[go: up one dir, main page]

JP4220867B2 - Slurry for forming positive electrode of nonaqueous electrolyte secondary battery, positive electrode of nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery - Google Patents

Slurry for forming positive electrode of nonaqueous electrolyte secondary battery, positive electrode of nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4220867B2
JP4220867B2 JP2003319949A JP2003319949A JP4220867B2 JP 4220867 B2 JP4220867 B2 JP 4220867B2 JP 2003319949 A JP2003319949 A JP 2003319949A JP 2003319949 A JP2003319949 A JP 2003319949A JP 4220867 B2 JP4220867 B2 JP 4220867B2
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
electrolyte secondary
slurry
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003319949A
Other languages
Japanese (ja)
Other versions
JP2005085729A (en
Inventor
功二 今坂
祐一 藤岡
英彦 田島
道夫 渡部
義明 松島
和之 足立
裕之 柴田
誠晃 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Kyushu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Kyushu Electric Power Co Inc
Priority to JP2003319949A priority Critical patent/JP4220867B2/en
Publication of JP2005085729A publication Critical patent/JP2005085729A/en
Application granted granted Critical
Publication of JP4220867B2 publication Critical patent/JP4220867B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウム二次電池などの非水電解質二次電池に関する。さらには、この非水電解質二次電池に使用される正極電極、正極電極の原料となる非水電解質二次電池の正極電極形成用スラリーに関する。   The present invention relates to a non-aqueous electrolyte secondary battery such as a lithium secondary battery. Furthermore, the present invention relates to a positive electrode used in the nonaqueous electrolyte secondary battery and a slurry for forming a positive electrode of a nonaqueous electrolyte secondary battery that is a raw material for the positive electrode.

近年、電子機器はより小型化、軽量化されており、その電源となる電池に対しても小型化、軽量化が求められている。そのような要求に応えるために、最近では、高エネルギー密度を有し、自己放電が少なく、軽量にできることから非水電解質二次電池の開発が進められている。非水電解質二次電池の代表例としては、リチウム二次電池が挙げられる。以下、リチウム二次電池を例にして説明する。
リチウム二次電池は、リチウム含有遷移金属酸化物を正極活物質として含む正極電極と、炭素材料を負極活物質として含む負極電極と、電解質塩を含む非水電解液とを有するものである。
リチウム二次電池の正極電極は、リチウム含有遷移金属酸化物とカーボンブラックとを含有する原料から作製されることがあり、その際には、リチウム含有遷移金属酸化物とカーボンブラックとバインダとを溶剤に分散させてスラリー化し、このスラリーを金属箔に塗布し、乾燥させる方法が採用される。
In recent years, electronic devices have been made smaller and lighter, and batteries that serve as power sources have been required to be smaller and lighter. In order to meet such demands, recently, non-aqueous electrolyte secondary batteries have been developed because they have high energy density, little self-discharge, and can be lightweight. A typical example of the nonaqueous electrolyte secondary battery is a lithium secondary battery. Hereinafter, a lithium secondary battery will be described as an example.
A lithium secondary battery has a positive electrode containing a lithium-containing transition metal oxide as a positive electrode active material, a negative electrode containing a carbon material as a negative electrode active material, and a non-aqueous electrolyte containing an electrolyte salt.
A positive electrode of a lithium secondary battery may be prepared from a raw material containing a lithium-containing transition metal oxide and carbon black. In that case, the lithium-containing transition metal oxide, carbon black, and binder are used as a solvent. A method is adopted in which the slurry is dispersed to form a slurry, and the slurry is applied to a metal foil and dried.

その際に使用されるカーボンブラックは嵩密度が小さいため、スラリー化した場合には、スラリーの粘度が高くなりやすいが、スラリーの粘度が高いと、金属箔に塗布することが難しくなるため、一般的には溶剤量を多くし、固形分濃度を低くしてスラリーの粘度を低下させていた。しかしながら、低濃度にしてスラリーの粘度を低くすれば、塗布性が向上する反面、塗布後の乾燥の際、揮発させなければならない溶剤の量が多くなるため、乾燥に多くの時間とエネルギーを費やさなければならなかった。   Since the carbon black used at that time has a low bulk density, when it is slurried, the viscosity of the slurry tends to be high, but if the viscosity of the slurry is high, it is difficult to apply to the metal foil. Specifically, the amount of the solvent is increased, the solid content concentration is lowered, and the viscosity of the slurry is lowered. However, lowering the viscosity of the slurry by lowering the concentration improves the applicability, but on the other hand, the amount of solvent that must be volatilized during drying after application increases, so that much time and energy is consumed for drying. I had to.

そこで、溶剤を追加せず、高濃度のまま粘度を低くするスラリー化方法が提案されている(例えば、非特許文献1)。この方法では、リチウム含有遷移金属酸化物とカーボンブラックとを強力な剪断力を与えながら乾式混合し、得られた混合物とバインダとを溶剤に分散させてスラリーを得る。このようにすれば、スラリーの粘度が低下する上に、粒子同士がより高度に分散し、非常に均質なスラリーを得ることができる。そのため、このようなスラリーを電極作製の原料として用いれば、電極の均質性が高くなって電池の性能が向上するとされている。
しかしながら、上述した方法では、リチウム含有遷移金属酸化物とカーボンブラックとを過剰に乾式混合した場合に、高サイクル時(具体的には1000サイクル以上の充放電)の電池容量が低下して電池性能が低下することがあった。しかも、乾式混合における条件、例えば、混合時間、混合エネルギーなどの最適範囲を求めるための指標が見出されていないため、過剰に混合させやすい傾向にあった。
Then, the slurrying method which makes a viscosity low without adding a solvent is proposed (for example, nonpatent literature 1). In this method, lithium-containing transition metal oxide and carbon black are dry-mixed while applying a strong shearing force, and the resulting mixture and binder are dispersed in a solvent to obtain a slurry. In this way, the viscosity of the slurry is lowered and the particles are more highly dispersed to obtain a very homogeneous slurry. Therefore, if such a slurry is used as a raw material for electrode production, it is said that the homogeneity of the electrode is increased and the performance of the battery is improved.
However, in the above-described method, when lithium-containing transition metal oxide and carbon black are excessively dry-mixed, the battery capacity at the time of high cycle (specifically, charge / discharge of 1000 cycles or more) is reduced and the battery performance is reduced. May decrease. In addition, since no index has been found for obtaining the optimum range such as conditions for dry mixing, for example, mixing time, mixing energy, etc., there has been a tendency for excessive mixing.

ところで、非水電解液二次電池においては、サイクル特性を良好にし、高サイクル時の電池容量の低下を防止する方法についても種々検討されている。例えば、特許文献1には、負極材料に特定の嵩密度の黒鉛を使用する方法が提案されている。
特開平8−180873号公報 門脇宗広、外3名,「機械的粒子複合化装置を用いた電池の高性能化」,第42回電池討論会講演要旨集,社団法人電気化学会電池技術委員会,平成13年11月,p86−87
By the way, in the nonaqueous electrolyte secondary battery, various methods for improving the cycle characteristics and preventing the decrease in the battery capacity at the time of high cycle have been studied. For example, Patent Document 1 proposes a method of using graphite having a specific bulk density as a negative electrode material.
JP-A-8-180873 Munehiro Kadowaki, 3 others, “High performance of battery using mechanical particle composite device”, Abstracts of 42nd Battery Discussion Meeting, Battery Engineering Committee of the Electrochemical Society of Japan, November 2001, p86-87

しかしながら、負極材料に特許文献1記載の黒鉛を使用しても、正極の問題は解消していないため、最終的に得られるリチウム二次電池の性能が向上しないことがあった。したがって、均質性が高く、高サイクル時の電池容量が低下しない正極電極が求められていた。
本発明は、前記事情を鑑みてなされたものであり、高濃度で粘度が低い非水系電解質二次電池の正極電極形成用スラリーを提供することを目的としている。また、均質性が高い非水系電解質二次電池の正極電極を提供することを目的としている。さらには、高サイクル時の電池性能が高い非水系電解質二次電池を提供することを目的としている。
However, even if the graphite described in Patent Document 1 is used as the negative electrode material, the problem of the positive electrode is not solved, and the performance of the finally obtained lithium secondary battery may not be improved. Therefore, there has been a demand for a positive electrode that has high homogeneity and does not reduce battery capacity during high cycles.
The present invention has been made in view of the above circumstances, and an object thereof is to provide a slurry for forming a positive electrode of a non-aqueous electrolyte secondary battery having a high concentration and a low viscosity. It is another object of the present invention to provide a positive electrode for a non-aqueous electrolyte secondary battery with high homogeneity. Furthermore, it aims at providing the nonaqueous electrolyte secondary battery with the high battery performance at the time of a high cycle.

願請求項の非水電解質二次電池の正極電極形成用スラリーは、少なくとも1種の正極活物質と導電性炭素材料とが乾式混合された混合粉体を原料として含有する非水電解質二次電池の正極電極形成用スラリーであって、前記混合粉体は、導電性炭素材料重量あたりのジブチルフタレートの吸収量が30〜198cm /100gであることを特徴としている。ここで、ジブチルフタレートの吸収量は、JIS K 6217に準拠して測定した値である。 Positive electrode forming slurry of a non-aqueous electrolyte secondary battery of the present gun according to claim 1, a non-aqueous electrolyte secondary containing mixed powder of at least one of the positive electrode active material and the conductive carbon material is dry mixed as a raw material a positive electrode forming slurry of the following cell, the mixed powder, the amount of absorption of dibutyl phthalate per conductive carbon material weight is characterized by a 30~198cm 3 / 100g. Here, the amount of dibutyl phthalate absorbed is a value measured in accordance with JIS K 6217.

これらのような非水電解質二次電池の正極電極形成用スラリーでは、混合粉体の性状が最適化されており、高濃度であってもスラリーの粘度を低くすることができるので、容易に金属箔に塗布できる上に、乾燥に要する時間とエネルギーを削減できる。また、導電性炭素材料が適度に分断されており、それが正極活物質の周囲に吸着することで、良好な導電パスを多量に形成している。
上述した正極電極形成用スラリーにおいては、前記正極活物質が、リチウム含有遷移金属酸化物であることが好ましい。正極活物質がリチウム含有遷移金属酸化物であれば、より電池性能が高い非水電解質二次電池にすることができる。
In the slurry for forming the positive electrode of the non-aqueous electrolyte secondary battery as described above, the properties of the mixed powder are optimized, and the viscosity of the slurry can be lowered even at a high concentration. In addition to being able to be applied to the foil, the time and energy required for drying can be reduced. In addition, the conductive carbon material is appropriately divided and adsorbs around the positive electrode active material, thereby forming a large amount of good conductive paths.
In the above-described slurry for forming a positive electrode, the positive electrode active material is preferably a lithium-containing transition metal oxide. If the positive electrode active material is a lithium-containing transition metal oxide, a non-aqueous electrolyte secondary battery with higher battery performance can be obtained.

また、本発明の非水電解質二次電池の正極電極は、上述した非水電解質二次電池の正極電極形成用スラリーを原料とした正極電極層が、金属箔上に形成されていることを特徴としている。このような非水電解質二次電池の正極電極では、良好な導電パスが多量に形成しており、均質性が高くなっているので、高導電性になる上に、充放電に伴う膨張収縮によって導電パスが分断されても、良好な導電パスの残存量が多くなる。   Further, the positive electrode of the nonaqueous electrolyte secondary battery of the present invention is characterized in that a positive electrode layer made of the above-described slurry for forming a positive electrode of a nonaqueous electrolyte secondary battery is formed on a metal foil. It is said. In the positive electrode of such a non-aqueous electrolyte secondary battery, a large number of good conductive paths are formed and the homogeneity is high. Even if the conductive path is divided, the remaining amount of good conductive paths increases.

また、本発明の非水電解質二次電池は、上述した非水電解質二次電池の正極電極と、負極活物質として炭素材料を含む負極電極とを有し、前記非水電解質二次電池の正極電極および前記負極電極は、電解質塩が溶解された非水電解液溶媒に接していることを特徴としている。このような非水電解質二次電池では、高サイクル使用時であっても、良好な導電パスの残存量が多いから、非水電解質二次電池の電池性能低下を防止できる。   The nonaqueous electrolyte secondary battery of the present invention includes the positive electrode of the nonaqueous electrolyte secondary battery described above and a negative electrode containing a carbon material as a negative electrode active material, and the positive electrode of the nonaqueous electrolyte secondary battery. The electrode and the negative electrode are in contact with a non-aqueous electrolyte solvent in which an electrolyte salt is dissolved. In such a non-aqueous electrolyte secondary battery, even when the high cycle is used, the remaining amount of good conductive paths is large, so that it is possible to prevent the battery performance of the non-aqueous electrolyte secondary battery from being deteriorated.

本発明の非水電解質二次電池の正極電極形成用スラリーでは、原料になる混合粉体の嵩密度またはジブチルフタレートの吸収量が特定され、凝集状態が最適化されており、高濃度で低粘度にできるので、金属箔に容易に塗布できる。また、乾燥時における乾燥時間、乾燥エネルギーを削減できる。さらに、正極活物質の周囲に、良好な導電パスを多量に形成させることができる。
本発明の非水電解質二次電池の正極電極は、上述した非水電解質二次電池電極用スラリーを原料としているので、電極の導電性が高くなっている上に、充放電に伴う膨張収縮によって導電パスが分断されても、良好な導電パスの残存量が多くなる。
本発明の非水電解質二次電池によれば、上述した非水電解質二次電池の正極電極が使用されているので、高サイクル使用時における電池性能の低下を防止できる。
In the slurry for forming the positive electrode of the non-aqueous electrolyte secondary battery of the present invention, the bulk density of the mixed powder or the amount of dibutyl phthalate absorbed is specified, the aggregation state is optimized, the concentration is low, and the viscosity is low. Therefore, it can be easily applied to the metal foil. Moreover, the drying time and drying energy at the time of drying can be reduced. Furthermore, a large amount of good conductive paths can be formed around the positive electrode active material.
Since the positive electrode of the non-aqueous electrolyte secondary battery of the present invention is made from the above-mentioned slurry for non-aqueous electrolyte secondary battery electrodes, the conductivity of the electrode is increased and the expansion and contraction associated with charge / discharge Even if the conductive path is divided, the remaining amount of good conductive paths increases.
According to the nonaqueous electrolyte secondary battery of the present invention, since the positive electrode of the nonaqueous electrolyte secondary battery described above is used, it is possible to prevent a decrease in battery performance during high cycle use.

以下、本発明の一実施形態例について図面を参照して説明する。
図1には、本実施形態例の非水電解質二次電池であるリチウム二次電池を示す。このリチウム二次電池はいわゆるコイン型と呼ばれるものであり、正極活物質として少なくとも一種のリチウム含有遷移金属酸化物を含有する円板状の正極(正極電極)4と、負極活物質として炭素材料を含有する負極(負極電極)3と、負極3と正極4との間に配置されたセパレータ6とを有し、これらが、リチウム塩(電解質塩)が溶解された非水電解液溶媒に接して概略構成されている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a lithium secondary battery that is a non-aqueous electrolyte secondary battery of this embodiment. This lithium secondary battery is a so-called coin-type battery, and includes a disc-shaped positive electrode (positive electrode) 4 containing at least one lithium-containing transition metal oxide as a positive electrode active material, and a carbon material as a negative electrode active material. It has a negative electrode (negative electrode) 3 that is contained, and a separator 6 disposed between the negative electrode 3 and the positive electrode 4, and these are in contact with a non-aqueous electrolyte solvent in which a lithium salt (electrolyte salt) is dissolved. It is roughly structured.

このリチウム二次電池においては、ステンレス等からなる略扁平円筒状の電池ケース1に、負極3とセパレータ6と正極4とが順次積層され、その上にステンレス等からなる封口板2が配置され、さらに電池ケース1と封口板2との間にポリプロピレンからなる円環状のガスケット7が配置されている。そして、電池ケース1の上端部分を内部にカシメてガスケット7および封口板2を固定している。
また、セパレータ6と、正極4および負極3との間にはガラスウール濾紙5,5が挿入されている。
非水電解液溶媒は、正極4、負極3、セパレータ6およびガラスウール濾紙5,5に含浸されている。
In this lithium secondary battery, a negative electrode 3, a separator 6, and a positive electrode 4 are sequentially laminated on a substantially flat cylindrical battery case 1 made of stainless steel or the like, and a sealing plate 2 made of stainless steel or the like is disposed thereon, Further, an annular gasket 7 made of polypropylene is disposed between the battery case 1 and the sealing plate 2. And the upper end part of the battery case 1 is crimped inside, and the gasket 7 and the sealing board 2 are being fixed.
Glass wool filter papers 5 and 5 are inserted between the separator 6 and the positive electrode 4 and the negative electrode 3.
The nonaqueous electrolyte solvent is impregnated in the positive electrode 4, the negative electrode 3, the separator 6, and the glass wool filter papers 5 and 5.

正極4は、正極活物質として少なくとも一種のリチウム含有遷移金属酸化物と、導電助材である導電性炭素材料と、これらを結着するためのバインダとからなるものが金属箔上に層状にされ、さらに円板状に成形されたものである。
リチウム含有遷移金属酸化物としては、電池性能を高くできることから、マンガン酸リチウム、コバルト酸リチウム、ニッケル酸リチウム、鉄酸リチウム、酸化バナジウム、バナジン酸リチウムを好適に用いることができる。さらに、マンガン酸リチウムの一部を異なる元素Co、Ni,Fe,Mg,Cr,Ba,Ag,Nb,Al,Cu等で置換したものも好適に用いられる。
このようなリチウム含有遷移金属酸化物の平均粒径は、通常、15〜20μmである。
The positive electrode 4 is formed by laminating a metal foil with at least one lithium-containing transition metal oxide as a positive electrode active material, a conductive carbon material as a conductive auxiliary, and a binder for binding them. Further, it is formed into a disk shape.
As the lithium-containing transition metal oxide, since battery performance can be improved, lithium manganate, lithium cobaltate, lithium nickelate, lithium ferrate, vanadium oxide, and lithium vanadate can be preferably used. Further, a lithium manganate partially substituted with different elements Co, Ni, Fe, Mg, Cr, Ba, Ag, Nb, Al, Cu or the like is also preferably used.
The average particle size of such a lithium-containing transition metal oxide is usually 15 to 20 μm.

導電性炭素材料は、粒子が鎖状に凝集した凝集体からなるものである。導電性炭素材料が鎖状に凝集することによって導電パスを形成する。このような導電性炭素材料としては、例えば、カーボンブラック、ファーネスブラック、ケッチェンブラックなどが挙げられる。これらの中でも、入手が最も容易なカーボンブラックが好ましい。通常使用されるカーボンブラックは、平均粒径が20〜50nmのものである。   The conductive carbon material is composed of an aggregate in which particles are aggregated in a chain. A conductive path is formed by agglomeration of the conductive carbon material in a chain. Examples of such a conductive carbon material include carbon black, furnace black, and ketjen black. Among these, carbon black which is most easily available is preferable. Usually used carbon black has an average particle size of 20 to 50 nm.

バインダとしては、リチウム含有遷移金属酸化物と導電性炭素材料とを結着するものであるものであれば制限されないが、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂や、イミド樹脂、アミド樹脂等を用いることができる。   The binder is not limited as long as it binds a lithium-containing transition metal oxide and a conductive carbon material. For example, fluorine-based resins such as polyvinylidene fluoride and polytetrafluoroethylene, and imide resins An amide resin can be used.

このような正極4は、次のようにして作製される。まず、少なくとも一種のリチウム含有遷移金属酸化物と導電性炭素材料とを乾式混合して混合粉末を調製し、この混合粉体とバインダとを溶剤に分散させ、湿式混合して非水電解質二次電池の正極電極形成用スラリー(以下、スラリーと略す)を調製する。次いで、Al箔などからなる金属箔上に、上記スラリーを塗布し、加熱乾燥して正極電極層を形成させ、そして、正極電極層が設けられた金属箔を所望の形状に成形して正極電極4を得る。   Such a positive electrode 4 is produced as follows. First, a mixed powder is prepared by dry-mixing at least one lithium-containing transition metal oxide and a conductive carbon material, and the mixed powder and binder are dispersed in a solvent and wet-mixed to obtain a non-aqueous electrolyte secondary. A slurry for forming a positive electrode of a battery (hereinafter abbreviated as slurry) is prepared. Next, the slurry is applied onto a metal foil made of Al foil or the like, heated and dried to form a positive electrode layer, and the metal foil provided with the positive electrode layer is formed into a desired shape to form a positive electrode Get 4.

上述した正極電極4の作製方法において、混合粉末は、嵩密度が0.25〜1.05g/cm 、好ましくは0.33〜0.77g/cmであり、または、導電性炭素材料重量あたりのジブチルフタレートの吸収量が30〜198cm /100g、好ましくは41〜141cm /100gである。
ここで、混合粉末の嵩密度またはジブチルフタレートの吸収量は、乾式混合時の混合時間あるいは混合速度などの混合条件に依存している。例えば、混合時間を長くすると、嵩密度はある程度の混合時間までは高くなり、それ以上の混合時間ではほぼ一定になる。また、ジブチルフタレートの吸収量は、ある程度の混合時間まではほぼ一定であり、それ以上混合時間を長くするとジブチルフタレートの吸収量は低下する。このように混合時間によって嵩密度あるいはジブチルフタレートの吸収量が変化するのは、混合粉体の凝集状態が変化するためである。つまり、乾式混合の混合時間を長くすると、混合の剪断力によって鎖状の導電性炭素材料の凝集体が分断されて粒径や粒径分布が変化するためである。
In the method for producing the positive electrode 4 described above, the mixed powder has a bulk density of 0.25 to 1.05 g / cm 3 , preferably 0.33 to 0.77 g / cm 3 , or the weight of the conductive carbon material. absorption of dibutyl phthalate 30~198cm 3 / 100g, per preferably 41~141cm 3 / 100g.
Here, the bulk density of the mixed powder or the absorbed amount of dibutyl phthalate depends on mixing conditions such as mixing time or mixing speed during dry mixing. For example, if the mixing time is lengthened, the bulk density increases up to a certain mixing time, and becomes almost constant at longer mixing times. Further, the amount of dibutyl phthalate absorbed is substantially constant up to a certain mixing time, and when the mixing time is further increased, the amount of dibutyl phthalate absorbed decreases. The reason why the bulk density or the absorbed amount of dibutyl phthalate changes depending on the mixing time is that the aggregation state of the mixed powder changes. That is, when the mixing time of dry mixing is lengthened, the aggregate of the chain-like conductive carbon material is divided by the shearing force of mixing, and the particle size and particle size distribution change.

図2(a)に、乾式混合前の原料粒子(リチウム含有遷移金属酸化物の粒子と導電性炭素材料の粒子)の状態を示し、図2(b)に、乾式混合後の混合粉末であって、嵩密度またはジブチルフタレートの吸収量が本発明の範囲を満たすものの状態を示す。湿式混合前では、図2(a)に示すように、導電性炭素材料11の凝集体12は長い鎖状になっており、導電性炭素材料11とリチウム含有遷移金属酸化物13とは接していないが、湿式混合後では、図2(b)に示すように、導電性炭素材料の凝集体が適度に分断され、分断された導電性炭素材料11がリチウム含有遷移金属酸化物13の周囲に吸着している。このように、分断された導電性炭素材料が正極活物質の周囲に吸着している状態では、嵩密度が密になり、ジブチルフタレートの吸収量が多くなるとともに、良好な導電パスが多く形成され、その結果、導電性が高くなる。なお、混合時間を長くしすぎると、鎖状の導電性炭素材料の凝集体が分断されすぎて、良好な導電パスの形成量が少なくなる。   FIG. 2 (a) shows the state of the raw material particles (lithium-containing transition metal oxide particles and conductive carbon material particles) before dry mixing, and FIG. 2 (b) shows the mixed powder after dry mixing. Thus, the bulk density or the absorbed amount of dibutyl phthalate satisfies the scope of the present invention. Before wet mixing, as shown in FIG. 2A, the aggregate 12 of the conductive carbon material 11 is in a long chain shape, and the conductive carbon material 11 and the lithium-containing transition metal oxide 13 are in contact with each other. However, after wet mixing, as shown in FIG. 2B, the aggregate of the conductive carbon material is appropriately divided, and the divided conductive carbon material 11 is surrounded by the lithium-containing transition metal oxide 13. Adsorbed. Thus, in the state where the divided conductive carbon material is adsorbed around the positive electrode active material, the bulk density becomes dense, the amount of dibutyl phthalate absorbed increases, and many good conductive paths are formed. As a result, the conductivity is increased. If the mixing time is too long, the aggregates of the chain-like conductive carbon material are too divided, and the amount of good conductive paths formed is reduced.

したがって、スラリーの原料になる混合粉末の嵩密度またはジブチルフタレートの吸収量は最適な混合条件にするための指標となり、嵩密度またはジブチルフタレートの吸収量を上記範囲にすることで、リチウム含有遷移金属酸化物の周囲に、良好な導電パスになる導電性炭素材料を多く吸着させることができる。
そして、このような混合粉末を原料として含むスラリーから形成された正極電極は、均質性が高くなるため、導電性が高くなる。また、リチウム二次電池の充放電に伴う膨張・収縮によって導電パスが分断されても、良好な導電パスの残存量が多くなる。
Therefore, the bulk density of the mixed powder or the amount of dibutyl phthalate absorbed as the raw material of the slurry is an index for achieving optimum mixing conditions. By setting the volume density or the amount of dibutyl phthalate absorbed in the above range, the lithium-containing transition metal A large amount of conductive carbon material that forms a good conductive path can be adsorbed around the oxide.
And the positive electrode formed from the slurry which contains such mixed powder as a raw material becomes high in homogeneity, and therefore becomes highly conductive. In addition, even if the conductive path is divided due to expansion / contraction associated with charging / discharging of the lithium secondary battery, the remaining amount of good conductive path increases.

また、混合粉体の嵩密度あるいはジブチルフタレートの吸収量が上記範囲にあることにより、混合粉体の粉体性状が良好になり、混合粉体のハンドリングが容易になる。
さらに、このような混合粉体を溶剤に分散させたスラリーは、高濃度であるにもかかわらず粘度が低いので、金属箔に塗布する際の塗布性に優れている。さらに、乾燥時に留去させる溶剤量が少ないので、乾燥に要する時間およびエネルギーを削減できる。
Further, when the bulk density of the mixed powder or the absorbed amount of dibutyl phthalate is in the above range, the powder properties of the mixed powder are improved and the mixed powder is easily handled.
Furthermore, since a slurry in which such a mixed powder is dispersed in a solvent has a low viscosity despite its high concentration, it has excellent applicability when applied to a metal foil. Furthermore, since the amount of solvent distilled off during drying is small, the time and energy required for drying can be reduced.

リチウム含有遷移金属酸化物と導電性炭素材料とを乾式混合して混合粉末を作製する際には、各種混合手段を用いることができるが、強力な剪断力を付与するものが好ましい。乾式混合時に強力な剪断力を付与する混合手段としては、例えば、ヘンシェルミキサ、チョッパミキサ等が挙げられる。
混合時間や混合速度などの混合条件は、混合手段の仕様(容量、ブレード等)によって適宜最適な範囲にすることが好ましい。
When preparing a mixed powder by dry-mixing a lithium-containing transition metal oxide and a conductive carbon material, various mixing means can be used, but those that impart a strong shearing force are preferred. Examples of mixing means for applying a strong shear force during dry mixing include a Henschel mixer and a chopper mixer.
It is preferable that the mixing conditions such as the mixing time and the mixing speed are appropriately set in an optimal range depending on the specifications of the mixing means (capacity, blade, etc.).

スラリーを調製する際に、上述した混合粉体を分散させる溶剤としては、バインダを溶解させることができるものが好ましく、例えば、N−メチルピロリドンが挙げられる。さらに、製造効率が高くなることから、溶媒にバインダを予め溶解させておくことが好ましい。   When preparing the slurry, the solvent for dispersing the mixed powder described above is preferably a solvent that can dissolve the binder, and examples thereof include N-methylpyrrolidone. Furthermore, it is preferable to previously dissolve the binder in the solvent because the production efficiency is increased.

負極3は、負極活物質である炭素材料の粉末と、炭素材料の粉末を結着させるためのバインダとからなるものが金属箔上に層状にされ、さらに円板状に成形されたものである。
炭素材料としては、例えば、人造黒鉛、天然黒鉛、コークス、難黒鉛化炭素繊維、ポリアセン等を用いることができる。また、バインダとしては、正極4で使用したバインダと同じものを用いることができる。
The negative electrode 3 is composed of a carbon material powder as a negative electrode active material and a binder for binding the carbon material powder, which are layered on a metal foil and further formed into a disk shape. .
As the carbon material, for example, artificial graphite, natural graphite, coke, non-graphitizable carbon fiber, polyacene, or the like can be used. Further, as the binder, the same binder as that used in the positive electrode 4 can be used.

セパレータ6としては、例えば、ポリエチレン、ポリプロピレン等の高分子材料からなり、多孔性の膜、ガラス繊維、各種高分子繊維からなる不織布等を用いることができる。   As the separator 6, for example, a non-woven fabric made of a polymer material such as polyethylene or polypropylene, a porous film, glass fiber, or various polymer fibers can be used.

非水電解液溶媒としては、例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ビニレン、ベンゾニトリル、アセトニトリル、テトラヒドロフラン、2−メチルテトラヒドロフラン、γ−ブチロラクトン、γ−バレロラクトン、1,3−ジオキソラン、4−メチルジオキソラン、N,N−ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、ジオキサン、スルホラン、3−メチルスルホラン、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、エチルブチルカーボネート、ジプロピルカーボネート、ジイソプロピルカーボネート、ジブチルカーボネート、ジエチレングリコール、ジメチルエーテル、1,2−ジメトキシエタン等の非プロトン性溶媒、あるいはこれらの溶媒の2種以上を含む混合溶媒を例示できる。 Examples of the non-aqueous electrolyte solvent include ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, γ-valerolactone, 1,3-dioxolane, 4 -Methyldioxolane, N, N-dimethylformamide, dimethylacetamide, dimethyl sulfoxide, dioxane, sulfolane, 3-methylsulfolane, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl butyl carbonate, dipropyl Carbonate, diisopropyl carbonate, dibutyl carbonate, diethylene glycol, dimethyl ether, 1,2-dimethoxy ester An aprotic solvent such as tan or a mixed solvent containing two or more of these solvents can be exemplified.

非水電解液溶媒に溶解された電解質塩であるリチウム塩としては、例えば、LiPF、LiBF、LiSbF、LiAsF、LiClO、LiCFSO、LiCSO 、LiSbF 、LiAlO、LiAlCl 、LiN(C2x+1SO)(C2y+1SO)(ただし、x,yは自然数)、LiCl、LiI等のうちの1種または2種以上のものを例示できる。 Examples of the lithium salt that is an electrolyte salt dissolved in a non-aqueous electrolyte solvent include LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiSbF 6 , Examples of LiAlO 4 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ) (where x and y are natural numbers), LiCl, LiI, etc. it can.

以上のような実施形態例にあっては、正極4は、正極活物質であるリチウム含有遷移金属酸化物の周囲に、導電性炭素材料からなる良好な導電パスが多量に形成されており、均質性が高くなっているので、高導電性である上に、充放電に伴う膨張収縮によって導電パスが分断されても、良好な導電パスの残存量が多くなる。したがって、高サイクル使用時であっても、良好な導電パスの残存量が多いから、非水電解質二次電池の電池性能低下を防止できる。具体的には、3000〜4000サイクルまで実用的な電池容量を維持できる。   In the embodiment example as described above, the positive electrode 4 has a large number of good conductive paths made of a conductive carbon material around the lithium-containing transition metal oxide that is the positive electrode active material. Therefore, even if the conductive path is divided due to expansion / contraction caused by charging / discharging, the remaining amount of good conductive paths increases. Therefore, even when the high cycle is used, the remaining amount of good conductive paths is large, so that it is possible to prevent the battery performance of the nonaqueous electrolyte secondary battery from being lowered. Specifically, a practical battery capacity can be maintained up to 3000 to 4000 cycles.

なお、本発明は上述した実施形態例に限定されない。例えば、上述した実施形態例はコイン型のリチウム二次電池であったが、円筒型、角型、シート型のリチウム二次電池であってもよい。   The present invention is not limited to the above-described embodiment example. For example, although the embodiment described above is a coin-type lithium secondary battery, it may be a cylindrical, square, or sheet-type lithium secondary battery.

(実施例1)
正極電極を次のようにして作製した。まず、正極活物質である平均粒径20μmのマンガン酸リチウム(LiMn)80重量%と、導電性炭素材料である平均粒径20nmのカーボンブラック10重量%とを、ヘンシェルミキサで10分間、1000rpmで乾式混合した。この乾式混合粉体を100cm の定容量容器に静かに充填し、嵩密度を測定した。さらに、乾式混合粉体中のカーボンブラック重量あたりのジブチルフタレート(DBP)吸収量を測定した。ここで、ジブチルフタレート吸収量の測定は、JIS K6217−4に準じた。
そして、上記乾式混合粉体に、N−メチルピロリドンに溶解した結着剤(バインダ)であるポリフッ化ビニリデン(PVdF)10重量%を添加し、粘度が5.0Pa・sになるように別途添加する溶剤量を調整しながら80分間混合して正極電極形成用スラリーを得た。その際、スラリーの粘度は、ハーケ粘度計を使用し、回転速度30rpmで測定したときの値である。また、スラリーの攪拌は、プラネタリミキサを使用し、その回転数を60rpmとした。
次いで、このスラリーをAl箔の片面上に、塗布量が均一になるように塗布し、続いて80℃で1時間加熱乾燥して塗膜を形成させた。次いで、アルミ箔上の塗膜をローラプレスにて膜密度が2.2g/cm になるように成形した。次いで、100Pa以下に減圧しながら130℃で12時間加熱乾燥して正極電極を得た。
(Example 1)
A positive electrode was produced as follows. First, 80% by weight of lithium manganate (LiMn 2 O 4 ) having an average particle diameter of 20 μm, which is a positive electrode active material, and 10% by weight of carbon black having an average particle diameter of 20 nm, which is a conductive carbon material, are mixed with a Henschel mixer for 10 minutes. And dry mixing at 1000 rpm. The dry mixed powder was gently filled into a 100 cm 3 constant volume container, and the bulk density was measured. Further, the amount of dibutyl phthalate (DBP) absorbed per weight of carbon black in the dry mixed powder was measured. Here, the measurement of the dibutyl phthalate absorption amount conformed to JIS K6217-4.
Then, 10% by weight of polyvinylidene fluoride (PVdF), which is a binder dissolved in N-methylpyrrolidone, is added to the dry mixed powder, and added separately so that the viscosity becomes 5.0 Pa · s. The slurry for positive electrode formation was obtained by mixing for 80 minutes while adjusting the amount of solvent used. At that time, the viscosity of the slurry is a value when measured using a Haake viscometer at a rotation speed of 30 rpm. Moreover, the stirring of the slurry was performed using a planetary mixer, and its rotation speed was set to 60 rpm.
Next, this slurry was applied on one surface of an Al foil so that the amount applied was uniform, and then heated and dried at 80 ° C. for 1 hour to form a coating film. Next, the coating film on the aluminum foil was molded by a roller press so that the film density was 2.2 g / cm 3 . Subsequently, it heat-dried at 130 degreeC for 12 hours, decompressing to 100 Pa or less, and obtained the positive electrode.

次に、結着剤(バインダ)であるポリフッ化ビニリデン10重量%と、負極活物質である黒鉛90重量%とをN−メチルピロリドンに添加し、混合して負極電極形成用スラリーを得た。次いで、このスラリーを銅箔上に塗布し、80℃で乾燥して塗膜を形成させた。次いで、銅箔上の塗膜をロールプレスにて膜密度が1.4g/cm になるように成形した。次いで、100Pa以下に減圧しながら130℃で12時間加熱乾燥して負極電極を得た。 Next, 10% by weight of polyvinylidene fluoride as a binder (binder) and 90% by weight of graphite as a negative electrode active material were added to N-methylpyrrolidone and mixed to obtain a slurry for forming a negative electrode. Next, this slurry was applied onto a copper foil and dried at 80 ° C. to form a coating film. Next, the coating film on the copper foil was formed by a roll press so that the film density was 1.4 g / cm 3 . Subsequently, it was heat-dried at 130 ° C. for 12 hours while reducing the pressure to 100 Pa or less to obtain a negative electrode.

次いで、面積が2cmの円形になるように正極電極および負極電極を切断し、両極の間にセパレータを挟んでコイン型電池を作製した。その際、コイン型電池の非水電解液としては、炭酸エチレン(EC)と炭酸ジメチル(DMC)とが、EC:DMC=1:2の混合比で含有し、さらに、LiPF を1モル/Lの濃度で含有する溶液を用いた。
そして、このコイン型電池の充放電試験をした。この充放電試験では、300サイクル充放電した後の電池容量を測定し、電池容量の維持率を求めた。
Next, the positive electrode and the negative electrode were cut so that the area was a circle of 2 cm 2 , and a separator was sandwiched between the two electrodes to produce a coin-type battery. At that time, as the non-aqueous electrolyte of the coin-type battery, ethylene carbonate (EC) and dimethyl carbonate (DMC) are contained in a mixing ratio of EC: DMC = 1: 2, and LiPF 6 is further added at 1 mol / mol. A solution containing a concentration of L was used.
And the charge / discharge test of this coin type battery was done. In this charge / discharge test, the battery capacity after 300 cycles of charge / discharge was measured to determine the battery capacity retention rate.

(実施例2〜8、比較例1)
正極電極製造時の乾式混合における混合時間を表1に示すように変更したこと以外は実施例1と同様にしてコイン型電池を得た。
(実施例9〜15、比較例2)
正極電極製造時のスラリー混合において、スラリー粘度が5.0Pa・sのまま固形分濃度を60重量%とし、表1に示すようにスラリー混合時間を変更したこと以外は実施例1と同様にしてコイン型電池を得た。
(Examples 2 to 8, Comparative Example 1)
A coin-type battery was obtained in the same manner as in Example 1 except that the mixing time in dry mixing at the time of producing the positive electrode was changed as shown in Table 1.
(Examples 9 to 15 and Comparative Example 2)
In the slurry mixing during the production of the positive electrode, the same as in Example 1 except that the solid content concentration was 60% by weight while the slurry viscosity was 5.0 Pa · s, and the slurry mixing time was changed as shown in Table 1. A coin-type battery was obtained.

Figure 0004220867
Figure 0004220867

これらの結果から、図3〜図9のグラフを作成した。
図3は、混合時間と嵩密度との関係を示すグラフである。図3から、混合時間とともに嵩密度は高くなるが、ある程度混合時間が長くなると、嵩密度の増加率は低下することが判明した。
図4は、混合時間とカーボンブラック重量あたりのジブチルフタレート吸収量との関係を示すグラフである。図4から、混合時間とともにDBP吸収量は少なくなるが、ある程度混合時間が長くなると、DBP吸収量はほぼ一定になることが判明した。
図5は、嵩密度とスラリー中の溶剤比率との関係を示すグラフである。図5から、嵩密度が高いほどスラリー調製時に添加する溶剤量が少なく済むことが判明した。
図6は、嵩密度と正極電極の膜密度との関係を示すグラフである。図6から、嵩密度が高くなるほど、電極の膜密度が高くなることが判明した。これより、塗工時の電極の膜密度が大きいと、膜密度調整のプレス圧も小さくて済むと推定される。
From these results, the graphs of FIGS.
FIG. 3 is a graph showing the relationship between mixing time and bulk density. From FIG. 3, it was found that the bulk density increases with the mixing time, but the increase rate of the bulk density decreases as the mixing time increases to some extent.
FIG. 4 is a graph showing the relationship between the mixing time and the absorbed amount of dibutyl phthalate per weight of carbon black. FIG. 4 shows that the DBP absorption amount decreases with the mixing time, but the DBP absorption amount becomes almost constant when the mixing time is increased to some extent.
FIG. 5 is a graph showing the relationship between the bulk density and the solvent ratio in the slurry. From FIG. 5, it was found that the higher the bulk density, the smaller the amount of solvent added during slurry preparation.
FIG. 6 is a graph showing the relationship between the bulk density and the film density of the positive electrode. From FIG. 6, it was found that the higher the bulk density, the higher the film density of the electrode. From this, it is presumed that when the film density of the electrode during coating is large, the press pressure for adjusting the film density may be small.

図7は、嵩密度と充放電試験結果(容量維持率)との関係を示すグラフである。図7から、嵩密度が、およそ0.24〜1.05g/cm の範囲で高い容量維持率を示すことが判明した。すなわち、嵩密度が0.24〜1.05g/cm の範囲で、300サイクル後の電池容量の維持率が80%超えており、電池寿命が長くなることが判明した。
図8は、DBP吸収量と充放電試験結果との関係を示すグラフである。図8から、DBP吸収量が、およそ30〜198cm /100gの範囲で高い電池の容量維持率を示すことが判明した。すなわち、ジブチルフタレートの吸収量が30〜198cm /100gの範囲で、300サイクル後の電池容量の維持率が80%超えており、電池寿命が長くなることが判明した。
図9は、嵩密度とスラリー混合時間との関係を示すグラフである。図9から、嵩比重が小さくなると、スラリーの混合時間を短くでき、製造効率が向上することが判明した。
FIG. 7 is a graph showing the relationship between the bulk density and the charge / discharge test result (capacity retention rate). From FIG. 7, it was found that the bulk density exhibits a high capacity retention rate in the range of about 0.24 to 1.05 g / cm 3 . That is, when the bulk density is in the range of 0.24 to 1.05 g / cm 3 , the retention rate of the battery capacity after 300 cycles is over 80%, and the battery life is increased.
FIG. 8 is a graph showing the relationship between DBP absorption and charge / discharge test results. From Figure 8, DBP absorption amount was found to exhibit a capacity retention rate of high battery in a range of approximately 30~198cm 3 / 100g. That is, the absorption amount of dibutyl phthalate in a range of 30~198cm 3 / 100g, 300 retention of the battery capacity after the cycle is above 80%, it was found that battery life is prolonged.
FIG. 9 is a graph showing the relationship between the bulk density and the slurry mixing time. From FIG. 9, it was found that when the bulk specific gravity is reduced, the mixing time of the slurry can be shortened and the production efficiency is improved.

本発明に係る一実施形態例のリチウム二次電池を示す断面図である。1 is a cross-sectional view showing a lithium secondary battery according to an embodiment of the present invention. (a)は乾式混合前の原料粒子の状態を示す模式図であり、(b)は乾式混合後の混合粉末の状態を示す模式図である。(A) is a schematic diagram which shows the state of the raw material particle before dry-mixing, (b) is a schematic diagram which shows the state of the mixed powder after dry-mixing. 混合時間と嵩密度との関係を示すグラフである。It is a graph which shows the relationship between mixing time and a bulk density. 混合時間とカーボンブラック重量あたりのジブチルフタレート吸収量との関係を示すグラフである。It is a graph which shows the relationship between mixing time and the dibutyl phthalate absorption amount per carbon black weight. 嵩密度とスラリー中の溶剤比率との関係を示すグラフである。It is a graph which shows the relationship between a bulk density and the solvent ratio in a slurry. 嵩密度と正極電極の膜密度との関係を示すグラフである。It is a graph which shows the relationship between the bulk density and the film density of a positive electrode. 嵩密度と充放電試験結果との関係を示すグラフである。It is a graph which shows the relationship between a bulk density and a charging / discharging test result. カーボンブラック重量あたりのジブチルフタレート吸収量と充放電試験結果との関係を示すグラフであるIt is a graph which shows the relationship between the dibutyl phthalate absorption amount per carbon black weight, and a charging / discharging test result. 嵩密度とスラリー混合時間との関係を示すグラフである。It is a graph which shows the relationship between a bulk density and slurry mixing time.

符号の説明Explanation of symbols

3 負極(負極電極)
4 正極(正極電極)
11 導電性炭素材料
13 リチウム含有遷移金属酸化物
3 Negative electrode (negative electrode)
4 Positive electrode (positive electrode)
11 Conductive carbon material 13 Lithium-containing transition metal oxide

Claims (5)

少なくとも1種の正極活物質と導電性炭素材料とが乾式混合された混合粉体を原料として含有する非水電解質二次電池の正極電極形成用スラリーであって、
前記混合粉体は、導電性炭素材料重量あたりのジブチルフタレートの吸収量が30〜198cm /100gであることを特徴とする非水電解質二次電池の正極電極形成用スラリー。
A slurry for forming a positive electrode of a non-aqueous electrolyte secondary battery containing, as a raw material, a mixed powder obtained by dry-mixing at least one positive electrode active material and a conductive carbon material,
The mixed powder, conductive positive electrode forming slurry of the non-aqueous electrolyte secondary batteries, characterized by absorption of dibutyl phthalate per carbon material weight is 30~198cm 3 / 100g.
前記正極活物質が、リチウム含有遷移金属酸化物であることを特徴とする請求項1に記載の非水電解質二次電池の正極電極形成用スラリー。 The slurry for forming a positive electrode of a non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode active material is a lithium-containing transition metal oxide. 請求項1または2に記載の非水電解質二次電池の正極電極形成用スラリーを原料とした正極電極層が、金属箔上に形成されていることを特徴とする非水電解質二次電池の正極電極。 A positive electrode of a nonaqueous electrolyte secondary battery, wherein a positive electrode layer made from the slurry for forming a positive electrode of the nonaqueous electrolyte secondary battery according to claim 1 or 2 is formed on a metal foil. electrode. 請求項に記載の非水電解質二次電池の正極電極と、負極活物質として炭素材料を含む負極電極とを有し、前記非水電解質二次電池の正極電極および前記負極電極は、電解質塩が溶解された非水電解液溶媒に接していることを特徴とする非水電解質二次電池。 The positive electrode of the nonaqueous electrolyte secondary battery according to claim 3 and a negative electrode containing a carbon material as a negative electrode active material, wherein the positive electrode and the negative electrode of the nonaqueous electrolyte secondary battery are electrolyte salts. A nonaqueous electrolyte secondary battery, wherein the nonaqueous electrolyte solution is in contact with a dissolved nonaqueous electrolyte solvent. 少なくとも1種の正極活物質と導電性炭素材料とを乾式混合して混合粉体を調製し、該混合粉体に溶剤を添加する非水電解質二次電池の正極電極形成用スラリーの製造方法であって、
乾式混合の時間が60分以内であることを特徴とする非水電解質二次電池の正極電極形成用スラリーの製造方法。
In a method for producing a slurry for forming a positive electrode of a non-aqueous electrolyte secondary battery, dry mixing at least one positive electrode active material and a conductive carbon material to prepare a mixed powder and adding a solvent to the mixed powder There,
A method for producing a slurry for forming a positive electrode of a non-aqueous electrolyte secondary battery, wherein the dry mixing time is within 60 minutes.
JP2003319949A 2003-09-11 2003-09-11 Slurry for forming positive electrode of nonaqueous electrolyte secondary battery, positive electrode of nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery Expired - Fee Related JP4220867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003319949A JP4220867B2 (en) 2003-09-11 2003-09-11 Slurry for forming positive electrode of nonaqueous electrolyte secondary battery, positive electrode of nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003319949A JP4220867B2 (en) 2003-09-11 2003-09-11 Slurry for forming positive electrode of nonaqueous electrolyte secondary battery, positive electrode of nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2005085729A JP2005085729A (en) 2005-03-31
JP4220867B2 true JP4220867B2 (en) 2009-02-04

Family

ID=34418742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003319949A Expired - Fee Related JP4220867B2 (en) 2003-09-11 2003-09-11 Slurry for forming positive electrode of nonaqueous electrolyte secondary battery, positive electrode of nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4220867B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101504049B1 (en) 2010-10-15 2015-03-18 도요타지도샤가부시키가이샤 Secondary battery
WO2014141552A1 (en) * 2013-03-15 2014-09-18 Necエナジーデバイス株式会社 Method for manufacturing paste for manufacturing negative electrode, method for manufacturing negative electrode for lithium ion secondary cell, negative electrode for lithium ion secondary cell, and lithium ion secondary cell
KR101666871B1 (en) * 2013-04-23 2016-10-24 삼성에스디아이 주식회사 Positive electrode active material and method of manufacturing the same, and rechargeable lithium battery including the positive electrode active material
KR101666872B1 (en) * 2013-04-23 2016-10-17 삼성에스디아이 주식회사 Positive electrode active material and method of manufacturing the same, and rechargeable lithium battery including the positive electrode active material
CN104766949B (en) * 2014-01-08 2017-05-03 中山天贸电池有限公司 Processing method of lithium ion battery negative electrode slurry
JP7244230B2 (en) * 2018-07-25 2023-03-22 トヨタ自動車株式会社 Aqueous lithium ion battery
JP7453747B2 (en) 2019-03-28 2024-03-21 太陽誘電株式会社 All-solid-state battery and its manufacturing method
JP2022167572A (en) * 2021-04-23 2022-11-04 三洋化成工業株式会社 Production method of electrode composition for lithium ion battery and production method of electrode for lithium ion battery

Also Published As

Publication number Publication date
JP2005085729A (en) 2005-03-31

Similar Documents

Publication Publication Date Title
KR102722643B1 (en) Positive electrode optimized for improving high-temperature life characteristics and secondary battery comprising the same
KR102088491B1 (en) Negative electrode active material for lithium secondary battery and negative electrode for lithium secondary battery comprising the same
KR102426797B1 (en) Negative electrode active material for lithium secondary battery, method of manufacturing the same, negative electrode for lithium secondry battery and lithium secondary battery comprising the same
US9034521B2 (en) Anode material of excellent conductivity and high power secondary battery employed with the same
JP4748949B2 (en) Nonaqueous electrolyte secondary battery
KR102100879B1 (en) Positive electrode for secondary battery, preparation method thereof, and lithium secondary battery comprising the same
KR102705366B1 (en) Negative electrode and secondary battery comprising the same
WO2016136178A1 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2012144177A1 (en) Negative electrode for lithium ion secondary batteries and lithium ion secondary battery using negative electrode
KR20240150408A (en) Positive electrode optimized for improving high-temperature life characteristics and secondary battery comprising the same
JP7717798B2 (en) Method for manufacturing a positive electrode for a lithium secondary battery and a positive electrode for a lithium secondary battery manufactured by the same
JP5505480B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP5505479B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
CN111971824A (en) Negative electrode active material for secondary battery, negative electrode comprising same, and method for producing same
WO2018179934A1 (en) Negative electrode material and nonaqueous electrolyte secondary battery
CN113097446B (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
KR101093242B1 (en) Mixed anode material for lithium secondary battery and high output lithium secondary battery comprising same
JP4220867B2 (en) Slurry for forming positive electrode of nonaqueous electrolyte secondary battery, positive electrode of nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US20240217828A1 (en) Negative electrode active material for lithium secondary battery, negative electrode, and lithium secondary battery
KR20210031324A (en) Positive electrode active material for secondary battery and lithium secondary battery comprising the same
KR101115390B1 (en) Mixed anode material for lithium secondary battery and high output lithium secondary battery comprising same
JP2024543463A (en) Negative electrode and secondary battery including the same
KR20090010361A (en) Cathode material for lithium secondary battery having excellent electrical conductivity and energy density and high output lithium secondary battery comprising same
TWI822957B (en) Method for manufacturing positive electrode active material for lithium ion secondary batteries, positive electrode active material for lithium ion secondary batteries, lithium ion secondary battery
US20230307641A1 (en) Negative electrode active material, and negative electrode and secondary battery which include the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080812

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees