル)を25nmの厚さで成膜し、その上にTaN(窒化タンタル)を10nmの厚さで成膜することにより形成される。このとき、凹部26と、凹部16の側部とはCu膜9aにより埋められているので、ボイドが生成することなく、拡散防止膜17は均一な連続膜で形成される。次に、溝18および接続孔15を埋めるように、拡散防止膜17上にCu膜19が形成される。Cu膜19は、たとえばメッキ法により0.6μmの厚さで形成される。ここで、拡散防止膜17が均一な連続膜で形成されているので、拡散防止膜17によりCuメッキ液中におけるCuイオンと電子とのやり取りが促進され、その結果、拡散防止膜17上には均一なCu膜19が形成される。
Referring to FIG. 5,
図6を参照して、たとえばCMP(Chemical mechanical Polish)法により、層間絶縁膜13上の余分な拡散防止膜17およびCu膜19が除去される。これにより、溝18に
上部配線4が形成され、接続孔15にコンタクト部8が形成される。
Referring to FIG. 6, excess
図1を参照して、たとえばプラズマCVD法により形成されたシリコン窒化膜よりなる拡散防止膜21が、Cu膜19を覆うように層間絶縁膜13の上に形成される。以上の工程により、本実施の形態における半導体装置1が完成する。
Referring to FIG. 1, a
本実施の形態における半導体装置およびその製造方法によれば、接続孔15内の凹部26と、凹部16の側部とがCu膜9aにより埋められるので、接続孔15内に拡散防止膜17およびCu膜19が途切れずに形成されやすくなり、接続孔15内へのボイドの生成が抑止される。また、Cu膜9aが接続孔15内の凹部26と、凹部16の側部とを埋める分だけ、層間絶縁膜13における接続孔15の側面に付着するCuの量は少なくなるので、Cuが層間絶縁膜13中に拡散することにより配線間リークを引き起こすという問題を抑止することができる。したがって、半導体装置1の信頼性を向上することができる。
According to the semiconductor device and the manufacturing method thereof in the present embodiment, the
上記製造方法において好ましくは、スパッタは、Arを用いて行われ、0℃以上100℃以下の温度で行なわれる。 Preferably, in the above manufacturing method, sputtering is performed using Ar, and is performed at a temperature of 0 ° C. or higher and 100 ° C. or lower.
本願発明者らは、鋭意検討し、Arを用いて0℃以上100℃以下の温度でスパッタを行なうことにより、スパッタにより除去されたCu膜9が、凹部26の全面と、凹部16の側部とに再付着することを見出した。この効果は以下の理由によるものと考えられる。
The inventors of the present application have studied earnestly, and by performing sputtering at a temperature of 0 ° C. or higher and 100 ° C. or lower using Ar, the
図7は、Arを用いて160℃の温度でスパッタした場合の半導体装置の構成を示す断面図である。 FIG. 7 is a cross-sectional view showing a configuration of a semiconductor device when sputtering is performed at a temperature of 160 ° C. using Ar.
図7を参照して、半導体装置101において、Cu膜9aは、接続孔15における凹部26の上部の側壁に厚く付着している。また、Cu膜9bは凹部26の一部を埋めるように形成されている。すなわち、凹部26および凹部16はCu膜9a、9bによって完全に埋められておらず、凹部26にはボイド27が形成されており、凹部16の側部にはボイド25が生成している。Cu膜9a、9bは表面の凹凸が大きく、不均一な膜の状態となっている。
Referring to FIG. 7, in
なお、これ以外の構成については、図1に示す本実施の形態における半導体装置1の構成とほぼ同じであるため、同一の構成要素には同一の符号を付し、その説明を省略する。
Since the configuration other than this is almost the same as the configuration of the
図7に示すように、100℃より高い温度(たとえば160℃)でCu膜9をスパッタする場合には、Arのエネルギが大きいため、接続孔15の底部に露出しているCu膜9が除去される際にCuが遠くへ飛び散る。このため、除去されたCu膜9a、9bにより凹部26や、凹部16の側部を埋めることができず、Cu膜9a、9bが接続孔15の側面に不均一に再付着してしまう。
As shown in FIG. 7, when the
一方、本実施の形態における半導体装置の製造方法のように、100℃以下の低温でArを用いてスパッタする場合には、Arのエネルギが小さいため、接続孔15の底部に露出しているCu膜9が除去される際に遠くへ飛び散ることが抑止される。このため、凹部26や、凹部16の側部といった接続孔15の底部から比較的近い部分に、除去されたCu膜9は再付着しやすくなる。これにより、凹部26および凹部16の側部がCu膜9aで埋められ、ボイドの生成が抑止される。一方、0℃以上の温度でCu膜9がスパッタされるので、異物が付着することなくCu膜9をスパッタすることができる。
On the other hand, when sputtering is performed using Ar at a low temperature of 100 ° C. or lower as in the method for manufacturing a semiconductor device in the present embodiment, the energy of Ar is small, so that Cu exposed at the bottom of the
また、層間絶縁膜13における接続孔15の側面は、接続孔15の底部から比較的遠い部分に存在しているので、除去されたCu膜9は層間絶縁膜13における接続孔15の側面に再付着しにくくなる。したがって、層間絶縁膜13における接続孔15の側面のCu膜9aの膜厚は薄くなり、Cu膜9aの長さも短くなるので、層間絶縁膜13における接続孔15の側面のCu膜9aの量は少なくなる。これにより、接続孔15の側面に付着したCu膜9aが層間絶縁膜13中に拡散することにより配線間リークを引き起こすという問題を抑止することができる。
In addition, since the side surface of the
さらに、100℃以下という低温でスパッタするので、非常に小さな粒径の結晶粒のCu膜9aが形成され、また、付着したCu膜9aはマイグレートしないので、Cu膜9aの表面が平坦になる。さらに、接続孔15の側面に再付着するCu膜9aの量が少ないことから、Cu膜9aの結晶粒が成長しにくく、Cu膜9aの表面の凹凸が大きくなることが抑止される。これにより、Cu膜9aが均一な膜になる。したがって、Cu膜9aの上に形成される拡散防止膜17およびCu膜19が良質な膜質で形成される。以上の理由により、半導体装置1の信頼性を向上することができる。
Furthermore, since sputtering is performed at a low temperature of 100 ° C. or lower, a
上記製造方法において好ましくは、Cu膜9のスパッタは、0℃以上50℃以下の温度で行なわれる。
In the above manufacturing method, the
これにより、さらに低温でCu膜9がスパッタされるので、Cu膜9が除去される際に一層遠くへ飛び散らなくなり、凹部26および凹部16の側部がCu膜9aで一層埋められやすくなる。また、層間絶縁膜13における接続孔15の側面に付着するCu膜9aの量が一層少なくなるので、配線間リークを引き起こすという問題を一層抑止することができる。さらに、Cu膜9aが一層均一な膜になるので、Cu膜9aの上に形成される拡散防止膜17が一層良質な膜質で形成される。したがって、半導体装置の信頼性を一層向上することができる。
Thereby, since the
本願発明者らは、上記効果を確認するために、以下の実験を行なった。 The inventors of the present application conducted the following experiment in order to confirm the above effect.
Arを用いて50℃の温度で下部配線のCu膜のスパッタを行ない、半導体装置を製造した。また、比較のために、Arを用いて160℃の温度で下部配線のCu膜のスパッタを行ない、配線を備える半導体装置1を同様の方法で製造した。その結果、Arを用いて50℃の温度でスパッタした場合における10%TTF(半導体装置の故障率が10%に至るまでの時間)は22788時間であり、50%TTF(半導体装置の故障率が50%に至るまでの時間)は、26900時間であった。一方、Arを用いて160℃の温度でスパッタした場合における10%TTFは8200時間であり、50%TTFは11211時間であった。以上の結果により、50℃の温度で下部配線のCu膜のスパッタを行なった場合には、160℃の温度で下部配線のCu膜のスパッタを行なった場合よりも半導体装置の寿命が約2.4倍に伸びており、半導体装置の信頼性が向上していることがわかる。
The Cu film of the lower wiring was sputtered at a temperature of 50 ° C. using Ar to manufacture a semiconductor device. For comparison, the Cu film of the lower wiring was sputtered at a temperature of 160 ° C. using Ar, and the
さらに、本願発明者らは、上記効果を確認するために、ストレスマイグレーション試験を行なった。具体的には、Arを用いて50℃の温度で下部配線のCu膜のスパッタを行ない、半導体装置を製造した。また、比較のために、Arを用いて160℃の温度で下部配線のCu膜のスパッタを行ない、配線を備える半導体装置1を同様の方法で製造した。次に、それぞれの半導体装置を高温で一定時間保持し、その後、コンタクト部の電気抵抗の増加率を測定した。
Furthermore, the present inventors conducted a stress migration test in order to confirm the above effect. Specifically, the Cu film of the lower wiring was sputtered using Ar at a temperature of 50 ° C. to manufacture a semiconductor device. For comparison, the Cu film of the lower wiring was sputtered at a temperature of 160 ° C. using Ar, and the
図8は、コンタクト部の電気抵抗の増加率と半導体装置の累積度数との関係を示す図である。 FIG. 8 is a diagram showing the relationship between the increasing rate of the electrical resistance of the contact portion and the cumulative frequency of the semiconductor device.
図8を参照して、50℃の温度でスパッタを行なった半導体装置は、コンタクト部の電気抵抗の増加率が約6%以下となっている。一方、160℃の温度でスパッタを行なった半導体装置は、コンタクト部の電気抵抗の増加率が約4%〜26%となっている。この結果から、Arを用いて50℃の温度で下部配線のCu膜のスパッタを行なった場合には、高温で保持されてもコンタクト部の膜質の劣化が起こりにくく、半導体装置の信頼性が向上していることがわかる。 Referring to FIG. 8, in the semiconductor device sputtered at a temperature of 50 ° C., the increase rate of the electrical resistance of the contact portion is about 6% or less. On the other hand, in the semiconductor device sputtered at a temperature of 160 ° C., the increase rate of the electrical resistance of the contact portion is about 4% to 26%. From this result, when sputtering of the Cu film of the lower wiring is performed using Ar at a temperature of 50 ° C., the film quality of the contact portion is hardly deteriorated even if kept at a high temperature, and the reliability of the semiconductor device is improved. You can see that
上記製造方法において好ましくは、接続孔15内が洗浄される。
In the manufacturing method, the inside of the
これにより、接続孔15内に残った残渣などが除去されるので、コンタクト部8内に異物が混入することが抑制される。また、接続孔15の洗浄によりCu膜9の表面に凹部16が形成されても、凹部16の側部がCu膜9aで埋められるので、ボイドの生成が抑止される。したがって、ボイドの生成およびコンタクト部8内に異物が混入することが抑制される。
Thereby, since the residue etc. which remain | survived in the
上記製造方法において好ましくは、Cu膜9のスパッタは、ArおよびHを用いて行なわれる。
In the above manufacturing method, the
これにより、Hに電圧を印加することにより、Cu膜9の表面の酸化銅、フッ化銅、炭化銅などのダメージ層がHにより還元される。したがって、Cu膜9の表面のダメージ層を改善することができる。
Thereby, by applying a voltage to H, a damaged layer such as copper oxide, copper fluoride, copper carbide or the like on the surface of the
以上に開示された実施の形態はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は、以上の実施の形態ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての修正や変形を含むものと意図される。 The embodiment disclosed above should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above embodiments but by the scope of claims, and is intended to include all modifications and variations within the scope and meaning equivalent to the scope of claims.
1,101 半導体装置、3,13 層間絶縁膜、4 上部配線、5,18 溝、6 下部配線、7,11,17,21 拡散防止膜、8 コンタクト部、9,9a,9b,19 Cu膜、15 接続孔、16,26 凹部、25,27 ボイド。 DESCRIPTION OF SYMBOLS 1,101 Semiconductor device, 3,13 Interlayer insulation film, 4 Upper wiring, 5,18 Groove, 6 Lower wiring, 7, 11, 17, 21 Diffusion prevention film, 8 Contact part, 9, 9a, 9b, 19 Cu film , 15 connection hole, 16, 26 recess, 25, 27 void.
Claims (11)
前記配線上を覆うように第1の絶縁膜を形成する工程と、
前記第1の絶縁膜上に第2の絶縁膜を形成する工程と、
前記第2の絶縁膜に前記第1の絶縁膜に達する第1の孔を形成する工程と、
前記第1の絶縁膜の前記第1の孔から露出する部分を除去することにより、前記配線に達する第2の孔を前記第1の絶縁膜に形成するとともに、前記第2の孔の壁面を前記第1の孔の壁面よりも外周側に削る工程と、
前記第1および第2の孔によって露出した前記配線表面をスパッタにより部分的に除去し、前記第2の孔の前記壁面全面に向けて前記配線表面から除去された除去物を飛ばし、上記除去物を付着させる工程と、
前記第1の孔の側面、前記第2の孔内の前記除去物上、及び溝の側面および底面にタンタルを含有するバリアメタルを形成する工程と、
前記溝内、前記第1および第2の孔内を導電膜で埋める工程とを備え、
前記第1の孔の上部と前記溝の底部は互いに繋がるようにされ、前記第2の絶縁膜内に前記溝の底面が形成されるようにされている、半導体装置の製造方法。 Forming a wiring formed of a conductor containing copper;
Forming a first insulating film so as to cover the wiring;
Forming a second insulating film on the first insulating film;
Forming a first hole reaching the first insulating film in the second insulating film;
By removing a portion of the first insulating film exposed from the first hole, a second hole reaching the wiring is formed in the first insulating film, and a wall surface of the second hole is formed. A step of cutting closer to the outer peripheral side than the wall surface of the first hole;
The wiring surface exposed by the first and second holes is partially removed by sputtering, the removed material removed from the wiring surface toward the entire wall surface of the second hole , and the removed material. adhering a,
Forming a barrier metal containing tantalum prior SL side surface of the first hole, said removal Butsujo in said second hole, side and bottom surfaces of及beauty grooves,
Filling the groove and the first and second holes with a conductive film ,
The method of manufacturing a semiconductor device, wherein an upper portion of the first hole and a bottom portion of the groove are connected to each other, and a bottom surface of the groove is formed in the second insulating film .
前記配線上を覆うように第1の絶縁膜を形成する工程と、
前記第1の絶縁膜上に第2の絶縁膜を形成する工程と、
前記第2の絶縁膜に前記第1の絶縁膜に達する第1の孔を形成する工程と、
前記第1の絶縁膜の前記第1の孔によって露出する部分を除去することにより、前記配線に達する第2の孔を前記第1の絶縁膜に形成する工程と、
前記第2の孔が形成されることにより露出した前記配線を洗浄処理することにより、前記第1の孔の壁面よりも外周部に削られた凹部を前記配線に形成する工程と、
前記凹部に対してスパッタによりエッチング処理を行なうことにより、露出した前記配線表面から除去された除去物を前記第2の孔の壁面全面に向けて飛ばし、上記除去物を付着させる工程と、
前記第1の孔の側面、前記第2の孔内の前記除去物上、及び溝の側面および底面にタンタルを含有するバリアメタルを形成する工程と、
前記溝内、前記第1および第2の孔内を導電膜で埋める工程とを備え、
前記第1の孔の上部と前記溝の底部は互いに繋がるようにされ、前記第2の絶縁膜内に前記溝の底面が形成されるようにされている、半導体装置の製造方法。 Forming a wiring formed of a conductor containing copper;
Forming a first insulating film so as to cover the wiring;
Forming a second insulating film on the first insulating film;
Forming a first hole reaching the first insulating film in the second insulating film;
Forming a second hole reaching the wiring in the first insulating film by removing a portion of the first insulating film exposed by the first hole;
Cleaning the wiring exposed by forming the second hole, thereby forming a recess in the wiring that has been scraped to the outer periphery of the wall of the first hole;
Performing the etching process on the concave portion by spattering, removing the removed material removed from the exposed wiring surface toward the entire wall surface of the second hole, and attaching the removed material ;
Forming a barrier metal containing tantalum prior SL side surface of the first hole, said removal Butsujo in said second hole, side and bottom surfaces of及beauty grooves,
Filling the groove and the first and second holes with a conductive film ,
The method of manufacturing a semiconductor device, wherein an upper portion of the first hole and a bottom portion of the groove are connected to each other, and a bottom surface of the groove is formed in the second insulating film .
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2003362961A JP4278481B2 (en) | 2003-10-23 | 2003-10-23 | Manufacturing method of semiconductor device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2003362961A JP4278481B2 (en) | 2003-10-23 | 2003-10-23 | Manufacturing method of semiconductor device |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2005129677A JP2005129677A (en) | 2005-05-19 |
| JP2005129677A5 JP2005129677A5 (en) | 2006-11-30 |
| JP4278481B2 true JP4278481B2 (en) | 2009-06-17 |
Family
ID=34642416
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2003362961A Expired - Fee Related JP4278481B2 (en) | 2003-10-23 | 2003-10-23 | Manufacturing method of semiconductor device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4278481B2 (en) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4832807B2 (en) | 2004-06-10 | 2011-12-07 | ルネサスエレクトロニクス株式会社 | Semiconductor device |
| JP4786680B2 (en) * | 2004-06-10 | 2011-10-05 | ルネサスエレクトロニクス株式会社 | Manufacturing method of semiconductor device |
| US8432037B2 (en) | 2004-06-10 | 2013-04-30 | Renesas Electronics Corporation | Semiconductor device with a line and method of fabrication thereof |
| CN100578743C (en) * | 2005-12-02 | 2010-01-06 | 株式会社爱发科 | Method for forming cu film |
| US7488679B2 (en) * | 2006-07-31 | 2009-02-10 | International Business Machines Corporation | Interconnect structure and process of making the same |
| KR102011259B1 (en) * | 2010-02-26 | 2019-08-16 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Semiconductor device |
-
2003
- 2003-10-23 JP JP2003362961A patent/JP4278481B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JP2005129677A (en) | 2005-05-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4832807B2 (en) | Semiconductor device | |
| TW201843772A (en) | Multi-metal contact structure | |
| US20090169760A1 (en) | Copper metallization utilizing reflow on noble metal liners | |
| KR20020068746A (en) | Semiconductor device with contact plug and method for manufacturing the same | |
| US6645863B2 (en) | Method of manufacturing semiconductor device and semiconductor device | |
| JP4278481B2 (en) | Manufacturing method of semiconductor device | |
| US6737356B1 (en) | Method of fabricating a semiconductor work object | |
| CN110571189B (en) | Conductive plug and forming method thereof and integrated circuit | |
| JP2000332106A (en) | Semiconductor device for its manufacture | |
| KR100653997B1 (en) | Metal wiring of semiconductor device having low resistance and manufacturing method thereof | |
| KR101090372B1 (en) | Metal wiring formation method of semiconductor device | |
| KR20080047541A (en) | How to Form a Capping Layer on a Semiconductor Device | |
| JPH09162281A (en) | Planarized multilayer wiring and manufacturing method thereof | |
| JP5125743B2 (en) | Manufacturing method of semiconductor device | |
| JP3521200B2 (en) | Wiring structure and method of forming the same | |
| US7341940B2 (en) | Method for forming metal wirings of semiconductor device | |
| KR100720526B1 (en) | Metal wiring formation method of semiconductor device | |
| TWI705162B (en) | Method for removing barrier layer and method for forming semiconductor structure | |
| JP2007180313A (en) | Semiconductor device and manufacturing method thereof | |
| JP2003218201A (en) | Semiconductor device and manufacturing method therefor | |
| KR20000005933A (en) | Method for the fabrication of contacts in an integrated circuit device | |
| JP2007188911A (en) | Semiconductor device and method for manufacturing semiconductor device | |
| JP2001176872A (en) | Method for manufacturing semiconductor device | |
| JPS6113375B2 (en) | ||
| KR100720402B1 (en) | Metal wiring formation method using dual damascene process |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061016 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061016 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081014 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081016 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081120 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081216 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090210 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090303 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090310 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120319 Year of fee payment: 3 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120319 Year of fee payment: 3 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120319 Year of fee payment: 3 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140319 Year of fee payment: 5 |
|
| S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| LAPS | Cancellation because of no payment of annual fees |