JP4222462B2 - Preform for heat-resistant PET bottle - Google Patents
Preform for heat-resistant PET bottle Download PDFInfo
- Publication number
- JP4222462B2 JP4222462B2 JP2001044105A JP2001044105A JP4222462B2 JP 4222462 B2 JP4222462 B2 JP 4222462B2 JP 2001044105 A JP2001044105 A JP 2001044105A JP 2001044105 A JP2001044105 A JP 2001044105A JP 4222462 B2 JP4222462 B2 JP 4222462B2
- Authority
- JP
- Japan
- Prior art keywords
- preform
- heat
- bottle
- blow molding
- pet bottle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 49
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 49
- 238000000071 blow moulding Methods 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 20
- 239000011347 resin Substances 0.000 claims description 10
- 229920005989 resin Polymers 0.000 claims description 10
- 238000002425 crystallisation Methods 0.000 claims description 4
- 230000008025 crystallization Effects 0.000 claims description 4
- -1 polyethylene terephthalate Polymers 0.000 claims description 4
- 230000002087 whitening effect Effects 0.000 claims description 2
- 239000000047 product Substances 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 11
- 239000003651 drinking water Substances 0.000 description 7
- 235000020188 drinking water Nutrition 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 238000007664 blowing Methods 0.000 description 6
- 230000009477 glass transition Effects 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 239000012467 final product Substances 0.000 description 5
- 238000009998 heat setting Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/07—Preforms or parisons characterised by their configuration
- B29C2949/081—Specified dimensions, e.g. values or ranges
- B29C2949/0811—Wall thickness
- B29C2949/0817—Wall thickness of the body
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/07—Preforms or parisons characterised by their configuration
- B29C2949/081—Specified dimensions, e.g. values or ranges
- B29C2949/082—Diameter
- B29C2949/0821—Diameter of the lip, i.e. the very top of the preform neck
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/07—Preforms or parisons characterised by their configuration
- B29C2949/081—Specified dimensions, e.g. values or ranges
- B29C2949/082—Diameter
- B29C2949/0822—Diameter of the neck
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/07—Preforms or parisons characterised by their configuration
- B29C2949/081—Specified dimensions, e.g. values or ranges
- B29C2949/082—Diameter
- B29C2949/0823—Diameter of the threads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/07—Preforms or parisons characterised by their configuration
- B29C2949/081—Specified dimensions, e.g. values or ranges
- B29C2949/082—Diameter
- B29C2949/0825—Diameter of the flange
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/07—Preforms or parisons characterised by their configuration
- B29C2949/081—Specified dimensions, e.g. values or ranges
- B29C2949/082—Diameter
- B29C2949/0826—Diameter of the body
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/07—Preforms or parisons characterised by their configuration
- B29C2949/081—Specified dimensions, e.g. values or ranges
- B29C2949/0829—Height, length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2949/00—Indexing scheme relating to blow-moulding
- B29C2949/07—Preforms or parisons characterised by their configuration
- B29C2949/081—Specified dimensions, e.g. values or ranges
- B29C2949/0829—Height, length
- B29C2949/0831—Height, length of the neck
Landscapes
- Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
Description
【0001】
【発明の属する技術分野】
本発明はポリエチレンテレフタレート樹脂製ボトル(以下PETボトルという)の製造に供されるプリフォーム(パリソン)に関し、特に大容量の耐熱PETボトルをコールドパリソン方法により一段法(シングルブロー)にて2軸延伸ブロー成形を可能にした耐熱PETボトル用のプリフォームに係る。
【0002】
【従来の技術】
PETボトルは、飲料水等のボトルとして広く利用されている。
このPETボトルの基本的な製造工程は粒状等のペレットを溶融して射出成形機を用いて、口栓部及び口栓部の下方に肩部を介して円筒状の胴部を備えるとともに、底部を有する筒状体からなるいわゆる試験管状のプリフォームを形成し、その後このプリフォームをガラス転移温度以上に加熱して2軸延伸ブロー成形にてボトル形状に成形生産されている。
そして、このブロー成形の製造方法としては大きく分けて1段法(シングルブロー)と2段法(ダブルブロー)があり、1段法は図4に示すように、PETボトルの最終製品形状に合わせてキャビティを設計した金型を用いてプリフォームから直接1段にてPETボトルの製品形状にブロー成形する方法で、2段法は図5に示すように、まず最終製品形状よりも大きい1次ボトルを金型を用いてブロー成形し、これを熱風炉内等で加熱して、自然収縮させて2次ボトルを形成し、この2次ボトルを金型を用いて再度ブロー成形し、最終製品形状にする方法である。
従って1段法(シングルブロー)に比較して2段法(ダブルブロー)の方が工程が複雑で設備が多く必要であり、エネルギーを多く使用することになるが以下説明するような理由により、従来、耐熱PETボトルは2段法にてブロー成形される場合が多かった。
PET樹脂は延伸により配向結晶化されることで引張降伏強さが向上し、飲料水の品質劣化を防止するための酸素透過係数が小さくなる特性を有し、加熱結晶化されることにより耐熱性が向上するが、ガラス転移温度(約70℃)以上に加熱されると急激に軟化寸法収縮し、形状変形してしまう性質を有している。
一方、PETボトルはその使用目的により非耐熱(一般)ボトルと耐熱ボトルの2種類あり、一般ボトルにはPETのガラス転移温度以下の飲料水が充填されるので耐熱性が要求されず、従来からシングルブロー成形にて製造されている。
【0003】
最近は、PETボトルに飲料水を充填する際に生じる口栓内部のエアー溜り部等を加熱殺菌する目的で85℃以上に加熱された飲料水を充填し、ボトルを下向きにし、一定時間保持されるようになって来たが、従来の一般ボトル(非耐熱ボトル)では上記PET樹脂の性質によりガラス転移温度70℃以上の高温の飲料水を充填すると軟化、変形してしまうことになるため、予め耐熱処理した耐熱PETボトルのニーズが高くなって来た。
ここで耐熱PETボトルの製造方法としてはコールドパリソン法にてペレットを溶融射出成形して成形したプリフォームの口栓部を加熱白化結晶化して耐熱性を向上させ、その後に上記2段法(ダブルブロー)にて成形すれば胴部分が再加熱により耐熱性が向上するので従来は耐熱PETボトルの製造方法としてはダブルブロー成形が一般的であった。
【0004】
しかし、やはり、シングルブロー成形の方がダブルブロー成形より工程が短く、設備費等も少ない等の理由により耐熱PETボトルもシングルブロー成形出来るように種々検討されて来た結果、次のような方法が採用されている。
PET樹脂ペレットを射出成形してプリフォームを成形後に、プリフォームの口栓部を加熱白化結晶化処理し、このプリフォームを熱風炉等の加熱ゾーンにてガラス転移温度以上に加熱した後、図4(イ)に示すように約140〜150℃の所定の温度に加熱した金型内にセットし、製品形状にブローイングし、一定時間ヒートセットする。
ここでヒートセットとは、熱固定ともいい、加熱された金型の表面に一定時間(約3秒)接触させることにより、PETの表面の密度を高め耐熱性を向上させることをいう。
その後に図4(ハ)に示すように冷却して型開きし、製品を取り出す。
【0005】
ところが、ダブルブロー成形が製品以上の大きさに延伸させて1次ボトルを得ることにより実質的なPET樹脂の延伸倍率を大きくとることが出来るのに対して、このシングルブロー成形ではプリフォームの形状と製品形状の比で延伸倍率が決定するので延伸倍率不足による製品の強度不足、酸素透過係数が大きくなる恐れがあること、また、ヒートセットの際にガラス転移温度以上に加熱されるので外形が変形しやすい恐れがあることから、これまで350、500、750mlの比較的小容量のしかも円筒形に近いボトル形状においてのみ一部実用化されているにすぎず、2000ml等の大容量の耐熱PETボトルはそのPETボトルの強度及び耐酸素透過性確保の困難性、特にボトル形状が略方形になっているので形状の安定性が難しく、これまでシングルブロー成形が出来ないとされていた。
【0006】
また、PETボトルの口栓部の強度、耐熱性を確保するためにプリフォームの口栓部のみが加熱白化結晶化処理がされるが、この場合に一般的には、図6に示す従来のダブルブロー成形用のプリフォーム101の口栓部拡大断面図(a部拡大図)に基づいて説明すると、口栓部aを下にした倒立状態にて、プリフォームを連結的に加熱炉に誘導し、口栓部aの部分のみが加熱されるが、この加熱により口栓部外径が収縮するとともに、プリフォームの口栓部に上部に位置するプリフォームの胴部の自重にて、加熱され軟化している口栓部の肉厚が厚くなるように変形しようとする。
しかし、口栓部はPETボトルのキャップとの嵌合シール性が重要であることから、加熱時にプリフォーム口栓部のねじ部及びカプラ部の寸法変化のバラツキを小さく抑える必要があるとともに、プリフォームに約35気圧の高圧エアーを吹き込んでブローイングする際には、ブローイングマンドルに安定して嵌着できるように口栓部内径相当部をストレートに成形する必要があるが、従来のプリフォームはストレート部を長くとっているため、カプラ部111の肉厚が薄くなり、加熱時のねじ部及びカプラ外径寸法の寸法変化が大きくなりやすい欠点があった。
【0007】
【発明が解決しようとする課題】
本発明は上記実状に鑑みて、大容量の耐熱PETボトルをコールドパリソン法を用いてシングルブロー成形により2軸延伸ブロー成形が安定して可能なプリフォームの提供を目的とする。
【0008】
【課題を解決するための手段】
ダブルブロー成形法では、上記のように、図5(ロ)に示す1次ボトルを図5(ニ)に示す最終製品ボトル形状より大きくするため、実質延伸倍率を大きく稼ぐことが出来るが、シングルブロー成形法では1回のブローのみで最終製品のボトル形状になるため実質延伸倍率がボトル形状とプリフォームの比で決定されることになる。
しかし、PET樹脂の特性上、所定の強度及び耐酸素透過性を確保するためには所定以上の実質延伸倍率を確保する必要があり、特に2000ml等の大容量のPETボトルは製品形状が略方形になっていて、より高い引張降伏強さが要求されるとともに、充填物である飲料水の品質劣化を防止するために酸素透過係数を小さくする必要があった。
【0009】
そこで、今回、詳細に検討した結果、2軸延伸ブロー成形時に略方形のボトル形状にPET樹脂が均一に延伸され、特にブロー成形時に形状の異常変形が発生しにくいプリフォームの形状を考慮しつつ、プリフォームの首下長さを従来のダブルブロー成形用プリフォームの首下長さより短くすることが出来たことにより、シングルブロー成形時の延伸倍率を大きくとることができたものである。
具体的には、ポリエチレンテレフタレート樹脂を用いた容量の大きい2軸延伸ブロー成形容器をコールドパリソン法にてシングルブロー成形する場合に供される、口栓部及び口栓部の下方に肩部を介して円筒状の胴部を備える有底筒状体からなるプリフォームにおいて、縦方向延伸倍率が1.85以上になるように口栓部下の首下長さを設定し、横方向延伸倍率が3.5以上になるように胴部外径を設定した。
ここで望ましくは、縦方向延伸倍率1.85以上、横方向延伸倍率が3.5以上にて、かつ、面積延伸倍率(縦方向延伸倍率×横方向延伸倍率)が7.0以上に設定するのがよい。
また、横方向延伸倍率も容量2000ml等の略方形ボトルの場合に寸法の短い、短胴部の横方向延伸倍率を3.5以上にするのが望ましい。
ここで、縦方向及び横方向の延伸倍率が大きければそれだけ、強度及び耐酸素透過性は向上するがブロー成形時のボトル製品形状の安定性を維持するためには縦方向の延伸倍率が2.3以下、横方向の延伸倍率が4.0以下が望ましい。
【0010】
また、2000mlの大容量で略方形PETボトルの場合には、より強度向上を図り、ヒートセット時の熱影響による形状変形防止を図るには、従来のプリフォームの目付重量67gに対して、重く設定し、製品の胴部の肉厚を厚くした方がよく、2リットル容量耐熱PETボトル用プリフォームの目付重量67.5〜70.5gの範囲に設定し、胴部肉厚が4.0mm以上になるように形状設定した。
ここで、プリフォームの胴部の肉厚は延伸倍率との相対的な値になるが肉厚4.2mm以上を確保するのが望ましく、安定してボトル製品形状を維持するには5.0mm以下が望ましい。
【0011】
プリフォームを倒立させて口栓部を加熱白化処理する際に、カプラ部内側に厚肉部を設けることにより、プリフォーム加熱時のねじ部及びカプラ外径部の寸法変化のバラツキを小さく抑え、かつ、ブローイングマンドルへの装着安定性を向上し、品質を安定させるべく、ポリエチレンテレフタレート樹脂を用いた容量の大きい2軸延伸ブロー成形容器をコールドパリソン法にてシングルブロー成形する場合に供される、口栓部及び口栓部の下方に肩部を介して円筒状の胴部を備える有底筒状体からなるプリフォームにおいて、カプラ部の位置に対応する口栓部内側に厚肉部を設け、口栓部内側ストレート部長さを8〜12mmの範囲に設定したものである。
【0012】
【発明の実施の形態】
本発明を図3に示す、容量2000mlの略方形PETボトルに適用した場合の実施の形態について以下に説明するが、これに限定されるものでなく、1000ml以上の各種ボトル製品形状に合わせて設定変更できる。
PETボトルの製品形状は全長2g:305mm、首下長さ2b:282.57mm、口栓部ネックリング外径2h:33mm、口栓部ねじ山外径2i:27.56mm、口栓部長さ2a:22.43mm、短胴部幅2e:88.5mm、長胴部幅21e:106mmに対する本発明に係るプリフォームの形状を図1に示し、全長1g:170.43mm、首下長さ1b:148mm、口栓部ネックリング外径1h:33mm、口栓部ねじ山外径1i:27.56mm、口栓部長さ1a:22.43mm、胴部外径1e:28.9mm、肉厚1f:4.4mm、肩部長さ1c:19mm、目付重量69gに設定した。
なお、分かりやすくするために、図3の製品形状の中に2点鎖線にてプリフォーム1の大きさを示してある。
【0013】
これにより、縦方向延伸倍率2b÷1b=282.5÷148=1.91、製品形状の短胴部幅に対して横方向延伸倍率2e÷(1e−1f)=88.5÷(28.9−4.4)=3.61になり、その結果として面積延伸倍率7.12を確保している。
また、目付重量を69gと従来のダブルブロー成形用プリフォーム目付重量67gより重く設定したので、製品ボトルの引張降状強さが向上し、ヒートセット時の形状変化がおさえられていて、連続的に安定して2000mlの大容量のPETボトルが生産出来るようになった。
【0014】
その工程を図4に基づいて説明すると、図4(イ)に示すように140〜150℃に加熱した金型3に本発明に係るプリフォーム1をセットし、図4(ロ)に示すように延伸ロッド4で上方に延伸させながらブロー口5からエアブローする。
その後、金型にてヒートセットするために数秒間保持し、図4(ハ)に示すように冷却エアー供給口6からエアーを吹き込み冷却する。
この時のブロー口から排気6aされる。
次に図4(ニ)に示すように金型を開き、PETボトル製品2を取り出す。
【0015】
なお、参考までに従来のダブルブロー成形用のプリフォーム101の形状を図6に示し、プリフォームの首長さb:155.93mmと長く、その分、胴部の肉厚4.0mmと薄くなっている。
また、実質上の延伸倍率はプリフォームと図5(ロ)に示す1次ボトルとの比になるがプリフォームと最終製品ボトル形状との見掛け上の値は、縦方向延伸倍率1.81、横方向延伸倍率3.64、面積延伸倍率6.59となっている。
また、本発明に係るプリフォームの肩部長さ1cを19mmと従来のプリフォームの肩部長さc18mmより少し長く設定し、肩部の延伸調整を図っている。
【0016】
次に、プリフォームの口栓部の形状について図2に示すプリフォームの口栓部の拡大断面図に基づいて説明する。
キャップとのシール性を確保するために、口栓部カプラ径1j:27.97mm、口栓部カプラ高さ1d:14.1mm、口栓部ねじ山外径1i:27.56mm、及び口栓内径1k:20.6mmは規格化されている。
従って、本発明における口栓部形状の特徴は口栓厚肉部内径1pを19mmとなる口栓部内側に厚肉部11を設け、口栓部カプラ高さ14.1mmに対して、口栓ストレート部1nの長さを8〜12mmの範囲とした点である。
この、カプラ部分の口栓部内側に厚肉部を設けて口栓部の強度を維持しつつ、加熱処理時の寸法変化を抑え、口栓部ストレート部の長さを所定の範囲に設定したので、プリフォームのブローイング時にブローイングマンドルに安定的に嵌着できるようになった。
【0017】
【発明の効果】
本発明による、プリフォームを用いれば、大容量の耐熱PETボトルにおいても、首下長さを短くすることにより所定の延伸倍率を確保することが出来、プリフォーム全体の形状を考慮しつつ、胴部の肉厚を従来に比較して厚くしたので、製品ボトルの強度確保及びヒートセット時の熱影響をおさえることが出来、口栓部内側に厚肉部を設けるとともにストレート部を所定の範囲に設定したのでコールドパリソン法にて安定的に連続してシングルブロー成形が可能になった。
その結果、従来のダブルブロー成形にては2回ブロー成形するのでブロー成形機、ブロー金型が各2セット必要であり、さらに1次ボトルの加熱炉も必要であったが、シングルブローが可能になったことによりブロー成形機、ブロー金型が1セットで済み、工程がシンプルとなり、設備費用及びエネルギー費等のランニングコストも大巾に低減出来、ダブルブロー成形における再ブローが無くなりこれに伴う品質トラブルが無くなり製品品質が向上する。
また、設備がシンプルになったことにより、設備故障の低減が期待でき、設備稼働率の向上も期待できる。
さらには、設備の占有面積が半分以下になり建屋面積も少なくて済む。
【図面の簡単な説明】
【図1】本発明に係る2000mlPETボトル用プリフォームの例を示す。
【図2】図1の口栓部拡大断面図を示す。
【図3】本発明に係るプリフォームを用いて、シングルブロー成形したPETボトルの製品形状の例を示し、(イ)正面図、(ロ)側面図である。
【図4】シングルブロー成形の工程図を示す。
【図5】ダブルブロー成形におけるボトル形状の変化を示す。
【図6】従来のダブルブロー成形用の2000mlPETボトル用プリフォームの例の断面図を示す。
【符号の説明】
1 本発明に係るプリフォーム
1a プリフォームの口栓部長さ
1b プリフォームの首下長さ
1c プリフォームの肩部長さ
1d プリフォームのカプラ高さ
1e プリフォームの胴部外径
1f プリフォームの胴部肉厚
1g プリフォームの全長
1h プリフォームの口栓部ネックリング外径
1i プリフォームの口栓部のねじ山外径
1j プリフォームのカプラ径
1k プリフォームの口栓部内径
1n プリフォームの口栓部ストレート部長さ
1p プリフォームの口栓部厚肉部内径
11 プリフォームの口栓部内側厚肉部
2 本発明に係るプリフォームを用いてシングルブロー成形したPETボトルの例を示す。
2a PETボトルの口栓部長さ
2b PETボトルの首下長さ
2e PETボトルの短胴部幅
21e PETボトルの長胴部幅
2g PETボトルの全長
2h PETボトルの口栓部ネックリング外径
2i PETボトルのねじ山外径[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a preform (parison) used for the production of polyethylene terephthalate resin bottles (hereinafter referred to as PET bottles), and in particular, a large-capacity heat-resistant PET bottle is biaxially stretched by a single-stage method (single blow) using a cold parison method. The present invention relates to a preform for a heat-resistant PET bottle that enables blow molding.
[0002]
[Prior art]
PET bottles are widely used as bottles of drinking water and the like.
The basic manufacturing process of this PET bottle is to melt pellets such as granules and use an injection molding machine to have a cylindrical body part via a shoulder part below the stopper part and the stopper part, and the bottom part. A so-called test tubular preform made of a cylindrical body having the above is formed, and then this preform is heated to a glass transition temperature or higher and formed into a bottle shape by biaxial stretch blow molding.
The blow molding can be roughly divided into a one-step method (single blow) and a two-step method (double blow). The one-step method is adapted to the final shape of the PET bottle as shown in FIG. This is a method of blow molding directly into the product shape of a PET bottle in one step directly from a preform using a mold with a designed cavity. The two-step method is first a primary larger than the final product shape as shown in FIG. The bottle is blow-molded using a mold, heated in a hot-air oven, etc., and spontaneously shrunk to form a secondary bottle. The secondary bottle is blow-molded again using the mold, and the final product It is a method to make a shape.
Therefore, the two-stage method (double blow) is more complicated and requires more equipment than the one-stage method (single blow), and uses a lot of energy, but for the reasons explained below, Conventionally, heat-resistant PET bottles are often blow-molded by a two-stage method.
PET resin has the characteristics that tensile yield strength is improved by orientation crystallization by stretching, oxygen permeability coefficient to prevent quality deterioration of drinking water is reduced, and heat resistance is achieved by heat crystallization. However, when heated to a temperature higher than the glass transition temperature (about 70 ° C.), it has the property of rapidly shrinking in size and deforming.
On the other hand, there are two types of PET bottles, non-heat-resistant (general) bottles and heat-resistant bottles, depending on the purpose of use, and since general bottles are filled with drinking water below the glass transition temperature of PET, heat resistance is not required. Manufactured by single blow molding.
[0003]
Recently, drinking water heated to 85 ° C or higher is filled for the purpose of heating and sterilizing the air reservoir inside the spout that occurs when filling PET bottles with drinking water, and the bottle is turned downward and held for a certain period of time. However, in conventional bottles (non-heat-resistant bottles), it becomes soft and deforms when filled with high-temperature drinking water having a glass transition temperature of 70 ° C. or higher due to the properties of the PET resin. The need for heat-resistant PET bottles that have been heat-treated in advance has increased.
Here, as a method for producing a heat-resistant PET bottle, a plug portion of a preform formed by melt injection molding of a pellet by a cold parison method is heated and whitened and crystallized to improve heat resistance. If the molding is performed by blowing, the heat resistance of the barrel portion is improved by reheating, and thus, conventionally, double blow molding has been a common method for producing a heat resistant PET bottle.
[0004]
However, as a result of various investigations to make single blow molding of heat-resistant PET bottles for reasons such as single blow molding being shorter than double blow molding and less equipment costs, etc. Is adopted.
After forming a preform by injection molding of PET resin pellets, the plug portion of the preform is heated and whitened and crystallized, and the preform is heated to a glass transition temperature or higher in a heating zone such as a hot air furnace. As shown in 4 (a), it is set in a mold heated to a predetermined temperature of about 140 to 150 ° C., blown into a product shape, and heat set for a certain time.
Here, heat setting is also referred to as heat fixation, and means that the surface density of PET is increased and the heat resistance is improved by contacting the surface of a heated mold for a certain time (about 3 seconds).
Thereafter, as shown in FIG. 4C, the mold is cooled and the mold is opened to take out the product.
[0005]
However, the double blow molding can be expanded to a size larger than that of the product to obtain a primary bottle, so that the substantial draw ratio of the PET resin can be increased. Since the draw ratio is determined by the ratio of the product shape, the product may have insufficient strength due to insufficient draw ratio, the oxygen transmission coefficient may increase, and the outer shape is heated because it is heated above the glass transition temperature during heat setting. Since it may be easily deformed, it has been practically used only for bottles with relatively small capacities of 350, 500, and 750 ml, and close to a cylindrical shape. The bottle is difficult to ensure the strength and oxygen permeation resistance of the PET bottle, especially the shape of the bottle is almost square, so the shape stability is difficult Ku, has been considered can not single blow molding up to now.
[0006]
Moreover, in order to ensure the strength and heat resistance of the stopper part of the PET bottle, only the stopper part of the preform is subjected to the heating whitening crystallization treatment. In this case, generally, the conventional stopper shown in FIG. Explained based on the enlarged cross-sectional view of the plug portion of the
However, it is important for the plug part to be fitted and sealed with the cap of the PET bottle, so that it is necessary to minimize variations in the dimensions of the thread part of the preform plug part and the coupler part during heating. When blowing high pressure air of about 35 atmospheres into the reform, it is necessary to form the plug inner diameter equivalent part straight so that it can be stably fitted to the blowing mandle, but the conventional preform is straight Since the length of the portion is long, the thickness of the coupler portion 111 is reduced, and there is a drawback that the dimensional change of the threaded portion and the coupler outer diameter during heating tends to be large.
[0007]
[Problems to be solved by the invention]
In view of the above circumstances, an object of the present invention is to provide a preform capable of stably performing biaxial stretch blow molding of a large-capacity heat-resistant PET bottle by single blow molding using a cold parison method.
[0008]
[Means for Solving the Problems]
In the double blow molding method, as described above, the primary bottle shown in FIG. 5 (b) is made larger than the final product bottle shape shown in FIG. In the blow molding method, since the final product bottle shape is obtained by only one blow, the substantial stretch ratio is determined by the ratio between the bottle shape and the preform.
However, due to the characteristics of the PET resin, it is necessary to ensure a substantial draw ratio greater than a predetermined value in order to ensure a predetermined strength and oxygen permeability, and the product shape of a large-capacity PET bottle of 2000 ml or the like is generally square. Therefore, a higher tensile yield strength is required, and it is necessary to reduce the oxygen permeability coefficient in order to prevent the quality deterioration of the drinking water as the filling.
[0009]
Therefore, as a result of detailed examinations this time, while considering the shape of the preform in which PET resin is uniformly stretched into a substantially square bottle shape at the time of biaxial stretch blow molding, and particularly, abnormal deformation of the shape hardly occurs at the time of blow molding. The length under the neck of the preform can be made shorter than the length under the neck of the conventional preform for double blow molding, so that the stretch ratio at the time of single blow molding can be increased.
Specifically, a biaxially stretched blow molded container having a large capacity using polyethylene terephthalate resin is provided when a single blow molding is performed by the cold parison method. In a preform comprising a bottomed cylindrical body having a cylindrical body portion, the neck length under the spout is set so that the longitudinal stretch ratio is 1.85 or more, and the lateral stretch ratio is 3 The outer diameter of the body was set to be 5 or more.
Desirably, the longitudinal stretching ratio is 1.85 or more, the transverse stretching ratio is 3.5 or more, and the area stretching ratio (longitudinal stretching ratio × transverse stretching ratio) is set to 7.0 or more. It is good.
Further, it is desirable that the transverse direction draw ratio of the short body portion is 3.5 or more in the case of a substantially square bottle having a capacity of 2000 ml or the like in the transverse direction.
Here, the longer the draw ratio in the machine direction and the transverse direction, the more the strength and oxygen permeation resistance are improved. However, in order to maintain the stability of the bottle product shape during blow molding, the draw ratio in the machine direction is 2. 3 or less and the transverse draw ratio is preferably 4.0 or less.
[0010]
Also, in the case of a substantially square PET bottle with a large capacity of 2000 ml, in order to further improve the strength and prevent shape deformation due to the heat effect during heat setting, it is heavier than the conventional preform weight per unit of 67 g. It is better to set and thicken the barrel of the product. Set the weight of 6 liters to 70.5 g of 2 liter heat resistant PET bottle preform, and the barrel thickness is 4.0 mm. The shape was set to be as described above.
Here, the thickness of the body portion of the preform is a relative value to the draw ratio, but it is desirable to secure a thickness of 4.2 mm or more, and 5.0 mm to stably maintain the bottle product shape. The following is desirable.
[0011]
When the preform is turned upside down and the plug part is heated and whitened, by providing a thick part inside the coupler part, the variation in the dimensional change of the thread part and coupler outer diameter part during heating of the preform is suppressed, And, in order to improve the mounting stability to the blowing mandle and stabilize the quality, it is used when single blow molding a biaxially stretched blow molded container having a large capacity using polyethylene terephthalate resin by the cold parison method. In the preform consisting of a bottomed tubular body with a cylindrical body part via a shoulder part below the plug part and the plug part, a thick part is provided inside the plug part corresponding to the position of the coupler part. The plug portion inner straight portion length is set in the range of 8 to 12 mm.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment in which the present invention is applied to a substantially square PET bottle having a capacity of 2000 ml shown in FIG. 3 will be described below, but is not limited thereto, and is set according to various bottle product shapes of 1000 ml or more. Can change.
The product shape of the PET bottle is 2 g in total length: 305 mm, under
For the sake of clarity, the size of the preform 1 is indicated by a two-dot chain line in the product shape of FIG.
[0013]
Thus, the
In addition, since the weight per unit weight is set to 69 g, which is heavier than the conventional double blow molding preform weight per unit of 67 g, the tensile yield strength of the product bottle is improved and the shape change at the time of heat setting is suppressed. It became possible to produce a PET bottle with a large capacity of 2000 ml stably.
[0014]
The process will be described with reference to FIG. 4. As shown in FIG. 4 (a), the preform 1 according to the present invention is set in the mold 3 heated to 140 to 150 [deg.] C. As shown in FIG. The air is blown from the blow port 5 while being stretched upward by the stretching rod 4.
Then, it hold | maintains for several seconds in order to heat-set with a metal mold | die, and cools by blowing in air from the cooling air supply port 6 as shown in FIG.
The
Next, as shown in FIG. 4D, the mold is opened and the PET bottle product 2 is taken out.
[0015]
For reference, the shape of a conventional double
The substantial draw ratio is the ratio between the preform and the primary bottle shown in FIG. 5 (b), but the apparent value between the preform and the final product bottle shape is a longitudinal draw ratio of 1.81, The transverse draw ratio is 3.64 and the area draw ratio is 6.59.
Further, the
[0016]
Next, the shape of the plug portion of the preform will be described based on an enlarged cross-sectional view of the plug portion of the preform shown in FIG.
In order to ensure the sealing performance with the cap, the plug
Therefore, the feature of the shape of the plug portion in the present invention is that the
While maintaining the strength of the plug portion by providing a thick portion inside the plug portion of the coupler portion, the dimensional change during the heat treatment was suppressed, and the length of the plug portion straight portion was set within a predetermined range. As a result, it was possible to stably fit the blowing mandle when the preform was blown.
[0017]
【The invention's effect】
When the preform according to the present invention is used, even in a large-capacity heat-resistant PET bottle, a predetermined stretch ratio can be ensured by shortening the length under the neck, while considering the shape of the entire preform, Since the thickness of the part is thicker than before, the strength of the product bottle can be secured and the heat effect during heat setting can be suppressed, and the thick part is provided inside the plug part and the straight part is kept within the specified range. Since it was set, it became possible to perform single blow molding stably and continuously by the cold parison method.
As a result, in conventional double blow molding, blow molding is performed twice, so two sets of blow molding machines and blow molds are required, and a heating furnace for the primary bottle is also required, but single blow is possible. As a result, only one set of blow molding machine and blow mold is required, the process is simplified, running costs such as equipment costs and energy costs can be greatly reduced, and there is no need to reblow in double blow molding. Quality trouble is eliminated and product quality is improved.
In addition, the simplified equipment can be expected to reduce equipment failures and improve equipment availability.
Furthermore, the area occupied by the facilities is less than half, and the building area is small.
[Brief description of the drawings]
FIG. 1 shows an example of a 2000 ml PET bottle preform according to the present invention.
2 shows an enlarged cross-sectional view of the plug portion of FIG. 1. FIG.
FIGS. 3A and 3B show an example of a product shape of a single blow molded PET bottle using the preform according to the present invention, and are (a) a front view and (b) a side view.
FIG. 4 shows a process diagram of single blow molding.
FIG. 5 shows a change in bottle shape in double blow molding.
FIG. 6 shows a cross-sectional view of an example of a conventional 2000 ml PET bottle preform for double blow molding.
[Explanation of symbols]
1 Preform 1a Preform Plug Port Length 1b
2a PET
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001044105A JP4222462B2 (en) | 2001-02-20 | 2001-02-20 | Preform for heat-resistant PET bottle |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001044105A JP4222462B2 (en) | 2001-02-20 | 2001-02-20 | Preform for heat-resistant PET bottle |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2002240136A JP2002240136A (en) | 2002-08-28 |
| JP2002240136A5 JP2002240136A5 (en) | 2007-12-06 |
| JP4222462B2 true JP4222462B2 (en) | 2009-02-12 |
Family
ID=18906155
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2001044105A Expired - Fee Related JP4222462B2 (en) | 2001-02-20 | 2001-02-20 | Preform for heat-resistant PET bottle |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4222462B2 (en) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100575050B1 (en) | 2003-12-31 | 2006-04-28 | 주식회사 효성 | Molding method of freestanding large heat resistant polyethylene terephthalate container |
| JP4734896B2 (en) * | 2004-11-11 | 2011-07-27 | 東洋製罐株式会社 | Manufacturing method of plastic bottle container |
| US10457437B2 (en) | 2006-03-06 | 2019-10-29 | Plastipak Packaging, Inc. | Lightweight plastic container and preform |
| US8857637B2 (en) | 2006-03-06 | 2014-10-14 | Plastipak Packaging, Inc. | Lightweight plastic container and preform |
| GB2486647B (en) | 2010-12-20 | 2013-06-19 | Peter Reginald Clarke | Preforms for blow moulding |
| ITTV20120136A1 (en) * | 2012-07-20 | 2014-01-21 | Pet Engineering S R L | PREFORMATION FOR BOTTLES IN POLYMERIC MATERIAL |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2723136B2 (en) * | 1989-01-14 | 1998-03-09 | 三井化学株式会社 | Polyester resin composition for high stretch molding and use thereof |
| JPH04366604A (en) * | 1991-06-14 | 1992-12-18 | Denki Kagaku Kogyo Kk | Premolded body for blow molding of synthetic resin bottle body |
| JPH0753744A (en) * | 1993-08-11 | 1995-02-28 | Mitsui Petrochem Ind Ltd | Method for producing polyester molded body |
| JP2727933B2 (en) * | 1993-11-11 | 1998-03-18 | 東洋製罐株式会社 | Polyester bottle with vacuum absorption handle |
| JP3011058B2 (en) * | 1995-06-19 | 2000-02-21 | 東洋製罐株式会社 | Preform for stretch blow molding and molding method using the same |
| JP3205500B2 (en) * | 1996-03-06 | 2001-09-04 | 株式会社吉野工業所 | Manufacturing method of resin container |
| JPH1134153A (en) * | 1997-07-23 | 1999-02-09 | Mitsubishi Plastics Ind Ltd | Manufacturing method for self-standing containers |
| JP2000141461A (en) * | 1998-11-06 | 2000-05-23 | Mitsubishi Plastics Ind Ltd | Apparatus for whitening bottle cap and whitening method using the same |
| JP3095166B1 (en) * | 1999-06-21 | 2000-10-03 | 東洋紡績株式会社 | Polyester production method |
-
2001
- 2001-02-20 JP JP2001044105A patent/JP4222462B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JP2002240136A (en) | 2002-08-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4629598A (en) | Method for forming plastic bottle with integral handle | |
| US4933135A (en) | Method of making a blow-moulded container from a thermoplastic polyester, in particular pet | |
| JP5491527B2 (en) | Large container manufacturing method | |
| JPH0688315B2 (en) | Primary blow-molded products for heat-resistant hollow containers | |
| US5145632A (en) | Process for the manufacture of pet containers designed to be filled with a hot liquid | |
| US20240217158A1 (en) | Resin container manufacturing method | |
| JP4222462B2 (en) | Preform for heat-resistant PET bottle | |
| JP2006346891A (en) | Injection stretch blow molding method | |
| JP3086882B2 (en) | Method for forming bottles with heat resistance and pressure resistance | |
| JPH07164436A (en) | Synthetic resin bottle and production thereof | |
| US4235837A (en) | Method of making oriented containers | |
| JP2534482B2 (en) | Method for producing polyethylene terephthalate resin bottle | |
| JPS6124170B2 (en) | ||
| EP2633977B1 (en) | Production method for hollow container | |
| AU2003237109B2 (en) | Biaxial orientation blow molding process | |
| JPH0443498B2 (en) | ||
| JP3986667B2 (en) | Polyethylene terephthalate resin bottle manufacturing method | |
| KR19990007879A (en) | Containers with integral handles, preforms and methods of making the same | |
| US20070222123A1 (en) | Method for Producing Containers Comprising a Narrow Opening and a Long Body by Means of Below Molding or Stretch Below Molding Polypropylene Preforms | |
| JP2002067130A (en) | Method for manufacturing heat resistant neck bent container | |
| JP2757732B2 (en) | Polyester container having a body part partially different in crystallinity and method for producing the same | |
| JPS6387219A (en) | Manufacture of biaxially oriented polyester vessel | |
| JPS60189418A (en) | Manufacture of heat resisting polyester bottle | |
| JP4286968B2 (en) | preform | |
| JP2003103607A (en) | Bottom structure of heat-resistant bottle |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071023 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071023 |
|
| A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20071220 |
|
| A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20080109 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080204 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080401 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080423 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080616 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080708 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080826 |
|
| A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080916 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081112 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081112 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111128 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111128 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141128 Year of fee payment: 6 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| LAPS | Cancellation because of no payment of annual fees |