[go: up one dir, main page]

JP4284934B2 - Secondary power supply - Google Patents

Secondary power supply Download PDF

Info

Publication number
JP4284934B2
JP4284934B2 JP2002202973A JP2002202973A JP4284934B2 JP 4284934 B2 JP4284934 B2 JP 4284934B2 JP 2002202973 A JP2002202973 A JP 2002202973A JP 2002202973 A JP2002202973 A JP 2002202973A JP 4284934 B2 JP4284934 B2 JP 4284934B2
Authority
JP
Japan
Prior art keywords
electrolyte
positive electrode
lin
secondary power
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002202973A
Other languages
Japanese (ja)
Other versions
JP2003208925A (en
Inventor
学 對馬
剛 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2002202973A priority Critical patent/JP4284934B2/en
Publication of JP2003208925A publication Critical patent/JP2003208925A/en
Application granted granted Critical
Publication of JP4284934B2 publication Critical patent/JP4284934B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐電圧が高く、容量が大きく、急速充放電サイクル信頼性の高い二次電源に関する。
【0002】
【従来の技術】
有機溶媒系電解液を使用する充放電可能な電源には、電気二重層キャパシタ、リチウムイオン二次電池などがあり、また、電気二重層キャパシタの正極とリチウムイオン二次電池の負極とを組み合せた二次電源も知られている。
【0003】
電気二重層キャパシタは、正極、負極ともに活性炭を主体とする分極性電極を使用することに特徴がある。電気二重層キャパシタの耐電圧は、水系電解液を使用すると1.2V、BF を含む有機溶媒系電解液を使用すると2.5〜3.3Vである。電気二重層キャパシタの静電エネルギは耐電圧の2乗に比例するので、耐電圧の高い有機溶媒系電解液の方が水系電解液より高エネルギにできる。しかし、BF を含む有機溶媒系電解液を使用した電気二重層キャパシタでもその容量は現在、ハイブリッド電気自動車の電源として搭載されているニッケル水素二次電池の1/10以下と低く、さらなるエネルギの向上が必要とされている。
【0004】
一方、リチウムイオン二次電池は、リチウム含有遷移金属酸化物を主体とする正極と、リチウムイオンを吸蔵、脱離しうる炭素材料を主体とする負極と、LiPFなどのリチウム塩を含む有機溶媒系電解液とを備える。充電によりリチウムイオンが正極から脱離し、負極の炭素材料へ吸蔵され、逆に、放電により負極からリチウムイオンが脱離し、正極にリチウムイオンが吸蔵される。したがって、本質的には電解液中のリチウムイオンは電池の充放電に関与しない。
【0005】
リチウムイオン二次電池は、電気二重層キャパシタに比べて高電圧で作動でき、高容量という性質を有するが、抵抗が高く、急速充放電サイクルによる寿命が電気二重層キャパシタに比べ著しく短い問題があった。
【0006】
これに対し、正極に活性炭を用い、負極にリチウムイオンを吸蔵、脱離しうる炭素材料を用いた二次電源は、従来の正極、負極ともに活性炭を用いた電気二重層キャパシタより高耐電圧かつ高エネルギにできる。特に、この二次電源において負極にリチウムイオン吸蔵脱離電位の卑な黒鉛系炭素材料を用いると、より高容量にできる。また、リチウムイオン二次電池のように、正極活物質自体にリチウムイオンが吸蔵、脱離することがなく、リチウムイオンの吸蔵、脱離にともなう正極の劣化がないため充放電サイクル信頼性に優れている。
【0007】
例えば、特開昭64−14882には、活性炭を主体とする電極を正極とし、X線回折による[002]面の面間隔が0.338〜0.356nmである炭素材料にあらかじめリチウムイオンを吸蔵させた電極を負極とする上限電圧3Vの二次電源が提案されている。また、特開平8−107048には、リチウムイオンを吸蔵、脱離しうる炭素材料にあらかじめ化学的方法または電気化学的方法でリチウムイオンを吸蔵させた炭素材料を負極に用いる電池が提案されている。特開平9−55342には、リチウムイオンを吸蔵、脱離しうる炭素材料をリチウムと合金を形成しない多孔質集電体に担持させる負極を有する、上限電圧4Vの二次電源が提案されている。
【0008】
上述の二次電源においては、LiBFやLiPFを含む有機溶媒系電解液が用いられている(特開昭64−14882)。LiBFは電気伝導性が比較的低いため、高電流密度での放電において放電容量が充分でないという問題がある。一方、LiPFは電気伝導性に優れ、高い耐電圧を有する反面、熱的に不安定である。また、LiPFの電離によって生成するPF は系内に微量でも水分が存在すると加水分解を起こす結果、HFを生成し、これが正極および負極の活物質ならびに集電体の劣化を引き起こし、容量低下および自己放電の原因となる。さらに、この加水分解により電解質濃度が低下するため、充放電サイクル信頼性が失われるという問題がある。
【0009】
この問題を解決するため、電離によってN(CFSO を生成する電解質の使用が提案されている(特開平8−107048)。前記電解質は熱的に安定であり、上述した加水分解を極めて起こしにくく、また、電気伝導性にも優れる。しかし、N(CFSO は正極電位がある程度貴になると、正極集電体の構成材料としてアルミニウムを用いた場合、アルミニウムを腐食する。特に、高温下で運転する場合、この腐食が顕著にみられる。
【0010】
例えば、N(CFSO を含む有機溶媒系電解液を、正極にアルミニウム製集電体を備えたリチウムイオン二次電池および電気二重層キャパシタに用いた場合、45℃雰囲気においてそれぞれ4.0V以上および2.5V以上の電圧を印加すると正極集電体の腐食が起こり、有機溶媒系電解液中にアルミニウムが溶出する。すなわち、充電されるべき電荷がアルミニウムの溶出に使用され、その結果、容量低下が起こる。特に、リチウムイオン二次電池に用いた場合、充電時の負極電位はリチウム金属とほぼ同等なので、アルミニウムが溶出すると負極にアルミニウムが析出し、またはリチウムと合金を形成するため、さらなる容量低下につながり、充分なサイクル信頼性を得ることができなかった。
【0011】
この問題を解決するため、例えば特開平9−50823には、LiPFとLiN(CFSOの両方を含む有機溶媒系電解液を備えるリチウムイオン二次電池が例示され、アルミニウム製正極集電体の腐食を抑制でき、しかも充放電サイクル信頼性に優れたリチウムイオン二次電池が得られると記載されている。しかし、この方法は室温における運転を想定しており、室温を超える温度、特に45℃以上において、4.0Vを超える高電圧下の運転時には、アルミニウム製正極集電体の腐食を防止できない。
【0012】
【発明が解決しようとする課題】
近年では、ハイブリッド電気自動車の電源として、充放電可能な電源を搭載するにあたり、ユニットセルの直列積層個数をより少なくすることが要求される。そこで本発明は、より高電圧で作動でき、充放電容量が高く、かつ急速充放電におけるサイクル信頼性に優れる二次電源およびそのための有機溶媒系電解液を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明は、活性炭を主体とする正極と、リチウムイオンを吸蔵、脱離しうる炭素材料を主体とする負極と、リチウム塩を含む有機溶媒系電解液とを有する二次電源において、前記リチウム塩がLiPF、LiBF、LiN(CFSOおよびLiN(CSOからなる群より選ばれる1種以上と、LiClOと、を含むことを特徴とする二次電源を提供する。
【0014】
また、本発明は、正極と集電体とを一体化してなる正極体と、負極と集電体とを一体化してなる負極体と、有機溶媒系電解液とを備え、前記正極の集電体がアルミニウムからなり、前記有機溶媒系電解液が電離によってClO を生成する電解質とN(CSO を生成する電解質とを含み、正負極ともに活性炭を主体とする分極性電極を備えることを特徴とする電気二重層キャパシタを提供する。
【0015】
【発明の実施の形態】
本明細書では、正極と集電体とを接合して一体化させたものを正極体という。負極体についても同様の定義とする。また、本明細書では、活性炭を主体とする正極と、リチウムイオンを吸蔵、脱離しうる炭素材料を主体とする負極と、リチウム塩からなる電解質を含む有機溶媒系電解液とを有する、充放電可能な電源を単に二次電源という。
【0016】
本発明の二次電源(以下、本二次電源という)は、活性炭を主体とする正極と、リチウムイオンを吸蔵、脱離しうる炭素材料を主体とする負極と、リチウム塩を含む有機溶媒系電解液とを有する二次電源であって、前記リチウム塩がLiPF、LiBF、LiN(CFSOおよびLiN(CSOからなる群より選ばれる1種以上と、LiClOとを含む。LiClOは有機溶媒系電解液や正極の活性炭中に存在する微量な水分ともほとんど反応せず、正極集電体を腐食せず、電気伝導度に優れ、活性炭を主体とする電極の容量も大きくできるなど、本二次電源の電解質としては優れた性質を有する。しかし、LiClOを高濃度で使用すると細心の注意が必要となり、実用上の制約が大きいので有機溶媒系電解液中に高濃度で含有させることは難しい。一方、電解質の濃度が低い有機溶媒系電解液では充分に容量を高められない。そのため、本二次電源にはLiClOと他のリチウム塩との混合系の電解質を使用する。
【0017】
本発明者らは、本二次電源の電解質として、LiClOを一定の濃度に抑えて使用し、これをLiN(Rf1SO)(Rf2SO)(Rf1、Rf2はそれぞれ独立に炭素数1〜6のパーフルオロアルキル基である)、LiPFおよびLiBFからなる群より選ばれる1種以上のリチウム塩と併用することにより、実用的な二次電源が得られることを見出した。
【0018】
LiN(Rf1SO)(Rf2SO)は、Rf1、Rf2の炭素数が小さいほど電気伝導度が高く、一方、Rf1、Rf2の炭素数が大きいほど、アルミニウム製正極集電体を腐食しにくい傾向がある。なかでもRf1、Rf2の炭素数がともに2であるLiN(CSOは電気伝導度が高く、しかも集電体に使用されることの多いアルミニウムを腐食しにくく電極体が劣化しにくいため好ましい。また、Rf1、Rf2がそれぞれ独立に炭素数1〜6の範囲内であれば、LiN(CSO)(CSO)のようにRf1とRf2とが異なっていてもよく、Rf1、Rf2は直鎖状でも分鎖状でもいずれでもよい。
【0019】
なかでも、LiClOと、LiN(CFSOおよび/またはLiN(CSOとの混合系を使用すると、電気伝導性向上の観点から好適である。特に高温での安定性を考慮すると、LiN(CSOとLiClOとの混合系が好ましい。
【0020】
本二次電源において、有機溶媒系電解液に含まれるリチウム塩中、1〜40mol%がLiClOであることが好ましい。LiClOが前記リチウム塩中、1mol%未満であるとリチウム塩としてLiClOを使用する効果が得られにくい。一方、40mol%を超えると取扱に充分な注意が必要となり実用上の制約が大きいため好ましくない。前記リチウム塩中、3〜20mol%がLiClOであると特に好ましい。なお、本明細書においてmol%は、リチウムイオン換算とする。
【0021】
また、本二次電源において、有機溶媒系電解液中のLiClOの濃度は0.005〜0.5mol/Lであると好ましい。有機溶媒系電解液中のLiClOの濃度が0.005mol/L未満であるとリチウム塩としてLiClOを使用する効果が得られないおそれがある。一方、LiClOの濃度が0.5mol/Lを超えると取扱に充分な注意が必要となり、実用上の制約が大きくなるおそれがある。有機溶媒系電解液中のLiClOの濃度が0.05〜0.2mol/Lであるとさらに好ましい。
【0022】
また、本二次電源において、有機溶媒系電解液中のリチウム塩全体としての濃度は、0.5〜2mol/Lであると電気伝導度の高い有機溶媒系電解液が得られるため好ましい。リチウム塩全体としての濃度が0.5mol/L未満であると有機溶媒系電解液の伝導度が低くなりすぎるおそれがあり、一方、2mol/Lを超えると有機溶媒系電解液の粘度が高くなりすぎるおそれがある。リチウム塩全体の濃度が0.75〜1.5mol/Lであるとさらに好ましい。
【0023】
本二次電源において、有機溶媒系電解液の溶媒はエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、スルホランおよびジメトキシエタンからなる群より選ばれる1種以上であると好ましい。
【0024】
本二次電源において、正極は活性炭を主体とするものである。活性炭としては、やしがらなどの天然植物組織、フェノールなどの合成樹脂、石炭、コークス、ピッチなどの化石燃料由来のものを原料とし、これを賦活処理して使用するのが好ましい。活性炭の賦活方法としては、用いる原料により異なるが、通常、水蒸気賦活法やKOH賦活法などのアルカリ賦活法がある。本発明においては、水蒸気賦活法やアルカリ賦活法のいずれも好適に使用される。
【0025】
正極は活性炭以外に通常、形状付与材としてバインダを含む。バインダとしてはポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリアミドイミド、ポリイミドなどが好ましく用いられる。バインダの含有量は、正極中1〜20質量%であると正極体の強度と特性とのバランスの点で好ましい。さらに、正極は導電性を高めるため導電性物質を含むと好ましい。導電性物質としてはカーボンブラックなどが挙げられる。導電性物質の正極全質量中の含有量は0.1〜20質量%であると高容量かつ高導電性の正極が得られるため好ましい。
【0026】
また、正極に少量のリチウム含有遷移金属酸化物が含まれると、負極から脱離できないリチウムイオンによる有機溶媒系電解液中のリチウムイオンの低減を補うことができ、特性劣化を防止できるため好ましい。この場合、リチウム含有遷移金属酸化物の含有量としては、正極中に0.1〜20質量%であることが好ましい。含有量が0.1質量%未満であるとリチウム含有遷移金属酸化物の添加の効果が得られず、一方、20質量%を超えると活性炭電極の特徴である高出力や高信頼性を損なうおそれがある。上記含有量は3〜15質量%であるとさらに好ましい。
【0027】
このようなリチウム含有遷移金属酸化物としては、V、Mn、Fe、Co、Ni、ZnおよびWからなる群より選ばれる1種以上の遷移金属とリチウムとの複合酸化物が好ましい。特に好ましいのは、Mn、CoおよびNiからなる群より選ばれる1種以上とリチウムとの複合酸化物であり、さらに好ましいのはLiCoNi(1−y)またはLiMn(ただし、0<x<2、0≦y≦1、0<z<2)である。
【0028】
正極体の作製方法としては、例えば活性炭粉末にバインダとしてポリテトラフルオロエチレンを混合し、混練した後シート状に成形して正極とし、これを集電体に導電性接着剤を用いて固定する方法がある。また、バインダとしてポリフッ化ビニリデン、ポリアミドイミド、ポリイミドなどを溶解したワニスに活性炭粉末を分散させ、この液をドクターブレード法などによって集電体上に塗工し、乾燥して得てもよい。
【0029】
本二次電源において、負極はリチウムイオンを吸蔵、脱離しうる炭素材料を主体とするものである。リチウムイオンを吸蔵、脱離しうる炭素材料としては、層間化合物となるものであるとよく、天然黒鉛、人造黒鉛、石油コークス、メソフェーズピッチ系炭素材料、難黒鉛性炭素材料、または黒鉛系材料と黒鉛性炭素材料との複合材料ならびに混合材料などが使用できる。しかし、活性炭は一般にリチウムイオンを吸蔵、脱離しうる炭素材料に該当しない。前記炭素材料は、X線回折による[002]面の面間隔が0.335〜0.410nmであると高容量の負極とできるため好ましい。特に、前記面間隔が0.335〜0.338nmであると、リチウムイオンの脱離時の電位を卑にでき、高容量の負極とできるため好ましい。また、前記面間隔が0.354〜0.395nmであると黒鉛の理論容量(372mAh/g)以上のリチウム吸蔵能を有するため、より高容量の負極とでき好ましい。さらに、前記炭素材料の比表面積は0.5〜20m/gであると好ましい。比表面積が20m/gを超えると、電解液の分解によって炭素材料表面に形成されるSEI(Solid Electrolyte Interface)被膜の形成に使用される電荷が多くなりすぎ、クーロン効率が低下するおそれがある。
【0030】
負極も正極と同様に、形状付与材として通常バインダを含む。バインダとしては、正極に使用できるものと同様のものが好ましく使用される。負極全質量中のバインダ量は1〜20%であると好適である。負極は黒鉛のような導電性の高い炭素材料が使用されるため、正極のように導電性材料を添加しても導電性の向上はあまりないが、必要に応じて適宜添加してもよい。
【0031】
負極体の作製方法としては、正極体の作製方法と同様に、例えば黒鉛系材料とバインダとしてポリテトラフルオロエチレンとを混練後、シート状に成形し、導電性接着剤を用いて集電体に固定する方法がある。また、バインダとして、ポリフッ化ビニリデン、ポリアミドイミド、ポリイミド、ポリアミドイミドの前駆体またはポリイミドの前駆体、を溶解させた有機溶媒に前記炭素材料を分散させ、集電体に塗工し、乾燥、熱処理させて得る方法もある。負極体の作製方法としては、いずれの方法でも好ましい。
【0032】
ここで、ポリアミドイミドの前駆体またはポリイミドの前駆体とは、加熱することにより重合してそれぞれポリアミドイミドまたはポリイミドとなるものをいう。なお、ポリアミドイミドまたはポリイミドをバインダとすると有機溶媒系電解液に対する耐性があり、また電極から水分を除去するために300℃程度の高温加熱または減圧下の加熱をしても充分耐性がある。
【0033】
塗工により集電体上に負極を形成する方法において、バインダまたはその前駆体を溶解させる溶媒は限定されないが、溶解性が良好で、入手も容易であることからN−メチル−2−ピロリドン(以下、NMPという)が好ましい。上述の加熱温度が200℃以上であると、バインダとして前駆体を用いた場合、重合できるため好ましい。加熱処理は窒素、アルゴンなどの不活性雰囲気または133Pa以下の減圧下が好ましい。
【0034】
また、本発明は、正極と集電体とを一体化してなる正極体と、負極と集電体とを一体化してなる負極体と、有機溶媒系電解液とを備え、前記正極の集電体がアルミニウムからなり、前記有機溶媒系電解液が電離によってN(CSO を生成する電解質とClO を生成する電解質とを含み、正負極ともに活性炭を主体とする分極性電極を備えることを特徴とする電気二重層キャパシタを提供する。上述のとおり、LiN(CSOとLiClOとを含む有機溶媒系電解液は、活性炭を主体とする正極と、リチウムイオンを吸蔵、脱離しうる炭素材料を主体とする負極を備える二次電源にきわめて有効である。この有機溶媒系電解液中のアニオンはN(CSO とClO とであるが、これらのアニオンを含む有機溶媒系電解液(以下、本有機溶媒系電解液という)は、本二次電源以外の充放電可能な電源においても高い効果を示す。すなわち、本有機溶媒系電解液は、アルミニウム製正極集電体を備えた電気二重層キャパシタに使用しても集電体を腐食せず、高い耐電圧を実現でき、室温以上の温度、特に45℃以上で運転する充放電可能な電源に使用しても充放電サイクル信頼性が高い有機溶媒系電解液である。
【0035】
N(CSO は、N(CFSO よりもアルミニウム製正極集電体の腐食を起こしにくい。例えばJournal of Power Sources,68(1997)320−325には、LiN(CFSOを含む有機溶媒系電解液をリチウムイオン二次電池に用いる際、正極電位が3.55V(参照電極:Li/Li)を超えるとアルミニウムが腐食するのに対し、LiN(CSOを含む有機溶媒系電解液では4.5Vまで腐食しないという報告がある。また、N(CSO はPF やBF と比較して加水分解が起こりにくく、電解質としての電気伝導性にも優れる。
【0036】
電離によってClO を生成する電解質の添加によって前記集電体の腐食を抑制できる理由の詳細はわかっていないが、次のように推察される。金属アルミニウムは、空気中では酸素と反応してその表面に酸化被膜を形成させるため、腐食を受けず安定に存在する。PF 、BF はこの酸化被膜を破壊しないため、腐食が起こらない。N(CSO はアルミニウムの酸化被膜を破壊させやすいが、ClO を添加すると、ClO が酸化分解して安定な酸化被膜を形成するため、アルミニウム製正極集電体の腐食を抑制できると考えられる。室温を超える温度、特に45℃以上においてはこのClO の酸化分解速度が増すため、高温下で運転しても優れた充放電サイクル信頼性を有する。
【0037】
また、本二次電源では充電により、リチウムイオンが負極の炭素材料へ吸蔵される。このとき、負極電位が約0.8V(参照電極:Li/Li)になると、電解液の分解により炭素材料表面に、リチウムイオン伝導性を有するSEI被膜が形成される。有機溶媒系電解液中にClO イオンが存在すると、このSEI被膜の形成が促進されるため、リチウムイオンが負極の炭素材料へと吸蔵しやすくなり、より高いサイクル信頼性を発現すると考えられる。
【0038】
本有機溶媒系電解液において、全アニオン中、ClO の含有量が0.1〜40mol%であり、N(CSO の含有量が60〜99.9mol%であることが好ましい。ClO の含有量が0.1mol%未満であると、上記のようなClO の添加効果が表れにくい。一方、ClO の含有量が40mol%を超えると、N(CSO の安定な化学的性質を損なうおそれがあるほか、取扱上に充分な注意が必要となり、実用上の制約が大きいため好ましくない。より好ましくは、全アニオン中、ClO の含有量が5〜25mol%であり、N(CSO の含有量が75〜95mol%となるように添加する。
【0039】
本有機溶媒系電解液中の電解質全体としての濃度は、本二次電源の有機溶媒系電解液に含まれるリチウム塩の濃度と同様に0.5〜2.0mol/Lであると好ましく、電解質全体としての濃度が0.75〜1.5mol/Lであるとさらに好ましい。
【0040】
本発明の有機溶媒系電解液において、溶媒としては、本二次電源の有機溶媒系電解液に用いられる溶媒と同じものが好ましく用いられる。なかでも、リチウムイオン二次電池に用いる場合はプロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートおよびジエチルカーボネートからなる群より選ばれる1種以上とエチレンカーボネートとを組み合せた溶媒が温度特性、電気化学的特性の点から好ましい。電気二重層キャパシタに用いる場合はプロピレンカーボネートを主体とする溶媒が温度特性、電気化学的特性の点から好ましい。
【0041】
本有機溶媒系電解液は、リチウム含有遷移金属酸化物を主体とする正極と、リチウムイオンを吸蔵、脱離しうる炭素材料を主体とする負極とを有し、正極にアルミニウム製集電体を備えたリチウムイオン二次電池に好適に用いられる。リチウムイオン二次電池に用いる場合、電解質はリチウム塩であり、LiN(CSOとLiClOとからなる。
【0042】
また、本有機溶媒系電解液は、正負極ともに活性炭を主体とする分極性電極を有し、正極にアルミニウム製集電体を備えた電気二重層キャパシタに好適に用いられる。電気二重層キャパシタに用いる場合、電離によって(C、(C(CH)Nおよび(Cからなる群より選ばれる1種以上のカチオンを生成する第4級オニウム塩を電解質として用いることが好ましい。特に、(C(CH)NN(CSOと(C(CH)NClOとからなる電解質を用いることが好ましい。
【0043】
【実施例】
本発明を実施例(例1〜4、例9〜13、例18、例19)および比較例(例5〜8、例14〜17、例20、例21)によりさらに具体的に説明するが、本発明はこれらにより限定されない。なお、例1〜21におけるセルの作製はすべて露点が−60℃以下のアルゴングローブボックス中で行った。
【0044】
[例1(実施例)]
コークスを原料として溶融KOH賦活法によって得られた比表面積900m/gの活性炭70質量%、導電性カーボンブラック20質量%、およびバインダとしてのポリテトラフルオロエチレン10質量%からなる混合物をエタノールを加えて混練し、圧延した後、200℃で2時間真空乾燥して正極シートを得た。次に、リチウムイオンを吸蔵、脱離しうる炭素材料として、X線回折による[002]面の面間隔0.378nm、粒径19μmの非晶質炭素を使用し、これに導電材として黒鉛化した気相成長炭素を加え、ポリフッ化ビニリデン(バインダ)を溶解させたNMPに分散させた。この分散液を銅製集電体(厚さ約18μm)に塗布し乾燥して負極体を得た。負極体中の非晶質炭素:黒鉛化した気相成長炭素:ポリフッ化ビニリデンの質量比は7:1:2であった。この負極体をさらにロールプレス機でプレスした。
【0045】
上述の方法で得られた面積0.283cmの正極シート(厚さ約900μm)と負極体(厚さ約100μm)とをそれぞれコインセル(直径10.8mm、高さ1.7mm)の正極キャップ、負極ケースに固定して、ポリプロピレン製セパレータ(厚さ約100μm)を介して対向させ、0.1mol/LのLiClOと0.9mol/LのLiBFをエチレンカーボネート50体積%とエチルメチルカーボネート50体積%の混合溶媒に溶解した有機溶媒系電解液に充分な時間含浸させてコインセルに封入し、密閉して本二次電源のセルを作製した。得られたセルの初期容量(mAh)を4.2Vから2.75Vまでの電圧範囲で電流0.283mA(1.0mA/cm)で測定した。その後、45℃雰囲気で4.2Vから2.75Vまでの電圧範囲で、充放電電流0.283mAで1000サイクルの充放電サイクル試験を行い、初期容量に対するサイクル試験後の容量減少率(%)を算出した。結果を表1に示す。
【0046】
[例2(実施例)]
電解質としてLiBFの代わりにLiPFを使用した以外は例1と同様にしてセルを作製し、例1と同様に評価した。結果を表1に示す。
【0047】
[例3(実施例)]
電解質としてLiBFの代わりにLiN(CFSOを使用した以外は例1と同様にしてセルを作製し、例1と同様に評価した。結果を表1に示す。
【0048】
[例4(実施例)]
電解質としてLiBFの代わりにLiN(CSOを使用した以外は例1と同様にしてセルを作製し、例1と同様に評価した。結果を表1に示す。
【0049】
[例5(比較例)]
電解質として0.1mol/LのLiClOと0.9mol/LのLiBFの代わりに1.0mol/LのLiBFを使用した以外は例1と同様にしてセルを作製し、例1と同様に評価した。結果を表1に示す。
【0050】
[例6(比較例)]
電解質としてLiBFの代わりにLiPFを使用した以外は例5と同様にしてセルを作製し、例1と同様に評価した。結果を表1に示す。
【0051】
[例7(比較例)]
電解質としてLiBFの代わりにLiN(CFSOを使用した以外は例5と同様にしてセルを作製し、例1と同様に評価した。結果を表1に示す。
【0052】
[例8(比較例)]
電解質としてLiBFの代わりにLiN(CSOを使用した以外は例5と同様にしてセルを作製し、例1と同様に評価した。結果を表1に示す。
【0053】
【表1】

Figure 0004284934
【0054】
例1〜8で得られたセルについて、表1において、例1と例5、例2と例6、例3と例7、例4と例8、をそれぞれ比較することにより、LiClOをLiN(CSOなどのリチウム塩と併用することで特性が向上することがわかる。さらに、例7と例8を比較することにより、LiN(CSOを電解質として用いたセルは、充放電サイクル信頼性の点でLiN(CFSOより優れることがわかる。
【0055】
[例9(実施例)]
例1と同様にして得られた正極シートをアルミニウム製集電体(厚さ100μm)に導電性接着剤で貼り付け、200℃で15時間真空乾燥させて面積10.0cmの正極体(厚さ約200μm)を得た。該正極体と、例1と同様にして得られた負極体(厚さ約40μm)とをポリプロピレン製セパレータ(厚さ約80μm)を介して対向させ、0.9mol/LのLiN(CFSO)(CSO)と0.1mol/LのLiClOとをエチレンカーボネート50体積%とエチルメチルカーボネート50体積%の混合溶媒に溶解した有機溶媒系電解液に充分な時間含浸させてアルミニウム製ラミネートパックに封入し、密閉して本二次電源のセルを作製した。得られたセルの初期容量(mAh)を4.0Vから2.0Vまでの電圧範囲で充放電電流100mA(10mA/cm)で測定した。その後、45℃雰囲気で4.0Vから2.0Vまでの電圧範囲で、充放電電流100mAで1000サイクルの充放電サイクル試験を行い、初期容量に対するサイクル試験後の容量減少率(%)を算出した。結果を表2に示す。
【0056】
[例10(実施例)]
電解質としてLiN(CFSO)(CSO)の代わりにLiN(CFSO)(CSO)を使用した以外は例9と同様にしてセルを作製し、例9と同様に評価した。結果を表2に示す。
【0057】
[例11(実施例)]
電解質としてLiN(CFSO)(CSO)の代わりにLiN(CFSO)(CSO)を使用した以外は例9と同様にしてセルを作製し、例9と同様に評価した。結果を表2に示す。
【0058】
[例12(実施例)]
電解質としてLiN(CFSO)(CSO)の代わりにLiN(CFSOを使用した以外は例9と同様にしてセルを作製し、例9と同様に評価した。結果を表2に示す。
【0059】
[例13(実施例)]
電解質としてLiN(CFSO)(CSO)の代わりにLiN(CSOを使用した以外は例9と同様にしてセルを作製し、例9と同様に評価した。結果を表2に示す。
【0060】
[例14(比較例)]
電解質として0.9mol/LのLiN(CFSO)(CSO)と0.1mol/LのLiClOの代わりに1.0mol/LのLiN(CFSO)(CSO)を使用した以外は例9と同様にしてセルを作製し、例9と同様に評価した。結果を表2に示す。
【0061】
[例15(比較例)]
電解質としてLiN(CFSO)(CSO)の代わりにLiN(CFSO)(CSO)を使用した以外は例14と同様にしてセルを作製し、例9と同様に評価した。結果を表2に示す。
【0062】
[例16(比較例)]
電解質としてLiN(CFSO)(CSO)の代わりにLiN(CFSO)(CSO)を使用した以外は例14と同様にしてセルを作製し、例9と同様に評価した。結果を表2に示す。
【0063】
[例17(比較例)]
電解質としてLiN(CFSO)(CSO)の代わりにLiBFを使用した以外は例14と同様にしてセルを作製し、例9と同様に評価した。結果を表2に示す。
【0064】
【表2】
Figure 0004284934
【0065】
[例18(実施例)]
LiCoOと導電材としての黒鉛を、ポリフッ化ビニリデンをN−メチル−2−ピロリドン(以下、NMPという)に溶解した溶液に分散させて、これをアルミニウム製集電体(厚さ約30μm)に塗布し乾燥して正極体を得た。正極体中のLiCoO:黒鉛:ポリフッ化ビニリデンの質量比は8:1:1であった。
【0066】
次に、リチウムイオンを吸蔵、脱離しうる炭素材料として、高結晶性黒鉛(大阪ガス社製、商品名:MCMB6−28)を、ポリフッ化ビニリデンをNMPに溶解した溶液に分散させて、銅製集電体(厚さ約18μm)に塗布し乾燥して負極体を得た。負極体中の高結晶性黒鉛:ポリフッ化ビニリデンの質量比は9:1であった。
【0067】
上述の方法で得られた面積10.0cmの正極体(厚さ約60μm)と負極体(厚さ約40μm)とをポリプロピレン製のセパレータ(厚さ約20μm)を介して対向させ、0.9mol/LのLiN(CSOと0.1mol/LのLiClOをエチレンカーボネート50体積%とエチルメチルカーボネート50体積%の混合溶媒に溶解した有機溶媒系電解液に充分な時間含浸させてアルミニウム製ラミネートパックに封入し、密閉してリチウムイオン二次電池のセルを得た。得られたセルの初期容量(mAh)を4.1Vから2.0Vまでの範囲で電流10mA(1.0mA/cm)で測定した。その後、60℃雰囲気で4.1Vの電圧を印加し続け、500時間後に再び容量(mAh)を測定した。その後、セルを分解し、セパレータに含まれる有機溶媒系電解液1gあたりのアルミニウム溶出量(μg)をICP発光分光分析法により測定した。結果を表3に示す。
【0068】
[例19(実施例)]
例1と同様にして得られた正極シートと同じものを、2枚のアルミニウム製集電体にそれぞれ導電性接着剤で貼り付け、200℃で15時間真空乾燥させて得られた電極体を正極体および負極体とした。
【0069】
上述の方法で得られた面積10.0cmの正極体(厚さ約250μm)と負極体(厚さ約250μm)とをポリプロピレン製のセパレータ(厚さ約80μm)を介して対向させ、1.35mol/Lの(C(CH)NN(CSOと0.1mol/Lの(C(CH)NClOをプロピレンカーボネート溶媒に溶解した有機溶媒系電解液に充分な時間含浸させてアルミニウム製ラミネートパックに封入し、密閉して電気二重層キャパシタのセルを得た。このセルの初期容量(mAh)を2.5Vから1.0Vまでの範囲で電流10mA(1.0mA/cm)で測定した。その後、60℃雰囲気で2.5Vの電圧を印加し続け、500時間後に再び容量(mAh)を測定した。その後、例15と同様にして、セパレータに含まれる有機溶媒系電解液1gあたりのアルミニウム溶出量(μg)を測定した。結果を表3に示す。
【0070】
[例20(比較例)]
電解質として0.9mol/LのLiN(CSOと0.1mol/LのLiClOの代わりに1.0mol/LのLiN(CSOを使用した以外は例9と同様にしてセルを作製し、初期容量、500時間後の容量およびアルミニウム溶出量を測定した。結果を表3に示す。
【0071】
[例21(比較例)]
電解質として1.35mol/Lの(C(CH)NN(CSOと0.1mol/Lの(C(CH)NClOの代わりに1.5mol/Lの(C(CH)NN(CSOを使用した以外は例16と同様にしてセルを作製し、初期容量、500時間後の容量およびアルミニウム溶出量を測定した。結果を表3に示す。
【0072】
【表3】
Figure 0004284934
【0073】
例18で得られたリチウムイオン二次電池、例19で得られた電気二重層キャパシタは、それぞれ例20、例21と比較してアルミニウムの溶出が顕著に抑制され、また、高温下で運転しても容量低下が少ない。
【0074】
【発明の効果】
本発明によれば、耐電圧が高く、充放電容量が高く、急速充放電におけるサイクル信頼性に優れる二次電源が得られる。
【0075】
また、本発明の有機溶媒系電解液は、アルミニウム製正極集電体を備えたリチウムイオン二次電池や電気二重層キャパシタに使用しても集電体を腐食せず、高電圧、高温で作動でき、しかも充放電サイクル信頼性の高い有機溶媒系電解液である。さらに、室温以上の温度、特に45℃以上で運転する場合のリチウムイオン二次電池や電気二重層キャパシタに使用しても容量低下が少なく、充放電サイクル信頼性に優れる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a secondary power source with high withstand voltage, large capacity, and high rapid charge / discharge cycle reliability.
[0002]
[Prior art]
Chargeable / dischargeable power sources using organic solvent electrolytes include electric double layer capacitors, lithium ion secondary batteries, etc. Also, the positive electrode of an electric double layer capacitor and the negative electrode of a lithium ion secondary battery are combined. Secondary power sources are also known.
[0003]
The electric double layer capacitor is characterized in that a polarizable electrode mainly composed of activated carbon is used for both the positive electrode and the negative electrode. The withstand voltage of the electric double layer capacitor is 1.2V when using aqueous electrolyte, BF4 When an organic solvent-based electrolytic solution containing is used, the voltage is 2.5 to 3.3 V. Since the electrostatic energy of the electric double layer capacitor is proportional to the square of the withstand voltage, the organic solvent electrolyte having a higher withstand voltage can be made to have higher energy than the aqueous electrolyte. However, BF4 Even in an electric double layer capacitor using an organic solvent-based electrolytic solution containing benzene, its capacity is as low as 1/10 or less of a nickel hydride secondary battery mounted as a power source of a hybrid electric vehicle, and further energy improvement is required. Has been.
[0004]
On the other hand, the lithium ion secondary battery includes a positive electrode mainly composed of a lithium-containing transition metal oxide, a negative electrode mainly composed of a carbon material capable of inserting and extracting lithium ions, and LiPF.6And an organic solvent electrolyte containing a lithium salt. Lithium ions are desorbed from the positive electrode by charging and occluded in the carbon material of the negative electrode. Conversely, lithium ions are desorbed from the negative electrode by discharging, and lithium ions are occluded in the positive electrode. Therefore, essentially, lithium ions in the electrolytic solution are not involved in charging / discharging of the battery.
[0005]
Lithium ion secondary batteries can operate at a higher voltage than electric double layer capacitors and have a high capacity, but they have a high resistance and have a problem that their lifetime due to rapid charge / discharge cycles is significantly shorter than that of electric double layer capacitors. It was.
[0006]
In contrast, a secondary power source using activated carbon for the positive electrode and a carbon material capable of occluding and desorbing lithium ions for the negative electrode has a higher withstand voltage and higher voltage than conventional electric double layer capacitors using activated carbon for both the positive and negative electrodes. Can be energy. In particular, when a graphite-based carbon material having a low lithium ion storage / desorption potential is used for the negative electrode in the secondary power source, the capacity can be increased. Also, unlike lithium ion secondary batteries, lithium ion is not occluded or desorbed in the positive electrode active material itself, and there is no deterioration of the positive electrode due to occlusion or desorption of lithium ions, so the charge / discharge cycle reliability is excellent. ing.
[0007]
For example, Japanese Patent Application Laid-Open No. 64-14882 discloses that a lithium ion is previously occluded in a carbon material having an electrode mainly composed of activated carbon as a positive electrode and having a [002] plane spacing of 0.338 to 0.356 nm by X-ray diffraction. A secondary power supply with an upper limit voltage of 3 V has been proposed in which the negative electrode is a negative electrode. Japanese Patent Laid-Open No. 8-107048 proposes a battery using, as a negative electrode, a carbon material in which lithium ions are occluded and desorbed in advance by a chemical method or an electrochemical method. Japanese Patent Application Laid-Open No. 9-55342 proposes a secondary power source with an upper limit voltage of 4 V, having a negative electrode that supports a carbon material capable of inserting and extracting lithium ions on a porous current collector that does not form an alloy with lithium.
[0008]
In the secondary power source described above, LiBF4And LiPF6An organic solvent-based electrolyte containing benzene is used (Japanese Patent Laid-Open No. 64-14882). LiBF4Has a problem that the discharge capacity is not sufficient in discharging at a high current density because of its relatively low electrical conductivity. On the other hand, LiPF6Has excellent electrical conductivity and high withstand voltage, but is thermally unstable. LiPF6PF generated by ionization of6 As a result of hydrolysis, if a small amount of water is present in the system, HF is generated, which causes deterioration of the active material and current collector of the positive electrode and the negative electrode, causing a decrease in capacity and self-discharge. Furthermore, since the electrolyte concentration is reduced by this hydrolysis, there is a problem in that charge / discharge cycle reliability is lost.
[0009]
To solve this problem, N (CF3SO2)2 It has been proposed to use an electrolyte that produces (JP-A-8-107048). The electrolyte is thermally stable, hardly causes hydrolysis as described above, and is excellent in electrical conductivity. However, N (CF3SO2)2 When the positive electrode potential becomes noble to some extent, when aluminum is used as the constituent material of the positive electrode current collector, it corrodes aluminum. This corrosion is particularly noticeable when operating at high temperatures.
[0010]
For example, N (CF3SO2)2 When an organic solvent-based electrolytic solution containing a lithium ion secondary battery and an electric double layer capacitor having an aluminum current collector as a positive electrode is used, a voltage of 4.0 V or higher and 2.5 V or higher in a 45 ° C. atmosphere, respectively. Is applied, corrosion of the positive electrode current collector occurs, and aluminum is eluted in the organic solvent electrolyte. That is, the charge to be charged is used for aluminum elution, resulting in a capacity drop. In particular, when used in lithium ion secondary batteries, the negative electrode potential during charging is almost the same as that of lithium metal, so when aluminum elutes, aluminum precipitates on the negative electrode or forms an alloy with lithium, leading to further capacity reduction. Therefore, sufficient cycle reliability could not be obtained.
[0011]
In order to solve this problem, for example, Japanese Patent Laid-Open No. 9-50823 discloses LiPF.6And LiN (CF3SO2)2When a lithium ion secondary battery comprising an organic solvent-based electrolyte containing both is exemplified, corrosion of the positive electrode current collector made of aluminum can be suppressed, and excellent in charge / discharge cycle reliability can be obtained. Are listed. However, this method assumes operation at room temperature, and corrosion of the aluminum positive electrode current collector cannot be prevented during operation at a temperature exceeding room temperature, particularly 45 ° C. or higher, under a high voltage exceeding 4.0 V.
[0012]
[Problems to be solved by the invention]
In recent years, it is required to reduce the number of unit cells stacked in series when a chargeable / dischargeable power source is mounted as a power source of a hybrid electric vehicle. Therefore, an object of the present invention is to provide a secondary power source that can operate at a higher voltage, has a high charge / discharge capacity, and is excellent in cycle reliability in rapid charge / discharge, and an organic solvent-based electrolyte therefor.
[0013]
[Means for Solving the Problems]
The present invention provides a secondary power source having a positive electrode mainly composed of activated carbon, a negative electrode mainly composed of a carbon material capable of occluding and desorbing lithium ions, and an organic solvent electrolyte containing a lithium salt. LiPF6, LiBF4, LiN (CF3SO2)2And LiN (C2F5SO2)2At least one selected from the group consisting of LiClO and4And providing a secondary power source.
[0014]
  The present invention also includes a positive electrode body in which the positive electrode and the current collector are integrated, a negative electrode body in which the negative electrode and the current collector are integrated, and an organic solvent electrolyte.e,The positive electrode current collector is made of aluminum, and the organic solvent electrolyte is ClO by ionization.4 And N (C2F5SO2)2 An electrolyte that producesBoth positive and negative electrodes are equipped with polarizable electrodes mainly composed of activated carbon.It is characterized byElectric double layer capacitorI will provide a.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In the present specification, a positive electrode body is obtained by joining and integrating a positive electrode and a current collector. The negative electrode body has the same definition. Further, in the present specification, charge / discharge including a positive electrode mainly composed of activated carbon, a negative electrode mainly composed of a carbon material capable of occluding and desorbing lithium ions, and an organic solvent electrolyte containing an electrolyte composed of a lithium salt. A possible power source is simply called a secondary power source.
[0016]
The secondary power source of the present invention (hereinafter referred to as the present secondary power source) includes a positive electrode mainly composed of activated carbon, a negative electrode mainly composed of a carbon material capable of occluding and desorbing lithium ions, and an organic solvent-based electrolysis including a lithium salt. The lithium salt is LiPF.6, LiBF4, LiN (CF3SO2)2And LiN (C2F5SO2)2At least one selected from the group consisting of LiClO and4Including. LiClO4Hardly reacts with trace amounts of water present in organic solvent electrolytes and activated carbon of the positive electrode, does not corrode the positive electrode current collector, has excellent electrical conductivity, and can increase the capacity of the electrode mainly composed of activated carbon, etc. The secondary power supply has excellent properties as an electrolyte. However, LiClO4When it is used at a high concentration, careful attention is required, and there are many practical restrictions, so it is difficult to contain it in an organic solvent-based electrolyte. On the other hand, the capacity cannot be increased sufficiently with an organic solvent electrolyte having a low electrolyte concentration. Therefore, this secondary power supply has LiClO.4And a mixed electrolyte of other lithium salt.
[0017]
The present inventors have used LiClO as an electrolyte of the secondary power source.4Is used at a constant concentration, and this is used as LiN (Rf1SO2) (Rf2SO2) (Rf1, Rf2Are each independently a C 1-6 perfluoroalkyl group), LiPF6And LiBF4It has been found that a practical secondary power source can be obtained by using in combination with one or more lithium salts selected from the group consisting of:
[0018]
LiN (Rf1SO2) (Rf2SO2) Is Rf1, Rf2The smaller the carbon number, the higher the electrical conductivity, while Rf1, Rf2There is a tendency that the larger the number of carbons is, the more difficult it is to corrode the aluminum positive electrode current collector. Above all, Rf1, Rf2LiN (C2F5SO2)2Is preferable because it has high electrical conductivity and is less likely to corrode aluminum, which is often used as a current collector, and the electrode body is unlikely to deteriorate. Rf1, Rf2Are independently in the range of 1 to 6 carbon atoms, LiN (C2F5SO2) (C3F7SO2R likef1And Rf2And may be different, Rf1, Rf2May be either linear or branched.
[0019]
Among them, LiClO4LiN (CF3SO2)2And / or LiN (C2F5SO2)2Is preferable from the viewpoint of improving electrical conductivity. Especially considering the stability at high temperature, LiN (C2F5SO2)2And LiClO4And a mixed system is preferred.
[0020]
In this secondary power source, 1 to 40 mol% of LiClO contained in the organic solvent electrolyte is LiClO.4It is preferable that LiClO4Is less than 1 mol% in the lithium salt, LiClO as the lithium salt4The effect of using is difficult to obtain. On the other hand, if it exceeds 40 mol%, sufficient care is required for handling and there are large practical restrictions, which is not preferable. In the lithium salt, 3 to 20 mol% is LiClO.4Is particularly preferred. In the present specification, mol% is in terms of lithium ion.
[0021]
Further, in this secondary power source, LiClO in an organic solvent electrolyte is used.4The concentration of is preferably 0.005 to 0.5 mol / L. LiClO in organic solvent electrolyte4LiClO as a lithium salt when the concentration of Al is less than 0.005 mol / L4The effect of using may not be obtained. On the other hand, LiClO4When the concentration of selenium exceeds 0.5 mol / L, sufficient caution is required for handling, which may increase practical restrictions. LiClO in organic solvent electrolyte4The concentration of is more preferably 0.05 to 0.2 mol / L.
[0022]
Moreover, in this secondary power supply, the concentration of the entire lithium salt in the organic solvent electrolyte is preferably 0.5 to 2 mol / L because an organic solvent electrolyte having high electrical conductivity can be obtained. If the concentration of the lithium salt as a whole is less than 0.5 mol / L, the conductivity of the organic solvent electrolyte may be too low, whereas if it exceeds 2 mol / L, the viscosity of the organic solvent electrolyte will increase. It may be too much. More preferably, the concentration of the entire lithium salt is 0.75 to 1.5 mol / L.
[0023]
In this secondary power source, the solvent of the organic solvent electrolyte is preferably at least one selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, sulfolane, and dimethoxyethane. .
[0024]
In the secondary power source, the positive electrode is mainly made of activated carbon. As the activated carbon, it is preferable to use a natural plant tissue such as coconut, a synthetic resin such as phenol, and a fossil fuel-derived material such as coal, coke, and pitch, which are activated and used. The activated carbon activation method varies depending on the raw material used, but usually there is an alkali activation method such as a water vapor activation method or a KOH activation method. In the present invention, both the steam activation method and the alkali activation method are preferably used.
[0025]
In addition to activated carbon, the positive electrode usually contains a binder as a shape-imparting material. As the binder, polytetrafluoroethylene, polyvinylidene fluoride, polyamideimide, polyimide, or the like is preferably used. The content of the binder is preferably 1 to 20% by mass in the positive electrode in terms of the balance between the strength and characteristics of the positive electrode body. Furthermore, the positive electrode preferably contains a conductive substance in order to increase the conductivity. Examples of the conductive substance include carbon black. The content of the conductive material in the total mass of the positive electrode is preferably 0.1 to 20% by mass because a positive electrode having a high capacity and high conductivity can be obtained.
[0026]
In addition, it is preferable that a small amount of a lithium-containing transition metal oxide is contained in the positive electrode because it can compensate for the reduction of lithium ions in the organic solvent electrolyte by lithium ions that cannot be removed from the negative electrode, and can prevent deterioration of characteristics. In this case, the content of the lithium-containing transition metal oxide is preferably 0.1 to 20% by mass in the positive electrode. If the content is less than 0.1% by mass, the effect of addition of the lithium-containing transition metal oxide cannot be obtained. On the other hand, if the content exceeds 20% by mass, the high output and high reliability characteristic of the activated carbon electrode may be impaired. There is. The content is more preferably 3 to 15% by mass.
[0027]
As such a lithium-containing transition metal oxide, a composite oxide of at least one transition metal selected from the group consisting of V, Mn, Fe, Co, Ni, Zn, and W and lithium is preferable. Particularly preferred is a composite oxide of lithium and at least one selected from the group consisting of Mn, Co and Ni, and more preferred is LixCoyNi(1-y)O2Or LizMn2O4(However, 0 <x <2, 0 ≦ y ≦ 1, 0 <z <2).
[0028]
As a method for producing the positive electrode, for example, activated carbon powder is mixed with polytetrafluoroethylene as a binder, kneaded and then molded into a sheet shape to form a positive electrode, which is fixed to the current collector using a conductive adhesive There is. Alternatively, the activated carbon powder may be dispersed in a varnish in which polyvinylidene fluoride, polyamideimide, polyimide, or the like is dissolved as a binder, and this liquid may be applied onto a current collector by a doctor blade method or the like and dried.
[0029]
In this secondary power source, the negative electrode is mainly composed of a carbon material capable of inserting and extracting lithium ions. The carbon material capable of inserting and extracting lithium ions is preferably an intercalation compound, natural graphite, artificial graphite, petroleum coke, mesophase pitch carbon material, non-graphitizable carbon material, or graphite material and graphite. Composite materials with mixed carbon materials and mixed materials can be used. However, activated carbon is not generally a carbon material that can occlude and desorb lithium ions. The carbon material preferably has a [002] plane spacing of 0.335 to 0.410 nm by X-ray diffraction because a high capacity negative electrode can be obtained. In particular, it is preferable that the spacing is 0.335 to 0.338 nm because the potential at the time of desorption of lithium ions can be reduced and a high capacity negative electrode can be obtained. Moreover, since it has the lithium occlusion ability more than the theoretical capacity | capacitance (372 mAh / g) of graphite as the said surface separation is 0.354-0.395 nm, it can make a higher capacity | capacitance negative electrode and is preferable. Furthermore, the specific surface area of the carbon material is 0.5 to 20 m.2/ G is preferable. Specific surface area is 20m2If it exceeds / g, the charge used to form a SEI (Solid Electrolyte Interface) film formed on the surface of the carbon material due to the decomposition of the electrolytic solution becomes too large, and the Coulomb efficiency may be reduced.
[0030]
Similarly to the positive electrode, the negative electrode usually contains a binder as a shape-imparting material. As a binder, the thing similar to what can be used for a positive electrode is used preferably. The binder amount in the total mass of the negative electrode is preferably 1 to 20%. Since a negatively conductive carbon material such as graphite is used for the negative electrode, adding a conductive material like the positive electrode does not improve the conductivity so much, but it may be added as needed.
[0031]
As a method for producing the negative electrode body, for example, a graphite material and polytetrafluoroethylene as a binder are kneaded and then formed into a sheet shape, and then formed into a current collector using a conductive adhesive. There is a way to fix. In addition, as a binder, the carbon material is dispersed in an organic solvent in which polyvinylidene fluoride, polyamideimide, polyimide, a polyamideimide precursor or a polyimide precursor is dissolved, applied to a current collector, dried, and heat-treated There is also a way to get it. As a method for producing the negative electrode body, any method is preferable.
[0032]
Here, the precursor of polyamideimide or the precursor of polyimide means a polymer that is polymerized by heating to become polyamideimide or polyimide, respectively. If polyamide imide or polyimide is used as a binder, it is resistant to an organic solvent electrolyte, and is sufficiently resistant to high temperature heating at about 300 ° C. or heating under reduced pressure in order to remove moisture from the electrode.
[0033]
In the method of forming a negative electrode on a current collector by coating, the solvent for dissolving the binder or its precursor is not limited, but N-methyl-2-pyrrolidone ( Hereinafter, NMP) is preferable. When the above-mentioned heating temperature is 200 ° C. or higher, when a precursor is used as a binder, polymerization is preferable. The heat treatment is preferably performed under an inert atmosphere such as nitrogen or argon or under a reduced pressure of 133 Pa or less.
[0034]
  The present invention also includes a positive electrode body in which the positive electrode and the current collector are integrated, a negative electrode body in which the negative electrode and the current collector are integrated, and an organic solvent electrolyte.e,The current collector of the positive electrode is made of aluminum, and the organic solvent electrolyte is N (C2F5SO2)2 Electrolytes and ClO4 An electrolyte that producesBoth positive and negative electrodes are equipped with polarizable electrodes mainly composed of activated carbon.It is characterized byElectric double layer capacitorI will provide a. As mentioned above, LiN (C2F5SO2)2And LiClO4The organic solvent-based electrolytic solution containing is extremely effective for a secondary power source including a positive electrode mainly composed of activated carbon and a negative electrode mainly composed of a carbon material capable of inserting and extracting lithium ions. The anion in the organic solvent electrolyte is N (C2F5SO2)2 And ClO4 However, an organic solvent-based electrolyte containing these anions (hereinafter referred to as the present organic solvent-based electrolyte) exhibits a high effect even in a chargeable / dischargeable power source other than the secondary power source. That is, the organic solvent electrolyte includes an aluminum positive electrode current collector.PowerEven if it is used for a gas double layer capacitor, it does not corrode the current collector, can achieve a high withstand voltage, and is reliable for charge / discharge cycles even if it is used for a chargeable / dischargeable power source operating at a temperature above room temperature, especially 45 ° C It is an organic solvent-based electrolyte having high properties.
[0035]
N (C2F5SO2)2 N (CF3SO2)2 It is less likely to cause corrosion of the aluminum positive electrode current collector. For example, Journal of Power Sources, 68 (1997) 320-325 includes LiN (CF3SO2)2When using an organic solvent-based electrolytic solution containing lithium for a lithium ion secondary battery, the positive electrode potential is 3.55 V (reference electrode: Li+/ Li), aluminum corrodes, whereas LiN (C2F5SO2)2There is a report that it does not corrode up to 4.5V with an organic solvent-based electrolytic solution containing. N (C2F5SO2)2 Is PF6 And BF4 Compared with, the hydrolysis is less likely to occur, and the electrical conductivity as an electrolyte is excellent.
[0036]
ClO by ionization4 Although the details of the reason why the corrosion of the current collector can be suppressed by the addition of the electrolyte that generates the water is not known, it is presumed as follows. Since metal aluminum reacts with oxygen in the air to form an oxide film on its surface, it is stably present without being corroded. PF6 , BF4 Does not destroy this oxide film and therefore does not corrode. N (C2F5SO2)2 Is easy to destroy aluminum oxide film, but ClO4 Added, ClO4 Oxidatively decomposes to form a stable oxide film, which is considered to suppress corrosion of the aluminum positive electrode current collector. At temperatures above room temperature, especially above 45 ° C, this ClO4 Since the rate of oxidative decomposition increases, it has excellent charge / discharge cycle reliability even when operated at high temperatures.
[0037]
In the secondary power source, lithium ions are occluded in the carbon material of the negative electrode by charging. At this time, the negative electrode potential is about 0.8 V (reference electrode: Li+/ Li), an SEI film having lithium ion conductivity is formed on the surface of the carbon material by decomposition of the electrolytic solution. ClO in organic solvent electrolyte4 When ions are present, the formation of this SEI film is promoted, so that lithium ions are easily occluded into the carbon material of the negative electrode, and it is considered that higher cycle reliability is expressed.
[0038]
In this organic solvent electrolyte, ClO is present in all anions.4 Is 0.1 to 40 mol%, and N (C2F5SO2)2 The content of is preferably 60 to 99.9 mol%. ClO4 When the content of CrO is less than 0.1 mol%, ClO as described above4 The addition effect is difficult to appear. On the other hand, ClO4 When the content of exceeds 40 mol%, N (C2F5SO2)2 It is not preferable because it may impair the stable chemical properties of the material, and requires sufficient care in handling, and there are many practical restrictions. More preferably, in all anions, ClO4 Is 5 to 25 mol%, and N (C2F5SO2)2 Is added so that the content thereof becomes 75 to 95 mol%.
[0039]
The concentration of the entire electrolyte in the organic solvent electrolyte is preferably 0.5 to 2.0 mol / L, similar to the concentration of the lithium salt contained in the organic solvent electrolyte of the secondary power source. More preferably, the overall concentration is from 0.75 to 1.5 mol / L.
[0040]
In the organic solvent electrolyte of the present invention, the same solvent as that used for the organic solvent electrolyte of the secondary power source is preferably used. In particular, when used in a lithium ion secondary battery, a solvent in which one or more selected from the group consisting of propylene carbonate, dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate and ethylene carbonate are combined has temperature characteristics and electrochemical characteristics. It is preferable from the point. When used for an electric double layer capacitor, a solvent mainly composed of propylene carbonate is preferable from the viewpoint of temperature characteristics and electrochemical characteristics.
[0041]
The organic solvent-based electrolytic solution has a positive electrode mainly composed of a lithium-containing transition metal oxide and a negative electrode mainly composed of a carbon material capable of inserting and extracting lithium ions, and the positive electrode includes an aluminum current collector. It is suitably used for a lithium ion secondary battery. When used in a lithium ion secondary battery, the electrolyte is a lithium salt and LiN (C2F5SO2)2And LiClO4It consists of.
[0042]
The organic solvent-based electrolyte solution is suitably used for an electric double layer capacitor having a polarizable electrode mainly composed of activated carbon for both positive and negative electrodes, and an aluminum collector on the positive electrode. When used for electric double layer capacitors,2H5)4N+, (C2H5)3(CH3) N+And (C2H5)4P+It is preferable to use as the electrolyte a quaternary onium salt that generates one or more cations selected from the group consisting of: In particular, (C2H5)3(CH3) NN (C2F5SO2)2And (C2H5)3(CH3) NClO4It is preferable to use an electrolyte consisting of
[0043]
【Example】
The present invention will be described more specifically with reference to Examples (Examples 1 to 4, Examples 9 to 13, Example 18, and Example 19) and Comparative Examples (Examples 5 to 8, Examples 14 to 17, Example 20, and Example 21). However, the present invention is not limited by these. In addition, all the preparation of the cell in Examples 1-21 was performed in the argon glove box whose dew point is -60 degrees C or less.
[0044]
[Example 1 (Example)]
A specific surface area of 900 m obtained by the KOH activation method using coke as a raw material2/ G of activated carbon 70% by mass, conductive carbon black 20% by mass, and polytetrafluoroethylene 10% by mass as a binder were added with ethanol, kneaded, rolled, and then vacuum dried at 200 ° C. for 2 hours. Thus, a positive electrode sheet was obtained. Next, as a carbon material capable of inserting and extracting lithium ions, amorphous carbon having a [002] plane spacing of 0.378 nm and a particle size of 19 μm by X-ray diffraction was used, and graphitized as a conductive material. Vapor-grown carbon was added and dispersed in NMP in which polyvinylidene fluoride (binder) was dissolved. This dispersion was applied to a copper current collector (thickness: about 18 μm) and dried to obtain a negative electrode body. The mass ratio of amorphous carbon: graphitized vapor-grown carbon: polyvinylidene fluoride in the negative electrode body was 7: 1: 2. This negative electrode body was further pressed with a roll press.
[0045]
The area obtained by the above method is 0.283 cm.2A positive electrode sheet (thickness of about 900 μm) and a negative electrode body (thickness of about 100 μm) were fixed to a positive electrode cap and a negative electrode case of a coin cell (diameter 10.8 mm, height 1.7 mm), respectively, and a polypropylene separator (thickness) 0.1 mol / L LiClO4And 0.9 mol / L LiBF4Was impregnated with an organic solvent electrolyte dissolved in a mixed solvent of 50% by volume of ethylene carbonate and 50% by volume of ethyl methyl carbonate for a sufficient time, sealed in a coin cell, and sealed to prepare a cell of the secondary power source. The initial capacity (mAh) of the obtained cell was 0.283 mA (1.0 mA / cm) in the voltage range from 4.2 V to 2.75 V.2). Thereafter, a charge / discharge cycle test of 1000 cycles was performed at a charge / discharge current of 0.283 mA in a voltage range from 4.2 V to 2.75 V in a 45 ° C. atmosphere, and the capacity reduction rate (%) after the cycle test with respect to the initial capacity was calculated. Calculated. The results are shown in Table 1.
[0046]
[Example 2 (Example)]
LiBF as electrolyte4Instead of LiPF6A cell was prepared in the same manner as in Example 1 except that was used, and evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0047]
[Example 3 (Example)]
LiBF as electrolyte4Instead of LiN (CF3SO2)2A cell was prepared in the same manner as in Example 1 except that was used, and evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0048]
[Example 4 (Example)]
LiBF as electrolyte4Instead of LiN (C2F5SO2)2A cell was prepared in the same manner as in Example 1 except that was used, and evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0049]
[Example 5 (comparative example)]
0.1 mol / L LiClO as electrolyte4And 0.9 mol / L LiBF4Instead of 1.0 mol / L LiBF4A cell was prepared in the same manner as in Example 1 except that was used, and evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0050]
[Example 6 (comparative example)]
LiBF as electrolyte4Instead of LiPF6A cell was prepared in the same manner as in Example 5 except that was used, and evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0051]
[Example 7 (comparative example)]
LiBF as electrolyte4Instead of LiN (CF3SO2)2A cell was prepared in the same manner as in Example 5 except that was used, and evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0052]
[Example 8 (comparative example)]
LiBF as electrolyte4Instead of LiN (C2F5SO2)2A cell was prepared in the same manner as in Example 5 except that was used, and evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0053]
[Table 1]
Figure 0004284934
[0054]
For the cells obtained in Examples 1-8, in Table 1, LiClO was compared by comparing Example 1 and Example 5, Example 2 and Example 6, Example 3 and Example 7, Example 4 and Example 8, respectively.4LiN (C2F5SO2)2It turns out that a characteristic improves by using together with lithium salts, such as. Further, by comparing Example 7 and Example 8, LiN (C2F5SO2)2The cell using the electrolyte as the electrolyte is LiN (CF3SO2)2It turns out that it is better.
[0055]
[Example 9 (Example)]
The positive electrode sheet obtained in the same manner as in Example 1 was attached to an aluminum current collector (thickness: 100 μm) with a conductive adhesive and vacuum-dried at 200 ° C. for 15 hours to have an area of 10.0 cm.2A positive electrode body (thickness: about 200 μm) was obtained. The positive electrode body and a negative electrode body (thickness of about 40 μm) obtained in the same manner as in Example 1 were opposed to each other through a polypropylene separator (thickness of about 80 μm), and 0.9 mol / L LiN (CF3SO2) (C2F5SO2) And 0.1 mol / L LiClO4Is impregnated with an organic solvent electrolyte solution dissolved in a mixed solvent of 50% by volume of ethylene carbonate and 50% by volume of ethyl methyl carbonate for a sufficient period of time, sealed in an aluminum laminate pack, and sealed, and the cell of the secondary power source is sealed. Produced. The initial capacity (mAh) of the obtained cell was set to a charge / discharge current of 100 mA (10 mA / cm) in a voltage range from 4.0 V to 2.0 V.2). Thereafter, a charge / discharge cycle test of 1000 cycles was performed at a charge / discharge current of 100 mA in a voltage range of 4.0 V to 2.0 V in a 45 ° C. atmosphere, and a capacity reduction rate (%) after the cycle test with respect to the initial capacity was calculated. . The results are shown in Table 2.
[0056]
[Example 10 (Example)]
LiN (CF as electrolyte3SO2) (C2F5SO2) Instead of LiN (CF3SO2) (C3F7SO2) Was used in the same manner as in Example 9 except that was used, and evaluation was performed in the same manner as in Example 9. The results are shown in Table 2.
[0057]
[Example 11 (Example)]
LiN (CF as electrolyte3SO2) (C2F5SO2) Instead of LiN (CF3SO2) (C4F9SO2) Was used in the same manner as in Example 9 except that was used, and evaluation was performed in the same manner as in Example 9. The results are shown in Table 2.
[0058]
[Example 12 (Example)]
LiN (CF as electrolyte3SO2) (C2F5SO2) Instead of LiN (CF3SO2)2A cell was prepared in the same manner as in Example 9 except that was used, and evaluated in the same manner as in Example 9. The results are shown in Table 2.
[0059]
Example 13 (Example)
LiN (CF as electrolyte3SO2) (C2F5SO2) Instead of LiN (C2F5SO2)2A cell was prepared in the same manner as in Example 9 except that was used, and evaluated in the same manner as in Example 9. The results are shown in Table 2.
[0060]
[Example 14 (comparative example)]
As an electrolyte, 0.9 mol / L LiN (CF3SO2) (C2F5SO2) And 0.1 mol / L LiClO4Instead of 1.0 mol / L LiN (CF3SO2) (C2F5SO2) Was used in the same manner as in Example 9 except that was used, and evaluation was performed in the same manner as in Example 9. The results are shown in Table 2.
[0061]
[Example 15 (comparative example)]
LiN (CF as electrolyte3SO2) (C2F5SO2) Instead of LiN (CF3SO2) (C3F7SO2) Was used in the same manner as in Example 14 except that was used, and evaluation was performed in the same manner as in Example 9. The results are shown in Table 2.
[0062]
[Example 16 (comparative example)]
LiN (CF as electrolyte3SO2) (C2F5SO2) Instead of LiN (CF3SO2) (C4F9SO2) Was used in the same manner as in Example 14 except that was used, and evaluation was performed in the same manner as in Example 9. The results are shown in Table 2.
[0063]
[Example 17 (comparative example)]
LiN (CF as electrolyte3SO2) (C2F5SO2) Instead of LiBF4A cell was prepared in the same manner as in Example 14 except that was used, and evaluated in the same manner as in Example 9. The results are shown in Table 2.
[0064]
[Table 2]
Figure 0004284934
[0065]
[Example 18 (Example)]
LiCoO2And graphite as a conductive material are dispersed in a solution in which polyvinylidene fluoride is dissolved in N-methyl-2-pyrrolidone (hereinafter referred to as NMP), and this is applied to an aluminum current collector (thickness of about 30 μm). A positive electrode was obtained by drying. LiCoO in the positive electrode body2The mass ratio of: graphite: polyvinylidene fluoride was 8: 1: 1.
[0066]
Next, as a carbon material capable of inserting and extracting lithium ions, highly crystalline graphite (manufactured by Osaka Gas Co., Ltd., trade name: MCMB6-28) is dispersed in a solution in which polyvinylidene fluoride is dissolved in NMP to obtain a copper The negative electrode body was obtained by applying to an electric body (thickness: about 18 μm) and drying. The mass ratio of highly crystalline graphite: polyvinylidene fluoride in the negative electrode body was 9: 1.
[0067]
10.0 cm area obtained by the above method2A positive electrode body (thickness of about 60 μm) and a negative electrode body (thickness of about 40 μm) were opposed to each other via a polypropylene separator (thickness of about 20 μm), and 0.9 mol / L LiN (C2F5SO2)2And 0.1 mol / L LiClO4Is impregnated with an organic solvent electrolyte dissolved in a mixed solvent of 50% by volume of ethylene carbonate and 50% by volume of ethyl methyl carbonate for a sufficient period of time, sealed in an aluminum laminate pack, and sealed to form a lithium ion secondary battery cell. Obtained. The initial capacity (mAh) of the obtained cell is 10 mA (1.0 mA / cm) in the range from 4.1 V to 2.0 V.2). Thereafter, a voltage of 4.1 V was continuously applied in a 60 ° C. atmosphere, and the capacity (mAh) was measured again after 500 hours. Thereafter, the cell was disassembled, and the aluminum elution amount (μg) per 1 g of the organic solvent electrolyte contained in the separator was measured by ICP emission spectrometry. The results are shown in Table 3.
[0068]
Example 19 (Example)
The same positive electrode sheet obtained in the same manner as in Example 1 was attached to two aluminum current collectors with a conductive adhesive and vacuum-dried at 200 ° C. for 15 hours to obtain a positive electrode body. Body and negative electrode body.
[0069]
10.0 cm area obtained by the above method2A positive electrode body (thickness of about 250 μm) and a negative electrode body (thickness of about 250 μm) are opposed to each other via a polypropylene separator (thickness of about 80 μm), and 1.35 mol / L (C2H5)3(CH3) NN (C2F5SO2)2And 0.1 mol / L (C2H5)3(CH3) NClO4Was impregnated in an organic solvent electrolyte solution dissolved in a propylene carbonate solvent for a sufficient time, enclosed in an aluminum laminate pack, and sealed to obtain an electric double layer capacitor cell. The initial capacity (mAh) of this cell is 10 mA (1.0 mA / cm) in the range from 2.5 V to 1.0 V.2). Thereafter, a voltage of 2.5 V was continuously applied in a 60 ° C. atmosphere, and the capacity (mAh) was measured again after 500 hours. Thereafter, in the same manner as in Example 15, the aluminum elution amount (μg) per gram of the organic solvent electrolyte contained in the separator was measured. The results are shown in Table 3.
[0070]
[Example 20 (comparative example)]
As an electrolyte, 0.9 mol / L LiN (C2F5SO2)2And 0.1 mol / L LiClO4Instead of 1.0 mol / L LiN (C2F5SO2)2A cell was prepared in the same manner as in Example 9 except that was used, and the initial capacity, the capacity after 500 hours and the aluminum elution amount were measured. The results are shown in Table 3.
[0071]
[Example 21 (comparative example)]
1.35 mol / L of (C2H5)3(CH3) NN (C2F5SO2)2And 0.1 mol / L (C2H5)3(CH3) NClO4Instead of 1.5 mol / L (C2H5)3(CH3) NN (C2F5SO2)2A cell was prepared in the same manner as in Example 16 except that was used, and the initial capacity, the capacity after 500 hours, and the aluminum elution amount were measured. The results are shown in Table 3.
[0072]
[Table 3]
Figure 0004284934
[0073]
The lithium ion secondary battery obtained in Example 18 and the electric double layer capacitor obtained in Example 19 were significantly suppressed in elution of aluminum as compared with Examples 20 and 21, respectively, and operated at a high temperature. But there is little decrease in capacity.
[0074]
【The invention's effect】
According to the present invention, a secondary power source having a high withstand voltage, a high charge / discharge capacity, and excellent cycle reliability in rapid charge / discharge can be obtained.
[0075]
In addition, the organic solvent electrolyte of the present invention does not corrode the current collector even when used in a lithium ion secondary battery or an electric double layer capacitor equipped with an aluminum positive electrode current collector, and operates at high voltage and high temperature. This is an organic solvent-based electrolytic solution that can be charged and discharged with high reliability. Furthermore, even when used for a lithium ion secondary battery or an electric double layer capacitor when operating at a temperature of room temperature or higher, particularly 45 ° C. or higher, there is little decrease in capacity and excellent charge / discharge cycle reliability.

Claims (7)

活性炭を主体とする正極と、リチウムイオンを吸蔵、脱離しうる炭素材料を主体とする負極と、リチウム塩からなる電解質を含む有機溶媒系電解液とを有する二次電源において、前記リチウム塩がLiPF、LiBF、LiN(CFSOおよびLiN(CSOからなる群より選ばれる1種以上と、LiClOと、を含むことを特徴とする二次電源。In a secondary power source having a positive electrode mainly composed of activated carbon, a negative electrode mainly composed of a carbon material capable of absorbing and desorbing lithium ions, and an organic solvent electrolyte containing an electrolyte composed of a lithium salt, the lithium salt is LiPF. 6 , a secondary power supply comprising at least one selected from the group consisting of LiBF 4 , LiN (CF 3 SO 2 ) 2 and LiN (C 2 F 5 SO 2 ) 2 and LiClO 4 . 前記リチウム塩は、LiClOと、LiN(CFSOおよび/またはLiN(CSOとの混合系である請求項1記載の二次電源。The secondary power supply according to claim 1, wherein the lithium salt is a mixed system of LiClO 4 and LiN (CF 3 SO 2 ) 2 and / or LiN (C 2 F 5 SO 2 ) 2 . 前記リチウム塩は、LiClOと、LiN(CSOとの混合系である請求項1または2記載の二次電源。The secondary power supply according to claim 1, wherein the lithium salt is a mixed system of LiClO 4 and LiN (C 2 F 5 SO 2 ) 2 . 前記リチウム塩中、1〜40mol%がLiClOである請求項1〜3のいずれか記載の二次電源。4. The secondary power supply according to claim 1, wherein 1 to 40 mol% is LiClO 4 in the lithium salt. 前記リチウム塩の前記有機溶媒系電解液中の濃度が0.5〜2mol/Lである請求項1〜4のいずれか記載の二次電源。  The secondary power supply according to any one of claims 1 to 4, wherein a concentration of the lithium salt in the organic solvent electrolyte is 0.5 to 2 mol / L. 正極の集電体がアルミニウムからなる請求項1〜5のいずれか記載の二次電源。  The secondary power supply according to claim 1, wherein the positive electrode current collector is made of aluminum. 正極と集電体とを一体化してなる正極体と、負極と集電体とを一体化してなる負極体と、有機溶媒系電解液とを備え、前記正極の集電体がアルミニウムからなり、前記有機溶媒系電解液が電離によってClO を生成する電解質とN(CSO を生成する電解質とを含み、正負極ともに活性炭を主体とする分極性電極を備えることを特徴とする電気二重層キャパシタA positive electrode body formed by integrating the positive electrode and the current collector, a negative electrode body formed by integrating the negative electrode and the current collector, e Bei an organic electrolyte, a current collector of the positive electrode is made of aluminum the ClO 4 organic electrolyte solution by ionization - electrolyte and N (C 2 F 5 SO 2 ) 2 to produce a - viewed contains an electrolyte to produce a polarizable electrode to positive and negative electrodes together mainly of activated carbon electric double layer capacitor, characterized in that it comprises.
JP2002202973A 2001-09-20 2002-07-11 Secondary power supply Expired - Fee Related JP4284934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002202973A JP4284934B2 (en) 2001-09-20 2002-07-11 Secondary power supply

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2001286853 2001-09-20
JP2001-286853 2001-09-20
JP2001-342718 2001-11-08
JP2001342718 2001-11-08
JP2002202973A JP4284934B2 (en) 2001-09-20 2002-07-11 Secondary power supply

Publications (2)

Publication Number Publication Date
JP2003208925A JP2003208925A (en) 2003-07-25
JP4284934B2 true JP4284934B2 (en) 2009-06-24

Family

ID=27670228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002202973A Expired - Fee Related JP4284934B2 (en) 2001-09-20 2002-07-11 Secondary power supply

Country Status (1)

Country Link
JP (1) JP4284934B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243321A (en) * 2004-02-25 2005-09-08 Sanyo Electric Co Ltd Nonaqueous secondary battery
JP2006086355A (en) * 2004-09-16 2006-03-30 Bridgestone Corp Nonaqueous electrolyte secondary electric source
JP4732074B2 (en) * 2005-08-31 2011-07-27 富士重工業株式会社 Lithium ion capacitor
US9350017B2 (en) 2010-11-12 2016-05-24 A123 Systems Llc High performance lithium or lithium ion cell
US9263731B2 (en) * 2010-11-12 2016-02-16 A123 Systems Llc High performance lithium or lithium ion cell
CN102290245B (en) * 2011-04-29 2012-11-21 深圳市惠程电气股份有限公司 Polyimide capacitor battery and manufacturing method thereof
KR102235762B1 (en) 2015-02-25 2021-04-05 에스이에스 홀딩스 피티이. 엘티디. Electrolytic system for high voltage lithium-ion batteries

Also Published As

Publication number Publication date
JP2003208925A (en) 2003-07-25

Similar Documents

Publication Publication Date Title
JP4096438B2 (en) Secondary power supply
JP5260887B2 (en) Nonaqueous electrolyte secondary battery
CN101405898B (en) Non-aqueous electrolyte secondary battery
JP6769334B2 (en) Method for manufacturing negative electrode for non-aqueous electrolyte storage element, negative electrode for non-aqueous electrolyte storage element and non-aqueous electrolyte storage element
JP3658517B2 (en) Non-aqueous electrolyte secondary battery
JP4284934B2 (en) Secondary power supply
JPH10334730A (en) Organic electrolyte and its use
JP2000306609A (en) Secondary power supply
JP2000090971A (en) Secondary power supply
JP2000036325A (en) Secondary power supply
JP2014220115A (en) Sodium secondary battery
US7049032B2 (en) Secondary power source
JP4099970B2 (en) Secondary power supply
JP2008034304A (en) Energy storing device
JP2012028366A (en) Power storage device
JP6848363B2 (en) Negative electrode and non-aqueous electrolyte power storage element
JP5272810B2 (en) Capacitors
JP7409132B2 (en) Nonaqueous electrolyte storage element
JPH08339824A (en) Non-aqueous electrolyte secondary battery
JP2001338679A (en) Secondary power supply
JP4352532B2 (en) Secondary power supply
JP4706088B2 (en) Non-aqueous electrolyte secondary battery
JP2001236960A (en) Manufacturing method of secondary power supply
JP2002033102A (en) Method of manufacturing secondary power supply and negative electrode for secondary power supply
JP2003208921A (en) Secondary power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees