[go: up one dir, main page]

JP4206901B2 - Electrodeless discharge lamp lighting device - Google Patents

Electrodeless discharge lamp lighting device Download PDF

Info

Publication number
JP4206901B2
JP4206901B2 JP2003367915A JP2003367915A JP4206901B2 JP 4206901 B2 JP4206901 B2 JP 4206901B2 JP 2003367915 A JP2003367915 A JP 2003367915A JP 2003367915 A JP2003367915 A JP 2003367915A JP 4206901 B2 JP4206901 B2 JP 4206901B2
Authority
JP
Japan
Prior art keywords
frequency
circuit
power
discharge lamp
electrodeless discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003367915A
Other languages
Japanese (ja)
Other versions
JP2005135642A (en
Inventor
祐二 熊谷
正平 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2003367915A priority Critical patent/JP4206901B2/en
Publication of JP2005135642A publication Critical patent/JP2005135642A/en
Application granted granted Critical
Publication of JP4206901B2 publication Critical patent/JP4206901B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)

Description

本発明は、例えば、高周波電力を誘導コイルに供給して、その誘導コイル近傍の無電極放電灯を点灯させる無電極放電灯点灯装置に関するものである。   The present invention relates to an electrodeless discharge lamp lighting device that supplies, for example, high-frequency power to an induction coil and lights an electrodeless discharge lamp near the induction coil.

従来、この種の無電極放電灯点灯装置は、種々提案されまた市販されている。例えば、図4に示すように、無電極放電灯Aと、誘導コイル80と、高周波回路81と、直流電源回路82と、制御回路83とを備え、無電極放電灯Aに高周波電磁界を印加して発光させる無電極放電灯点灯装置がある。   Conventionally, various types of electrodeless discharge lamp lighting devices have been proposed and are commercially available. For example, as shown in FIG. 4, an electrodeless discharge lamp A, an induction coil 80, a high frequency circuit 81, a DC power supply circuit 82, and a control circuit 83 are provided, and a high frequency electromagnetic field is applied to the electrodeless discharge lamp A. There are electrodeless discharge lamp lighting devices that emit light.

誘導コイル80は無電極放電灯Aの近傍に配置されている。高周波回路81は、Qの高い共振回路811を含み、誘導コイル80に高周波電力を供給する。直流電源回路82は商用電源Bを直流電力に変換しその直流電力を高周波回路81及び制御電源820に供給する。制御回路83は、駆動部85と制御電流を可変する周波数スイープ回路84を含み、制御電流が大きくなると高周波電力の周波数が高くなるように駆動部85からの駆動信号で高周波回路81を制御する。   The induction coil 80 is disposed in the vicinity of the electrodeless discharge lamp A. The high frequency circuit 81 includes a resonance circuit 811 having a high Q and supplies high frequency power to the induction coil 80. The DC power supply circuit 82 converts the commercial power supply B into DC power and supplies the DC power to the high frequency circuit 81 and the control power supply 820. The control circuit 83 includes a drive unit 85 and a frequency sweep circuit 84 that varies the control current, and controls the high-frequency circuit 81 with a drive signal from the drive unit 85 so that the frequency of the high-frequency power increases as the control current increases.

上記無電極放電灯点灯装置は以下の動作を行う。例えば商用電源Bのオンと同時に制御電源820が立ち上がり、周波数スイープ回路84に直流電力が供給されると、周波数スイープ回路84の立ち上がり検出部Cで、電源の立ち上がりを検出し一定時間H信号(オン信号)を出力し、スイッチング素子840がオンする。これに伴い、オペアンプ841の入力端子1(正入力端子)には所望の低い電圧が入力され、その電圧値に応じて低電圧を出力するので、ダイオード842を介して駆動部85の周波数設定端子(Rfre)850から制御電流を引き抜く。次に、立ち上がり検出部Cの信号がL信号(オフ信号)になると、スイッチング素子840はオフとなり、コンデンサ844は、抵抗843を介して徐々に充電し、両端電圧が上昇する。これに伴い、オペアンプ841の入力端子1(正入力端子)の電圧が上昇し、その電圧値に応じて、オペアンプ841の出力電圧も上昇し、ダイオード842を介した制御電流の引き抜きが徐々に抑制されるので、高周波電力の周波数が共振回路811の共振周波数に近づくように高周波から低周波へ可変し、誘導コイル80に大きな電流が流れる。   The electrodeless discharge lamp lighting device performs the following operation. For example, when the commercial power supply B is turned on and the control power supply 820 rises and DC power is supplied to the frequency sweep circuit 84, the rise detection unit C of the frequency sweep circuit 84 detects the rise of the power supply and detects the H signal (on Signal) and the switching element 840 is turned on. Accordingly, a desired low voltage is input to the input terminal 1 (positive input terminal) of the operational amplifier 841 and a low voltage is output according to the voltage value. Therefore, the frequency setting terminal of the driving unit 85 is connected via the diode 842. (Rfre) Pull out the control current from 850. Next, when the signal of the rising edge detection unit C becomes an L signal (off signal), the switching element 840 is turned off, and the capacitor 844 is gradually charged through the resistor 843, so that the voltage across the both ends rises. Along with this, the voltage of the input terminal 1 (positive input terminal) of the operational amplifier 841 rises, and the output voltage of the operational amplifier 841 rises according to the voltage value, and the drawing of the control current through the diode 842 is gradually suppressed. Therefore, the frequency of the high frequency power is changed from a high frequency to a low frequency so as to approach the resonance frequency of the resonance circuit 811, and a large current flows through the induction coil 80.

上記無電極放電灯点灯装置は、電源投入による無電極放電灯Aの始動時に誘導コイル80に十分な高周波電流(電力)が発生するように高周波電力の周波数が可変するので、例えば、回路素子のバラツキ等により高周波回路81の周波数特性が設計値からずれた状態になっても、無電極放電灯Aを点灯させることができるとともに、過大な電圧(電力)による回路素子のストレスを防ぐことができる。   In the electrodeless discharge lamp lighting device, the frequency of the high frequency power is varied so that a sufficient high frequency current (power) is generated in the induction coil 80 when the electrodeless discharge lamp A is started by turning on the power. Even if the frequency characteristics of the high-frequency circuit 81 deviate from the design value due to variations or the like, the electrodeless discharge lamp A can be turned on, and stress on circuit elements due to excessive voltage (power) can be prevented. .

また、他の例として、例えば、図5に示すように、上記構成に加えて、調光回路86と、間欠発振回路87とを備える無電極放電灯点灯装置がある。   As another example, for example, as shown in FIG. 5, there is an electrodeless discharge lamp lighting device including a dimming circuit 86 and an intermittent oscillation circuit 87 in addition to the above configuration.

調光回路86は、デューティー信号である調光信号を入力し、調光信号スイープ回路860により周期的に高周波電力の周波数が変化するように制御電流を制御し、無電極放電灯Aを点灯及び消灯の繰り返しにより調光する。   The dimming circuit 86 inputs a dimming signal that is a duty signal, controls the control current so that the frequency of the high frequency power periodically changes by the dimming signal sweep circuit 860, and turns on the electrodeless discharge lamp A. The light is adjusted by repeatedly turning it off.

間欠発振回路87は、無負荷等の異常負荷発生時に、誘導コイル80の異常電圧を検出し、その検出時に、例えば、高周波電力を間欠的に発振させて回路を保護するために、スイッチング素子810bのゲート・ソース間を短絡及び開放を繰り返すデューティー信号を出力し無電極放電灯Aを再始動させることができる。   The intermittent oscillation circuit 87 detects an abnormal voltage of the induction coil 80 when an abnormal load such as no load occurs, and at that time, for example, in order to oscillate high frequency power intermittently to protect the circuit, the switching element 810b. It is possible to restart the electrodeless discharge lamp A by outputting a duty signal that repeatedly shorts and opens between the gate and the source.

なお、特許文献1には以下の無電極放電ランプ装置が開示されている。CPUによりCPU始動時には発振器が点灯時の所定の周波数と異なる周波数で発振するように制御され、この周波数が波形整形回路、第1の電力増幅器を経た後、分波器→第2の電力増幅器(1)→整合回路(1)→RFセンサ(1)→混合器を介して負荷に印加される。CPUはRFセンサ(1)により検出されるRF電力をモニタして、所定のRF電力になると発振器が点灯時の所定の周波数で発振するように制御し、この周波数が波形整形回路、第1の電力増幅器を経た後、分波器→第2の電力増幅器(2)→整合回路(2)→RFセンサ(2)→混合器を介して負荷に印加される。また、CPUはRFセンサ(2)により検出されるRF電力をモニタして、所定のRF電力にならない場合には点灯してしないと判断して上記の始動時の制御に切り換える。このようにして、始動時と点灯時のインピーダンスを整合させることができる。
特開2001−102193号公報(第4頁−第6頁、及び、第1図)
Patent Document 1 discloses the following electrodeless discharge lamp device. When the CPU is started, the oscillator is controlled to oscillate at a frequency different from the predetermined frequency at the time of lighting. This frequency passes through the waveform shaping circuit and the first power amplifier, and then the duplexer → second power amplifier ( 1) → matching circuit (1) → RF sensor (1) → applied to load via mixer. The CPU monitors the RF power detected by the RF sensor (1), and controls the oscillator to oscillate at a predetermined frequency when it is turned on when the predetermined RF power is reached. After passing through the power amplifier, it is applied to the load via the duplexer → second power amplifier (2) → matching circuit (2) → RF sensor (2) → mixer. Further, the CPU monitors the RF power detected by the RF sensor (2), and when it does not reach the predetermined RF power, determines that it is not lit and switches to the control at the start. In this way, it is possible to match the impedance at the time of starting and lighting.
JP 2001-102193 A (pages 4 to 6 and FIG. 1)

しかしながら、上記従来の無電極放電灯点灯装置などのように、直流電源回路又は制御電源(以下、「電源部」という。)の少なくとも一方に、電圧安定化のために容量の大きな電解コンデンサが含まれているので、以下の状態が発生するという問題があった。   However, as in the conventional electrodeless discharge lamp lighting device, at least one of the DC power supply circuit or the control power supply (hereinafter referred to as “power supply unit”) includes an electrolytic capacitor having a large capacity for voltage stabilization. Therefore, there is a problem that the following conditions occur.

電源オフと同時に駆動信号が停止する駆動部を用いた場合、電源をオフした後に瞬時にオンすると、本来は、電源オフ後に、図4に示すコンデンサ844が放電して電圧が低下し、電源オン後に、再始動の動作を繰り返さなければならない。しかし、瞬時に電源オンすると電源部の電解コンデンサの電圧がほとんど低下せずに充電が始まるため、立ち上がり検出部Cで電源の立ち上がりを検出できず、例えば、オペアンプ841の入力端子1(正入力端子)の電圧は高いまま維持され、高周波電力の周波数を可変することができない。したがって、回路素子のバラツキ等により高周波回路の周波数特性が設計値からずれたような場合に、無電極放電灯の始動に十分な高周波電流(電力)が誘導コイルに発生せず、無電極放電灯を点灯させることができなかったり、回路素子に過大な電圧(電力)が発生しストレスが加わることがあった。   In the case of using a drive unit in which the drive signal stops at the same time as the power is turned off, if the power is turned on instantaneously after the power is turned off, the capacitor 844 shown in FIG. Later, the restart operation must be repeated. However, when the power is turned on instantaneously, the voltage of the electrolytic capacitor of the power supply unit is hardly decreased, and charging starts. Therefore, the rising detection unit C cannot detect the rising of the power supply. For example, the input terminal 1 (positive input terminal) of the operational amplifier 841 ) Is kept high, and the frequency of the high frequency power cannot be varied. Therefore, when the frequency characteristics of the high-frequency circuit deviate from the design value due to variations in circuit elements, a high-frequency current (power) sufficient for starting the electrodeless discharge lamp is not generated in the induction coil, and the electrodeless discharge lamp Cannot be turned on, or an excessive voltage (power) is generated in the circuit element, which may cause stress.

本発明は上述の点に鑑みて為されたものであり、その目的とするところは、電源をオフした後に瞬時にオンした場合に、高周波回路の周波数特性が設計値からずれた状態であっても、確実に無電極放電灯を点灯させることができるとともに、過大な電圧(電力)による回路素子のストレスを防ぐことができる無電極放電灯点灯装置を提供することにある。   The present invention has been made in view of the above points, and the object of the present invention is that the frequency characteristic of the high-frequency circuit deviates from the design value when the power is turned on instantaneously after being turned off. Another object of the present invention is to provide an electrodeless discharge lamp lighting device capable of reliably lighting an electrodeless discharge lamp and preventing stress of circuit elements due to an excessive voltage (power).

請求項1に記載の発明は、無電極放電灯近傍に設ける誘導コイルと、直流電力を生成する直流電源回路と、前記直流電力を高周波電力に変換する複数のスイッチング素子及び共振回路を含み当該高周波電力を前記誘導コイルに供給する高周波回路と、電源オン時に制御電流の大きさに従って各スイッチング素子のオンオフの周波数を可変するためのパルス状の駆動信号を各スイッチング素子に出力する一方、電源オフ時に前記駆動信号の出力を停止する駆動部と、前記制御電流の大きさを可変することによって前記駆動部を制御して前記駆動信号の周波数を可変し各スイッチング周波数のオンオフ周波数を徐々に増加又は減少させて前記誘導コイルの印加電圧を漸増させ前記無電極放電灯を始動する周波数スイープ回路とを備え、前記周波数スイープ回路は、前記駆動部から出力される前記駆動信号によって充電され当該駆動信号の出力停止時に放電するコンデンサと、前記コンデンサに並列接続され放電経路を形成する抵抗と、前記コンデンサの充電電圧の上昇に伴って前記誘導コイルの印加電圧が漸増するように前記制御電流の大きさを可変するオペアンプとを有することを特徴とする。 Invention of claim 1, said comprising an induction coil provided near the electrodeless discharge lamp, a DC power supply circuit for generating DC power, a plurality of switching elements and a resonance circuits for converting the DC power into high-frequency power while outputting the high-frequency power and the high frequency circuit for supplying to said induction coil, a pulse-shaped drive signal for varying the frequency of the on-off of the thus each switching element to the magnitude of the control current at power-on in each switching element, power supply A drive unit that stops output of the drive signal when turned off, and the drive unit is controlled by changing the magnitude of the control current to vary the frequency of the drive signal and gradually increase the on / off frequency of each switching frequency. or by decreasing gradually increasing the applied voltage of the induction coil and a frequency sweep circuit for starting the electrodeless discharge lamp, the frequency The EEPROM circuit is charged by the drive signal output from the drive unit and discharged when the output of the drive signal is stopped, a resistor connected in parallel to the capacitor to form a discharge path, and an increase in the charging voltage of the capacitor And an operational amplifier that varies the magnitude of the control current so that the voltage applied to the induction coil gradually increases .

この構造では、駆動部からの駆動信号により駆動部に対する制御電流を可変し高周波電力の周波数が変化するので、電源をオフした後に瞬時にオンした場合に、高周波回路の周波数特性が設計値からずれた状態であっても、確実に無電極放電灯を点灯させることができるとともに、過大な電圧(電力)による回路素子のストレスを防ぐことができる。   In this structure, the control current for the drive unit is varied by the drive signal from the drive unit, and the frequency of the high-frequency power changes, so the frequency characteristics of the high-frequency circuit deviate from the design value when the power is turned on and then turned on instantaneously. Even in such a state, the electrodeless discharge lamp can be reliably turned on, and the stress of the circuit element due to an excessive voltage (power) can be prevented.

請求項2に記載の発明は、請求項1に記載の発明において、前記直流電源回路と前記周波数スイープ回路との間に、前記駆動信号によりスイッチングするスイッチング素子を備えることを特徴とする。この構造では、駆動信号の電力はスイッチング素子のスイッチングに必要な大きさでよいので、駆動信号の電力を小さくすることができる。   According to a second aspect of the present invention, in the first aspect of the present invention, a switching element that switches according to the drive signal is provided between the DC power supply circuit and the frequency sweep circuit. In this structure, the power of the drive signal may be as large as necessary for switching of the switching element, so that the power of the drive signal can be reduced.

請求項3に記載の発明は、請求項1又は2に記載の発明において、入力信号により前記制御電流の大きさを可変する調光回路と、前記高周波回路より異常負荷を検出しその検出時において間欠発振信号を前記調光回路に出力する間欠発振回路とを備えることを特徴とする。この構造では、調光回路の入力信号により高周波電力の周波数が変化するので、無電極放電灯の点灯を制御することができる。また、異常負荷検出時において間欠発振信号を調光回路に入力することに基いて高周波電力の周波数を変化させる間欠発振保護機能が働くので、無電極放電灯の不点や回路素子へのストレスを防ぐことができる。   According to a third aspect of the present invention, in the first or second aspect of the present invention, a dimming circuit that varies the magnitude of the control current according to an input signal and an abnormal load are detected from the high-frequency circuit, and at the time of the detection. And an intermittent oscillation circuit that outputs an intermittent oscillation signal to the dimming circuit. In this structure, since the frequency of the high frequency power is changed by the input signal of the dimming circuit, the lighting of the electrodeless discharge lamp can be controlled. In addition, the intermittent oscillation protection function that changes the frequency of the high-frequency power based on the input of the intermittent oscillation signal to the dimming circuit when an abnormal load is detected works, thereby reducing the disadvantages of the electrodeless discharge lamp and the stress on the circuit elements. Can be prevented.

請求項に記載の発明は、請求項に記載の発明において、前記調光回路は、デューティー信号を入力しそのデューティー信号により前記制御電流の大きさを周期的に可変することを特徴とする。この構造では、デューティー信号により周期的に高周波電力の周波数が変化するので、無電極放電灯の点灯を制御することができる。 According to a fourth aspect of the present invention, in the invention according to the third aspect , the dimming circuit receives a duty signal and periodically varies the magnitude of the control current according to the duty signal. . In this structure, since the frequency of the high frequency power is periodically changed by the duty signal, it is possible to control the lighting of the electrodeless discharge lamp.

請求項に記載の発明は、請求項3又は4に記載の発明において、前記間欠発振信号が、デューティー信号であることを特徴とする。この構造では、異常負荷検出時においてデューティー信号である間欠発振信号に基いて、周期的に高周波電力の周波数を変化させて無電極放電灯の始動を行うので、無電極放電灯の不点や回路素子へのストレスを防ぐことができる。 The invention according to claim 5 is the invention according to claim 3 or 4 , characterized in that the intermittent oscillation signal is a duty signal. In this structure, the electrodeless discharge lamp is started by periodically changing the frequency of the high-frequency power based on the intermittent oscillation signal that is a duty signal at the time of detecting an abnormal load. It is possible to prevent stress on the element.

本発明によれば、電源をオフした後に瞬時にオンした場合に、高周波回路の周波数特性が設計値からずれた状態であっても、確実に無電極放電灯を点灯させることができるとともに、過大な電圧(電力)による回路素子のストレスを防ぐことができる。   According to the present invention, when the power supply is turned on instantaneously after being turned off, the electrodeless discharge lamp can be reliably turned on even if the frequency characteristics of the high frequency circuit deviate from the design value. It is possible to prevent the stress of the circuit element due to a large voltage (power).

(実施形態1)
先ず、実施形態1の基本的な構成について図1を用いて説明する。
(Embodiment 1)
First, the basic configuration of the first embodiment will be described with reference to FIG.

実施形態1の無電極放電灯点灯装置は、高周波電磁界を印加して無電極放電灯Aを正常に点灯させるものであり、図1に示すように、誘導コイル1と、直流電源回路2と、高周波回路3とを備えるとともに、駆動部40と周波数スイープ回路41とを含む制御回路4を備える。   The electrodeless discharge lamp lighting device according to the first embodiment applies a high-frequency electromagnetic field and normally lights the electrodeless discharge lamp A. As shown in FIG. 1, the induction coil 1, the DC power supply circuit 2, And a high-frequency circuit 3 and a control circuit 4 including a drive unit 40 and a frequency sweep circuit 41.

誘導コイル1は、無電極放電灯Aの近傍に設けられ、例えば数十kHzから数百MHzの高周波電流が流れると高周波電磁界を発生する。これにより、例えばガラスバルブ内に放電ガスを封入した無電極放電灯A内には高周波プラズマ電流が発生し、無電極放電灯Aに紫外線もしくは可視光が発生する。   The induction coil 1 is provided in the vicinity of the electrodeless discharge lamp A, and generates a high frequency electromagnetic field when a high frequency current of, for example, several tens of kHz to several hundreds of MHz flows. Thereby, for example, a high-frequency plasma current is generated in the electrodeless discharge lamp A in which a discharge gas is sealed in a glass bulb, and ultraviolet light or visible light is generated in the electrodeless discharge lamp A.

直流電源回路2は、例えば、商用電源Bの交流電力を直流電力に変換し、その直流電力を高周波回路3と後述の制御電源20とに供給する。直流電源回路2は、例えば、入力側から順に、交流電力を全波整流するダイオードブリッジ回路(図示せず)とチョッパ回路(図示せず)とを設ける。チョッパ回路(図示せず)は、例えば、コイル、コンデンサ、スイッチング素子等の組み合わせにより、昇圧型、降圧型、極性逆転型等がある。チョッパ回路(図示せず)の直流電力出力部には容量の大きな電解コンデンサ(図示せず)が設けられる。   The DC power supply circuit 2 converts, for example, AC power of the commercial power supply B into DC power, and supplies the DC power to the high-frequency circuit 3 and a control power supply 20 described later. The DC power supply circuit 2 includes, for example, a diode bridge circuit (not shown) and a chopper circuit (not shown) for full-wave rectification of AC power in order from the input side. The chopper circuit (not shown) includes, for example, a step-up type, a step-down type, a polarity reversal type, and the like depending on a combination of a coil, a capacitor, a switching element, and the like. An electrolytic capacitor (not shown) having a large capacity is provided at the DC power output portion of the chopper circuit (not shown).

制御電源20は、直流電源回路2からの直流電力を駆動部40及び周波数スイープ回路41の駆動に適した直流電力に変換し、その直流電力を駆動部40及び周波数スイープ回路41に供給する。制御電源20にも、直流電源回路2と同様に、例えば、昇圧型、降圧型、極性逆転型等のチョッパ回路(図示せず)を設ける。チョッパ回路(図示せず)の直流電力出力部には容量の大きな電解コンデンサ(図示せず)が設けられる。   The control power supply 20 converts the DC power from the DC power supply circuit 2 into DC power suitable for driving the drive unit 40 and the frequency sweep circuit 41, and supplies the DC power to the drive unit 40 and the frequency sweep circuit 41. Similarly to the DC power supply circuit 2, the control power supply 20 is provided with a chopper circuit (not shown) such as a step-up type, a step-down type, or a polarity inversion type. An electrolytic capacitor (not shown) having a large capacity is provided at the DC power output portion of the chopper circuit (not shown).

高周波回路3は、変換素子30と共振回路31とを含み、直流電源回路2からの直流電力を高周波電力に変換して誘導コイル1に供給する。上記高周波電力の周波数は例えば数十kHzから数百MHzである。   The high frequency circuit 3 includes a conversion element 30 and a resonance circuit 31, converts DC power from the DC power supply circuit 2 into high frequency power, and supplies the high frequency power to the induction coil 1. The frequency of the high frequency power is, for example, several tens kHz to several hundreds MHz.

変換素子30は、例えば、2つのスイッチング素子30a,30bからなり、そのスイッチング素子30a,30bは、例えば、トランジスタであり、駆動部40からの駆動信号により駆動し、その駆動信号に基いてオン及びオフすることで、直流電力を高周波電力に変換する。   The conversion element 30 includes, for example, two switching elements 30a and 30b. The switching elements 30a and 30b are, for example, transistors, which are driven by a drive signal from the drive unit 40 and turned on and off based on the drive signal. By turning off, DC power is converted into high frequency power.

共振回路31は、例えば、コイル310と3つのコンデンサ311,312,313からなり、Qを大きくし共振周波数の近傍において誘導コイル1に大きな高周波電流(電力)を出力するように設計される。これは、無負荷時には誘導コイル1のみが負荷となり無電極放電灯Aの始動に十分な高周波電流(電力)を発生させるためである。   The resonance circuit 31 includes, for example, a coil 310 and three capacitors 311, 312, and 313, and is designed to increase Q and output a large high-frequency current (power) to the induction coil 1 in the vicinity of the resonance frequency. This is because, when there is no load, only the induction coil 1 becomes a load and generates a high-frequency current (power) sufficient for starting the electrodeless discharge lamp A.

制御回路4は、駆動部40と周波数スイープ回路41とを含み、制御電源20からの直流電力により動作する。制御回路4は、無電極放電灯Aの始動時に高周波電力の周波数を可変して誘導コイル1に発生する電圧(電力)を徐々に上昇させるために、駆動部40と周波数スイープ回路41が動作する。   The control circuit 4 includes a drive unit 40 and a frequency sweep circuit 41, and operates with DC power from the control power supply 20. The control circuit 4 operates the drive unit 40 and the frequency sweep circuit 41 to gradually increase the voltage (power) generated in the induction coil 1 by changing the frequency of the high-frequency power when starting the electrodeless discharge lamp A. .

駆動部40は、周波数スイープ回路41などからの制御電流の大きさにより変換素子30のスイッチング状態を可変することで高周波電力の周波数を可変する機能を有し変換素子30に対してパルス状の駆動信号を生成する。駆動部40は、例えば、スイッチング素子30aを駆動する駆動信号Hout、スイッチング素子30bを駆動する駆動信号Loutを出力する。また、駆動部40は、周波数設定端子400を設け、周波数設定端子400への周波数スイープ回路41からの制御電流が、例えば大きい場合に高周波電力の周波数が高くなるように、小さい場合に高周波電力の周波数が小さくなるように駆動信号Hout,Loutを変化させる。   The drive unit 40 has a function of changing the frequency of the high-frequency power by changing the switching state of the conversion element 30 according to the magnitude of the control current from the frequency sweep circuit 41 and the like, and driving the pulse with respect to the conversion element 30. Generate a signal. For example, the drive unit 40 outputs a drive signal Hout for driving the switching element 30a and a drive signal Lout for driving the switching element 30b. Further, the drive unit 40 includes a frequency setting terminal 400. When the control current from the frequency sweep circuit 41 to the frequency setting terminal 400 is large, for example, the frequency of the high frequency power is high, and when the frequency is small, the high frequency power is low. The drive signals Hout and Lout are changed so that the frequency becomes small.

周波数スイープ回路41は、駆動信号(例えば、Lout)により制御電流の大きさを可変することを特徴とする。周波数スイープ回路41は、例えば、コンデンサ410と抵抗411とオペアンプ412とを設ける。コンデンサ410は、直流電源回路2又は制御電源20に設けられる電解コンデンサ(図示せず)に比べて容量が数十分の一程度である。また、オペアンプ412の入力端子2(負入力端子)側と出力側との間にコンデンサ413と抵抗414がそれぞれ並列接続する。オペアンプ412の出力側と駆動部40の周波数設定端子400との間にはオペアンプ412方向に電流が流れるダイオード415を設け、周波数設定素子400からダイオード415とは分岐して抵抗416を設ける。更に、周波数スイープ回路41は、例えば、駆動部40とコンデンサ410との間にはコンデンサ410方向に電流が流れるダイオード417と、抵抗418とを直列に接続する。   The frequency sweep circuit 41 is characterized in that the magnitude of the control current is varied by a drive signal (for example, Lout). The frequency sweep circuit 41 includes, for example, a capacitor 410, a resistor 411, and an operational amplifier 412. The capacitor 410 has a capacity of several tenths of that of an electrolytic capacitor (not shown) provided in the DC power supply circuit 2 or the control power supply 20. Further, a capacitor 413 and a resistor 414 are connected in parallel between the input terminal 2 (negative input terminal) side and the output side of the operational amplifier 412. A diode 415 through which current flows in the direction of the operational amplifier 412 is provided between the output side of the operational amplifier 412 and the frequency setting terminal 400 of the driving unit 40, and a resistor 416 is provided by branching from the frequency setting element 400 to the diode 415. Furthermore, the frequency sweep circuit 41 connects, for example, a diode 417 and a resistor 418 that flow in the direction of the capacitor 410 between the drive unit 40 and the capacitor 410 in series.

オペアンプ412は、入力端子1(正入力端子)にはコンデンサ410で充電された電圧、入力端子2(負入力端子)には誘導コイル1の電圧が高周波回路3から抵抗419を介して入力され、上記入力端子1(正入力端子)の電圧と入力端子2(負入力端子)の電圧との差分に基く電圧を出力する。   In the operational amplifier 412, the voltage charged by the capacitor 410 is input to the input terminal 1 (positive input terminal), and the voltage of the induction coil 1 is input to the input terminal 2 (negative input terminal) from the high frequency circuit 3 via the resistor 419. A voltage based on the difference between the voltage at the input terminal 1 (positive input terminal) and the voltage at the input terminal 2 (negative input terminal) is output.

周波数スイープ回路41の動作原理について説明する。電源をオンした瞬時は、それまで駆動部40から駆動信号(例えば、Lout)が出力していないのでコンデンサ410は充電されておらず、オペアンプ412の入力端子1(正入力端子)はLow(低電圧)である。したがって、ダイオード415を介して駆動部40の周波数設定端子400から制御電流を引き抜く。   The operating principle of the frequency sweep circuit 41 will be described. At the moment when the power is turned on, since the drive signal (for example, Lout) has not been output from the drive unit 40 until then, the capacitor 410 is not charged, and the input terminal 1 (positive input terminal) of the operational amplifier 412 is Low (low). Voltage). Therefore, the control current is extracted from the frequency setting terminal 400 of the drive unit 40 via the diode 415.

駆動部40が変換素子30を駆動するために駆動信号(例えば、Lout)を出力し始めると、ダイオード417を介してコンデンサ410が徐々に充電される。コンデンサ410の電圧上昇に伴い、オペアンプ412の入力端子1(正入力端子)の電圧が上昇し、その値に応じてオペアンプ412の出力電圧も上昇する。これにより、ダイオード415を介して制御電流の引き抜きが徐々に抑制され、駆動部40の出力が、高周波回路3の周波数を共振周波数に近づけるスイッチング状態に移行する。   When the drive unit 40 starts outputting a drive signal (for example, Lout) to drive the conversion element 30, the capacitor 410 is gradually charged via the diode 417. As the voltage of the capacitor 410 rises, the voltage at the input terminal 1 (positive input terminal) of the operational amplifier 412 rises, and the output voltage of the operational amplifier 412 rises according to the value. Thereby, drawing of the control current is gradually suppressed via the diode 415, and the output of the drive unit 40 shifts to a switching state in which the frequency of the high-frequency circuit 3 is brought close to the resonance frequency.

電源をオフすると、駆動信号(例えば、Lout)の出力が停止するので、コンデンサ410は抵抗411を介して瞬時に放電する。   When the power is turned off, the output of the drive signal (for example, Lout) is stopped, so that the capacitor 410 is instantaneously discharged through the resistor 411.

次に、実施形態1の動作について図1を用いて説明する。商用電源Bをオフして瞬時にオンした場合に、回路素子のバラツキ等により高周波回路の周波数特性が設計値からずれている状態では、最初は駆動部40の制御電流は大きく高周波電力の周波数が共振回路31の共振周波数より高すぎて無電極放電灯は点灯しない。しかし、次第に制御電流は小さくなっていくので、これに伴い、高周波電力の周波数は、低くなっていき、共振周波数に近づいていく。そして、高周波電力の周波数が共振周波数の近傍になると、共振回路31のQが大きいので、十分に大きな高周波電流が誘導コイル1に流れ、高周波電磁界が発生し、無電極放電灯を点灯する。   Next, the operation of the first embodiment will be described with reference to FIG. When the commercial power supply B is turned off and turned on instantaneously, if the frequency characteristics of the high-frequency circuit deviate from the design value due to variations in circuit elements, the control current of the drive unit 40 is initially large and the frequency of the high-frequency power is high. The electrodeless discharge lamp does not light up because the resonance frequency of the resonance circuit 31 is too high. However, since the control current gradually decreases, the frequency of the high-frequency power decreases accordingly and approaches the resonance frequency. When the frequency of the high frequency power is close to the resonance frequency, the Q of the resonance circuit 31 is large, so that a sufficiently large high frequency current flows through the induction coil 1, a high frequency electromagnetic field is generated, and the electrodeless discharge lamp is turned on.

以上、実施形態1によれば、駆動部40からの駆動信号(例えば、Lout)により駆動部40に対する制御電流を可変し高周波電力の周波数が可変し、再始動時に制御電源20の影響を受けずに無電極放電灯Aを始動することができるため、商用電源Bをオフした後に瞬時にオンした場合に、高周波回路の周波数特性が設計値からずれた状態であっても、高周波電力の周波数変化が追従し無電極放電灯Aを点灯させることができる。これにより、過大な電圧(電力)による回路素子のストレスを防ぐことができる。   As described above, according to the first embodiment, the control current for the drive unit 40 is varied by the drive signal (for example, Lout) from the drive unit 40, and the frequency of the high-frequency power is varied. Since the electrodeless discharge lamp A can be started at the same time, when the commercial power supply B is turned off immediately, even if the frequency characteristics of the high frequency circuit deviate from the design value, the frequency change of the high frequency power Can follow and the electrodeless discharge lamp A can be turned on. Thereby, the stress of the circuit element due to an excessive voltage (power) can be prevented.

(実施形態2)
先ず、実施形態2の基本的な構成について図2を用いて説明する。
(Embodiment 2)
First, the basic configuration of the second embodiment will be described with reference to FIG.

実施形態2は、誘導コイル1と、直流電源回路2と、高周波回路3と、駆動部40と、周波数スイープ回路41とを備える点では実施形態1と同様であるが、実施形態1にはない以下に記載の特徴部分がある。図2に示すように、制御電源20を介して直流電源回路2と周波数スイープ回路41との間に、駆動信号(例えば、Lout)によりスイッチングするスイッチング素子5を備えることを特徴とする。   The second embodiment is similar to the first embodiment in that the induction coil 1, the DC power supply circuit 2, the high frequency circuit 3, the driving unit 40, and the frequency sweep circuit 41 are provided, but the first embodiment is not. There are the following features. As shown in FIG. 2, a switching element 5 that is switched by a drive signal (for example, Lout) is provided between the DC power supply circuit 2 and the frequency sweep circuit 41 via the control power supply 20.

スイッチング素子5は、例えば、トランジスタであり、ゲートには駆動信号(例えば、Lout)が入力し、ソースは制御電源20と接続し、ドレインは周波数スイープ回路41と接続して、駆動信号(例えば、Lout)によるスイッチングでソースからドレインに電流が流れる。また、周波数スイープ回路41は、ダイオード417と分岐して抵抗420を設ける。   The switching element 5 is, for example, a transistor, a driving signal (for example, Lout) is input to the gate, the source is connected to the control power supply 20, the drain is connected to the frequency sweep circuit 41, and the driving signal (for example, The current flows from the source to the drain by switching by Lout). Further, the frequency sweep circuit 41 is branched from the diode 417 and provided with a resistor 420.

次に、実施形態2の動作について実施形態1と異なる点を説明する。商用電源Bをオフして瞬時にオンした場合に、駆動信号(例えば、Lout)がスイッチング素子5のゲートに入力する。これに伴い、制御電源20から電流がスイッチング素子5を介して周波数スイープ回路41に間欠的に流れる。これにより、コンデンサ410は徐々に充電され電圧が上昇する。   Next, the difference of the operation of the second embodiment from the first embodiment will be described. When the commercial power supply B is turned off and turned on instantaneously, a drive signal (for example, Lout) is input to the gate of the switching element 5. Along with this, a current intermittently flows from the control power supply 20 to the frequency sweep circuit 41 via the switching element 5. Thereby, the capacitor 410 is gradually charged and the voltage rises.

商用電源Bをオフした場合は、駆動信号(例えば、Lout)が停止するので、スイッチング素子5のゲートには電流が流れなくなり、同時にスイッチング素子5のソース・ドレイン間も電流が流れなくなる。   When the commercial power source B is turned off, the drive signal (for example, Lout) stops, so that no current flows through the gate of the switching element 5 and no current flows between the source and drain of the switching element 5 at the same time.

以上、実施形態2によれば、駆動信号(例えば、Lout)によりスイッチング素子5をスイッチングするので、駆動信号(例えば、Lout)の電力を小さくすることができる。また、再始動時に制御電源20の影響を受けずに無電極放電灯Aを始動することができるため、実施形態1と同様の効果も得られる。   As described above, according to the second embodiment, since the switching element 5 is switched by the drive signal (for example, Lout), the power of the drive signal (for example, Lout) can be reduced. Further, since the electrodeless discharge lamp A can be started without being affected by the control power source 20 at the time of restart, the same effect as that of the first embodiment can be obtained.

(実施形態3)
先ず、実施形態3の基本的な構成について図3を用いて説明する。
(Embodiment 3)
First, the basic configuration of the third embodiment will be described with reference to FIG.

実施形態3の無電極放電灯点灯装置は、無電極放電灯Aを正常に点灯するものであり、図3に示すように、誘導コイル1と、直流電源回路2と、高周波回路3と、駆動部40と、調光回路6と、間欠発振回路7とを備える。更に、実施形態1と同様に周波数スイープ回路(図示せず)を備える。   The electrodeless discharge lamp lighting device of the third embodiment is for normally lighting the electrodeless discharge lamp A. As shown in FIG. 3, the induction coil 1, the DC power supply circuit 2, the high frequency circuit 3, and the drive The unit 40, the dimming circuit 6, and the intermittent oscillation circuit 7 are provided. Further, a frequency sweep circuit (not shown) is provided as in the first embodiment.

調光回路6は、内部に、例えば、調光信号スイープ回路60を設け、ダイオード61を介して入力するデューティー信号等の入力信号を用いて、調光信号スイープ回路60により、周期的に高周波電力の周波数の切り替わり目をスイープするように信号を変換し、駆動部40の周波数設定端子400への制御電流の大きさを可変する。この制御電流に基いて、無電極放電灯Aの点灯・消灯を繰り返すことにより調光する。ただし、高周波電力の周波数の切り替え周期は、例えば120Hz以上のようにちらつきを感じない程度の値に設定する。   The dimming circuit 6 includes, for example, a dimming signal sweep circuit 60, and periodically uses the dimming signal sweep circuit 60 to input high-frequency power using an input signal such as a duty signal input via the diode 61. The signal is converted so as to sweep the switching frequency of the frequency, and the magnitude of the control current to the frequency setting terminal 400 of the drive unit 40 is varied. Based on this control current, dimming is performed by repeatedly turning on and off the electrodeless discharge lamp A. However, the frequency switching period of the high-frequency power is set to a value that does not feel flicker, such as 120 Hz or more.

間欠発振回路7は、高周波回路3より抵抗70を介して誘導コイル1の電圧を入力することで無負荷等の異常負荷を検出し、その検出時においてダイオード71を介して、デューティー信号等の間欠発振信号を調光回路6に出力することを特徴とする。   The intermittent oscillation circuit 7 detects an abnormal load such as no load by inputting the voltage of the induction coil 1 from the high frequency circuit 3 via the resistor 70, and intermittently outputs a duty signal or the like via the diode 71 at the time of detection. An oscillation signal is output to the dimming circuit 6.

先ず、実施形態3の商用電源Bをオフした後に瞬時にオンした場合の動作は、周波数スイープ回路(図示せず)により制御電流を可変し、実施形態1と同様の動作を行う。   First, the operation in the case where the commercial power source B according to the third embodiment is turned on immediately after being turned off is performed by changing the control current by a frequency sweep circuit (not shown) and performing the same operation as that in the first embodiment.

次に、実施形態3の無電極放電灯Aを調光する場合の動作について図3を用いて説明する。調光回路6はデューティー信号の調光信号を入力する。調光回路6は、デューティー信号のオン・オフにより周期的に高周波電力の周波数が変化するように制御電流を可変する。これにより、無電極放電灯Aの点灯及び消灯を繰り返して調光することができる。   Next, the operation in the case of dimming the electrodeless discharge lamp A of Embodiment 3 will be described with reference to FIG. The light control circuit 6 inputs a light control signal of a duty signal. The dimming circuit 6 varies the control current so that the frequency of the high frequency power periodically changes depending on on / off of the duty signal. Thereby, it is possible to perform light control by repeatedly turning on and off the electrodeless discharge lamp A.

更に、実施形態3の異常負荷検出時における間欠発振保護機能について説明する。調光回路6は、異常負荷検出時に間欠発振回路7よりデューティー信号の間欠発振信号を入力する。調光回路6は、例えば、間欠発振信号がオンデューティーのとき、制御電流は、始めは大きく、次第に小さくなっていく。その制御電流の変化に基き、駆動部40は変換素子30を駆動し高周波電力の周波数を高周波から低周波に変化させる。オンデューティーになるたびに上記動作を行い、周期的に無電極放電灯Aの始動を繰り返す。   Furthermore, the intermittent oscillation protection function when detecting an abnormal load according to the third embodiment will be described. The dimmer circuit 6 inputs an intermittent oscillation signal of a duty signal from the intermittent oscillation circuit 7 when an abnormal load is detected. In the dimming circuit 6, for example, when the intermittent oscillation signal is on-duty, the control current is initially large and gradually decreases. Based on the change in the control current, the drive unit 40 drives the conversion element 30 to change the frequency of the high frequency power from a high frequency to a low frequency. The above operation is performed every time the on-duty is reached, and the start of the electrodeless discharge lamp A is repeated periodically.

以上、実施形態3によれば、実施形態1と同様の周波数スイープ回路41を備えているので、実施形態1と同様の効果が得られる。また、デューティー信号である調光信号により高周波電力の周波数が可変するので無電極放電灯Aを調光することができる。更に、異常負荷検出時においてデューティー信号である間欠発振信号を調光回路6に入力し高周波電力の周波数を変化させる間欠発振保護機能が働き、周期的に高周波電力の周波数を変化させて無電極放電灯Aの始動を繰り返すので、無電極放電灯Aの不点や回路素子へのストレスを防ぐことができる。   As described above, according to the third embodiment, since the frequency sweep circuit 41 similar to that of the first embodiment is provided, the same effect as that of the first embodiment can be obtained. Further, since the frequency of the high frequency power is varied by the dimming signal which is a duty signal, the electrodeless discharge lamp A can be dimmed. In addition, an intermittent oscillation protection function for inputting an intermittent oscillation signal, which is a duty signal, to the dimming circuit 6 when an abnormal load is detected and changing the frequency of the high-frequency power works, and the frequency of the high-frequency power is periodically changed to prevent electrodeless discharge. Since the start of the electric lamp A is repeated, the disadvantage of the electrodeless discharge lamp A and the stress on the circuit elements can be prevented.

なお、実施形態3の変形例として、周波数スイープ回路(図示せず)を設けない構成にしてもよい。例えば、調光信号スイープ回路60が入力信号のオン期間により出力電圧を可変する構成の場合、間欠発振回路7の初期動作で、上記のように間欠発振信号がオンにより、調光信号スイープ回路60の出力電圧が低電圧から高電圧へとスイープし、駆動部40に対する制御電流が大電流から小電流へとスイープするので、高周波電力の周波数が高周波から低周波に変化する。上記動作は、高周波電力の周波数を高周波から低周波へ変化する点で初始動時の周波数スイープ回路(図示せず)の動作と同等であるので、初始動時において間欠発振回路7の初期動作により無電極放電灯Aを始動させることができる。これにより、電源をオフした後に瞬時にオンした場合に、高周波回路3の周波数特性が設計値からずれた状態であっても、確実に無電極放電灯Aを点灯させることができるとともに、過大な電圧(電力)による回路素子のストレスを防ぐことができる。また、周波数スイープ回路(図示せず)が不要となるので部品点数を削減することができる。なお、これに限らず、入力信号がオフ期間により出力電圧を可変する構成にしても同様の効果が得られる。   As a modification of the third embodiment, a configuration in which a frequency sweep circuit (not shown) is not provided may be employed. For example, when the dimming signal sweep circuit 60 is configured to vary the output voltage according to the ON period of the input signal, the dimming signal sweep circuit 60 is activated by the intermittent oscillation signal being turned on as described above in the initial operation of the intermittent oscillation circuit 7. Output voltage is swept from a low voltage to a high voltage, and the control current for the drive unit 40 is swept from a large current to a small current, so that the frequency of the high frequency power changes from a high frequency to a low frequency. The above operation is equivalent to the operation of the frequency sweep circuit (not shown) at the time of initial start in that the frequency of the high frequency power is changed from high frequency to low frequency. The electrodeless discharge lamp A can be started. As a result, when the power is turned off immediately after turning off the power, the electrodeless discharge lamp A can be reliably turned on even if the frequency characteristics of the high-frequency circuit 3 deviate from the design value. The stress of the circuit element due to the voltage (power) can be prevented. Further, since a frequency sweep circuit (not shown) is not required, the number of parts can be reduced. However, the present invention is not limited to this, and the same effect can be obtained even if the output voltage is varied according to the off period of the input signal.

本発明による実施形態1の無電極放電灯点灯装置の回路図である。It is a circuit diagram of the electrodeless discharge lamp lighting device of Embodiment 1 by the present invention. 本発明による実施形態2の無電極放電灯点灯装置の回路図である。It is a circuit diagram of the electrodeless discharge lamp lighting device of Embodiment 2 by the present invention. 本発明による実施形態3の無電極放電灯点灯装置の回路図である。It is a circuit diagram of the electrodeless discharge lamp lighting device of Embodiment 3 by the present invention. 従来例の回路図である。It is a circuit diagram of a conventional example. 他の従来例の回路図である。It is a circuit diagram of another conventional example.

符号の説明Explanation of symbols

1 誘導コイル
2 直流電源回路
3 高周波回路
30 変換素子
31 共振回路
40 駆動部
41 周波数スイープ回路
5 スイッチング素子
6 調光回路
7 間欠発振回路
A 無電極放電灯
B 商用電源
DESCRIPTION OF SYMBOLS 1 Induction coil 2 DC power supply circuit 3 High frequency circuit 30 Conversion element 31 Resonance circuit 40 Drive part 41 Frequency sweep circuit 5 Switching element 6 Dimming circuit 7 Intermittent oscillation circuit A Electrodeless discharge lamp B Commercial power supply

Claims (5)

無電極放電灯近傍に設ける誘導コイルと、
直流電力を生成する直流電源回路と、
前記直流電力を高周波電力に変換する複数のスイッチング素子及び共振回路を含み当該高周波電力を前記誘導コイルに供給する高周波回路と、
電源オン時に制御電流の大きさに従って各スイッチング素子のオンオフの周波数を可変するためのパルス状の駆動信号を各スイッチング素子に出力する一方、電源オフ時に前記駆動信号の出力を停止する駆動部と、
前記制御電流の大きさを可変することによって前記駆動部を制御して前記駆動信号の周波数を可変し各スイッチング周波数のオンオフ周波数を徐々に増加又は減少させて前記誘導コイルの印加電圧を漸増させ前記無電極放電灯を始動する周波数スイープ回路とを備え
前記周波数スイープ回路は、前記駆動部から出力される前記駆動信号によって充電され当該駆動信号の出力停止時に放電するコンデンサと、前記コンデンサに並列接続され放電経路を形成する抵抗と、前記コンデンサの充電電圧の上昇に伴って前記誘導コイルの印加電圧が漸増するように前記制御電流の大きさを可変するオペアンプとを有する
ことを特徴とする無電極放電灯点灯装置。
An induction coil provided near the electrodeless discharge lamp;
A DC power supply circuit for generating DC power ;
A high frequency circuit for supplying the high frequency power comprises a plurality of switching elements and a resonance circuits for converting the DC power into high frequency power to the induction coil,
While the output power of the on-time to the control current the frequency of on-off of the thus each switching element in magnitude to each of the switching elements a pulse-shaped drive signal for the variable, and a driving unit to stop the output of the drive signal when the power-off ,
The drive unit is controlled by varying the magnitude of the control current to vary the frequency of the drive signal and gradually increase or decrease the on / off frequency of each switching frequency to gradually increase the applied voltage of the induction coil. A frequency sweep circuit for starting the electrodeless discharge lamp ,
The frequency sweep circuit includes a capacitor that is charged by the drive signal output from the drive unit and is discharged when output of the drive signal is stopped, a resistor that is connected in parallel to the capacitor to form a discharge path, and a charge voltage of the capacitor An electrodeless discharge lamp lighting device comprising: an operational amplifier that varies the magnitude of the control current so that the voltage applied to the induction coil gradually increases as the voltage increases .
前記直流電源回路と前記周波数スイープ回路との間に、前記駆動信号によりスイッチングするスイッチング素子を備えることを特徴とする請求項1記載の無電極放電灯点灯装置。   The electrodeless discharge lamp lighting device according to claim 1, further comprising a switching element that switches between the DC power supply circuit and the frequency sweep circuit according to the drive signal. 入力信号により前記制御電流の大きさを可変する調光回路と、
前記高周波回路より異常負荷を検出しその検出時において間欠発振信号を前記調光回路に出力する間欠発振回路と
を備えることを特徴とする請求項1又は2記載の無電極放電灯点灯装置。
A dimming circuit that varies the magnitude of the control current according to an input signal;
The electrodeless discharge lamp lighting device according to claim 1, further comprising: an intermittent oscillation circuit that detects an abnormal load from the high-frequency circuit and outputs an intermittent oscillation signal to the dimming circuit when the abnormal load is detected.
前記調光回路は、デューティー信号を入力しそのデューティー信号により前記制御電流の大きさを周期的に可変することを特徴とする請求項3記載の無電極放電灯点灯装置。 4. The electrodeless discharge lamp lighting device according to claim 3 , wherein the dimming circuit receives a duty signal and periodically varies the magnitude of the control current according to the duty signal . 前記間欠発振信号が、デューティー信号であることを特徴とする請求項3又は4記載の無電極放電灯点灯装置 The electrodeless discharge lamp lighting device according to claim 3 or 4 , wherein the intermittent oscillation signal is a duty signal .
JP2003367915A 2003-10-28 2003-10-28 Electrodeless discharge lamp lighting device Expired - Fee Related JP4206901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003367915A JP4206901B2 (en) 2003-10-28 2003-10-28 Electrodeless discharge lamp lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003367915A JP4206901B2 (en) 2003-10-28 2003-10-28 Electrodeless discharge lamp lighting device

Publications (2)

Publication Number Publication Date
JP2005135642A JP2005135642A (en) 2005-05-26
JP4206901B2 true JP4206901B2 (en) 2009-01-14

Family

ID=34645777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003367915A Expired - Fee Related JP4206901B2 (en) 2003-10-28 2003-10-28 Electrodeless discharge lamp lighting device

Country Status (1)

Country Link
JP (1) JP4206901B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501748B2 (en) * 2005-03-28 2010-07-14 パナソニック電工株式会社 Electrodeless discharge lamp lighting device and lighting fixture
JP4956315B2 (en) * 2007-07-26 2012-06-20 パナソニック株式会社 Discharge lamp lighting device and lighting fixture

Also Published As

Publication number Publication date
JP2005135642A (en) 2005-05-26

Similar Documents

Publication Publication Date Title
JP5302755B2 (en) Power supply
US8531124B2 (en) High pressure discharge lamp lighting device and illumination instrument
JP3775240B2 (en) Power supply
JP4206901B2 (en) Electrodeless discharge lamp lighting device
US8154215B2 (en) Discharge lamp lighting apparatus
JP5108405B2 (en) Discharge lamp lighting device and in-vehicle lighting apparatus
US8760069B2 (en) Circuit arrangement and method for operating a high pressure discharge lamp
JP2005158459A (en) Electrodeless discharge lamp lighting device and electrodeless discharge lamp device
KR100639483B1 (en) electrodeless discharge lamp electric source apparatus
KR100675568B1 (en) Discharge tube lighting device
EP2866531B1 (en) Discharge lamp lighting device, discharge lamp lighting method, and projector
US20090278468A1 (en) Device and Method for Operating a High-Pressure Discharge Lamp
JP2009176515A (en) Discharge tube lighting device and semiconductor integrated circuit
JP2009268206A (en) Ac power source apparatus
JP2007068335A (en) Power supply
JP2008027705A (en) High pressure discharge lamp lighting device and lighting device
JP3814770B2 (en) Discharge lamp lighting device
JP2010040209A (en) Backlight device for liquid crystal panel
JP2005038814A (en) Discharge lamp lighting device, illumination device, and projector
JP2005135641A (en) Electrodeless discharge lamp lighting device
JP2010140825A (en) Discharge lamp lighting circuit
JP2010211949A (en) Discharge lamp lighting circuit
JPH1075576A (en) Control circuit for piezoelectric transformer
KR100368427B1 (en) Inverter and the dimming method thereof
JP4399650B2 (en) High pressure discharge lamp lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081007

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees