[go: up one dir, main page]

JP4384276B2 - PHOTOCATALYST WOOD SYNTHETIC MATERIAL COMPOSITION AND PROCESS FOR PRODUCING THE SAME, PHOTOCATALYST WOOD SYNTHETIC MOLDED ARTICLE USING THE PHOTOCATALYST WOOD SYNTHETIC COMPOSITION, AND PHOTOCATALYST WOOD SYNTHETIC FOAM MOLDED ARTICLE - Google Patents

PHOTOCATALYST WOOD SYNTHETIC MATERIAL COMPOSITION AND PROCESS FOR PRODUCING THE SAME, PHOTOCATALYST WOOD SYNTHETIC MOLDED ARTICLE USING THE PHOTOCATALYST WOOD SYNTHETIC COMPOSITION, AND PHOTOCATALYST WOOD SYNTHETIC FOAM MOLDED ARTICLE Download PDF

Info

Publication number
JP4384276B2
JP4384276B2 JP10300798A JP10300798A JP4384276B2 JP 4384276 B2 JP4384276 B2 JP 4384276B2 JP 10300798 A JP10300798 A JP 10300798A JP 10300798 A JP10300798 A JP 10300798A JP 4384276 B2 JP4384276 B2 JP 4384276B2
Authority
JP
Japan
Prior art keywords
wood
photocatalyst
synthetic
titanium oxide
material composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10300798A
Other languages
Japanese (ja)
Other versions
JPH11172112A (en
Inventor
貞夫 西堀
Original Assignee
株式会社経営総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社経営総合研究所 filed Critical 株式会社経営総合研究所
Priority to JP10300798A priority Critical patent/JP4384276B2/en
Publication of JPH11172112A publication Critical patent/JPH11172112A/en
Application granted granted Critical
Publication of JP4384276B2 publication Critical patent/JP4384276B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

【0001】
【産業上の利用分野】
本発明は,木粉などセルロース系の破砕物を主たる成形素材とした光触媒活性効果を有する光触媒木質合成材組成物及びその製造方法,及び前記光触媒木質合成材組成物を用いた光触媒木質合成成形体,並びに光触媒木質合成発泡成形体に関し,より詳しくは,木粉に酸化チタンを吸着させ樹脂と混合して,酸化チタンの光触媒性,すなわち,脱臭,抗菌など,紫外線により活性化され,有機物,アンモニア,NOx,SOx,などを酸化分解する性質を向上ないし有効に発揮させることのできる濾材,接着剤,あるいは塗料などのコーティング材,フィルムあるいはシートとしての包装材料等,また,その他の日用品,一般又は病院の内装用建材,浴場,公園など各種公共施設における器具,備品など各種用途に広く適応できる木質合成材を始めとする各種成形品の原料としての光触媒木質合成材組成物及びその製造方法,並びに前記光触媒木質合成材組成物を用いた光触媒木質合成成形体,並びに光触媒木質合成発泡成形体を提供するものである。
【0002】
【従来の技術】
従来から,この種酸化チタンは,脱臭フィルターとして使用され,また,コーティング剤として提供されており,対象物へ塗布乾燥して被膜を形成し,表面の防汚効果,抗菌効果を得るために用いられている。
【0003】
【発明が解決しようとする課題】
しかしながら,これらの従来品は,コーティングしたものにあっては塗布面積に限定され,反応速度も遅く,また,反応の終了が著しく遅いという不利な結果をもたらすものであった。また,コーティングに用いる溶剤は,易燃性で用途が限定されるという問題もあった。
【0004】
本発明は,前記問題点を解消し,包装材料,塗料,建築資材,濾材など各種広範な用途の抗菌,抗黴,防汚(汚れの)及び悪臭の分解,脱臭処理,有害物質の酸化分解を有する光触媒木質合成材組成物及びその製造方法,また,大気処理,水処理,土壌処理にも用いて有効な光触媒木質合成材組成物及びその製造方法を提供すると共に,酸化チタンの光触媒活性効果それ自体を向上させることが可能となる光触媒性を有する木質合成材組成物及びその製造方法,及び,前記光触媒木質合成材組成物を用いた光触媒木質合成成形体,並びに光触媒木質合成発泡成形体を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために,本発明の光触媒木質合成材組成物は,20〜40wt%の酸化チタンと,10〜60wt%の平均粒径15〜200μmのセルロース系破砕物からなり,前記セルロース系破砕物の周囲及び空洞化した導管又は仮導管内に前記酸化チタンを付着,浸入固定し,前記酸化チタンを付着してなる含有水分量0.5wt%以内の配合物の単体の表面全体に20〜80wt%の樹脂を配合付着して成ることを特徴とする(請求項1)。
【0006】
上記光触媒木質合成材組成物の製造方法は,酸化チタン20〜40wt%と,平均粒径15〜200μm の木粉等セルロース系破砕物10〜60wt%を,攪拌衝撃翼により混合して,前記攪拌衝撃翼による剪断力により生じる摩擦熱で乾燥し,含有水分量を0.5wt%以内に低下せしめると共に,前記セルロース系破砕物の周囲及び空洞化した導管又は仮導管内に前記酸化チタンを付着,浸入固定させた配合物を得,ついで前記配合物に樹脂を20〜80wt%の割合で配合して攪拌衝撃翼により混練溶融し,その後,造粒する工程からなることを特徴とする(請求項2)。
【0007】
前記光触媒木質合成材組成物(請求項1)は,発泡剤をさらに0.1〜10wt%の割合で配合して成ることを特徴とする(請求項3)。
【0008】
また,前記光触媒木質合成材組成物の製造方法(請求項2)において,前記酸化チタン及び前記セルロース系破砕物と共に,発泡剤0.1〜10wt%を前記攪拌衝撃翼により混合するものとしても良い(請求項4)。
【0009】
発泡剤が0.1wt%以下では,発泡が不十分であり,10wt%以上では,発泡過剰により成形が困難となる。
【0010】
樹脂としては,後述のように,熱硬化性樹脂,例えば,フェノール,ユリア,エポキシ樹脂など,熱可塑性樹脂として,例えば,ポリプロピレン(PP), ポリエチレン(PE), ポリ塩化ビニル(PVC),ポリスチレン(PS)が用いられる。
【0011】
ここで,前記発泡剤は,プロパン,ブタン等の低沸点溶剤(物理発泡),又は加熱分解してガスを発生する粉末状のアゾジカルボンアミドなど(化学発泡)を用いる。
【0012】
なお,原料樹脂,或いは成形方法によっては40wt%未満の硬化剤,10wt%未満の整泡剤,0.1〜10wt%の溶剤などを添加してもよい。
【0013】
前述のように発泡剤を添加する場合には,前記混合を,前記発泡剤の沸点又は分解温度以下で混合すると(請求項5),射出成形又は押出し成形時,或いはシート成形後に加熱して発泡させ,表面積を増加させ光触媒効果を向上させることができる(請求項11,12)。
【0014】
なお,前記樹脂として,接着剤原料としての樹脂あるいは,顔料と共に塗料原料としての樹脂を添加し,光触媒活性の効率の高いコーティング材を得ることができる。
【0015】
酸化チタンが20wt%未満では,光触媒反応が鈍化し,40wt%以上では,セルロース系破砕物への吸着が困難となり,適切でない。
【0016】
また,木粉等セルロース系破砕物が60wt%より多いときは,成形時,木粉が焼け,成形が困難となり,また,10wt%より少ないときは,上記配合の酸化チタンの木粉などへの吸着が困難となり好ましくない結果をもたらす。
【0017】
そして,本願発明の光触媒木質合成材組成物(請求項1)及びその製造方法(請求項2)においては,好ましくは,酸化チタン20〜35wt%に,セルロース系の破砕物として前記木粉25〜45wt%と,樹脂としてポリプロピレン,ポリエチレン,ポリカーボネイト,ナイロン,又はPVC35〜45wt%を配合する(請求項6,7)。
【0018】
光触媒木質合成材組成物(請求項1又は6)はこれに限定される訳ではないが,エキストルージョン法により成膜加工して成るフィルムあるいはシート,又は,射出成形,板状に押出し成形して成る光触媒木質合成成形体を得ることができる(請求項)。
【0019】
前記発泡剤各種を添加しない光触媒木質合成材組成物に発泡剤をドライブレンドした後,成膜加工,射出成形又は板状に押出し成形して成る任意の光触媒木質合成成形体を得ることが可能である。(請求項)。
【0020】
樹脂によっては,請求項4の手段では溶融時発泡剤が発泡してしまうためである。
【0021】
上記本願組成物により,形成した板状の木質合成成形体の表面を好ましくはサンドブラストなどでサンディングすれば,表面積を増加させ,成形品の表面の変色を防止できる(請求項10)。
【0022】
なお,木粉及び酸化チタンは樹脂との馴染みが弱いので,前記押出し成形は,前記光触媒木質合成材組成物を加熱,練成し,スクリューをもって成形ダイへ押し出した押出し生地を徐冷し,且つ,この押出し生地に押出し力に抗する抑制力を加えて押出し生地の密度を高くすることで,より均一な高密度の光触媒木質合成成形体及び光触媒木質合成発泡成形体を得ることができる。
【0023】
なお,使用する樹脂は特に限定されないが,用途に応じてPP(ポリプロピレン),PVC(ポリ塩化ビニル),PET(ポリエステル),PE(ポリエチレン),PC(ポリカーボネート),ナイロン,ABS,エポキシ,ウレタン等の熱可塑性あるいは熱硬化性樹脂の一種又はこれらの数種を混合したものを用いることができる。
【0024】
酸化チタンは,本願組成物による成形品の着色と木粉の焼けを防ぎ,剪断力を高める作用をももたらす。
【0025】
また,前記酸化チタンは,流動性,溶液中における分散性が良好であり,本発明の光触媒木質合成成形体に対して温度変化に伴う膨張収縮を著しく少なくすることにも寄与する。
【0026】
上記構成により,木粉の流動時における摩擦抵抗が減少し,樹脂素材との馴染みをよくして,成形された木質合成成形体内の木粉の組織を密にし密度を均一にする。また,木粉と樹脂を押出機に充填加熱した場合,成形された木質合成成形体自体の表面の荒れ,気泡,巣等を生じさせることを防止できる。
【0027】
【発明の実施の形態】
光触媒木質合成材組成物の製造例
酸化チタン20〜40wt%に,平均粒径15〜200μm の木粉等セルロース系破砕物を10〜60wt%の割合で配合して攪拌衝撃翼による攪拌を行うと,前記セルロース系破砕物例えば木粉は,攪拌衝撃翼により破砕,且つ,攪拌衝撃翼及び原材料自体の摩擦熱により乾燥し,前記酸化チタン及び前記木粉の含有水分量が0.5wt%,好ましくは,0.1wt%以下まで乾燥されると共に,セルロース系破砕物の周囲及び空洞化した導管又は仮導管内に酸化チタンが付着,浸入固化した配合物となる。
【0028】
なお,前記木粉の平均粒径とは,当該木粉の累積重量パーセント分布の50重量パーセントの粒子径を意味し,酸化チタンは,粒径は,小さいほど能力がよいが,例えばX線粒径7〜50nmを用いることができる。
【0029】
また,前記配合物に樹脂を20〜80wt%の割合で配合すると,前記樹脂は,攪拌衝撃翼により前記配合物と混練され,原材料自体の摩擦熱により約180〜200℃で,含有水分量が0.5wt%以下に乾燥され,混合分散に際しても凝集したりせずに混練されゲル化する。
【0030】
ついで,ジャケット内の混練材料は,前記原材料中の樹脂の凝固点すなわち融点近傍(融点+10℃)まで冷却されながら乾燥され,攪拌破砕翼により粒径25mm程度以下に造粒され,固化された造粒物を得る。
【0031】
さらに,前記造粒物は,例えば8mmのスクリーンを有するカッタミル等の粉砕機により整粒され,粒径(短径)10mm以下の本願第1,第2実施形態の「光触媒木質合成材組成物」を得る。
【0032】
以上のようにして,樹脂が熱的,化学的に安定した木粉粒(酸化チタンを含む)に固定化された状態を定常的に維持し得るようにして,前記木粉と樹脂との混合,分散状態を定常的に維持すべく,良好なる流動性を与える光触媒木質合成材組成物が形成され,且つ冷却による凝縮,縮小作用とも相まって,化学的な反応とか接着によらない光触媒木質合成材組成物が形成される。
【0033】
そして,この光触媒木質合成材組成物は,各種成膜法によりフィルム,シート等に成形することができるが,インフレーションなど好適には,エキストルージョン法により成膜加工してフィルムあるいはシートなどの光触媒木質合成成形体を得ることができ,また,板状に押出し成形して成る光触媒木質合成成形体を得ることができる。
【0034】
より詳述するために以下に図面を参照して説明する。
【0035】
〔流動混合混練〕
図1において,80は原材料を混合し混練して混練材料を形成することのできるミキサーであり,81はミキサー本体で,該ミキサー本体81の底面の中心には図示せざるモータ37KW(DC)の回転駆動により820rpm/max で高速回転する軸83をミキサー81内の上方に向けて軸承し,この軸83に下から上方へ順にスクレイパー84,攪拌衝撃翼85,86,87を装着し,軸83の先端から締付ナット92で締め付けられている。なお,前記各攪拌衝撃翼85,86,87の形状は特に限定されないが,本実施例では,対称を成す2枚羽根である。図1のように,3個の攪拌衝撃翼を重ねた場合は全部で6枚の羽根で成り,これら6枚の羽根は平面で360度を6等分した等分角(60度)を成すように互いに交叉した状態で重ねている。なお,複数個の攪拌衝撃翼を設けた場合,攪拌衝撃翼の合計の羽根数で360度を等分した角度で互いに交叉して重ねることは原材料を効率良く混練する点で好ましい。
【0036】
上蓋82を開放して投入口94から投入する原材料は,酸化チタン,木粉等のセルロース系破砕物,樹脂,相溶化剤などで成る。
【0037】
また,樹脂は,廃棄された各種の樹脂成形品をそのままもしくは表面樹脂塗膜を形成した樹脂成形品を複数の各小片に破砕し,前記破砕された個々の各小片に対して,圧縮研削作用を付加して樹脂塗膜を研削,剥離し,前記研削された個々の各小片に対して,微振動に基づいた圧縮衝撃力を付加して圧潰粉砕させ,かつ圧潰粉砕によって剥離された樹脂塗膜を随時に除去し,熱可塑性樹脂として素材化した,ポリプロピレン,ポリエチレン,ポリカーボネイト,ナイロン,ポリ塩化ビニル等の樹脂の1種又はこれらの数種の混合したものを用いることができる。
【0038】
前記酸化チタン及び木粉を前記投入口94から投入し,ミキサー本体81内で高速回転する攪拌衝撃翼85,86,87による剪断力による摩擦熱により温度約180℃に上昇させ,立木の心材で40%前後,あるいは,辺材で100〜200%に及ぶ酸化チタン及び木粉の水分含有量を0.5wt%,好ましくは,0.1wt%以下とする。この工程で,微小木粉の周囲あるいは,水分が蒸発し,空洞化した導管又は仮導管内にも酸化チタンを付着,浸入固定させる。
【0039】
ここで,樹脂及び相溶化剤をミキサー本体81内に投入する。
【0040】
この工程においてミキサー本体81内の温度が約200℃に上昇した時点で混練溶融が完了する。
【0041】
この工程で,原材料内の木粉により樹脂は大きな塊とはならず,混合分散に際しても凝集したりせずに粘土状にゲル化して直径約10〜100mmの塊状の「混練材料」となった。
【0042】
つまり,この塊とは,個々の木粉がその木粉単体の表面全体に樹脂を付着した状態に形成され,これらの個々の木粉が集合した塊であるため,木粉単体間の密着性がなく塊そのものは脆いものである。したがって,この工程により形成された混練材料は,後工程の押出機でより一層効率良く混練され得る良好な材料であり,押出し成形時において特に木粉の摩擦抵抗を減じる良好な材料である。
【0043】
上記工程をさらに詳述すると,木粉の水分含有量は,0.5wt%となっているため,相溶化剤の持つ分散性をよくする機能がさらに助長され,樹脂と木粉との界面をなくし,木粉からみて,樹脂中へ均一な密度で分散され,樹脂からみて,木粉へ含侵しやすくなると共に完全に木粉外周を包囲するかたちで,混練溶融される。
【0044】
また,樹脂がPPの場合を始め木粉との混合比は,木粉が原材料の全体重の10wt%未満になると樹脂がミキサー本体81内で大きな塊となるので,木粉の量は10wt%より多くする必要がある。また,木粉が60wt%までは原材料のゲル化が可能であり,木粉が多くなると,木粉が焼ける。
【0045】
〔冷却造粒〕
図2において,100は前述した混練材料を混合し攪拌して「造粒物」を形成することのできる「クーリングミキサー」である。
【0046】
101はミキサー本体で,上面を被蓋し,一方,下端に排出口107を設け,この排出口107をバルブ106で開閉自在に設けている。ミキサー本体101の外周壁内にジャケット102を形成し,このジャケット102内に給水管108から排水管109へ常時,冷却水を供給し,クーリングミキサー100内の原材料の温度を樹脂の融点付近まで冷却するよう保持される。
【0047】
前記ミキサー本体101の上壁内の略中心にはアーム103が略水平方向に回動可能に軸支され,このアーム103の先端には攪拌破砕翼104を軸承し,この攪拌破砕翼104は本実施例ではスクリュー型を成すものである。
【0048】
なお,ミキサー本体101の上壁には投入口113を設け,この投入口113に前述したミキサー80の排出ダクト93を連通する。
【0049】
前述したミキサー80で形成された混練材料は排出ダクト93を経て投入口113からミキサー本体101内へ投入される。投入された混練材料は攪拌しながら,冷却され直径約25mm以下に造粒され,「造粒物」が形成され,この造粒物はバルブ106を開放して排出口107より排出される。
【0050】
なお,クーリングミキサー100で冷却される混練材料は,原材料中の樹脂の凝固点,すなわち融点以下に冷却されることが望ましいが,木粉を混合しているので樹脂の融点以下にまで下げる必要はなく,実際には造粒物が排出口107より排出可能な温度まで冷却されればよく,混練材料内の樹脂の融点より約10℃高い温度まで冷却すれば良い。
【0051】
また,冷却造粒工程は,上記のクーリングミキサーのような装置に限定されるものではなく,ミキサー本体内の混練材料を攪拌する攪拌羽根を設け且つミキサー本体内の外周壁面に前述したようなジャケットを設け,このジャケット内を流れる冷却水でミキサー本体内の混練材料を冷却するものであれば良い。
【0052】
〔整粒〕
前記冷却造粒工程で形成された造粒物は,好ましくは,さらに図3に示すような「カッタミル」を用いて,粒径10mm以下に整粒される。
【0053】
図3において,121はカッタミル本体で,上面開口を有する円筒形を成すケーシングであり,前記開口を開閉自在な蓋122で被覆する。前記蓋122はカッタミル本体121内に造粒木粉を投入する投入口123を備えている。
【0054】
また,前記カッタミル本体121内には,カッタミル本体121の底面に軸承されて図示せざる回転駆動手段で水平に回転するカッタ支持体124を設け,このカッタ支持体124に上下方向に長い回転刃125を設け,さらに,この回転刃125の刃先の回転軌跡に対して僅かな隙間を介して固定刃126を回転刃125の刃先の回転軌跡の略対称位置にカッタミル本体121に固定し,固定刃126とカッタ支持体124と回転刃125とでカッタミル本体121内を2分し,投入室127と整粒室128を形成する。また,整粒室128は,前記固定刃126間を回転刃125の回転軌跡の周囲を囲むようにスクリーン129で仕切っている。このスクリーン129は,整粒された整粒物が通過できるメッシュで形成している。
【0055】
以上のカッタミル120において,投入口123から前述したクーリングミキサー100で形成した造粒物を投入し,カッタ支持体124を回転すると,造粒物は,前記回転刃125と固定刃126により,粒径10mm以下に整粒され,ペレット状「光触媒木質合成材組成物」が形成され,いわゆる樹脂が熱的,化学的に安定した酸化チタンを含む木粉粒に固定化された状態を定常的に維持し得るようにして木粉及び酸化チタンと樹脂との混合,分散状態を定常的に維持すべく,良好なる流動性を与える光触媒木質合成材組成物が形成され,且つ冷却による凝縮,縮小作用とも相まって,化学的な反応とか接着によらない光触媒活性を有する木質合成材組成物が形成される。
【0056】
上記工程により製造された本発明光触媒木質合成材組成物は,各種成膜法によりフィルム,シート等に成形することができる他,押出機により板状等に形成して光触媒木質合成成形体を得ることができる。
【0057】
しかし,木粉及び酸化チタンは樹脂との馴染みが弱いために,押出し成形の際には,スクリューをもって成形ダイへ押出した押出し生地を徐冷し,且つこの押出し生地に押出し力に抗する抑制力を加えることにより,押出し生地の密度を高くすることができる。
【0058】
このような成形体は,抗菌,脱臭などの機能を有する各種建築材料,日用品,家具材料,機器パーツ等として広範囲な使用目的に向けた素材となる。例えば,上記の成形体の光触媒木質合成成形体は,家屋の室内装飾用の化粧成形体などの建築材として使用され,あるいは約300mm四方の大きさに加工してフロアリンクブロックなどの床材として使用される。
【0059】
さらに,他の用途として,自動車の車内の内装材として,例えば,運転席のメータパネル周りの化粧成形体,トランスミッション周囲の化粧成形体,その他の車内の壁面の化粧成形体として使用され,NOxを軽減する作用と共に,高級感を得ることができる。機器パーツとしては電気機器等のボックスパネルや他の機器の化粧成形体として使用される。
【0060】
したがって,本発明の光触媒木質合成材組成物は,薄膜状成形体から厚い成形体に及ぶ広範囲な肉厚の木質合成成形体を成形可能であり,広範囲な使用目的に向けた素材が成形される。
【0061】
なお,本発明の光触媒木質合成材組成物により成形される木質合成成形体は高密度であるので多量の木粉を混入でき,木粉は樹脂より半値以下で遥かに安価であるため安価な木質合成成形体が成形される。また,多量の木粉を混入される木質合成成形体は天然の木材パネルに近い性質を有する優れた成形体である。
【0062】
光触媒木質合成材組成物のその他の製造例
酸化チタン20〜40wt%に,平均粒径15〜200μm の木粉等セルロース系破砕物10〜60wt%,発泡剤を0.1〜10wt%の割合で配合して成る配合物を,前記流動混合混練工程と同様に,攪拌混合する。前述のように,乾燥及び酸化チタンの付着後,樹脂を20〜80wt%投入し,同様に混練,造粒する。
【0063】
発泡剤としてアゾジカルボンアミドなどの粉末状の発泡剤を用いた場合,樹脂投入前に酸化チタンと共に攪拌混合すると,発泡剤も木粉に付着させることが可能である。
【0064】
また,発泡剤以外を攪拌混合混練し,前記冷却造粒工程と同様にしてペレット状にした配合物(光触媒木質合成材組成物)と発泡剤をドライブレンドし,射出或いは押し出し成形することもできる。
【0065】
原料樹脂,或いは成形方法によっては,発泡を所望のものとするため,40wt%未満の硬化剤,10wt%未満の整泡剤,0.1〜10wt%の溶剤などを添加してもよい。
【0066】
以上により混合された配合物は,加熱により発泡剤が気化又は分解して発泡体となるが,前記流動混合混練工程を発泡剤の沸点又は分解温度以下で行うことで,射出成形,押出し成形時又はシート成形後に加熱して所定形状に発泡させることができる。
【0067】
例えば,以下の配合から成る配合物を用いた例を示すと,
樹脂(フェノール樹脂):100wt%
発泡剤(低沸点溶剤):2wt%
整泡剤:2wt%
木粉と酸化チタン:25〜100wt%
上記配合物を攪拌混合し,別容器の硬化剤5wt%と共に,恒温室(20〜30℃)に入れて等温度にした後,それらを攪拌混合すると,フェノール樹脂の硬化の反応熱により発泡剤が気化して,発泡する。
【0068】
また,粉末状の発泡剤を用いる例として,
樹脂(低密度ポリエチレン):59wt%
発泡剤(アゾジカルボンアミドADCA(200℃以上で分解)):1wt%
木粉:20wt%
酸化チタン:20wt%
において,木粉及び酸化チタンを180℃で攪拌混合して乾燥し,酸化チタンを木粉に付着させた後,樹脂を投入して150℃程度で溶融混合し,冷却造粒してペレット状にしたものに,発泡剤をドライブレンドする。この混合物を200℃以上で射出成形すると,型内で約2倍に発泡し,光触媒木質合成発泡成形体を得る。
【0069】
また,上記配合物に対し,酸化チタン,木粉及び発泡剤を170℃で攪拌混合して乾燥して,酸化チタン及び発泡剤を木粉に付着させた後,樹脂を投入して150℃程度で溶融混合したものを,200℃以上で射出成形すると,先の例よりも木粉に発泡剤が付着している分,発泡時に木粉が露出し,光触媒効果が上がる。
【0070】
なお,前記溶融混合したものを170℃程度でシート成形し,そのシートを200℃以上に加熱するとシートが発泡し,約2倍の厚みになる。
【0071】
次に,発泡剤として泡沫状接着剤を説明する。
泡沫状接着剤は,
水溶性樹脂接着剤100wt%に対して,
希釈水100wt%に対して界面活性剤0.01〜0.07wt%混合溶液50から100wt%を配合したもの。又は
上記混合溶液にさらに,アミノ酸及び/ 又はゼラチン等のタンパク質を0.1wt%以下で配合したものから成る。
【0072】
界面活性剤は,これに限定されるわけでないが,脱脂効果のあるポリオキシエチレンラウリルエーテルなどの非イオン系,ラウリルアルコール硫酸エステル塩などの陰イオン系などが用いられる。
【0073】
また,ゼラチン粒は,例えば,市販されているゼラチン等のコラーゲンに由来する蛋白質を酵素酸,アルカリで加水分解して得たポリペプタイドを原料として,このポリペプタイドをジェットミル等の乾式粉砕の方法で粉砕するのが良く,例えば,平均分子量が8,500よりも小さい範囲にあるゼラチンを原料とする。
【0074】
アミノ酸(粗粉)は,ゼラチン粒の延長線上に位置づけられるものであり,ゼラチン粒と酷似し,これに限定されないが,例えば,脱脂大豆,小麦蛋白,牛乳などに含まれているケラチン等を酵素,酸,アルカリで加水分解して得られる平均分子量が100〜200のポリペプチド結合の無いアミノ酸である。
【0075】
そこで,前記のゼラチン粒と共に,又は前記のゼラチン粒に代えて,用いることができる。ここで用いられるアミノ酸粒は,前記アミノ酸の粗粉を粉砕して作り出される。
【0076】
また,上記水溶性接着剤は,通常接着剤に使用される樹脂により形成され,所望により粘着付与剤,軟化剤,充填剤,老化防止剤,架橋剤等の添加物を含む層であり得る。
【0077】
樹脂としては,例えば,メチルアクリレート等のアクリル樹脂,ポリエチレン等のオレフィン樹脂,フェノール樹脂などである。
【0078】
実施例
光触媒木質合成材組成物を用いた光触媒木質合成成形体の実施例及び比較例
実施例として,原材料の30wt%は平均粒径15〜200μmで嵩比重が0.2の木粉で(このときの木粉は水分を約8wt%含む),酸化チタンは,ST一01(石原テクノ社),X線粒径7nm,酸化チタン含有量90wt%以上,比表面積m2/g:300のものを30wt%,残りの39.5%は樹脂のポリプロピレン,分散促進剤として相溶化剤を0.5wt%配合してなる。
【0079】
また,樹脂の形態は,本実施例では直径3mm程度の大きさの粒状から成るペレットを使用している。又,相溶化剤は,三洋化成工業株式会社ユーメックス1010を使用した。実施例1,2,比較例1は直径65mmの単軸型押出機で押出成形による。
【0080】
比較例1は,(石原テクノ社)R930アルミコーティングの酸化チタン;粒径0.25μm(電子顕微鏡),コーティング膜厚:0.01μmの顔料用のものを使用。
【0081】
比較例2は,光触媒合成材組成物(木粉なし:表2)を粒径2×2mmとし,200℃でホットプレス成形した。
【0082】
比較例3は,シリカ系バインダ10wt%,酸化チタン10wt%に溶剤を添加した溶液にガラス板を浸漬して,乾燥したシリカ系バインダ50wt%,酸化チタン50wt%の試料としたものである。
【0083】
また,比較例4は,前記混練工程をボールミルで代替し,混合処理後,プレス加工した例である。
【0084】
【表1】

Figure 0004384276
【0085】
【表2】
Figure 0004384276
【0086】
以下に上記実施例及び比較例による試験結果を示す。
【0087】
実験条件
添加アセトアルデヒド濃度 約820ppm
光強度 約1mW/cm2
反応容器 1.0l(リットル)
光触媒木質合成成形体及び他の比較例
サンプル大きさ:8×8cm
厚さ:4mm
比較例4は,前記ボールミル処理後,実施例と同様溶融混練し,粒径4mm以下に整粒し,4mm厚シート状にプレス成形した。
【0088】
【表3】
Figure 0004384276
【0089】
【表4】
Figure 0004384276
【0090】
・Light control CO2生成速度は,サンプルに光を照射しただけで出てくるCO2量を表している。
・見かけのCO2初期生成速度は,光照射後45minでの生成速度光触媒CO2初期生成速度は,次式;
(見かけのCO2初期生成速度)一(Light control CO2生成速度)
・lh,2hでの生成率(%)は,理論値に対する生成比で光触媒分だけで計算したもの。
・アセトアルデヒド初期消滅速度は,光照射後30minでの消滅速度。
・lhでのアセトアルデヒド消滅率(%)は,lhでの濃度/初期濃度×100なお,*50は,20時間経過後100%となった。また,99* はtrace 中のアセトアルデヒドが残存していることを示している。
【0091】
比較例1の試験片は,光触媒活性が認められないので,アセトアルデヒドが消滅しているというよりは,吸着していると考えられる。
【0092】
これに対し,実施例1は,2hでのCO2生成率では,実施例2と共に100%を示し,アセトアルデヒドの濃度が減少してから十分な反応をすることがわかる。
【0093】
また,実施例2では,酸化チタンの配合は,比較例2の半分であるが,2hでのアセトアルデヒド消滅率が後者の91に対して100である。1hでのCO2生成率を2hで逆転しており,反応終了時間が早く通常濃度でのアセトアルデヒド雰囲気下では,さらに,比較例2に対し,実施例2が上回ることが予想され,単に酸化チタンの量が多いのみでは効果は得られず,本願セルロース系破砕物の添加が極めて光触媒活性性能を向上させていることが分かった。
【0094】
また,比較例4では,ボールミルを用いているために得られた混練材料が毛羽立たずに丸くなっているため,表面積が小さく酸化チタンの付着性が悪くなっている。また,水分も約1.6wt%含有しているために,押出成形ができなかった。すなわち,本発明の製造方法により,光触媒活性性能を得ることができた。
【0095】
【表5】
Figure 0004384276
【0096】
表5における樹脂の種類は,それぞれ,下表の1種又は数種
【0097】
【表6】
Figure 0004384276
【0098】
上記フィルムあるいは,シートについてもサンディングが可能であり,塗料,接着剤と共に木質感のあるものとなり,印刷,接着,塗装が可能となる。
【0099】
また,混入木粉により,放熱性にも優れる。
【0100】
【発明の効果】
本発明は,以上説明したように構成されているので,以下に記載されるような効果を奏する。
【0101】
反応速度,反応の終了を著しく早めることができ,酸化チタンの光触媒活性効果それ自体を向上させることが可能であり,包装材料,塗料,壁紙など建築資材,濃材,自動車の内装材など各種広範な用途に適応できる抗菌,抗徽,防汚(汚れの)及び悪臭の分解,脱臭処理,有害物質の酸化分解効果を有する光触媒木質合成材組成物及びその製造方法,並びに前記光触媒木質合成材組成物から成る光触媒木質合成成形体を,また,大気処理,水処理,土壌処理にも用いて有効な光触媒木質合成材組成物及びその製造方法,並びに前記光触媒木質合成成形体を提供することができた。
【0102】
また,前記光触媒木質合成材組成物を利用して,それを発泡体にすることで,表面積を増加させ,光触媒効果を上げることができ,さらには,その応用例として光触媒木質合成発泡体を例えば汚水処理層又は海上に浮かべて,光触媒効果で汚水を浄化することができる。
【図面の簡単な説明】
【図1】 本発明の実施例に使用するミキサー(流動混合混練)の要部断面を示す全体正面図である。
【図2】 本発明の実施例に使用するクーリングミキサー(冷却造粒)の要部断面を示す全体正面図である。
【図3】 本発明の実施例に使用するカッタミル(整粒)の要部断面を示す全体正面図である。
【符号の説明】
80 ミキサー(流動混合混練)
81 ミキサー本体
82 上蓋
83 軸
84 スクレイパー
85,86,87 攪拌衝撃翼
92 ナット
93 排出ダクト
94 投入口
100 クリーニングミキサー(冷却造粒)
101 ミキサー本体
102 ジャケット
103 アーム
104 攪拌破砕翼
106 バルブ
107 排出口
108 給水管
109 排水管
113 投入口
120 カッタミル(整粒)
121 カッタミル本体
122 蓋
123 投入口
124 カッタ支持体
125 回転刃
126 固定刃
127 投入室
128 整粒室
129 スクリーン[0001]
[Industrial application fields]
  The present invention relates to a photocatalytic wood synthetic material composition having a photocatalytic activity effect, mainly made of cellulose-based crushed material such as wood powder, and a method for producing the same, and a photocatalytic wood synthetic molding using the photocatalytic wood synthetic material composition More specifically, the photocatalyst wood synthetic foam molded body, more specifically, the titanium oxide is adsorbed to the wood powder and mixed with the resin, and the photocatalytic properties of the titanium oxide, ie, deodorization, antibacterial, etc., are activated by ultraviolet rays, organic matter, ammonia , NOx, SOx, etc. Filter materials, adhesives, coating materials such as paints, packaging materials as films or sheets, etc. that can improve or effectively exhibit the property of oxidative decomposition of NOx, SOx, etc. Wooden synthetic materials that can be widely applied to various uses such as hospital interior materials, bathhouses, parks, and other public facilities. The present invention provides a photocatalyst wood synthetic material composition as a raw material for various molded articles, a method for producing the same, a photocatalyst wood composite molded body using the photocatalyst wood composite material composition, and a photocatalyst wood synthetic foam molded body. is there.
[0002]
[Prior art]
  Conventionally, this type of titanium oxide has been used as a deodorizing filter and as a coating agent, and it is used to obtain antifouling and antibacterial effects on the surface by coating and drying on an object to form a film. It has been.
[0003]
[Problems to be solved by the invention]
  However, these conventional products are disadvantageous in that the coated products are limited to the application area, the reaction rate is slow, and the reaction is extremely slow to complete. In addition, the solvent used for coating has a problem in that it is flammable and its use is limited.
[0004]
  The present invention eliminates the above-mentioned problems and provides antibacterial, anti-fouling, antifouling (dirt) and malodor decomposition, deodorization treatment, and oxidative decomposition of harmful substances for a wide variety of applications such as packaging materials, paints, building materials, and filter media. A photocatalyst wood synthetic material composition having a photocatalyst composition and a method for producing the same, and a photocatalyst wood composite material composition effective for use in air treatment, water treatment, and soil treatment and a method for producing the same, and photocatalytic activity effect of titanium oxide A woody synthetic material composition having a photocatalytic property capable of improving itself, a method for producing the same, a photocatalytic woody synthetic molded article using the photocatalytic woody synthetic material composition, and a photocatalytic woody synthetic foam molded article The purpose is to provide.
[0005]
[Means for Solving the Problems]
  In order to achieve the above object, the photocatalyst wood composition composition of the present invention comprises:20~ 40wt% titanium oxide and 10-60wt% average particle size 15-200μm cellulosic crushThingThe titanium oxide is attached to the periphery of the cellulosic crushed material and into a hollow conduit or temporary conduit, fixed by infiltration, and the titanium oxide is attached to the mixture with a water content within 0.5 wt%. 20% to 80% by weight of resin is compounded and adhered to the entire surface of the single body (claim 1).
[0006]
  The method for producing the photocatalytic woody synthetic material composition comprises titanium oxide.20~ 40wt% and cellulose powder such as wood powder with an average particle size of 15 ~ 200μm 10 ~ 60wt%, Mixed with a stirring impact blade, dried by frictional heat generated by the shear force generated by the stirring impact blade, the water content is reduced to within 0.5 wt%, and around the cellulosic crushed material and a hollow conduit Alternatively, a compound in which the titanium oxide is adhered and infiltrated and fixed in a temporary conduit is obtained, and then the resin is mixed in the compound at a ratio of 20 to 80 wt%, kneaded and melted with a stirring impact blade, and then granulated. It consists of a process (claim 2).
[0007]
  The photocatalytic wood synthetic material composition (Claim 1) is:, DepartureThe foaming agent is further blended at a ratio of 0.1 to 10 wt% (claim 3).
[0008]
  Moreover, in the manufacturing method (claim 2) of the photocatalytic woody synthetic material composition, together with the titanium oxide and the cellulose-based crushed material, DepartureIt is good also as what mixes 0.1-10 wt% of foaming agents with the said stirring impact blade.
[0009]
  If the foaming agent is 0.1 wt% or less, foaming is insufficient, and if it is 10 wt% or more, molding becomes difficult due to excessive foaming.
[0010]
  As described below, as the resin, thermosetting resins such as phenol, urea, epoxy resin, etc., thermoplastic resins such as polypropylene (PP), polyethylene (PE), polyvinyl chloride (PVC), polystyrene ( PS) is used.
[0011]
  Here, as the foaming agent, a low boiling point solvent such as propane or butane (physical foaming), or powdered azodicarbonamide that generates gas upon thermal decomposition (chemical foaming) is used.
[0012]
  Depending on the raw material resin or molding method, a curing agent of less than 40 wt%, a foam stabilizer of less than 10 wt%, a solvent of 0.1 to 10 wt%, etc. may be added.
[0013]
  When a foaming agent is added as described above, if the mixture is mixed below the boiling point or decomposition temperature of the foaming agent (Claim 5), it is heated and foamed during injection molding or extrusion molding or after sheet molding. Can increase the surface area and improve the photocatalytic effect.11, 12).
[0014]
  As the resin, a resin as an adhesive material or a resin as a paint material together with a pigment can be added to obtain a coating material with high photocatalytic activity.
[0015]
  Titanium oxide20If it is less than wt%, the photocatalytic reaction slows down, and if it is 40wt% or more, it is difficult to adsorb to cellulosic crushed material, which is not appropriate.
[0016]
  In addition, when the amount of cellulose-based crushed material such as wood powder is more than 60 wt%, the wood powder is burned during molding, making it difficult to form, and when it is less than 10 wt%, Adsorption is difficult and produces undesirable results.
[0017]
  In the photocatalyst wood synthetic material composition of the present invention (Claim 1) and its production method (Claim 2), preferably, titanium oxide.20To 35 wt% is blended with 25 to 45 wt% of the above wood powder as cellulosic crushed material, and 35 to 45 wt% of polypropylene, polyethylene, polycarbonate, nylon, or PVC as the resin.6,7).
[0018]
  Photocatalyst wood composition composition (claim)1 or 6) Is not limited to this, but it is possible to obtain a film or sheet formed by an extrusion method, or a photocatalyst wood synthetic molded body formed by injection molding or extruding into a plate ( Claim8).
[0019]
  It is possible to obtain an arbitrary photocatalyst wood synthetic molded body obtained by dry blending a foaming agent to the photocatalyst wood composite material composition to which various foaming agents are not added and then film forming, injection molding or extrusion molding into a plate shape. is there. (Claims9).
[0020]
  This is because, depending on the resin, the means of claim 4 causes the foaming agent to foam when melted.
[0021]
  By sanding the surface of the formed plate-like woody synthetic molded body with the composition of the present invention, preferably by sandblasting or the like, the surface area can be increased and discoloration of the surface of the molded product can be prevented.10).
[0022]
  Since wood powder and titanium oxide are weakly familiar with resin, the extrusion molding is performed by heating and kneading the photocatalyst wood composition composition, slowly cooling the extruded dough extruded to a molding die with a screw, and Further, by adding a suppressing force against the extrusion force to the extruded dough to increase the density of the extruded dough, a more uniform high-density photocatalyst wood synthetic molded body and photocatalyst wood synthetic foam molded body can be obtained.
[0023]
  The resin used is not particularly limited, but PP (polypropylene), PVC (polyvinyl chloride), PET (polyester), PE (polyethylene), PC (polycarbonate), nylon, ABS, epoxy, urethane, etc., depending on the application. One of these thermoplastic or thermosetting resins or a mixture of several of them can be used.
[0024]
  Titanium oxide also prevents the coloring of the molded product and burning of the wood flour by the composition of the present application, and also has the effect of increasing the shearing force.
[0025]
  Further, the titanium oxide has good fluidity and dispersibility in a solution, and contributes to significantly reducing expansion and contraction due to temperature change with respect to the photocatalyst wood synthetic molded article of the present invention.
[0026]
  With the above configuration, the frictional resistance during the flow of the wood powder is reduced, the familiarity with the resin material is improved, and the structure of the wood powder in the molded wood composite molding is made dense and the density is made uniform. Further, when the wood powder and the resin are filled and heated in the extruder, it is possible to prevent the surface of the molded synthetic wood molded body itself from being rough, bubbles, nests and the like.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
  Production example of photocatalyst wood composition composition
  Titanium oxide20When cellulose crushed material such as wood powder having an average particle size of 15 to 200 μm is blended in a ratio of 10 to 60 wt% to ˜40 wt% and stirred with a stirring impact blade, the cellulose crushed material such as wood powder is stirred. It is crushed by the impact blade and dried by frictional heat of the stirring impact blade and the raw material itself, and the moisture content of the titanium oxide and the wood powder is dried to 0.5 wt%, preferably 0.1 wt% or less. , Titanium oxide adheres to and penetrates and solidifies around cellulosic crushed material and in hollowed or temporary conduits.
[0028]
  The average particle size of the wood flour means a particle size of 50 weight percent of the cumulative weight percent distribution of the wood flour. Titanium oxide has better performance as the particle size is smaller. A diameter of 7-50 nm can be used.
[0029]
  Further, when the resin is blended in a proportion of 20 to 80 wt% in the blend, the resin is kneaded with the blend by a stirring impact blade, and the water content is about 180 to 200 ° C. due to the frictional heat of the raw material itself. It is dried to 0.5 wt% or less and kneaded and gelled without agglomeration during mixing and dispersion.
[0030]
  Next, the kneaded material in the jacket is dried while being cooled to the freezing point of the resin in the raw material, that is, near the melting point (melting point + 10 ° C.), granulated to a particle size of about 25 mm or less by a stirring crushing blade, and solidified granulation Get things.
[0031]
  Further, the granulated product is sized by a pulverizer such as a cutter mill having an 8 mm screen, for example, and the “photocatalytic woody synthetic composition” of the first and second embodiments of the present invention having a particle size (short axis) of 10 mm or less. Get.
[0032]
  As described above, the state in which the resin is fixed to thermally and chemically stable wood powder grains (including titanium oxide) can be constantly maintained, and the wood powder and the resin are mixed. In order to maintain the dispersion state constantly, a photocatalytic wood synthetic material composition that gives good fluidity is formed, and coupled with condensation and shrinkage by cooling, photocatalytic wood synthetic material that does not depend on chemical reaction or adhesion A composition is formed.
[0033]
  And this photocatalyst wood synthetic material composition can be formed into a film, a sheet, etc. by various film forming methods. Preferably, the film is processed by an extrusion method, etc. A synthetic molded body can be obtained, and a photocatalyst wood synthetic molded body formed by extrusion molding into a plate shape can be obtained.
[0034]
  In order to explain in more detail, it demonstrates below with reference to drawings.
[0035]
(Fluid mixing kneading)
  In FIG. 1, 80 is a mixer that can mix and knead raw materials to form a kneaded material, 81 is a mixer body, and the center of the bottom surface of the mixer body 81 is a motor 37KW (DC) (not shown). A shaft 83 rotating at a high speed of 820 rpm / max by rotation drive is supported upward in the mixer 81, and a scraper 84 and stirring impact blades 85, 86, 87 are mounted on the shaft 83 in order from the bottom to the shaft 83. It is tightened with a tightening nut 92 from the tip of the. In addition, although the shape of each said stirring impact blade 85,86,87 is not specifically limited, In a present Example, it is a two-blade which comprises symmetry. As shown in FIG. 1, when three agitation impact blades are stacked, the blades are composed of six blades in total, and these six blades form an equal angle (60 degrees) obtained by dividing 360 degrees into six parts on a plane. So that they are crossed with each other. In the case where a plurality of stirring impact blades are provided, it is preferable that the total number of stirring impact blades cross each other at an angle equally divided by 360 degrees from the viewpoint of efficiently kneading the raw materials.
[0036]
  The raw material to be introduced from the inlet 94 with the upper lid 82 opened is composed of cellulose-based crushed material such as titanium oxide and wood powder, resin, compatibilizing agent and the like.
[0037]
  In addition, the resin is crushed into a plurality of small pieces as they are, or a resin molded product on which a surface resin coating film is formed, and a compression grinding action is applied to each of the pieces. The resin coating is ground and peeled off, and each of the ground pieces is crushed by applying a compressive impact force based on micro vibrations, and the resin coating peeled off by crushing and grinding is applied. One kind of resins such as polypropylene, polyethylene, polycarbonate, nylon, polyvinyl chloride, or the like, which is made by removing the film as needed and making it a thermoplastic resin, can be used.
[0038]
  The titanium oxide and the wood powder are charged from the charging port 94, and the temperature is raised to about 180 ° C. by frictional heat generated by the stirring impact blades 85, 86, 87 rotating at high speed in the mixer body 81. The water content of titanium oxide and wood flour, which is about 40% or about 100 to 200% of sapwood, is 0.5 wt%, preferably 0.1 wt% or less. In this process, titanium oxide is adhered and infiltrated and fixed around the fine wood powder or in a hollow or temporary conduit where moisture has evaporated.
[0039]
  Here, the resin and the compatibilizing agent are put into the mixer body 81.
[0040]
  In this step, kneading and melting is completed when the temperature in the mixer body 81 rises to about 200 ° C.
[0041]
  In this process, the resin does not become a large lump due to the wood flour in the raw material, but it does not agglomerate during mixing and dispersion, but gels into a clay and becomes a lump "kneading material" with a diameter of about 10 to 100 mm .
[0042]
  In other words, this lump is a lump that is formed in a state in which individual wood flour adheres resin to the entire surface of the single wood flour, and these individual wood flours gather together. The mass itself is brittle. Therefore, the kneaded material formed by this process is a good material that can be kneaded more efficiently by an extruder in a subsequent process, and is a good material that particularly reduces the frictional resistance of wood powder during extrusion molding.
[0043]
  In more detail, the moisture content of the wood flour is 0.5 wt%, which further enhances the function of improving the dispersibility of the compatibilizer, and the interface between the resin and the wood flour. They are dispersed at a uniform density in the resin as seen from the wood powder, and are easily kneaded and melted in such a way as to easily impregnate the wood powder and completely surround the wood powder.
[0044]
  In addition, the mixing ratio with wood flour including when the resin is PP is less than 10 wt% of the total weight of the raw material, because the resin becomes a large lump in the mixer body 81, so the amount of wood flour is 10 wt% I need to do more. Moreover, when the wood powder is up to 60 wt%, the raw material can be gelled, and when the wood powder increases, the wood powder is burned.
[0045]
(Cooling granulation)
  In FIG. 2, reference numeral 100 denotes a “cooling mixer” capable of forming the “granulated product” by mixing and stirring the kneaded materials described above.
[0046]
  Reference numeral 101 denotes a mixer body, the upper surface of which is covered, and a discharge port 107 is provided at the lower end, and the discharge port 107 is provided so as to be freely opened and closed by a valve 106. A jacket 102 is formed in the outer peripheral wall of the mixer body 101, and cooling water is constantly supplied from the water supply pipe 108 to the drain pipe 109 in the jacket 102 to cool the temperature of the raw material in the cooling mixer 100 to near the melting point of the resin. To be held.
[0047]
  An arm 103 is pivotally supported at a substantially center in the upper wall of the mixer body 101 so as to be rotatable in a substantially horizontal direction, and a stirring crushing blade 104 is supported at the tip of the arm 103. In the embodiment, it is a screw type.
[0048]
  An inlet 113 is provided on the upper wall of the mixer body 101, and the outlet duct 93 of the mixer 80 is communicated with the inlet 113.
[0049]
  The kneaded material formed by the mixer 80 described above is fed into the mixer main body 101 from the inlet 113 through the discharge duct 93. The charged kneaded material is cooled while being stirred and granulated to a diameter of about 25 mm or less to form a “granulated product”. The granulated product is discharged from the outlet 107 by opening the valve 106.
[0050]
  The kneaded material cooled by the cooling mixer 100 is preferably cooled below the freezing point of the resin in the raw material, that is, below the melting point, but it is not necessary to lower it below the melting point of the resin because wood powder is mixed. Actually, the granulated material may be cooled to a temperature at which the granulated material can be discharged from the discharge port 107, and may be cooled to a temperature about 10 ° C. higher than the melting point of the resin in the kneaded material.
[0051]
  The cooling granulation step is not limited to the above-described apparatus such as a cooling mixer, but a jacket as described above is provided on the outer peripheral wall surface in the mixer body provided with stirring blades for stirring the kneaded material in the mixer body. And the kneaded material in the mixer body may be cooled with cooling water flowing in the jacket.
[0052]
[Sizing]
  The granulated product formed in the cooling granulation step is preferably sized to a particle size of 10 mm or less using a “cutter mill” as shown in FIG.
[0053]
  In FIG. 3, reference numeral 121 denotes a cutter mill body, which is a cylindrical casing having an upper surface opening, and the opening is covered with a lid 122 that can be freely opened and closed. The lid 122 includes an input port 123 through which granulated wood flour is input into the cutter mill main body 121.
[0054]
  Further, in the cutter mill main body 121, a cutter support 124 that is supported on the bottom surface of the cutter mill main body 121 and rotates horizontally by a rotation driving means (not shown) is provided, and the cutter support 124 has a rotary blade 125 that is long in the vertical direction. Furthermore, the fixed blade 126 is fixed to the cutter mill main body 121 at a position substantially symmetrical to the rotation locus of the blade edge of the rotary blade 125 through a slight gap with respect to the rotation locus of the blade edge of the rotary blade 125, and the fixed blade 126. The cutter support body 124 and the rotary blade 125 divide the inside of the cutter mill main body 121 into two, thereby forming the input chamber 127 and the sizing chamber 128. The sizing chamber 128 partitions the fixed blade 126 with a screen 129 so as to surround the rotation locus of the rotary blade 125. The screen 129 is formed of a mesh through which the sized particles can pass.
[0055]
  In the cutter mill 120 described above, when the granulated material formed by the cooling mixer 100 described above is charged from the inlet 123 and the cutter support 124 is rotated, the granulated material is reduced in particle size by the rotary blade 125 and the fixed blade 126. The particle size is adjusted to 10 mm or less to form a pellet-like “photocatalyst wood composition composition”, and the so-called resin is constantly maintained in a thermally and chemically stable wood powder containing titanium oxide. In order to maintain the mixing and dispersion state of wood powder, titanium oxide and resin in a stable manner, a photocatalytic woody synthetic material composition that gives good fluidity is formed, and both condensation and reduction actions due to cooling are achieved. In combination, a woody synthetic material composition having a photocatalytic activity independent of chemical reaction or adhesion is formed.
[0056]
  The photocatalyst wood composite material composition of the present invention produced by the above process can be formed into a film, a sheet or the like by various film forming methods, or formed into a plate shape by an extruder to obtain a photocatalyst wood composite molded body. be able to.
[0057]
  However, since wood powder and titanium oxide are weakly compatible with resin, during extrusion molding, the extruded dough extruded into a forming die with a screw is slowly cooled, and the extruding dough resists the extrusion force. The density of the extruded dough can be increased by adding.
[0058]
  Such a molded body becomes a material for a wide range of purposes as various building materials having functions such as antibacterial and deodorizing, daily necessities, furniture materials, and equipment parts. For example, the photocatalyst wood composite molded body of the above molded body is used as a building material such as a decorative molded body for interior decoration of a house, or processed into a size of about 300 mm square as a floor material such as a floor link block. used.
[0059]
  Further, as other applications, it is used as an interior material in the interior of a car, for example, a decorative molded body around a driver's meter panel, a decorative molded body around a transmission, and a decorative molded body on the other wall surface of a vehicle. Along with the action to alleviate, a high-class feeling can be obtained. As equipment parts, it is used as a decorative molded body of a box panel of other equipment or other equipment.
[0060]
  Therefore, the photocatalyst wood composite material composition of the present invention can form a wide range of thick wood composite moldings ranging from thin-film molded products to thick molded products, and materials for a wide range of usage purposes are molded. .
[0061]
  The wood composite molded body molded by the photocatalyst wood composite material composition of the present invention has a high density, so that a large amount of wood powder can be mixed in. Since wood powder is less than half the price and much cheaper than resin, it is inexpensive. A synthetic molded body is molded. Moreover, a woody synthetic molded body mixed with a large amount of wood flour is an excellent molded body having properties close to natural wood panels.
[0062]
  Other production examples of photocatalyst wood composition composition
  Titanium oxide20A mixture comprising 10 to 60 wt% of a cellulose-based crushed material such as wood powder having an average particle size of 15 to 200 μm and a foaming agent of 0.1 to 10 wt% in a ratio of ˜40 wt%, Similarly, stir and mix. As described above, after drying and adhesion of titanium oxide, 20 to 80 wt% of the resin is added and kneaded and granulated in the same manner.
[0063]
  When a powdery foaming agent such as azodicarbonamide is used as the foaming agent, the foaming agent can be attached to the wood powder by stirring and mixing with titanium oxide before the resin is added.
[0064]
  It is also possible to dry blend the mixture (photocatalyst wood synthetic material composition) and the foaming agent, which are mixed by mixing and kneading other than the foaming agent and pelletized in the same manner as in the cooling granulation step, and can be injected or extruded. .
[0065]
  Depending on the raw material resin or molding method, in order to make foaming desired, less than 40 wt% curing agent, less than 10 wt% foam stabilizer, 0.1 to 10 wt% solvent, etc. may be added.
[0066]
  In the blended mixture, the foaming agent is vaporized or decomposed by heating to form a foam. By performing the fluid mixing and kneading step below the boiling point or decomposition temperature of the foaming agent, injection molding and extrusion molding are performed. Alternatively, it can be heated to foam into a predetermined shape after sheet formation.
[0067]
  For example, an example using a formulation consisting of
      Resin (phenol resin): 100wt%
      Foaming agent (low boiling point solvent): 2wt%
      Foam stabilizer: 2wt%
      Wood flour and titanium oxide: 25-100 wt%
  Stir and mix the above compound, and put it in a constant temperature room (20-30 ° C) with 5 wt% of the curing agent in a separate container. After mixing them with stirring, the foaming agent is generated by the reaction heat of phenol resin curing. Vaporizes and foams.
[0068]
  As an example of using a powdery foaming agent,
      Resin (low density polyethylene): 59wt%
      Foaming agent (Azodicarbonamide ADCA (decomposes above 200 ° C)): 1wt%
      Wood flour: 20wt%
      Titanium oxide: 20wt%
In this method, the wood powder and titanium oxide are stirred and mixed at 180 ° C. and dried. After the titanium oxide is adhered to the wood powder, the resin is added, melted and mixed at about 150 ° C., cooled and granulated into pellets Dry blend the foaming agent. When this mixture is injection-molded at 200 ° C. or higher, it is foamed approximately twice in the mold to obtain a photocatalytic woody synthetic foamed molded product.
[0069]
  In addition, titanium oxide, wood powder and foaming agent are stirred and mixed at 170 ° C. and dried with respect to the above compound, and after the titanium oxide and foaming agent are adhered to the wood powder, the resin is added to about 150 ° C. When the material melted and mixed at 200 ° C. is injection molded at 200 ° C. or higher, the amount of foaming agent adhering to the wood powder is exposed compared to the previous example, and the wood powder is exposed during foaming, increasing the photocatalytic effect.
[0070]
  The melt-mixed material is formed into a sheet at about 170 ° C., and when the sheet is heated to 200 ° C. or more, the sheet is foamed and becomes about twice as thick.
[0071]
  next, DepartureFoam adhesive as foaming agentThe theoryLight up.
Foam adhesive is
    For 100wt% water-soluble resin adhesive,
    A mixture of 50 to 100 wt% of a mixed solution of 0.01 to 0.07 wt% of surfactant to 100 wt% of diluted water. Or
    The mixed solution further comprises a protein such as amino acid and / or gelatin blended at 0.1 wt% or less.
[0072]
  The surfactant is not limited to this, but nonionics such as polyoxyethylene lauryl ether having a degreasing effect and anionics such as lauryl alcohol sulfate ester salt are used.
[0073]
  In addition, the gelatin granules are obtained by, for example, using a polypeptide obtained by hydrolyzing a protein derived from collagen such as commercially available gelatin with an enzyme acid or an alkali, and then subjecting the polypeptide to a dry pulverization method such as a jet mill. For example, gelatin having an average molecular weight in a range smaller than 8,500 is used as a raw material.
[0074]
  Amino acids (coarse powder) are positioned on the extended line of gelatin grains and are very similar to gelatin grains, but are not limited to these. For example, keratin contained in defatted soybeans, wheat protein, milk, etc. is an enzyme. , An amino acid having an average molecular weight of 100 to 200 and having no polypeptide bond, obtained by hydrolysis with acid or alkali.
[0075]
  Therefore, it can be used together with the gelatin grains or in place of the gelatin grains. The amino acid grains used here are produced by pulverizing the amino acid coarse powder.
[0076]
  The water-soluble adhesive may be a layer formed of a resin usually used for an adhesive and containing additives such as a tackifier, a softening agent, a filler, an anti-aging agent, and a crosslinking agent as desired.
[0077]
  Examples of the resin include acrylic resins such as methyl acrylate, olefin resins such as polyethylene, and phenol resins.
[0078]
  Example
  Examples and Comparative Examples of Photocatalyst Wood Synthetic Moldings Using Photocatalyst Wood Composition Materials
  As an example, 30 wt% of the raw material is wood flour having an average particle size of 15 to 200 μm and a bulk specific gravity of 0.2 (the wood flour at this time contains about 8 wt% of water). Techno), X-ray particle size 7nm, titanium oxide content 90wt% or more, specific surface area m2/ g: 30% by weight of 300, the remaining 39.5% is polypropylene of resin, and 0.5% by weight of compatibilizer as a dispersion accelerator.
[0079]
  In the present embodiment, pellets made of granules having a diameter of about 3 mm are used as the form of the resin. Moreover, Sanyo Chemical Industries Ltd. Yumex 1010 was used as the compatibilizing agent. Examples 1 and 2 and Comparative Example 1 are produced by extrusion using a single-screw extruder having a diameter of 65 mm.
[0080]
  Comparative Example 1 uses (Ishihara Techno Co., Ltd.) R930 aluminum coated titanium oxide; particle size 0.25 μm (electron microscope), coating thickness: 0.01 μm for pigment.
[0081]
  In Comparative Example 2, a photocatalyst composition composition (no wood flour: Table 2) was hot-press molded at 200 ° C. with a particle size of 2 × 2 mm.
[0082]
  In Comparative Example 3, a glass plate was immersed in a solution obtained by adding a solvent to 10 wt% of a silica-based binder and 10 wt% of titanium oxide, and a dried sample of 50 wt% of silica-based binder and 50 wt% of titanium oxide was obtained.
[0083]
  Comparative Example 4 is an example in which the kneading process is replaced with a ball mill, and after the mixing process, press working is performed.
[0084]
[Table 1]
Figure 0004384276
[0085]
[Table 2]
Figure 0004384276
[0086]
  The test result by the said Example and a comparative example is shown below.
[0087]
  Experimental conditions
        Additive acetaldehyde concentration 820ppm
        Light intensity about 1mW / cm2
        Reaction vessel 1.0 l (liter)
        Photocatalyst wood synthetic molding and other comparative examples
        Sample size: 8x8cm
        Thickness: 4mm
        In Comparative Example 4, after the ball mill treatment, melt kneading was performed in the same manner as in Example, the particle size was adjusted to 4 mm or less, and press formed into a 4 mm thick sheet.
[0088]
[Table 3]
Figure 0004384276
[0089]
[Table 4]
Figure 0004384276
[0090]
・ Light control CO2The generation rate is the CO that comes out just by irradiating the sample with light.2Represents quantity.
・ Appearance CO2The initial production rate is the production rate photocatalytic CO at 45 min after light irradiation.2The initial generation rate is:
      (Apparent CO2Initial generation speed) One (Light control CO2Generation speed)
・ The production rate (%) at lh and 2h is calculated by the photocatalyst component at the production ratio with respect to the theoretical value.
・ The initial disappearance rate of acetaldehyde is the disappearance rate 30 minutes after light irradiation.
・ The acetaldehyde disappearance rate (%) at lh was the concentration at lh / initial concentration × 100, and * 50 was 100% after 20 hours. 99 * indicates that acetaldehyde remains in the trace.
[0091]
  Since the test piece of Comparative Example 1 does not show photocatalytic activity, it is considered that acetaldehyde is adsorbed rather than disappeared.
[0092]
  In contrast, Example 1 shows CO in 2 hours.2The production rate is 100% together with Example 2, and it can be seen that a sufficient reaction occurs after the concentration of acetaldehyde decreases.
[0093]
  Moreover, in Example 2, although the mixing | blending of a titanium oxide is a half of the comparative example 2, the acetaldehyde disappearance rate in 2 h is 100 with respect to 91 of the latter. CO in 1h2The production rate is reversed at 2 h, and the reaction end time is fast, and in an acetaldehyde atmosphere at a normal concentration, Example 2 is expected to exceed that of Comparative Example 2, and the amount of titanium oxide is merely large. However, the effect was not obtained, and it was found that the addition of the cellulose-based crushed material greatly improved the photocatalytic activity.
[0094]
  Further, in Comparative Example 4, since the kneaded material obtained by using the ball mill is rounded without fuzzing, the surface area is small and the adhesion of titanium oxide is poor. In addition, since the water content was about 1.6 wt%, extrusion molding was not possible. That is, the photocatalytic activity performance could be obtained by the production method of the present invention.
[0095]
[Table 5]
Figure 0004384276
[0096]
  The types of resin in Table 5 are one or several types in the table below, respectively.
[0097]
[Table 6]
Figure 0004384276
[0098]
  The film or sheet can also be sanded, and it has a wood texture together with the paint and adhesive, and can be printed, adhered, and painted.
[0099]
  In addition, the mixed wood powder provides excellent heat dissipation.
[0100]
【The invention's effect】
  Since the present invention is configured as described above, the following effects can be obtained.
[0101]
  The reaction rate and completion of the reaction can be significantly accelerated, and the photocatalytic activity effect of titanium oxide itself can be improved. It can be applied to a wide range of building materials such as packaging materials, paints, and wallpaper, thick materials, and automotive interior materials. Anti-bacterial, anti-fouling, anti-fouling (dirt) and malodor decomposition, deodorization treatment, photocatalytic wood synthetic material composition having oxidative degradation effect of harmful substances and method for producing the same, and the photocatalytic wood synthetic material composition The photocatalyst wood synthetic molding which consists of a thing, and can also be used for air treatment, water treatment, and soil treatment, and the photocatalyst wood synthetic molding composition and its manufacturing method, and the said photocatalyst wood synthetic molding can be provided. It was.
[0102]
  In addition, by using the photocatalyst wood synthetic material composition and making it into a foam, the surface area can be increased and the photocatalytic effect can be increased. Float on the sewage treatment layer or on the sea and purify the sewage by the photocatalytic effect.
[Brief description of the drawings]
FIG. 1 is an overall front view showing a cross section of a main part of a mixer (fluid mixing kneading) used in an embodiment of the present invention.
FIG. 2 is an overall front view showing a cross section of the main part of a cooling mixer (cooling granulation) used in an embodiment of the present invention.
FIG. 3 is an overall front view showing a cross-section of the main part of a cutter mill (size control) used in an embodiment of the present invention.
[Explanation of symbols]
80 mixer (fluid mixing kneading)
81 Mixer body
82 Upper lid
83 axes
84 Scraper
85, 86, 87 Stirring impact blade
92 nuts
93 Discharge duct
94 slot
100 Cleaning mixer (cooling granulation)
101 Mixer body
102 jacket
103 arms
104 Stir crushing blade
106 Valve
107 outlet
108 Water supply pipe
109 Drain pipe
113 slot
120 Cutter mill (size control)
121 Cutter mill body
122 lid
123 slot
124 Cutter support
125 rotary blade
126 Fixed blade
127 Input room
128 sizing chamber
129 screen

Claims (12)

20〜40wt%の酸化チタンと,10〜60wt%の平均粒径15〜200μmのセルロース系破砕物からなり,前記セルロース系破砕物の周囲及び空洞化した導管又は仮導管内に前記酸化チタンを付着,浸入固定し,前記酸化チタンを付着してなる含有水分量0.5wt%以内の配合物のセルロース系破砕物単体の表面全体に20〜80wt%の樹脂を配合付着して成ることを特徴とする光触媒木質合成材組成物。It consists of 20-40 wt% titanium oxide and 10-60 wt% cellulose-based crushed material with an average particle size of 15-200 μm, and the titanium oxide adheres around the cellulosic crushed material and in a hollowed or temporary conduit. , Characterized in that 20-80 wt% of resin is blended and adhered to the entire surface of the cellulosic crushed material of the blend having a moisture content of 0.5 wt% or less, which is fixed by infiltration and attached with titanium oxide. A photocatalytic woody synthetic material composition. 酸化チタン20〜40wt%と,平均粒径15〜200μm のセルロース系破砕物10〜60wt%を,攪拌衝撃翼により混合して,前記攪拌衝撃翼による剪断力により生じる摩擦熱で乾燥し,含有水分量を0.5wt%以内に低下せしめると共に,前記セルロース系破砕物の周囲及び空洞化した導管又は仮導管内に前記酸化チタンを付着,浸入固定させた配合物を得,ついで前記配合物に樹脂を20〜80wt%の割合で配合して攪拌衝撃翼により混練溶融し,その後,造粒する工程からなる光触媒木質合成材組成物の製造方法。20-40 wt% of titanium oxide and 10-60 wt% of cellulosic crushed material having an average particle size of 15-200 μm are mixed with a stirring impact blade and dried with frictional heat generated by the shear force generated by the stirring impact blade. The amount is reduced to 0.5 wt% or less, and a compound is obtained in which the titanium oxide is adhered and infiltrated and fixed around the cellulosic crushed material and in a hollow or temporary conduit, and then a resin is added to the compound. A method for producing a photocatalyst wood composite material composition comprising a step of blending 20 to 80 wt%, kneading and melting with a stirring impact blade, and then granulating. 泡剤をさらに0.1〜10wt%の割合で配合して成ることを特徴とする請求項1記載の光触媒木質合成材組成物。Claim 1 photocatalytic synthetic wood material composition, wherein the formed by blending the foaming agents further in a proportion of 0.1-10%. 前記酸化チタン及び前記セルロース系破砕物と共に,発泡剤0.1〜10wt%を前記攪拌衝撃翼により混合することを特徴とする請求項2記載の光触媒木質合成材組成物の製造方法。Manufacturing method of the with the titanium oxide and the cellulose crushed materials, foaming agents 0.1-10% photocatalytic synthetic wood material composition according to claim 2, wherein the mixing by the stirring impact vanes. 前記混合を,前記発泡剤の沸点又は分解温度以下で行う請求項4記載の光触媒木質合成材組成物の製造方法。The manufacturing method of the photocatalyst wood synthetic material composition of Claim 4 which performs the said mixing below the boiling point or decomposition temperature of the said foaming agent. 酸化チタン20〜35wt%に,セルロース系の破砕物として木粉25〜45wt%と,樹脂としてポリプロピレン,ポリエチレン,ポリカーボネイト,ナイロン,又はポリ塩化ビニル35〜45wt%を配合する請求項1記載の光触媒木質合成材組成物。The photocatalytic wood according to claim 1, wherein 20 to 35 wt% of titanium oxide is mixed with 25 to 45 wt% of wood flour as cellulose-based crushed material and 35 to 45 wt% of polypropylene, polyethylene, polycarbonate, nylon, or polyvinyl chloride as a resin. Synthetic material composition. 酸化チタン20〜35wt%に,セルロース系の破砕物として木粉25〜45wt%と,樹脂としてポリプロピレン,ポリエチレン,ポリカーボネイト,ナイロン,又はポリ塩化ビニル35〜45wt%を配合する請求項2記載の光触媒木質合成材組成物の製造方法。The photocatalytic wood according to claim 2, wherein 20 to 35 wt% of titanium oxide is mixed with 25 to 45 wt% of wood flour as cellulose-based crushed material and 35 to 45 wt% of polypropylene, polyethylene, polycarbonate, nylon, or polyvinyl chloride as a resin. A method for producing a synthetic material composition. 請求項1又は6記載の光触媒木質合成材組成物を成膜加工,射出成形又は板状に押出し成形して成る光触媒木質合成成形体。A photocatalyst wood synthetic molding formed by film-forming, injection molding or extruding into a plate shape of the photocatalyst wood composite material composition according to claim 1 or 6. 請求項1又は6記載の光触媒木質合成材組成物に発泡剤をドライブレンドした後,成膜加工,射出成形又は板状に押出し成形して成る光触媒木質合成成形体A photocatalyst wood synthetic molded article obtained by dry blending a foaming agent with the photocatalyst wood composite material composition according to claim 1 or 6 and then film-forming, injection molding or extruding into a plate shape. 表面をサンディングして成る請求項9記載の光触媒木質合成成形体。The photocatalyst wood synthetic molding of Claim 9 formed by sanding the surface. 請求項3記載の光触媒木質合成材組成物を,射出成形又は押出し成形時,或いはシート成形後に加熱して発泡させて成る光触媒木質合成成形体。A photocatalyst wood synthetic molding obtained by heating and foaming the photocatalyst wood composite material composition according to claim 3 at the time of injection molding or extrusion molding or after sheet molding. 請求項3記載の光触媒木質合成材組成物を,射出成形又は押出し成形時,或いはシート成形後に加熱して発泡させて成る光触媒木質合成成形体の製造方法。A method for producing a photocatalyst wood composite molded article obtained by heating and foaming the photocatalyst wood composite material composition according to claim 3 at the time of injection molding or extrusion molding or after sheet molding.
JP10300798A 1997-10-08 1998-04-14 PHOTOCATALYST WOOD SYNTHETIC MATERIAL COMPOSITION AND PROCESS FOR PRODUCING THE SAME, PHOTOCATALYST WOOD SYNTHETIC MOLDED ARTICLE USING THE PHOTOCATALYST WOOD SYNTHETIC COMPOSITION, AND PHOTOCATALYST WOOD SYNTHETIC FOAM MOLDED ARTICLE Expired - Fee Related JP4384276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10300798A JP4384276B2 (en) 1997-10-08 1998-04-14 PHOTOCATALYST WOOD SYNTHETIC MATERIAL COMPOSITION AND PROCESS FOR PRODUCING THE SAME, PHOTOCATALYST WOOD SYNTHETIC MOLDED ARTICLE USING THE PHOTOCATALYST WOOD SYNTHETIC COMPOSITION, AND PHOTOCATALYST WOOD SYNTHETIC FOAM MOLDED ARTICLE

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27614897 1997-10-08
JP9-276148 1997-10-08
JP10300798A JP4384276B2 (en) 1997-10-08 1998-04-14 PHOTOCATALYST WOOD SYNTHETIC MATERIAL COMPOSITION AND PROCESS FOR PRODUCING THE SAME, PHOTOCATALYST WOOD SYNTHETIC MOLDED ARTICLE USING THE PHOTOCATALYST WOOD SYNTHETIC COMPOSITION, AND PHOTOCATALYST WOOD SYNTHETIC FOAM MOLDED ARTICLE

Publications (2)

Publication Number Publication Date
JPH11172112A JPH11172112A (en) 1999-06-29
JP4384276B2 true JP4384276B2 (en) 2009-12-16

Family

ID=26443677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10300798A Expired - Fee Related JP4384276B2 (en) 1997-10-08 1998-04-14 PHOTOCATALYST WOOD SYNTHETIC MATERIAL COMPOSITION AND PROCESS FOR PRODUCING THE SAME, PHOTOCATALYST WOOD SYNTHETIC MOLDED ARTICLE USING THE PHOTOCATALYST WOOD SYNTHETIC COMPOSITION, AND PHOTOCATALYST WOOD SYNTHETIC FOAM MOLDED ARTICLE

Country Status (1)

Country Link
JP (1) JP4384276B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4634573B2 (en) * 1999-08-20 2011-02-16 株式会社経営総合研究所 Laminated photocatalytic pulp paper and method for producing the same, paper string made of the laminated photocatalytic pulp paper, method for producing the same, and molded article made of the paper string
US6419792B1 (en) * 1999-08-20 2002-07-16 Ein Kohsan Co., Ltd. Photocatalytic pulp composition
NO20005869L (en) * 2000-06-16 2001-12-17 Ein Kohsah Co Ltd Laminated photocatalytic pulp paper and process for making the same
JP4314008B2 (en) 2002-10-01 2009-08-12 株式会社東芝 X-ray CT scanner
JP4651118B2 (en) * 2007-02-20 2011-03-16 ブルネエズ株式会社 Colored wood powder manufacturing method, colored wood powder, color surface, pattern surface or pattern surface manufacturing method and color surface, pattern surface or pattern surface
JP5610715B2 (en) * 2009-06-25 2014-10-22 三菱重工業株式会社 Pipe welding method and shielding gas filling foaming agent
JP5694244B2 (en) * 2012-06-28 2015-04-01 住江織物株式会社 Toilet odor removal filter

Also Published As

Publication number Publication date
JPH11172112A (en) 1999-06-29

Similar Documents

Publication Publication Date Title
CN1233754C (en) Granular inorganic filler, process for producing the same, and resin composition containing the same
PL176960B1 (en) Synthetic wooden meal, method of and apparatus for obtaining such wooden meal, synthetic wooden board containing synthetic wooden meal, method of and apparatus for forming such board by extrusion
CN1203540A (en) Additive Coated Resin Composition
EP1883524A2 (en) Wood particle filled polyvinyl chloride composites and their foams
JP6722824B2 (en) Method for producing silver nano-organic composite resin impregnated with silver nanoparticles and antibiotic water supply pipe produced by using the same
JP4384276B2 (en) PHOTOCATALYST WOOD SYNTHETIC MATERIAL COMPOSITION AND PROCESS FOR PRODUCING THE SAME, PHOTOCATALYST WOOD SYNTHETIC MOLDED ARTICLE USING THE PHOTOCATALYST WOOD SYNTHETIC COMPOSITION, AND PHOTOCATALYST WOOD SYNTHETIC FOAM MOLDED ARTICLE
JP5106855B2 (en) Modified powder, liquid composition containing the modified powder, molded article, and method for producing modified powder
JP2002038019A (en) Wood powder-filled thermoplastic resin composition and method for producing the same
JP2866049B2 (en) Method for producing resin colorant
US4257817A (en) Method of reducing binder demand of inorganic filler
JP2008050592A (en) Powder-integrated resin particles, granulation method thereof, particle-containing molded body, particle-containing sheet material, and molding methods thereof
JP3439267B2 (en) Light-weight resin molded board using inorganic hollow spheres and method for producing the same, lightweight synthetic wood powder using inorganic hollow spheres and a method for producing the same, and lightweight synthetic wood board using the lightweight wooden synthetic powder and a method for producing the same
CN108329579A (en) A kind of oil resistant PP composite material and preparation method thereof
JP3589617B2 (en) Method of manufacturing wood-like molded products
JP4695119B2 (en) Wood compound manufacturing method and wood compound
JP7370640B2 (en) Method for producing cellulose acetate composition and its production system
JP2007536192A (en) Use of antimicrobial glass particulates and processes to produce such
JPH08118452A (en) Method and apparatus for extrusion molding of hollow resin panel
JP2544310B2 (en) Wood-like product manufacturing method and wood-like product
JPH08295774A (en) Vinyl chloride resin composition
JP3078693B2 (en) Cellulose-based fine particles, molded articles and paints
CN87105467A (en) Degradable mulch granular fertilizer
JP2000345049A (en) Method for producing woody resin composition, woody resin composition obtained by the method, and molded article of the woody resin composition
JP2000343529A (en) Method for producing woody resin composition, woody resin composition obtained by the method, and molded article of the woody resin composition
JP2000343528A (en) Method for producing woody resin composition, woody resin composition obtained by the method, and molded article of the woody resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070622

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070726

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070914

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees