JP4204692B2 - Nitrogen oxide removal catalyst, method for producing the same, and method for removing nitrogen oxides using the catalyst - Google Patents
Nitrogen oxide removal catalyst, method for producing the same, and method for removing nitrogen oxides using the catalyst Download PDFInfo
- Publication number
- JP4204692B2 JP4204692B2 JP08674599A JP8674599A JP4204692B2 JP 4204692 B2 JP4204692 B2 JP 4204692B2 JP 08674599 A JP08674599 A JP 08674599A JP 8674599 A JP8674599 A JP 8674599A JP 4204692 B2 JP4204692 B2 JP 4204692B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- oxide
- weight
- titanium
- soluble
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003054 catalyst Substances 0.000 title claims description 138
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 title claims description 72
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 238000000034 method Methods 0.000 title description 16
- 239000000463 material Substances 0.000 claims description 40
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 27
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 25
- 239000000758 substrate Substances 0.000 claims description 19
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 16
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 16
- 239000002002 slurry Substances 0.000 claims description 14
- 239000002244 precipitate Substances 0.000 claims description 11
- 239000000126 substance Substances 0.000 claims description 10
- 150000003609 titanium compounds Chemical class 0.000 claims description 10
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 9
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims description 9
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 9
- 150000003658 tungsten compounds Chemical class 0.000 claims description 9
- 229910001930 tungsten oxide Inorganic materials 0.000 claims description 9
- 239000012736 aqueous medium Substances 0.000 claims description 8
- 150000001785 cerium compounds Chemical class 0.000 claims description 8
- 239000003381 stabilizer Substances 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 5
- 238000001354 calcination Methods 0.000 claims description 4
- 230000003472 neutralizing effect Effects 0.000 claims description 4
- 230000001376 precipitating effect Effects 0.000 claims description 3
- 239000000047 product Substances 0.000 claims description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 53
- 239000007789 gas Substances 0.000 description 41
- 239000007864 aqueous solution Substances 0.000 description 16
- 230000000694 effects Effects 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 229910021529 ammonia Inorganic materials 0.000 description 15
- 239000003638 chemical reducing agent Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- 239000000203 mixture Substances 0.000 description 10
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 10
- 239000010410 layer Substances 0.000 description 9
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 7
- 235000011114 ammonium hydroxide Nutrition 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 7
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000001099 ammonium carbonate Substances 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 5
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- YCLKEIUSMCJZQH-UHFFFAOYSA-N [Ce].[W].[Ti] Chemical compound [Ce].[W].[Ti] YCLKEIUSMCJZQH-UHFFFAOYSA-N 0.000 description 4
- PVRSPRJOSOHXMS-UHFFFAOYSA-N [O-2].[Ti+4].[W+4].[Ce+3] Chemical compound [O-2].[Ti+4].[W+4].[Ce+3] PVRSPRJOSOHXMS-UHFFFAOYSA-N 0.000 description 4
- 239000004202 carbamide Substances 0.000 description 4
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 3
- 229920000877 Melamine resin Polymers 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 3
- 235000012501 ammonium carbonate Nutrition 0.000 description 3
- 238000010531 catalytic reduction reaction Methods 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 3
- 229910052815 sulfur oxide Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 150000007514 bases Chemical class 0.000 description 2
- OZECDDHOAMNMQI-UHFFFAOYSA-H cerium(3+);trisulfate Chemical compound [Ce+3].[Ce+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O OZECDDHOAMNMQI-UHFFFAOYSA-H 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229910052878 cordierite Inorganic materials 0.000 description 2
- XAYGUHUYDMLJJV-UHFFFAOYSA-Z decaazanium;dioxido(dioxo)tungsten;hydron;trioxotungsten Chemical compound [H+].[H+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O XAYGUHUYDMLJJV-UHFFFAOYSA-Z 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000007719 peel strength test Methods 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 239000002912 waste gas Substances 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910002060 Fe-Cr-Al alloy Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- GHLITDDQOMIBFS-UHFFFAOYSA-H cerium(3+);tricarbonate Chemical compound [Ce+3].[Ce+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O GHLITDDQOMIBFS-UHFFFAOYSA-H 0.000 description 1
- 229910000333 cerium(III) sulfate Inorganic materials 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000002431 foraging effect Effects 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- BBJSDUUHGVDNKL-UHFFFAOYSA-J oxalate;titanium(4+) Chemical compound [Ti+4].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O BBJSDUUHGVDNKL-UHFFFAOYSA-J 0.000 description 1
- DCKVFVYPWDKYDN-UHFFFAOYSA-L oxygen(2-);titanium(4+);sulfate Chemical compound [O-2].[Ti+4].[O-]S([O-])(=O)=O DCKVFVYPWDKYDN-UHFFFAOYSA-L 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910000348 titanium sulfate Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、窒素酸化物を含有する排ガスから窒素酸化物を除去(以下、「脱硝」と略すこともある)する方法に関する。詳しくはガスエンジン、ガスタービン、ボイラー、ディーゼルエンジンなどのほかに各種工業プロセスから排出される高温排ガス中に含まれる窒素酸化物(以下NOxということもある)を、還元剤としてアンモニアまたは尿素、メラミン、シアヌル酸、炭酸アンモニウム、炭酸水素アンモニウム等の固体還元剤を用いて接触還元するに好適な脱硝触媒、その製造方法、およびその触媒を用いた脱硝方法に関する。
【0002】
本発明の「脱硝触媒」とは、排ガス中のNOxを上記還元剤を用いて接触還元し無害な窒素と水とに変換するための触媒を意味する。
【0003】
【従来の技術】
現在、排ガス中のNOxを除去する方法としては、高濃度の酸素を含む排ガスでもNOxを選択的に除去でき、また使用する還元剤も少量ですみ、経済的であるため、アンモニアを還元剤として用いる選択的接触還元法が主流となっている。
【0004】
この接触還元法に用いられる触媒としては、アルミナ、シリカ、ゼオライト、酸化チタンなどとバナジウム、銅、タングステン、モリブデン、鉄などの酸化物を組み合わせた触媒がこれまでに数多く提案されている。このなかでも、酸化チタンを主成分とする触媒は、排ガス中の硫黄酸化物(SOx)の影響を受けず、また排ガス中のSO2からSO3への酸化能力が低いことから現在では広く実用化されている。反応温度は通常250〜400℃程度である。
【0005】
ガスタービン排ガスやディーゼルエンジン排ガスのように、排ガス温度が400℃を越えるものもあり、このような高温排ガス中のNOxを除去するためには比較的幅広い温度領域で優れた活性を示す脱硝触媒が必要である。
【0006】
排ガス温度が400℃を越える排ガス中のNOxを除去するための触媒としては、可溶性チタン化合物、可溶性タングステン化合物および可溶性セリウム化合物を含む水溶液を塩基性物質で中和して得られる沈殿物を焼成して得られる触媒成分を用いることで高活性を得る触媒(特開平8−257402公報)が開示されている。この触媒は一般的にパイプ状、ハニカム状に一体成形されるが、触媒の単位あたりの表面積が小さく、また開口率が低いため、重油焚きボイラーや石炭焚きボイラーからの排ガスのように、多量のダストを含有している排ガスを処理する場合、ダストが触媒に付着または触媒間に堆積することにより触媒性能の低下や触媒層の圧損の増大を招き、円滑な操業を妨げるという問題点が生じる。
【0007】
これらの欠点を解決するため、ハニカム状基材に触媒物質を担持して得られた触媒は、ハニカム状基材の厚みを薄くしても十分使用に耐え得る強度を有するために、触媒の単位あたりの表面積を大きくすることができ、また脱硝装置がコンパクトになる利点等からよく使用されている。
【0008】
しかし触媒物質とハニカム状基材とでは熱膨張係数が異なるために、熱ひずみより触媒物質に亀裂が生じたり、また振動、衝撃に対して触媒物質層が剥離することがある。したがって、ハニカム状基材と触媒物質との接着性の改良を目的とした種々の製造方法および触媒が提案されている。特に触媒の単位あたりの表面積が大きい金属基材を用いた場合、金属基材の表面に複合メッキによって表面粗さの大きい被覆層を形成させた後、触媒物質を担持させる方法(特開昭57−19040号公報)および金属基材の表面に金属酸化物からなる多孔質被覆層を形成させた後、触媒物質を担持させる方法(特開昭61−181537号公報)等が開示されている。
【0009】
上記の発明はいずれも金属基材にあらかじめ被覆層を形成した後に触媒物質を担持させるため、加工費が高くなり触媒コストが上昇するという欠点がある。
【0010】
【発明が解決しようとする課題】
本発明の目的は、上記の点に鑑み従来触媒の欠点を克服し、安価で、ハニカム基材への触媒物質の接着性が良好で、排ガス中の窒素酸化物を効率よく除去することが可能な、なおかつ優れた耐久性を有する窒素酸化物除去用触媒、その製造方法、およびその触媒を用いた窒素酸化物の除去方法を提供することである。
【0011】
【課題を解決するための手段】
本発明者らは、触媒の単位あたりの表面積が大きいハニカム基材に、所定の調製方法によって得られる触媒物質を強固に担持させる方法を見出し本発明を完成するに至った。すなわち、本発明は、以下の通り特定されるものである。
【0012】
(1)触媒物質をスラリー化して、ハニカム状基材に担持し、乾燥、焼成する、ハニカム状基材に触媒物質を担持して得られる窒素酸化物除去用触媒であって、当該触媒物質としてチタン酸化物を50〜94.5重量%、タングステン酸化物を5〜30重量%、セリウム酸化物を0.5〜10重量%およびジルコニウム酸化物を0〜10重量%含み、担持触媒層厚みが0.03〜0.2mmであり、開口率が65〜90%の範囲にある窒素酸化物除去用触媒の製造方法において、スラリー安定剤として酸化チタンゾルおよび/または酸化ジルコニウムゾルを触媒物質に対して酸化物換算で1〜10重量%を用いることを特徴とする窒素酸化物除去用触媒の製造方法。
【0013】
(2)触媒物質が水性媒体に可溶性チタン化合物、可溶性タングステン化合物及び可溶性セリウム化合物を含む水性液を沈澱させて得られる沈澱物を焼成して得られたものである(1)に記載の窒素酸化物除去用触媒の製造方法。
【0014】
(3)沈殿物が可溶性チタン化合物、可溶性タングステン化合物及び可溶性セリウム化合物を水性媒体に溶解させた水性液を、塩基性物質で中和して得られるものである(1)に記載の窒素酸化物除去用触媒の製造方法。
【0017】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0018】
本発明の触媒はその構成成分としてチタン酸化物を含有することを特徴としたものであるが、これを調製する際に使用するチタン源の種類については、酸化チタンや酸化チタンゾルの他、焼成してチタン酸化物を生成するものであれば特に制限はないが、好ましくは水性媒体に可溶である可溶性チタン化合物が用いられる。例えば、四塩化チタン、硫酸チタンなどの無機チタン化合物、およびシュウ酸チタン、テトライソプロピルチタネート等の有機チタン化合物を用いることができる。
【0019】
またタングステン酸化物、セリウム酸化物の原料についても、これらの酸化物や酸化物のゾルの他、焼成後にその酸化物を生成すれば特に制限がないが、好ましくは水性媒体に可溶である可溶性化合物が用いられる。可溶性タングステン化合物としては、例えばメタタングステン酸アンモニウム、パラタングステン酸アンモニウム等があげられ、可溶性セリウムとしては、例えば硝酸第一セリウム、硝酸第二セリウム、炭酸セリウム、硫酸第一セリウム、硫酸第二セリウム等があげられる。
【0020】
また、ジルコニウム酸化物の原料としては酸化ジルコニウムや酸化ジルコニウムゾルの他、水酸化物、アンモニウム塩、シュウ酸塩、ハロゲン化物、硫酸塩、硝酸塩などのいずれでもよい。
【0021】
これらの触媒物質は乾燥、焼成した後、チタン酸化物を50〜94.5重量%、好ましくは58〜90.5重量%、タングステン酸化物を5〜30重量%、好ましくは9〜25重量%、セリウム酸化物を0.5〜15重量%、好ましくは0.5〜10重量%、およびジルコニウム酸化物を0〜10重量%、好ましくは0〜7重量%の範囲で含有するのが、得られる脱硝触媒の活性が高くなるので好ましい。
【0022】
また、可溶性チタン化合物、可溶性タングステン化合物及び可溶性セリウム化合物を水性媒体に溶解させた水性液を、中和し沈殿させるのに用いる塩基性化合物としてはアンモニア、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウムなどが挙げられる。これらのうち、共沈物スラリーの洗浄性や取扱い性から、アンモニアまたはその水溶液(アンモニア水)が好適に用いられる。
【0023】
そこで、水性媒体として水を用い、また塩基性化合物としてアンモニア水を用いた例として、タングステン酸化物とセリウム酸化物を担持したチタン酸化物の調製法について、以下に具体的に説明する。
【0024】
まず、可溶性チタン化合物、例えば四塩化チタンおよび可溶性タングステン化合物、例えばメタタングステン酸アンモニウムおよび可溶性セリウム化合物、例えば硝酸セリウムを水に溶解して酸性のチタン−タングステン−セリウム含有水溶液とする。次に、この水溶液の温度を60℃以下、好ましくは50〜0℃の範囲で保持しながら、アンモニア水を、最終pHが5〜8、好ましくは5以上で7未満の範囲となるように添加して沈殿させる。なお、タングステン化合物、セリウム化合物の水溶液が塩基性の場合には、これらを含有する水溶液をアンモニア水と同時にチタン含有水溶液に添加し、沈殿させる。
【0025】
本発明における「最終pH」とは、沈殿操作を終了した時点における沈殿物スラリーもしくはゲルのpHを意味する。
【0026】
沈殿操作における温度が60℃を超えると得られる触媒の活性が低くなって好ましくない。最終pHが5より低いと得られる触媒の活性は低下し、また8を超えると活性は低下し、そのうえタングステンの再溶解も起こるため好ましくない。
【0027】
上記沈殿操作により得られたチタン−タングステン−セリウム沈殿物は、沈殿物スラリーから分離し、よく洗浄し、乾燥した後、焼成することによりチタン−タングステン−セリウム酸化物を得る。上記分離、洗浄、乾燥及び焼成は、この種の酸化物の調整に一般的に用いられている条件下で行うことができるが、タングステン酸化物を5〜30重量%、およびセリウム酸化物を0.5〜15重量%含有するものを400〜700℃、特に450〜750℃の範囲で加熱焼成すると、耐久性に優れた触媒物質が得られて好ましい。
【0028】
ハニカム状触媒の形状について、鋭意研究を重ねた結果、触媒の開口率は65%〜90%が好ましく、65%〜86%がさらに好ましいことがわかった。開口率が65%未満の場合、圧力損失が著しく上昇すると同時に、相対的に触媒の幾何学的表面積が低下するので脱硝率の低下を招き好ましくない。また、触媒の開口率が90%を越える場合、相対的に触媒物質の厚さが低下し、脱硝率の低下を招き好ましくない。
【0029】
また触媒の幾何学的表面積が2000〜5000m2/m3の範囲にあることが好ましく、2000〜4000m2/m3の範囲にあることがさらに好ましいことがわかった。触媒の幾何学的表面積が2000m2/m3未満の時は脱硝率が低くなり、5000m2/m3を越えると圧力損失が著しく増加し好ましくない。
【0030】
NOx発生源の排ガス温度はその運転条件によって変化する。例えば低負荷から高負荷に切り換えた場合出口の排ガス温度は2〜3分間で約300℃から約600℃まで急上昇する。この場合、触媒中に吸着されていたNH3が排ガス温度の急上昇にともない、脱着するため排ガス中にNH3が放出され、二次公害の原因となり、好ましくない。
【0031】
排ガス中のNOxをNH3存在下で除去する場合排ガス温度が急上昇したとき、触媒中に吸着されていたNH3の脱着量をいかに減少させるかが極めて大きな課題である。
【0032】
本発明者らが検討したところによると排ガス温度の急上昇により触媒から脱着するNH3量はハニカム状基材の触媒物質の担持量が少なくなるにつれ、すなわち担持触媒層厚さが薄くなるにつれて減少することがわかった。すなわち担持触媒層厚さは0.03mm〜0.2mmが好ましく、0.03mm〜0.15mmがさらに好ましい。担持触媒層厚さが0.03mm未満になると脱硝活性自体が低下し、十分な脱硝効果を上げられなくなる。一方、担持触媒層厚さが0.2mmを越えると排ガス温度の上昇時におけるNH3の脱着量が増加し好ましくないことに加えて温度の急変化への脱硝触媒の応答性も低下する。またハニカム状基材の壁厚が薄くなり機械的強度の低下も招く。
【0033】
また、NOx発生源の負荷変動の激しさすなわち排ガス温度、ガス量、NOx濃度等の変化にも十分追従してNOxが効率よく除去されることが要求される。本発明者らが検討したところによるとNH3がある一定量吸着保持された状態にある時好ましい結果が得られることがわかった。よって担持触媒物質の比表面積に着目すると、比表面積が20m2/g以上、好ましくは30m2/g以上の触媒物質を担持した場合にNH3吸着性能が上がり、その結果負荷応答性が良くなると同時に脱硝活性が大きく向上することを見いだした。
【0034】
本発明の触媒物質を担持するハニカム状基材としては、アルミナ、シリカ、シリカアルミナ、チタニア、ジルコニア、マグネシウムシリケート、ムライト、コージェライト、無機繊維などのセラミック質を主体とするハニカム構造担体を用いることができる。この中でもコージェライトを基材にしたハニカム状基材や、ステンレス、フェライトステンレスまたはFe−Cr−Al合金などの耐熱金属から構成されるハニカム状基材を用いると、開口率が大きく、触媒の単位あたりの表面積も大きくなり特に好ましい。その他ハニカム構造担体としたものも使用できる。
【0035】
ハニカム状基材に触媒物質を担持する方法を以下に具体的に説明する。
【0036】
触媒物質に適度の水等を加え、スラリー状にする場合にスラリー安定剤として酸化チタンゾルおよび/または酸化ジルコニウムゾルを酸化物換算で1〜10重量%加え、ハニカム状基材に担持し乾燥、焼成することにより、触媒物質をハニカム状基材により強固に担持することが可能となった。
【0037】
すなわち、酸化チタン、酸化タングステン、酸化セリウムおよび/または酸化ジルコニウムからなる触媒物質に適度な水等を添加しハニカム状物質に担持する場合に、スラリー安定剤として酸化チタンゾルおよび/または酸化ジルコニウムゾルを酸化物換算で触媒物質に対して1〜10重量%添加する。使用する酸化チタンゾル、酸化ジルコニウムゾルは市販品が使用可能である。触媒層の厚みを厚くしたい場合には本発明の触媒物質スラリーを数回担持することで所定の厚みを得ることができる。添加する酸化チタンゾルおよび/または酸化ジルコニウムゾルの添加量が1重量%未満の場合は担持した触媒物質の剥離強度が弱いため好ましくなく、添加量が10重量%以上の場合スラリー安定剤中の酸化チタン、酸化ジルコニウムが多すぎるため、脱硝性能に悪影響を及ぼし、活性の低下を招くため好ましくない。したがって添加するスラリー安定剤の量は、触媒成分に対して酸化物換算で1〜10重量%の範囲が好ましく、より好ましくは3〜7重量%の範囲である。触媒成分を担持した触媒は水分除去のため乾燥し、焼成し完成触媒を得る。
【0038】
本発明に係わる窒素酸化物除去用触媒は、アルミナ、シリカ、チタニア−シリカなどの複合酸化物、さらに特定比のシリカ/アルミナからなるゼオライトなどと組み合わせて使用することもできる。
【0039】
本発明の窒素酸化物除去用触媒は還元剤としてアンモニアを用いて排ガス中の窒素酸化物を窒素と水に分解して除去する方法に好適に用いられる。
【0040】
本発明の窒素酸化物除去用触媒を用いて処理する排ガスの組成については特に制限はなく、本発明はNOxを含有する各種排ガスの処理に用いることができる。例えば、硫黄酸化物0〜10000ppm、酸素1〜20容量%、炭酸ガス1〜15容量%、水蒸気5〜80容量%、煤塵0.001〜30g/Nm3およびNOx(主としてNO)10〜10000ppm程度を含有する排ガスの処理に用いられる。さらに、本発明の脱硝触媒は、硫黄酸化物を含まないNOx含有排ガス、ハロゲン化合物を含むNOx含有排ガスなどの特殊な排ガスの処理にも用いることができる。
【0041】
本発明の窒素酸化物除去用触媒を用いた排ガスの処理条件については、排ガスの種類、性状、要求される脱硝率などにより異なるので一概に特定できないが、実施に際しては、これらの条件を考慮して適宜決定すればよい。
【0042】
還元剤としては、アンモニアや分解してアンモニアを生成する尿素、メラミン、シアヌル酸、炭酸アンモニウム、炭酸水素アンモニウムなどが用いられる。還元剤の分散性および取扱い性からアンモニアガス、液体アンモニア、アンモニア水、尿素水溶液、炭酸アンモニウム水溶液、炭酸水素アンモニウム水溶液など期待または液体で注入することが好ましい。分解してアンモニアを生成する還元剤を用いる場合には、その還元剤から生成するアンモニア量によって還元剤の添加量が決まり、例えば尿素ではアンモニア水の1/2モル、メラミンでは1/3モルの注入量となる。
【0043】
還元剤としてのアンモニアの使用量は脱硝率、リークアンモニア量などを考慮にして、アンモニア/NOx(NO換算)モル比が0.3/1〜3/1の範囲内、好ましくは0.3/1〜1.5/1で適宜選択することができる。特に、本発明の窒素酸化物除去用触媒の場合、アンモニア/NOx(NO換算)モル比が1.5/1以下の範囲でも高い脱硝率が得られ、効率よくNOxを分解除去することができる。例えば、ボイラーの排ガス処理の場合、この排ガス中に含まれるNOxの大部分はNOであるので、アンモニア/NOx(NO換算)モル比は1の近辺が特に好ましいが、要求される脱硝率、リークアンモニア量などを考慮して2/1以下程度の範囲内で適宜選択される。
【0044】
反応温度は400〜700℃であるが、特に450〜650℃とするのが好ましい。空間速度は、1000〜100000Hr-1、好ましくは3000〜80000Hr-1の範囲にあるのがよい。1000Hr-1未満である場合は、処理装置が大きくなりすぎ非効率だからであり、100000Hr-1を超える場合は、高すぎると脱硝率が低下するからである。
【0045】
【実施例】
以下に実施例を用いて本発明をさらに詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。
【0046】
(実施例1)
まず、チタン−タングステン−セリウム酸化粉体を以下に述べる方法で調整した。水80リットル(以下、Lで表示する)に四塩化チタン(TiCl4)11.4kgを氷冷・攪拌下に徐々に滴下して溶解し、この水溶液にメタタングステン酸アンモニウム水溶液(酸化タングステンとして50重量%含有)2.5kgおよび硝酸第一セリウム0.5kgを水1Lに溶解した水溶液をを加えた。この水溶液を温度約30℃に保持しつつ、よく攪拌しながら、アンモニア水をpHが6となるまで加え、さらにそのまま放置して2時間熟成した。このようにして得られたチタン−タングステン−セリウム沈殿物スラリーをろ過し、得られたチタン−タングステン−セリウム沈殿物を水洗して、150℃で10時間乾燥した後、600℃で5時間焼成して酸化チタン:酸化タングステン:酸化セリウム=76.8:20:3.2(重量比)で、比表面積はBET法によると110m2/m3であるチタン−タングステン−セリウム酸化物を得た。
【0047】
つぎに、得られたチタン−タングステン−セリウム酸化物粉体500gに酸化ジルコニウムとして30重量%含有する酸化ジルコニウムゾル50gと水1kgを添加し、ホモジスパーで攪拌して均一なスラリー液とした後、三角形セル形状のセル厚さが0.05mmである200セル/inch2のメタルハニカム担体を浸漬し、次いで80℃で熱風乾燥後、600℃で5時間空気雰囲気下で焼成し、触媒成分の厚さが0.05mmである触媒(A)を得た。こうして得られた触媒(A)の組成比は、TiO2:WO3:CeO2:ZrO2=74.6:19.4:3.1:2.9(重量比)であり、幾何学的表面積は2450m2/m3、開口率は85%であった。また、担持触媒物質の比表面積は95m2/m3であった。
【0048】
(実施例2)
実施例1において、粉体に添加する酸化ジルコニウムゾルを、酸化チタンとして20重量%含有する酸化チタンゾルを75g添加する以外は実施例1と同様にして比表面積が105m2/m3である触媒物質を得、組成比がTiO2:WO3:CeO2=77.5:19.4:3.1(重量比)である触媒(B)を得た。得られた担持触媒物質の比表面積は88m2/m3であった。
【0049】
(実施例3)
実施例1〜2において組成比、メタルハニカム担体のセル数、触媒成分の厚みを変えた以外は実施例1および2と同様にして触媒(C)〜(G)を得た。調製した触媒一覧を表1に示す。
【0050】
(比較例1)
実施例1において、触媒成分の厚みを0.02mmに調製した、幾何学的表面積が2500m2/m3、開口率が92%であり、触媒(A)と同組成である比較触媒(a)を得た。
【0051】
(比較例2)
実施例1において、触媒成分の厚みを0.3mmに調製した、幾何学的表面積が1900m2/m3、開口率が54%であり、触媒(A)と同組成である触媒(b)を得た。
【0052】
(比較例3)
粉体に添加する酸化ジルコニウムゾルを、酸化シリコンとして30重量%含有するシリカゾルを50g添加する以外は実施例1と同様にして比表面積が90m2/m3である触媒物質を得、組成比がTiO2:WO3:CeO2:SiO2=74.6:19.4:3.1:2.9(重量比)である触媒(c)を得た。得られた担持触媒物質の比表面積は72m2/m3であった。
【0053】
(比較例4)
チタン源として市販のアナターゼ型酸化チタン粉末4.8kgを用い、これにモノエタノールアミン0.54kgと水2.7Lとを混合し、パラタングステン酸アンモニウム1.4kgを加えて溶解した水溶液を添加し、ニーダーでよく混合し、150℃で10時間乾燥し、600℃で5時間焼成して酸化チタン:酸化タングステン:酸化セリウム=76.8:20:3.2(重量比)の、比表面積が76m2/m3であるチタン−タングステン−セリウム酸化物を得た。以下、実施例1と同様にして比較触媒(d)を得た。得られた担持触媒物質の比表面積は58m2/m3であった。
【0054】
(比較例5)
比較例4において、800℃で5時間焼成する以外は比較例4と同様にして比表面積が17m2/m3である触媒物質を得、以下触媒調製し触媒(e)を得た。得られた担持触媒物質の比表面積は14m2/m3であった。
【0055】
(試験例1)
実施例1〜3で調製した触媒(A)〜(G)、および比較例1〜5で調製した比較触媒(a)〜(e)を用いて脱硝活性試験を行った。活性試験は以下の条件で行い、脱硝率は下記(1)式により求めた。また、脱硝活性試験500℃の条件で上記各触媒の圧力損失の測定を行なった。結果を表2に示す。
【0056】
(活性試験条件)
NOx:70ppm NH3:70ppm O2:15% H2O:10% N2:Balance ガス温度:400〜700℃ 空間速度:15000Hr-1
脱硝率(%)=[(反応器入口NOx濃度)−(反応器出口NOx濃度)]/(反応器入口NOx濃度)×100 (1)
(試験例2)
実施例1〜3で調製した触媒(A)〜(G)、および比較例1〜5で調製した触媒(a)〜(e)を用いて剥離強度試験を行った。剥離強度試験は以下の方法で行い、剥離度は下記(2)式により求めた。結果を表3に示す。
【0057】
1)あらかじめ触媒成分の重量(剥離前の触媒成分重量)を計量し、触媒を電気炉中で550℃で加熱する。
【0058】
2)電気炉から水中に触媒を投入する。
【0059】
3)触媒を取り出し150℃で乾燥し、担持層を剥離させた触媒成分の重量(剥離後の重量)を計量する。
【0060】
剥離度(%)=[(剥離前の触媒成分重量)−(剥離後の触媒成分重量)]/(剥離前の触媒成分重量)×100 (2)
【0061】
【発明の効果】
本発明に記載された方法によって調製された触媒は、幅広い温度領域、特に400℃以上の高温度領域において高い脱硝活性を示し、また優れた耐久性を有する。このため、本発明の触媒を用いることにより、ボイラー、ガスタービン、ガスエンジン、ディーゼルエンジン、加熱炉、および各種工業プロセスから排出される高温排ガス中の窒素酸化物を効率よく除去することができる。
【0062】
【表1】
【0063】
【表2】
【0064】
【表3】
[0001]
[Industrial application fields]
The present invention relates to a method for removing nitrogen oxide from an exhaust gas containing nitrogen oxide (hereinafter sometimes abbreviated as “denitration”). Specifically, in addition to gas engines, gas turbines, boilers, diesel engines, etc., nitrogen oxides (hereinafter sometimes referred to as NOx) contained in high-temperature exhaust gas discharged from various industrial processes are used as reducing agents, such as ammonia or urea, and melamine. The present invention relates to a denitration catalyst suitable for catalytic reduction using a solid reducing agent such as cyanuric acid, ammonium carbonate, or ammonium hydrogencarbonate, a production method thereof, and a denitration method using the catalyst.
[0002]
The “denitration catalyst” of the present invention means a catalyst for catalytically reducing NOx in exhaust gas using the above reducing agent and converting it into harmless nitrogen and water.
[0003]
[Prior art]
Currently, as a method of removing NOx in exhaust gas, NOx can be selectively removed even in exhaust gas containing high concentration of oxygen, and since a small amount of reducing agent is used and economical, ammonia is used as the reducing agent. The selective catalytic reduction method used is the mainstream.
[0004]
As a catalyst used in this catalytic reduction method, many catalysts that combine alumina, silica, zeolite, titanium oxide and the like and oxides such as vanadium, copper, tungsten, molybdenum, and iron have been proposed so far. Among these, the catalyst mainly composed of titanium oxide is not widely affected by sulfur oxides (SOx) in exhaust gas, and is currently widely used because of its low oxidation ability from SO2 to SO3 in exhaust gas. ing. The reaction temperature is usually about 250 to 400 ° C.
[0005]
Some exhaust gas temperatures exceed 400 ° C, such as gas turbine exhaust gas and diesel engine exhaust gas. To remove NOx in such high temperature exhaust gas, a denitration catalyst that exhibits excellent activity in a relatively wide temperature range is used. is necessary.
[0006]
As a catalyst for removing NOx in exhaust gas whose exhaust gas temperature exceeds 400 ° C., a precipitate obtained by neutralizing an aqueous solution containing a soluble titanium compound, a soluble tungsten compound and a soluble cerium compound with a basic substance is calcined. JP-A-8-257402 discloses a catalyst that obtains high activity by using a catalyst component obtained in this manner. This catalyst is generally integrally formed into a pipe shape or honeycomb shape, but since the surface area per unit of the catalyst is small and the aperture ratio is low, a large amount of exhaust gas from heavy oil fired boilers and coal fired boilers is used. When exhaust gas containing dust is treated, dust adheres to the catalyst or accumulates between the catalysts, thereby causing a problem that the catalyst performance is lowered and the pressure loss of the catalyst layer is increased, thereby preventing smooth operation.
[0007]
In order to solve these disadvantages, the catalyst obtained by supporting the catalyst substance on the honeycomb-shaped substrate has sufficient strength to withstand use even if the thickness of the honeycomb-shaped substrate is reduced. It is often used because it can increase the surface area per unit and the denitration device is compact.
[0008]
However, since the thermal expansion coefficient differs between the catalytic material and the honeycomb-shaped substrate, the catalytic material may crack due to thermal strain, or the catalytic material layer may peel off due to vibration or impact. Accordingly, various production methods and catalysts have been proposed for the purpose of improving the adhesion between the honeycomb-shaped substrate and the catalyst substance. In particular, when a metal base material having a large surface area per unit of catalyst is used, a coating layer having a large surface roughness is formed on the surface of the metal base material by composite plating, and then a catalyst material is supported (Japanese Patent Laid-Open No. 57). -19040) and a method of forming a porous coating layer made of a metal oxide on the surface of a metal substrate and then supporting a catalyst substance (Japanese Patent Laid-Open No. 61-181537) and the like.
[0009]
Each of the above-mentioned inventions has a drawback that the catalyst cost is increased because the catalyst material is supported after the coating layer is formed on the metal substrate in advance, and the catalyst cost increases.
[0010]
[Problems to be solved by the invention]
The object of the present invention is to overcome the drawbacks of conventional catalysts in view of the above points, is inexpensive, has good adhesion of the catalyst material to the honeycomb substrate, and can efficiently remove nitrogen oxides in exhaust gas Furthermore, the present invention provides a catalyst for removing nitrogen oxides having excellent durability, a method for producing the same, and a method for removing nitrogen oxides using the catalyst.
[0011]
[Means for Solving the Problems]
The present inventors have found a method for firmly supporting a catalyst material obtained by a predetermined preparation method on a honeycomb base material having a large surface area per unit of catalyst, and have completed the present invention. That is, the present invention is specified as follows.
[0012]
(1) a catalyst material was slurried and supported on the honeycomb-shaped substrate, dried and calcined, a nitrogen oxide removing catalyst obtained by carrying a catalyst material on the honeycomb-shaped substrate, those wherein catalyst material The supported catalyst layer has a thickness of 50 to 94.5% by weight of titanium oxide, 5 to 30% by weight of tungsten oxide, 0.5 to 10% by weight of cerium oxide and 0 to 10% by weight of zirconium oxide. There are 0.03~0.2Mm, in the manufacturing method of the aperture ratio from 65 to 90% of the range near Ru nitrogen oxide removing catalyst, catalytic material titanium oxide sol and / or zirconium oxide sol as a slurry stabilizer A method for producing a catalyst for removing nitrogen oxides, wherein 1 to 10% by weight in terms of oxide is used.
[0013]
(2) Nitrogen oxidation according to (1), obtained by calcining a precipitate obtained by precipitating an aqueous liquid containing a soluble titanium compound, a soluble tungsten compound and a soluble cerium compound in an aqueous medium. A method for producing an object removal catalyst.
[0014]
(3) The nitrogen oxide according to (1), wherein the precipitate is obtained by neutralizing an aqueous liquid in which a soluble titanium compound, a soluble tungsten compound and a soluble cerium compound are dissolved in an aqueous medium with a basic substance. A method for producing a catalyst for removal.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0018]
The catalyst of the present invention is characterized in that it contains titanium oxide as a constituent component. Regarding the type of titanium source used in preparing the catalyst, it is calcined in addition to titanium oxide and titanium oxide sol. The titanium oxide is not particularly limited as long as it produces a titanium oxide, but a soluble titanium compound that is soluble in an aqueous medium is preferably used. For example, inorganic titanium compounds such as titanium tetrachloride and titanium sulfate, and organic titanium compounds such as titanium oxalate and tetraisopropyl titanate can be used.
[0019]
The raw materials for tungsten oxide and cerium oxide are not particularly limited as long as these oxides and oxide sols are produced after firing, but are preferably soluble in an aqueous medium. A compound is used. Examples of the soluble tungsten compound include ammonium metatungstate, ammonium paratungstate, and the like. Examples of the soluble cerium include, for example, cerous nitrate, cerium nitrate, cerium carbonate, cerous sulfate, and cerium sulfate. Can be given.
[0020]
In addition to zirconium oxide and zirconium oxide sol, the raw material for zirconium oxide may be any of hydroxide, ammonium salt, oxalate, halide, sulfate, nitrate, and the like.
[0021]
After these catalyst materials are dried and calcined, titanium oxide is 50 to 94.5% by weight, preferably 58 to 90.5% by weight, tungsten oxide is 5 to 30% by weight, preferably 9 to 25% by weight. And cerium oxide in the range of 0.5 to 15% by weight, preferably 0.5 to 10% by weight, and zirconium oxide in the range of 0 to 10% by weight, preferably 0 to 7% by weight. Since the activity of the denitration catalyst to be obtained becomes high, it is preferable.
[0022]
In addition, basic compounds used for neutralizing and precipitating an aqueous solution in which a soluble titanium compound, a soluble tungsten compound and a soluble cerium compound are dissolved in an aqueous medium include ammonia, sodium hydroxide, potassium hydroxide, sodium carbonate, Examples include potassium carbonate. Of these, ammonia or an aqueous solution thereof (ammonia water) is preferably used from the viewpoint of detergency and handleability of the coprecipitate slurry.
[0023]
Therefore, a method for preparing titanium oxide supporting tungsten oxide and cerium oxide will be specifically described below as an example using water as an aqueous medium and ammonia water as a basic compound.
[0024]
First, soluble titanium compounds such as titanium tetrachloride and soluble tungsten compounds such as ammonium metatungstate and soluble cerium compounds such as cerium nitrate are dissolved in water to form an acidic titanium-tungsten-cerium-containing aqueous solution. Next, while maintaining the temperature of this aqueous solution at 60 ° C. or lower, preferably 50 to 0 ° C., ammonia water is added so that the final pH is 5 to 8, preferably 5 or more and less than 7 And precipitate. In addition, when the aqueous solution of a tungsten compound and a cerium compound is basic, an aqueous solution containing these is added to the titanium-containing aqueous solution simultaneously with the ammonia water and precipitated.
[0025]
The “final pH” in the present invention means the pH of the precipitate slurry or gel when the precipitation operation is completed.
[0026]
When the temperature in the precipitation operation exceeds 60 ° C., the activity of the resulting catalyst is lowered, which is not preferable. When the final pH is lower than 5, the activity of the resulting catalyst is lowered, and when it exceeds 8, the activity is lowered, and further, re-dissolution of tungsten occurs, which is not preferable.
[0027]
The titanium-tungsten-cerium precipitate obtained by the precipitation operation is separated from the precipitate slurry, washed well, dried, and then fired to obtain titanium-tungsten-cerium oxide. The separation, washing, drying and calcination can be carried out under the conditions generally used for the preparation of this kind of oxide, but 5-30 wt% of tungsten oxide and 0% of cerium oxide. When the material containing 5 to 15% by weight is heated and fired in the range of 400 to 700 ° C., particularly 450 to 750 ° C., a catalyst material excellent in durability is obtained, which is preferable.
[0028]
As a result of intensive studies on the shape of the honeycomb-shaped catalyst, it was found that the opening ratio of the catalyst is preferably 65% to 90%, and more preferably 65% to 86%. When the opening ratio is less than 65%, the pressure loss is remarkably increased, and at the same time, the geometric surface area of the catalyst is relatively decreased. On the other hand, when the opening ratio of the catalyst exceeds 90%, the thickness of the catalyst material is relatively decreased, which causes a decrease in the denitration rate.
[0029]
Further, it has been found that the geometric surface area of the catalyst is preferably in the range of 2000 to 5000 m2 / m3, and more preferably in the range of 2000 to 4000 m2 / m3. When the geometric surface area of the catalyst is less than 2000 m2 / m3, the denitration rate is low, and when it exceeds 5000 m2 / m3, the pressure loss increases remarkably.
[0030]
The exhaust gas temperature of the NOx generation source varies depending on the operating conditions. For example, when switching from a low load to a high load, the exhaust gas temperature at the outlet rapidly rises from about 300 ° C. to about 600 ° C. in a few minutes. In this case, NH3 adsorbed in the catalyst is desorbed as the exhaust gas temperature rises, so that NH3 is released into the exhaust gas, causing secondary pollution, which is not preferable.
[0031]
When removing NOx in the exhaust gas in the presence of NH3, when the exhaust gas temperature rises rapidly, how to reduce the desorption amount of NH3 adsorbed in the catalyst is a very big problem.
[0032]
According to a study by the present inventors, the amount of NH3 desorbed from the catalyst due to a sharp rise in exhaust gas temperature decreases as the amount of catalyst substance supported on the honeycomb substrate decreases, that is, as the supported catalyst layer thickness decreases. I understood. That is, the supported catalyst layer thickness is preferably 0.03 mm to 0.2 mm, and more preferably 0.03 mm to 0.15 mm. When the supported catalyst layer thickness is less than 0.03 mm, the denitration activity itself decreases, and a sufficient denitration effect cannot be achieved. On the other hand, if the supported catalyst layer thickness exceeds 0.2 mm, the amount of NH3 desorbed when the exhaust gas temperature rises is undesirably increased, and in addition, the responsiveness of the denitration catalyst to a sudden change in temperature is lowered. In addition, the wall thickness of the honeycomb-shaped substrate is reduced, and the mechanical strength is reduced.
[0033]
In addition, it is required that NOx be efficiently removed by sufficiently following changes in the load of the NOx generation source, that is, changes in exhaust gas temperature, gas amount, NOx concentration, and the like. According to a study by the present inventors, it has been found that favorable results can be obtained when NH3 is in a state where a certain amount of NH3 is adsorbed and held. Therefore, when paying attention to the specific surface area of the supported catalyst material, the NH3 adsorption performance is improved when a catalyst material having a specific surface area of 20 m2 / g or more, preferably 30 m2 / g or more is supported, resulting in improved load response and denitration activity. Found a significant improvement.
[0034]
As the honeycomb-shaped substrate supporting the catalyst material of the present invention, a honeycomb structure carrier mainly composed of a ceramic material such as alumina, silica, silica alumina, titania, zirconia, magnesium silicate, mullite, cordierite, and inorganic fibers is used. Can do. Among these, when using a honeycomb-shaped substrate made of cordierite, or a honeycomb-shaped substrate made of a heat-resistant metal such as stainless steel, ferritic stainless steel, or Fe—Cr—Al alloy, the aperture ratio is large, and the unit of the catalyst The per surface area is also large, which is particularly preferable. Other honeycomb structure carriers can also be used.
[0035]
The method for supporting the catalyst substance on the honeycomb substrate will be specifically described below.
[0036]
When adding a suitable amount of water or the like to the catalyst material to form a slurry, add 1 to 10% by weight of titanium oxide sol and / or zirconium oxide sol as a slurry stabilizer in terms of oxide, and then carry it on a honeycomb substrate for drying and firing. As a result, the catalyst material can be firmly supported by the honeycomb substrate.
[0037]
That is, when an appropriate amount of water or the like is added to a catalyst material composed of titanium oxide, tungsten oxide, cerium oxide and / or zirconium oxide and supported on a honeycomb-shaped material, the titanium oxide sol and / or zirconium oxide sol is oxidized as a slurry stabilizer. 1 to 10% by weight is added to the catalyst substance in terms of product. Commercially available products can be used as the titanium oxide sol and zirconium oxide sol to be used. When it is desired to increase the thickness of the catalyst layer, a predetermined thickness can be obtained by supporting the catalyst material slurry of the present invention several times. When the added amount of titanium oxide sol and / or zirconium oxide sol is less than 1% by weight, it is not preferable because the peel strength of the supported catalyst substance is weak. When the added amount is 10% by weight or more, titanium oxide in the slurry stabilizer is not preferable. Further, since there is too much zirconium oxide, it adversely affects the denitration performance and causes a decrease in activity, which is not preferable. Accordingly, the amount of the slurry stabilizer to be added is preferably in the range of 1 to 10% by weight, more preferably in the range of 3 to 7% by weight in terms of oxide with respect to the catalyst component. The catalyst carrying the catalyst component is dried to remove water and calcined to obtain a finished catalyst.
[0038]
The catalyst for removing nitrogen oxides according to the present invention can be used in combination with composite oxides such as alumina, silica, titania-silica, and zeolite with a specific ratio of silica / alumina.
[0039]
The catalyst for removing nitrogen oxides of the present invention is suitably used in a method for removing ammonia by decomposing nitrogen oxides in exhaust gas into nitrogen and water using ammonia as a reducing agent.
[0040]
There is no restriction | limiting in particular about the composition of the waste gas processed using the catalyst for nitrogen oxide removal of this invention, This invention can be used for the process of the various exhaust gas containing NOx. For example, sulfur oxide 0 to 10,000 ppm, oxygen 1 to 20 vol%, carbon dioxide 1 to 15 vol%, water vapor 5 to 80 vol%, dust 0.001 to 30 g / Nm3 and NOx (mainly NO) 10 to 10,000 ppm Used for treatment of contained exhaust gas. Furthermore, the denitration catalyst of the present invention can also be used for the treatment of special exhaust gases such as NOx containing exhaust gas not containing sulfur oxides and NOx containing exhaust gas containing halogen compounds.
[0041]
The exhaust gas treatment conditions using the catalyst for removing nitrogen oxides of the present invention cannot be specified unconditionally because it differs depending on the type, properties, required denitration rate, etc. of the exhaust gas. May be determined as appropriate.
[0042]
As the reducing agent, ammonia, urea, melamine, cyanuric acid, ammonium carbonate, ammonium hydrogen carbonate, or the like that generates ammonia by decomposition is used. In view of the dispersibility and handling of the reducing agent, it is preferable to inject ammonia gas, liquid ammonia, ammonia water, urea aqueous solution, ammonium carbonate aqueous solution, ammonium hydrogen carbonate aqueous solution or the like or in liquid form. When a reducing agent that decomposes to produce ammonia is used, the amount of reducing agent added is determined by the amount of ammonia produced from the reducing agent. For example, urea is 1/2 mol of ammonia water, and melamine is 1/3 mol. It becomes the injection amount.
[0043]
The amount of ammonia used as the reducing agent is within the range of the ammonia / NOx (NO conversion) molar ratio of 0.3 / 1 to 3/1, preferably 0.3 / It can be suitably selected from 1 to 1.5 / 1. In particular, in the case of the catalyst for removing nitrogen oxides of the present invention, a high NOx removal rate can be obtained even when the ammonia / NOx (NO conversion) molar ratio is 1.5 / 1 or less, and NOx can be efficiently decomposed and removed. . For example, in the case of boiler exhaust gas treatment, most of the NOx contained in the exhaust gas is NO, so the ammonia / NOx (NO conversion) molar ratio is particularly preferably near 1, but the required denitration rate, leakage In consideration of the amount of ammonia and the like, it is appropriately selected within a range of about 2/1 or less.
[0044]
The reaction temperature is 400 to 700 ° C, but 450 to 650 ° C is particularly preferable. The space velocity should be in the range of 1000 to 100,000 Hr-1, preferably 3000 to 80,000 Hr-1. This is because if it is less than 1000 Hr-1, the treatment apparatus becomes too large and inefficient, and if it exceeds 100,000 Hr-1, it is because if it is too high, the denitration rate decreases.
[0045]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
[0046]
Example 1
First, titanium-tungsten-cerium oxide powder was prepared by the method described below. 11.4 kg of titanium tetrachloride (TiCl4) is gradually added dropwise to 80 liters of water (hereinafter referred to as L) under ice cooling and stirring, and dissolved in this aqueous solution with an aqueous solution of ammonium metatungstate (50 wt. %) And an aqueous solution prepared by dissolving 0.5 kg of ceric nitrate 0.5 kg in 1 L of water was added. While keeping this aqueous solution at a temperature of about 30 ° C., with stirring well, aqueous ammonia was added until the pH reached 6, and the mixture was further left for aging for 2 hours. The titanium-tungsten-cerium precipitate slurry thus obtained is filtered, the obtained titanium-tungsten-cerium precipitate slurry is washed with water, dried at 150 ° C. for 10 hours, and then calcined at 600 ° C. for 5 hours. Titanium oxide: tungsten oxide: cerium oxide = 76.8: 20: 3.2 (weight ratio), and a specific surface area of 110 m 2 / m 3 according to the BET method was obtained.
[0047]
Next, 50 g of zirconium oxide sol containing 30% by weight of zirconium oxide and 1 kg of water are added to 500 g of the obtained titanium-tungsten-cerium oxide powder, and the mixture is stirred with a homodisper to obtain a uniform slurry solution. A 200-inch / inch2 metal honeycomb carrier having a cell-shaped cell thickness of 0.05 mm is dipped, then dried with hot air at 80 ° C., and then fired at 600 ° C. for 5 hours in an air atmosphere. A catalyst (A) having a thickness of 0.05 mm was obtained. The composition ratio of the catalyst (A) thus obtained was TiO 2: WO 3: CeO 2: ZrO 2 = 74.6: 19.4: 3.1: 2.9 (weight ratio), and the geometric surface area was 2450 m 2 / m3 and the aperture ratio were 85%. The specific surface area of the supported catalyst material was 95 m2 / m3.
[0048]
(Example 2)
In Example 1, a catalytic material having a specific surface area of 105 m @ 2 / m @ 3 was obtained in the same manner as in Example 1 except that 75 g of titanium oxide sol containing 20% by weight of titanium oxide as the titanium oxide was added to the powder. Thus, a catalyst (B) having a composition ratio of TiO 2: WO 3: CeO 2 = 77.5: 19.4: 3.1 (weight ratio) was obtained. The specific surface area of the obtained supported catalyst material was 88 m @ 2 / m @ 3.
[0049]
(Example 3)
Catalysts (C) to (G) were obtained in the same manner as in Examples 1 and 2, except that the composition ratio, the number of cells of the metal honeycomb carrier, and the thickness of the catalyst component were changed in Examples 1 and 2. Table 1 shows a list of prepared catalysts.
[0050]
(Comparative Example 1)
In Example 1, a comparative catalyst (a) having a catalyst component thickness of 0.02 mm, a geometric surface area of 2500 m 2 / m 3, an aperture ratio of 92%, and the same composition as the catalyst (A) was obtained. It was.
[0051]
(Comparative Example 2)
In Example 1, a catalyst component (b) having a catalyst component thickness of 0.3 mm, a geometric surface area of 1900 m 2 / m 3, an aperture ratio of 54%, and the same composition as the catalyst (A) was obtained. .
[0052]
(Comparative Example 3)
A catalyst material having a specific surface area of 90 m 2 / m 3 was obtained in the same manner as in Example 1 except that 50 g of a silica sol containing 30% by weight of silicon oxide as a silicon oxide was added to the powder, and the composition ratio was TiO 2: A catalyst (c) in which WO3: CeO2: SiO2 = 74.6: 19.4: 3.1: 2.9 (weight ratio) was obtained. The specific surface area of the obtained supported catalyst material was 72 m @ 2 / m @ 3.
[0053]
(Comparative Example 4)
Using 4.8 kg of commercially available anatase-type titanium oxide powder as a titanium source, 0.54 kg of monoethanolamine and 2.7 L of water are mixed with this, and an aqueous solution in which 1.4 kg of ammonium paratungstate is added and dissolved is added. Mix well with a kneader, dry at 150 ° C. for 10 hours, fire at 600 ° C. for 5 hours, and have a specific surface area of titanium oxide: tungsten oxide: cerium oxide = 76.8: 20: 3.2 (weight ratio). A titanium-tungsten-cerium oxide of 76 m2 / m3 was obtained. Thereafter, a comparative catalyst (d) was obtained in the same manner as in Example 1. The specific surface area of the obtained supported catalyst material was 58 m2 / m3.
[0054]
(Comparative Example 5)
In Comparative Example 4, a catalyst material having a specific surface area of 17 m 2 / m 3 was obtained in the same manner as in Comparative Example 4 except that calcination was carried out at 800 ° C. for 5 hours, and a catalyst was prepared to obtain catalyst (e). The specific surface area of the obtained supported catalyst material was 14 m @ 2 / m @ 3.
[0055]
(Test Example 1)
A denitration activity test was performed using the catalysts (A) to (G) prepared in Examples 1 to 3 and the comparative catalysts (a) to (e) prepared in Comparative Examples 1 to 5. The activity test was performed under the following conditions, and the denitration rate was determined by the following equation (1). Further, the pressure loss of each catalyst was measured under the condition of a denitration activity test of 500 ° C. The results are shown in Table 2.
[0056]
(Activity test conditions)
NOx: 70 ppm NH3: 70 ppm O2: 15% H2O: 10% N2: Balance Gas temperature: 400-700 ° C Space velocity: 15000 Hr-1
Denitration rate (%) = [(reactor inlet NOx concentration) − (reactor outlet NOx concentration)] / (reactor inlet NOx concentration) × 100 (1)
(Test Example 2)
A peel strength test was performed using the catalysts (A) to (G) prepared in Examples 1 to 3 and the catalysts (a) to (e) prepared in Comparative Examples 1 to 5. The peel strength test was performed by the following method, and the peel degree was determined by the following equation (2). The results are shown in Table 3.
[0057]
1) The weight of the catalyst component (the weight of the catalyst component before peeling) is measured in advance, and the catalyst is heated at 550 ° C. in an electric furnace.
[0058]
2) A catalyst is put into water from an electric furnace.
[0059]
3) The catalyst is taken out and dried at 150 ° C., and the weight of the catalyst component from which the support layer is peeled off (weight after peeling) is measured.
[0060]
Degree of peeling (%) = [(weight of catalyst component before peeling) − (weight of catalyst component after peeling)] / (weight of catalyst component before peeling) × 100 (2)
[0061]
【The invention's effect】
The catalyst prepared by the method described in the present invention exhibits high denitration activity in a wide temperature range, particularly at a high temperature range of 400 ° C. or higher, and has excellent durability. For this reason, by using the catalyst of this invention, the nitrogen oxide in the high temperature waste gas discharged | emitted from a boiler, a gas turbine, a gas engine, a diesel engine, a heating furnace, and various industrial processes can be removed efficiently.
[0062]
[Table 1]
[0063]
[Table 2]
[0064]
[Table 3]
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP08674599A JP4204692B2 (en) | 1998-03-30 | 1999-03-29 | Nitrogen oxide removal catalyst, method for producing the same, and method for removing nitrogen oxides using the catalyst |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP8367898 | 1998-03-30 | ||
| JP10-83678 | 1998-03-30 | ||
| JP08674599A JP4204692B2 (en) | 1998-03-30 | 1999-03-29 | Nitrogen oxide removal catalyst, method for producing the same, and method for removing nitrogen oxides using the catalyst |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH11342334A JPH11342334A (en) | 1999-12-14 |
| JP4204692B2 true JP4204692B2 (en) | 2009-01-07 |
Family
ID=26424712
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP08674599A Expired - Fee Related JP4204692B2 (en) | 1998-03-30 | 1999-03-29 | Nitrogen oxide removal catalyst, method for producing the same, and method for removing nitrogen oxides using the catalyst |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4204692B2 (en) |
Families Citing this family (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6458334B1 (en) * | 2000-03-02 | 2002-10-01 | The Boc Group, Inc. | Catalytic partial oxidation of hydrocarbons |
| US7090826B2 (en) | 2002-12-23 | 2006-08-15 | The Boc Group, Inc. | Monolith based catalytic partial oxidation process for syngas production |
| US7066984B2 (en) | 2003-09-25 | 2006-06-27 | The Boc Group, Inc. | High recovery carbon monoxide production process |
| US7351275B2 (en) | 2004-12-21 | 2008-04-01 | The Boc Group, Inc. | Carbon monoxide production process |
| JP2006192344A (en) * | 2005-01-12 | 2006-07-27 | Babcock Hitachi Kk | Method for regenerating denitrification catalyst and regenerated denitrification catalyst |
| JP2008049288A (en) | 2006-08-25 | 2008-03-06 | Tokyo Roki Co Ltd | Composite oxide and method for producing the same, and catalyst, method and apparatus for purifying nitrogen oxide |
| JP2008049290A (en) * | 2006-08-25 | 2008-03-06 | Tokyo Roki Co Ltd | Catalyst, method and apparatus for purifying nitrogen oxides |
| CN101314127B (en) * | 2007-05-31 | 2013-03-06 | 中国科学院大连化学物理研究所 | Oxide catalyst for selective reduction of nitrogen oxide, preparation and uses thereof |
| JP2010000481A (en) * | 2008-06-23 | 2010-01-07 | Tokyo Roki Co Ltd | Catalyst for removing nitrogen oxide and apparatus for removing nitrogen oxide |
| CN102000560B (en) * | 2010-12-01 | 2014-03-26 | 中国科学院生态环境研究中心 | Cerium-based composite oxide catalyst for catalyzing and purifying nitric oxide |
| JP5870429B2 (en) * | 2012-05-14 | 2016-03-01 | 国立研究開発法人物質・材料研究機構 | W-CeOx electrode catalyst and method for producing the same |
-
1999
- 1999-03-29 JP JP08674599A patent/JP4204692B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JPH11342334A (en) | 1999-12-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR101165499B1 (en) | Highly acidic composition containing zirconium oxide, titanium oxide and tungsten oxide, method for preparing the same and use thereof in the treatment of exhaust gases | |
| JPS6214339B2 (en) | ||
| JPS62282623A (en) | Purifying method for exhaust gas | |
| US5658546A (en) | Denitration catalyst | |
| JP4813830B2 (en) | Exhaust gas treatment catalyst, exhaust gas treatment method and exhaust gas treatment device | |
| JP4204692B2 (en) | Nitrogen oxide removal catalyst, method for producing the same, and method for removing nitrogen oxides using the catalyst | |
| KR101362606B1 (en) | NOx REMOVAL CATALYST FOR HIGH-TEMPERATURE FLUE GAS, MANUFACTURING METHOD THEREOF, AND NOx REMOVAL METHOD FOR HIGH-TEMPERATURE FLUE GAS | |
| JP5164821B2 (en) | Nitrogen oxide selective catalytic reduction catalyst | |
| JP3507906B2 (en) | DeNOx catalyst | |
| JP2006289211A (en) | Ammonia oxidation catalyst | |
| JP2980633B2 (en) | Nitrogen oxide removal catalyst | |
| JP3537209B2 (en) | Catalyst for removing nitrogen oxides and method for removing nitrogen oxides using the catalyst | |
| JP3537210B2 (en) | Catalyst for removing nitrogen oxides and method for removing nitrogen oxides using the catalyst | |
| JP3749078B2 (en) | NOx removal catalyst and NOx removal method | |
| JP3495548B2 (en) | Reduction method of sulfur trioxide | |
| JPH08229412A (en) | Catalyst and method for removing nitrogen oxide | |
| JP3838415B2 (en) | NOx removal catalyst and exhaust gas treatment method using the same | |
| JP4499511B2 (en) | Method for treating exhaust gas containing nitrogen oxides | |
| JP2825343B2 (en) | Method for producing catalyst for removing nitrogen oxides | |
| JPS5823136B2 (en) | How to remove nitrogen oxides from exhaust gas | |
| JP2700386B2 (en) | Exhaust gas purifying material and exhaust gas purifying method | |
| JPH08150336A (en) | Waste gas purification material and method for purifying waste gas | |
| JP4948331B2 (en) | Ship exhaust gas treatment method | |
| JPS61230748A (en) | Catalyst for purifying nitrogen oxide | |
| JP4918241B2 (en) | Exhaust gas treatment catalyst, exhaust gas treatment method and exhaust gas treatment device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051005 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080725 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080805 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080826 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081008 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081015 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111024 Year of fee payment: 3 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111024 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121024 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131024 Year of fee payment: 5 |
|
| LAPS | Cancellation because of no payment of annual fees |