JP4314207B2 - Casting method and casting apparatus - Google Patents
Casting method and casting apparatus Download PDFInfo
- Publication number
- JP4314207B2 JP4314207B2 JP2005072732A JP2005072732A JP4314207B2 JP 4314207 B2 JP4314207 B2 JP 4314207B2 JP 2005072732 A JP2005072732 A JP 2005072732A JP 2005072732 A JP2005072732 A JP 2005072732A JP 4314207 B2 JP4314207 B2 JP 4314207B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- rotation
- magnesium alloy
- casting
- predetermined time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
- B22D27/08—Shaking, vibrating, or turning of moulds
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
- Forging (AREA)
- Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
Description
この発明は凝固時に偏析を起こしやすい合金を鋳造する際に好適な鋳造方法および鋳造装置に関するものである。 The present invention relates to a casting method and apparatus suitable for casting an alloy that easily segregates during solidification.
比重差の大きい添加元素を含有するため重量偏析の生じやすい合金や、凝固途中に偏析を起こしやすい元素を含有する合金では、製品品質を良好にするために、鋳造時の偏析発生を効果的に防止することが望まれている。特に、Mg合金やその他の軽合金では、上記偏析が起こりやすい。
鋳造の際生じる合金元素の偏析は、鋳込み温度を下げることで凝固までの時間を短くして、結晶粒成長を低減したり、比重の高い相または原子量の大きい元素が沈降するのを防ぐ方法が考えられる。しかし、実際の鋳造では薄肉形状部や複雑形状部の湯流れ性を考慮せざるをえず実質的に鋳込み温度を下げることは難しい。またインゴットのような単純形状のものでは鋳込み温度は下げられるが、そういったものは概して厚肉であるため、多少鋳込み温度を下げても凝固時間が長く、偏析は必然的に起こってしまう。
For alloys that are susceptible to weight segregation because they contain additive elements with a large specific gravity difference, and alloys that tend to segregate during solidification, segregation during casting is effectively generated to improve product quality. It is desired to prevent it. In particular, the segregation is likely to occur in Mg alloys and other light alloys.
The segregation of alloying elements that occur during casting can be achieved by lowering the casting temperature to shorten the time until solidification, thereby reducing crystal grain growth and preventing precipitation of high specific gravity phases or elements with high atomic weight. Conceivable. However, in actual casting, it is difficult to substantially lower the casting temperature, taking into account the flowability of the thin-walled portion and the complicated-shaped portion. In addition, in a simple shape such as an ingot, the casting temperature can be lowered, but since such a thing is generally thick, even if the casting temperature is lowered somewhat, the solidification time is long and segregation inevitably occurs.
その他に、鋳造時の偏析を低減、または組織の微細化をすることで間接的に偏析を低減する方法が提案されている(例えば、特許文献1、2)。
特許文献1に開示された方法は、冷却プレートおよび加熱炉を持たせた方向性凝固炉において水平方向に凝固を行い、水平軸を中心にゆっくり回転させるものであり、温度勾配を充分とりながら引け巣等の鋳造欠陥や偏析を低減する鋳造法である。
また、特許文献2に開示された方法は、鋳型をチルプレート(水冷板)上に設置し、微細な等軸晶組織の製造を目的として鋳型を小刻みに回転・反転または同一方向の回転と停止を繰り返し水平振動を付加する鋳造法である。
The method disclosed in Patent Document 1 solidifies in a horizontal direction in a directional solidification furnace having a cooling plate and a heating furnace, and slowly rotates around a horizontal axis. This casting method reduces casting defects such as nests and segregation.
In addition, the method disclosed in Patent Document 2 is such that a mold is placed on a chill plate (water-cooled plate), and the mold is rotated / reversed in small increments or stopped in the same direction for the purpose of producing a fine equiaxed crystal structure. Is a casting method in which horizontal vibration is repeatedly applied.
しかし、特許文献1に示される鋳造法は、冷却プレートと加熱炉を使った高価な装置を使用して高温度勾配を付与した場合でのみ引け巣等の鋳造欠陥なしに製造可能な方法であり、一般の低コストな軽合金の鋳造法に適用することは難しい。また、方向性凝固組織、単結晶組織を壊さないように非常にゆっくり回転させる方法であり、鋳型を加熱しながら凝固させる凝固速度の非常に遅い場合にのみ有効な手法で通常の鋳造においては効果は得られない。 However, the casting method disclosed in Patent Document 1 is a method that can be manufactured without casting defects such as shrinkage cavities only when a high temperature gradient is applied using an expensive apparatus using a cooling plate and a heating furnace. It is difficult to apply to a general low-cost light alloy casting method. Also, it is a method of rotating very slowly so as not to break the directional solidification structure and single crystal structure, and it is effective only in the case of a very slow solidification rate that solidifies while heating the mold. Cannot be obtained.
また、特許文献2に示される鋳造法は、マイクロポロシティーを無くすため、特許文献1と同様にチルプレートと加熱炉を使用して健全性を保つ方式であり凝固終了まで長時間この装置を占有するため、コスト高となる。また、このような温度勾配を上下に大きくつけた場合は、微細化効果はあるが上下方向の成分偏析が起こる可能性が非常に高い。これらの方法の他に、電磁攪拌装置を用い溶湯を攪拌することで均質化を図る手法も提案されているが設備投資が莫大で製造コストも高くなるという問題がある。 In addition, the casting method disclosed in Patent Document 2 uses a chill plate and a heating furnace to maintain soundness in order to eliminate microporosity, and occupies this device for a long time until the end of solidification. Therefore, the cost becomes high. In addition, when such a temperature gradient is made large in the vertical direction, there is a high possibility that component segregation in the vertical direction occurs although there is a miniaturization effect. In addition to these methods, a method for homogenization by stirring the molten metal using an electromagnetic stirrer has been proposed, but there is a problem that the equipment investment is enormous and the manufacturing cost is increased.
本発明は、上記に示したような設備・工数等のコストをかけることなしに、溶湯に十分な攪拌力を与え、よって偏析を防止して品質に優れた鋳造品を得ることを可能にする鋳造方法および鋳造装置を提供することを目的としている。また結晶組織の粗大化を防ぐことも本発明の目的の一つである。特には、偏析が起こりやすい肉厚の鋳造品や塑性加工用(押出しや鍛造・圧延用)のインゴットの製造に最適な鋳造方法および鋳造装置を提供することを目的とする。 The present invention makes it possible to give a sufficient stirring force to the molten metal without incurring costs such as the above-mentioned facilities and man-hours, thereby preventing segregation and obtaining a cast product with excellent quality. An object of the present invention is to provide a casting method and a casting apparatus. Another object of the present invention is to prevent the coarsening of the crystal structure. In particular, it is an object of the present invention to provide a casting method and a casting apparatus that are most suitable for the production of thick cast products that are prone to segregation and ingots for plastic working (for extrusion, forging and rolling).
すなわち、本発明の鋳造方法のうち、請求項1記載の発明は、内面形状が非回転体形状からなる押湯部を有し、マグネシウム合金溶湯を収容した鋳型を、前記マグネシウム合金溶湯を凝固させつつ縦軸を回転軸にして一定の方向に所定時間回転させ、前記所定時間に到達した後、前記鋳型を、前記回転の方向と逆方向に所定時間回転させ、前記正逆の回転を繰り返して前記マグネシウム合金溶湯を凝固させることを特徴とする。 That is, of the casting method of the present invention, an invention according to claim 1, further comprising a feeder head portion inner surface shape is made of a non-rotating body shape, the mold containing the molten magnesium alloy, solidifying the molten magnesium alloy While rotating the vertical axis in a certain direction for a predetermined time, and reaching the predetermined time, the mold is rotated in a direction opposite to the rotation direction for a predetermined time, and the forward and reverse rotations are repeated. The magnesium alloy melt is solidified.
請求項2記載の鋳造方法の発明は、鋳型に設けられた押湯部の内面に、マグネシウム合金溶湯を収容して前記鋳型を回転させた際に内部の前記マグネシウム合金溶湯に撹拌力を与える形状が付与された撹拌部を、前記マグネシウム合金溶湯の収容に先立って設けておき、マグネシウム合金溶湯を収容した前記鋳型を、前記マグネシウム合金溶湯を凝固させつつ縦軸を回転軸にして一定の方向に所定時間回転させ、前記所定時間に到達した後、前記鋳型を、前記回転の方向と逆方向に所定時間回転させ、前記正逆の回転を繰り返して前記マグネシウム合金溶湯を凝固させることを特徴とする。 The invention of the casting method according to claim 2 is a shape in which the molten magnesium alloy is accommodated in the inner surface of the feeder part provided in the mold and the stirring force is applied to the molten magnesium alloy when the mold is rotated. stirring portion but granted, may be provided prior to accommodation of the molten magnesium alloy, the mold containing the molten magnesium alloy, in a predetermined direction by the rotation axis and the vertical axis while solidifying the molten magnesium alloy The mold is rotated for a predetermined time, and after reaching the predetermined time, the mold is rotated for a predetermined time in a direction opposite to the rotation direction, and the forward and reverse rotation is repeated to solidify the magnesium alloy melt. .
請求項3記載の鋳造方法の発明は、請求項2に記載の発明において、前記押湯部の内面形状が非回転体形状であることを特徴とする。 The invention of the casting method according to claim 3 is the invention according to claim 2, characterized in that the inner surface shape of the feeder part is a non-rotating body shape .
請求項4記載の鋳造方法の発明は、請求項1〜3のいずれかに記載の発明において、前記鋳型の鋳造部の内面形状が回転体形状からなることを特徴とする。 According to a fourth aspect of the present invention, there is provided a casting method according to any one of the first to third aspects, wherein an inner surface shape of the casting portion of the mold is a rotating body shape.
請求項5記載の鋳造方法の発明は、請求項1〜4のいずれかに記載の発明において、前記鋳型の回転が、金属溶湯最外周の周速を400〜1000mm/秒とし、一方向での回転時間を5〜60秒とすることを特徴とする。 The invention of the casting method according to claim 5 is the invention according to any one of claims 1 to 4, wherein the rotation of the mold is such that the peripheral speed of the outermost metal melt is 400 to 1000 mm / second, The rotation time is 5 to 60 seconds.
請求項6記載の鋳造方法の発明は、請求項1〜5のいずれかに記載の発明において、前記鋳型の正逆の回転を、金属溶湯の凝固温度+200℃以下、金属溶湯の凝固温度−50℃以上の範囲内まで行うことを特徴とする。 According to a sixth aspect of the present invention, there is provided a casting method according to any one of the first to fifth aspects, wherein the normal and reverse rotations of the mold are performed as follows: a solidification temperature of a molten metal + 200 ° C. or less; It is characterized in that it is carried out within the range of ℃ or higher.
請求項7記載の鋳造装置の発明は、内面形状が非回転体形状からなる押湯部を有し、マグネシウム合金溶湯を収容して凝固させる鋳型と、前記鋳型を縦軸を回転軸にして正逆方向に回転駆動可能な回転装置と、前記鋳型を所定の回転速度で所定時間、一定の方向に連続回転させるとともに、前記所定時間に到達した後、前記回転方向と逆方向に、所定の回転速度で所定時間連続回転させる動作を繰り返すように回転装置を制御する回転制御部とを備えることを特徴とする。 According to a seventh aspect of the present invention, there is provided a casting apparatus having a feeder having a non-rotating body shape on the inner surface, a mold for containing and melting the magnesium alloy melt , and the mold having a vertical axis as a rotation axis. A rotating device that can be driven to rotate in the reverse direction, and continuously rotating the mold at a predetermined rotation speed in a predetermined direction for a predetermined time, and after reaching the predetermined time, a predetermined rotation in a direction opposite to the rotation direction And a rotation control unit that controls the rotating device to repeat the operation of continuously rotating at a speed for a predetermined time.
請求項8記載の鋳造装置の発明は、マグネシウム合金溶湯を収容して鋳型を回転させた際に、内部のマグネシウム合金溶湯に撹拌力を与える形状が付与された撹拌部が前記鋳型へのマグネシウム合金溶湯の収容に先立って設けられた押湯部を有し、前記マグネシウム合金溶湯を収容して凝固させる鋳型と、前記鋳型を縦軸を回転軸にして正逆方向に回転駆動可能な回転装置と、前記鋳型を所定の回転速度で所定時間、一定の方向に連続回転させるとともに、前記所定時間に到達した後、前記回転方向と逆方向に、所定の回転速度で所定時間連続回転させる動作を繰り返すように回転装置を制御する回転制御部とを備えることを特徴とする。
請求項9記載の鋳造装置の発明は、請求項8記載の発明において、押湯部の内面形状が非回転体形状であることを特徴とする。
According to an eighth aspect of the present invention, there is provided a casting apparatus according to claim 8, wherein when the molten magnesium alloy is accommodated and the mold is rotated, a stirring portion to which a stirring force is applied to the molten magnesium alloy is provided. A mold having a feeder part provided prior to housing the molten metal , containing the molten magnesium alloy, and solidifying the mold; and a rotating device capable of rotationally driving the mold in the forward and reverse directions with the vertical axis as a rotational axis. The mold is continuously rotated in a predetermined direction at a predetermined rotation speed for a predetermined time, and after reaching the predetermined time, an operation of continuously rotating the mold in a direction opposite to the rotation direction at a predetermined rotation speed for a predetermined time is repeated. And a rotation control unit that controls the rotation device.
The invention of the casting apparatus according to claim 9 is the invention according to claim 8, wherein the inner surface shape of the feeder is a non-rotating body shape.
請求項10記載の鋳造装置の発明は、請求項8または9に記載の発明において、前記撹拌部が、押湯部内面に縦方向に沿って形成された突条であることを特徴とする。 According to a tenth aspect of the present invention, there is provided a casting apparatus according to the eighth or ninth aspect , wherein the stirring portion is a ridge formed on the inner surface of the feeder portion along the vertical direction.
請求項11記載の鋳造装置の発明は、請求項10記載の発明において、前記突条は、湯口上に突出する上端高さを有していることを特徴とする。 An invention of a casting apparatus according to an eleventh aspect is the invention according to the tenth aspect, characterized in that the protrusion has an upper end height protruding above the gate.
請求項12記載の鋳造装置の発明は、請求項10または11に記載の発明において、前記突条は、周方向に間隔をおいて、1〜4の個数で設けられていることを特徴とする。 According to a twelfth aspect of the present invention, in the invention according to the tenth or eleventh aspect , the protrusions are provided in a number of 1 to 4 at intervals in the circumferential direction. .
すなわち、本発明によれば、鋳型の連続回転と正逆回転の切り替えを繰り返すことにより、マグネシウム合金溶湯液面を波立たすことなく鋳型内の溶湯に揺動が与えられ、積極的に攪拌が行われる。これにより鋳型内の溶湯の温度分布が均一化され、鋳型による冷却の影響が大きい鋳型壁近傍を除いては均一な湯温となり凝固開始温度付近まで全体的に液相が保たれる。凝固は注湯後すぐに始まらず、攪拌され続けた液相の温度が下降し、凝固開始温度付近になって初めて凝固が進行していく。そのため凝固は外周部の凝固から中心部の凝固終了まで時間差が少なく、最終凝固部に集まり易い偏析物が非常に少ない状態で凝固する。また、一部偏析が生じたとしても、攪拌により結晶核の生成が促進され結晶組織が小さくなり、結晶粒界に生じる偏析は通常より微細分散され強度劣化への影響が少なくなる。また、上述したような粒界やデンドライト(樹枝状晶)の間にできる融点差や固溶度による偏析だけでなく、撹拌しながら凝固するため原子量の大きい添加元素を含んだ相の沈降が少なく、重量偏析に対しても、攪拌効果と短時間での凝固によって偏析を低減することができる。このように偏析による部分的に強度の低い組織をなくすことで強度ばらつきの少ない安定した良好な材料を製造することができる。また、攪拌に伴う結晶粒の微細化による強度向上等、副次的な効果も期待できる。 That is, according to the present invention, by repeatedly switching between continuous rotation and forward / reverse rotation of the mold, the molten metal in the mold is oscillated without making the magnesium alloy molten liquid surface undulate, and the stirring is actively performed. Done. As a result, the temperature distribution of the molten metal in the mold is made uniform, and the temperature of the molten metal is uniform except for the vicinity of the mold wall where the influence of cooling by the mold is large. Solidification does not start immediately after pouring, but the temperature of the liquid phase that has been continuously stirred is lowered, and solidification proceeds only after the solidification start temperature is reached. Therefore, the solidification is solidified in a state where there is little time difference from the solidification of the outer peripheral portion to the completion of the solidification of the central portion, and there are very few segregated substances that tend to collect in the final solidified portion. Even if partial segregation occurs, the generation of crystal nuclei is promoted by stirring to reduce the crystal structure, and the segregation occurring at the crystal grain boundaries is finely dispersed as compared with the usual and the influence on strength deterioration is reduced. In addition to segregation due to melting point differences and solid solubility between the grain boundaries and dendrites (dendritic crystals) as described above, there is little sedimentation of phases containing additive elements with a large atomic weight because they solidify while stirring. Even for weight segregation, segregation can be reduced by the stirring effect and solidification in a short time. In this way, by eliminating the partially low strength structure due to segregation, it is possible to produce a stable and good material with little variation in strength. In addition, secondary effects such as strength improvement by refining crystal grains accompanying stirring can be expected.
一方、撹拌がない場合には鋳型内の溶湯は鋳造品外周部から鋳造中心部に向かい温度勾配がつき、注湯直後から順次凝固が進行するため外周部と中心部の凝固終了までの時間は大きく差が生じる。よって鋳型壁からゆっくりと中心部に向かって凝固していくうちに組織は粗大化し易く、その結果、長い凝固時間と相まって偏析も大きくなる。 On the other hand, when there is no agitation, the molten metal in the mold has a temperature gradient from the outer periphery of the cast product to the center of the casting, and solidification progresses immediately after pouring, so the time from the outer periphery to the center of solidification is A big difference occurs. Therefore, the structure tends to become coarse as it slowly solidifies from the mold wall toward the center, and as a result, segregation increases with a long solidification time.
なお、上記作用は、通常では凝固時間の長い容積の大きな鋳造物ほど効果は大きい。容積の大きな鋳造物の場合、低い回転で効率的に攪拌するため、押湯部の内面に、溶湯を撹拌できる形状が付与された撹拌部を設けるのが望ましい。該撹拌部は、溶湯に撹拌効果を与えることができるものであればよく、突部、突条、撹拌板などによって構成することができる。より効果的には押湯部に縦方向に沿って突条を設けると効果的である。突条は鋳込み後、湯口部の液相部から10〜25mm程度突出していることが望ましい。また、突条は、周方向において間隔をおいて複数設けることも可能である。好適には1〜4で等角度間隔が望ましい。数を多くすると、攪拌効果が低下するため4以下が望ましい。なお、突条は縦方向に沿っていれば良く、上下方向の他、上下に対し傾斜して設けられていても良く、また真直なものに限定されるものでもない。 It should be noted that the above effect is usually more effective for a large-volume casting having a longer solidification time. In the case of a large-volume casting, in order to efficiently stir at a low rotation, it is desirable to provide a stirring portion provided with a shape capable of stirring the molten metal on the inner surface of the feeder portion. The stirring unit may be any member as long as it can give a stirring effect to the molten metal, and can be constituted by a protrusion, a protrusion, a stirring plate, and the like. More effectively, it is effective to provide a protrusion along the longitudinal direction in the feeder part. It is desirable that the protrusion protrudes about 10 to 25 mm from the liquid phase part of the gate after casting. A plurality of protrusions can be provided at intervals in the circumferential direction. Preferably, equiangular spacing is desirable, 1-4. When the number is increased, the stirring effect is lowered, so 4 or less is desirable. The protrusions only need to be along the vertical direction, and may be provided to be inclined with respect to the top and bottom in addition to the vertical direction, and are not limited to straight ones.
また、押湯部の内面が多角形などの非回転体形状を有していれば、鋳型が回転する際に、押湯部の内側に乱流が発生しやすくなり、撹拌効果が高まる。一方、鋳造部では、全体的に流動する必要があるため内面が回転体形状を有しているのが望ましい。 Moreover, if the inner surface of the feeder part has a non-rotating body shape such as a polygon, when the mold rotates, turbulent flow is likely to occur inside the feeder part, and the stirring effect is enhanced. On the other hand, in the casting part, since it is necessary to flow as a whole, it is desirable that the inner surface has a rotating body shape.
なお、上記鋳型の回転では、マグネシウム合金溶湯の最外周の周速を400〜1000mm/秒の範囲とし、正逆回転の切替間隔を5〜60秒とするのが望ましい。これは、前記周速が300mm/秒未満であると、冷却の影響が大きい鋳型壁近傍の金属溶湯に十分な撹拌効果を与えることができず、一方、1500mm/秒を越える周速を与えると、撹拌作用が強すぎて液相面が波立つなどして湯境、ガス巻込み等の不具合があるため、上記速度の範囲となるように鋳型を回転させるのが望ましい。また、正逆回転の間隔は、5秒未満であると、回転の切替が頻繁すぎて流速上昇が不十分であり、一方、60秒を越えるものとすると、溶湯が定常状態で回転し続けるため、効率よく撹拌作用を得ることができないので、上記切替間隔が望ましい。 In addition, in the rotation of the mold, it is desirable that the peripheral speed of the outermost periphery of the magnesium alloy melt is in the range of 400 to 1000 mm / second, and the switching interval between forward and reverse rotation is 5 to 60 seconds. This is because if the peripheral speed is less than 300 mm / second, the molten metal in the vicinity of the mold wall, which has a large influence of cooling, cannot be sufficiently stirred, while a peripheral speed exceeding 1500 mm / second is applied. In addition, since the stirring action is too strong and the liquid phase surface undulates and there is a problem such as a hot water boundary and gas entrainment, it is desirable to rotate the mold so as to be within the above speed range. In addition, if the interval between forward and reverse rotation is less than 5 seconds, the rotation is switched too frequently and the flow rate is not sufficiently increased. On the other hand, if it exceeds 60 seconds, the molten metal continues to rotate in a steady state. Since the stirring action cannot be obtained efficiently, the above switching interval is desirable.
また、鋳型の回転は、鋳込み開始後、凝固温度+200℃〜凝固温度−50℃の温度範囲まで行うのが望ましい。凝固温度よりも高い温度で鋳型の回転を終了すると、その後、溶湯の温度分布が不均一になって偏析が生じやすくなる。一方、凝固温度よりも低い温度まで鋳型の回転を継続しても偏析の防止効果はそれ以上には増加せず、無駄であるので、上記温度範囲で鋳型の回転を終了するのが望ましい。 Further, it is desirable that the mold is rotated up to the temperature range of solidification temperature + 200 ° C. to solidification temperature −50 ° C. after the start of casting. When the rotation of the mold is completed at a temperature higher than the solidification temperature, the temperature distribution of the molten metal becomes non-uniform and segregation is likely to occur. On the other hand, even if the rotation of the mold is continued to a temperature lower than the solidification temperature, the effect of preventing segregation does not increase any more and is useless. Therefore, it is desirable to end the rotation of the mold within the above temperature range.
鋳型の回転及び正逆回転の切替は、モータなどによって構成される回転装置を制御する回転制御部によって行うことができる。回転制御部は、制御回路や、プログラムによって動作するCPUなどによって構成することができる。 Switching between the rotation of the mold and the forward / reverse rotation can be performed by a rotation control unit that controls a rotating device constituted by a motor or the like. The rotation control unit can be configured by a control circuit, a CPU that operates according to a program, and the like.
なお、本発明は、重量偏析や凝固途中に偏析を生じやすい合金の鋳造に適しており、特に亜鉛、希土類金属などを含んだMg合金やその他の軽合金のうちMg合金を対象にする。特に厚肉鋳造品もしくは押出し、圧延、鍛造用のビレットやインゴットに適する。 The present invention is suitable for casting of an alloy that is likely to cause segregation during weight segregation or solidification, and is particularly intended for Mg alloys including zinc, rare earth metals, and other light alloys . Particularly suitable for thick casts or billets and ingots for extrusion, rolling and forging .
以上説明したように、本発明の鋳造方法によれば、内面形状が非回転体形状からなる押湯部を有し、マグネシウム合金溶湯を収容した鋳型を、前記マグネシウム合金溶湯を凝固させつつ縦軸を回転軸にして一定の方向に所定時間回転させ、前記所定時間に到達した後、前記鋳型を、前記回転の方向と逆方向に所定時間回転させ、前記正逆の回転を繰り返して前記マグネシウム合金溶湯を凝固させるので、偏析出物が極力少なくなるとともに微細均質な組織が得られ、延性、強度に優れた金属材料を得ることができる。また、本発明の他の鋳造方法によれば、鋳型に設けられた押湯部の内面に、金属溶等を収容して前記鋳型を回転させた際に内部の前記マグネシウム合金溶湯に撹拌力を与える形状が付与された撹拌部を、前記マグネシウム合金溶湯の収容に先立って設けておき、マグネシウム合金溶湯を収容した前記鋳型を、前記マグネシウム合金溶湯を凝固させつつ縦軸を回転軸にして一定の方向に所定時間回転させ、前記所定時間に到達した後、前記鋳型を、前記回転の方向と逆方向に所定時間回転させ、前記正逆の回転を繰り返して前記マグネシウム合金溶湯を凝固させるので、同様に、偏析出物が極力少なくなるとともに微細均質な組織が得られ、延性、強度に優れた金属材料を得ることができる。 As described above, according to the casting method of the present invention, includes a feeder head portion inner surface shape is made of a non-rotating body shape, the mold containing the molten magnesium alloy, while solidifying the molten magnesium alloy ordinate And rotating the mold for a predetermined time in the direction opposite to the direction of the rotation for a predetermined time, and repeating the forward and reverse rotations to repeat the rotation of the magnesium alloy. Since the molten metal is solidified, uneven precipitates are reduced as much as possible, and a fine homogeneous structure is obtained, and a metal material excellent in ductility and strength can be obtained. Further, according to another casting method of the present invention, when the molten metal is accommodated in the inner surface of the feeder part provided in the mold and the mold is rotated, a stirring force is applied to the molten magnesium alloy inside. gives the stirring section shape is imparted, may be provided prior to accommodation of the molten magnesium alloy, the mold containing the molten magnesium alloy, certain of the vertical axis to the rotary shaft while solidifying the molten magnesium alloy After rotating for a predetermined time in the direction and reaching the predetermined time, the mold is rotated for a predetermined time in a direction opposite to the direction of rotation, and the forward and reverse rotation is repeated to solidify the magnesium alloy melt. In addition, it is possible to obtain a metal material excellent in ductility and strength by reducing uneven precipitates as much as possible and obtaining a fine and homogeneous structure.
また、本発明の鋳造装置によれば、内面形状が非回転体形状からなる押湯部を有し、マグネシウム合金溶湯を収容して凝固させる鋳型と、前記鋳型を縦軸を回転軸にして正逆方向に回転駆動可能な回転装置と、前記鋳型を所定の回転速度で所定時間、一定の方向に連続回転させるとともに、前記所定時間に到達した後、前記回転方向と逆方向に、所定の回転速度で所定時間連続回転させる動作を繰り返すように回転装置を制御する回転制御部とを備えるので、鋳型の回転を制御して上記作用を確実に得ることができる。また、本発明の他の鋳造装置によれば、マグネシウム合金溶湯を収容して鋳型を回転させた際に、内部のマグネシウム合金溶湯に撹拌力を与える形状が付与された撹拌部が前記鋳型へのマグネシウム合金溶湯の収容に先立って設けられた押湯部を有し、前記マグネシウム合金溶湯を収容して凝固させる鋳型と、前記鋳型を縦軸を回転軸にして正逆方向に回転駆動可能な回転装置と、前記鋳型を所定の回転速度で所定時間、一定の方向に連続回転させるとともに、前記所定時間に到達した後、前記回転方向と逆方向に、所定の回転速度で所定時間連続回転させる動作を繰り返すように回転装置を制御する回転制御部とを備えるので、同様に、鋳型の回転を制御して上記作用を確実に得ることができる。 In addition, according to the casting apparatus of the present invention, the mold has a feeder portion whose inner surface shape is a non-rotating body shape, accommodates and solidifies the magnesium alloy molten metal , and the mold is aligned with the vertical axis as the rotation axis. A rotating device that can be driven to rotate in the reverse direction, and continuously rotating the mold at a predetermined rotation speed in a predetermined direction for a predetermined time, and after reaching the predetermined time, a predetermined rotation in a direction opposite to the rotation direction Since the rotation control unit that controls the rotation device so as to repeat the operation of continuously rotating at a speed for a predetermined time is provided, it is possible to reliably obtain the above-described operation by controlling the rotation of the mold. Further, according to another casting apparatus of the present invention, when the magnesium alloy molten metal is accommodated and the mold is rotated, the stirring unit provided with a shape that gives stirring force to the magnesium alloy molten metal is provided to the mold. has a feeder head portion provided prior to receiving the molten magnesium alloy, and the mold to solidify to accommodate the molten magnesium alloy, rotating drivable rotating vertical axis of the mold in the forward and reverse direction with the rotation axis An operation of continuously rotating the apparatus and the mold at a predetermined rotation speed in a predetermined direction for a predetermined time and continuously rotating at a predetermined rotation speed in a direction opposite to the rotation direction after reaching the predetermined time. Since the rotation control unit for controlling the rotating device is provided so as to repeat the above, similarly, the above-described operation can be reliably obtained by controlling the rotation of the mold.
以下に、本発明の鋳造装置を図1に基づいて説明する。
筒状の鋳型1は、上部に内寸の大きな箱形(角筒)からなる押湯部2を有しており、該押湯部2の内面に引け巣防止用にカーボンプレート3が張り付けられている。
上記鋳型1は、断熱材又は水冷構造部材(図示しない)で被覆された回転装置6上に設置されており、前記鋳型1は回転装置6によって回転可能となっている。回転装置6は、前記鋳型1を設置するターンテーブル60を備えており、該ターンテーブル60には図示しないギヤを介してモータ61が取り付けられ、該モータ61によってターンテーブル60が回転駆動される。前記モータ61は回転速度の調整および回転方向の切替が可能になっている。
Below, the casting apparatus of this invention is demonstrated based on FIG.
The cylindrical mold 1 has a feeder 2 made of a box shape (square tube) with a large inner dimension at the top, and a carbon plate 3 is attached to the inner surface of the feeder 2 to prevent shrinkage. ing.
The mold 1 is installed on a rotating device 6 covered with a heat insulating material or a water cooling structural member (not shown), and the mold 1 can be rotated by the rotating device 6. The rotating device 6 includes a turntable 60 on which the mold 1 is installed. A motor 61 is attached to the turntable 60 via a gear (not shown), and the turntable 60 is rotationally driven by the motor 61. The motor 61 is capable of adjusting the rotation speed and switching the rotation direction.
回転装置6には、CPU70と駆動回路71とを備える回転制御部7に接続されており、さらに回転制御部7には、前記鋳型の回転速度と正逆の回転切替間隔とを設定する設定部72が設けられている。回転制御部7は、回転速度としては、0〜100rpm、切替間隔としては1〜300秒を好適に設定可能となっている。なお、回転設定部は、操作者の操作によって適宜の値を入力するように設定されていても良く、また、予め、必要なデータを不揮発メモリやHDDなどの記憶手段に記憶しておき、これを読み出す構成のものであっても良い。 The rotation device 6 is connected to a rotation control unit 7 including a CPU 70 and a drive circuit 71, and the rotation control unit 7 further sets a rotation speed of the mold and a forward / reverse rotation switching interval. 72 is provided. The rotation control unit 7 can suitably set 0 to 100 rpm as the rotation speed and 1 to 300 seconds as the switching interval. The rotation setting unit may be set so as to input an appropriate value by an operator's operation, and necessary data is stored in advance in a storage means such as a nonvolatile memory or an HDD. May be configured to read out.
次に、上記鋳造装置の動作について説明する。
先ず、Mg合金を坩堝などの溶解炉10で溶解し、そのマグネシウム合金溶湯11をタンディッシュ12を通して鋳型1内に注入する。マグネシウム合金溶湯11は、押し湯部2の所定高さにまで収容される。次いで、予め設定部72で設定された回転速度と回転切替間隔に基づいて制御指令がCPU70から駆動回路71に与えられ、制御信号が回転装置6に与えられる。これにより、回転装置6は、上記制御指令に従って鋳型1を回転させる。好適な回転速度で回転する鋳型1内では、マグネシウム合金溶湯の最外周の周速が400〜1000mm/秒となるように撹拌作用が与えられて溶湯の温度の均一化が図られており、押湯部2内においては適当な乱流が生じて撹拌作用が高められている。この際には、好適な回転速度によって液面の波立ちは抑えられている。また、鋳型1の回転によってマグネシウム合金溶湯11の回転が定常化する直前に最適な切替間隔(5〜60秒)で回転方向の切替がなされ、マグネシウム合金溶湯11が効果的に撹拌される。上記により、偏析が少なく、微細均質化された組織を有する鋳造品が得られる。
Next, the operation of the casting apparatus will be described.
First, the Mg alloy is melted in a melting furnace 10 such as a crucible, and the magnesium alloy molten metal 11 is poured into the mold 1 through the tundish 12. The magnesium alloy molten metal 11 is accommodated up to a predetermined height of the feeder 2. Next, a control command is given from the CPU 70 to the drive circuit 71 based on the rotation speed and rotation switching interval set in advance by the setting unit 72, and a control signal is given to the rotating device 6. Thereby, the rotating device 6 rotates the mold 1 in accordance with the control command. In the mold 1 rotating at a suitable rotational speed, the stirring temperature is given so that the peripheral speed of the outermost periphery of the molten magnesium alloy is 400 to 1000 mm / second, and the temperature of the molten metal is made uniform. An appropriate turbulent flow is generated in the hot water part 2 to enhance the stirring action. At this time, the undulation of the liquid surface is suppressed by a suitable rotational speed. Moreover, the rotation direction is switched at an optimal switching interval (5 to 60 seconds) immediately before the rotation of the magnesium alloy 11 is stabilized by the rotation of the mold 1, and the magnesium alloy melt 11 is effectively stirred. According to the above, a cast product having a finely homogenized structure with little segregation can be obtained.
なお、上記実施形態では、押湯部内面には特別な構造を設けていないが、図2に示すように、押湯部2aの内面に溶湯11に対する撹拌作用を与える撹拌部8を設けることも可能である。該撹拌部8は、この実施形態では、縦方向に伸長する突条(リブ)として形成されている。また、該撹拌部8の上端位置は、図2(b)に示すように、金属溶湯を鋳型に収容した際に液面上に突出しているのが望ましく、好適には周方向に等角度間隔を有するように1〜4枚を設置する。但し、本発明としては特定の個数に限定されるものではない。 In addition, in the said embodiment, although the special structure is not provided in the feeder's inner surface, as shown in FIG. 2, the stirring part 8 which gives the stirring action with respect to the molten metal 11 may be provided in the inner surface of the feeder part 2a. Is possible. In this embodiment, the stirring unit 8 is formed as a protrusion (rib) extending in the vertical direction. Further, as shown in FIG. 2 (b), the upper end position of the stirring unit 8 is preferably projected on the liquid surface when the molten metal is accommodated in the mold, and is preferably equiangularly spaced in the circumferential direction. 1-4 are installed so that it may have. However, the present invention is not limited to a specific number.
(予備実験)
次に、本発明による攪拌の効果を確認するため、予備実験によりビーカの水とそこに浮遊させたワックス粒(比重0.99)の挙動を観察した。図3に示すように、水30にワックス粒31を100個浮遊させたビーカ32をターンテーブル33上に設置し、回転を行った。
回転は表1に示すように回転速度を変えて行い、反転間隔は一定(10秒)とした。
その結果、反転を加えることで所定の回転速度で良好な撹拌効果が得られた。但し、このままではワックスが沈みこむような大きな攪拌力は得られない。そこで図4のようなリブ32aを液面付近に位置するようにビーカ32の内面に設置した。リブの枚数及び回転数を変えてワックス挙動を観察した。液面から底面までの深さを100%とし最も深くまで沈んだワックスの沈降深さを図5、液面から沈降したワックスの総量に対する割合を図6に示した。その結果、回転数が高い程、攪拌力は大きく、リブ枚数は2枚をピークとしてその前後で攪拌効果は低下した。また反転時に攪拌力は最高となる。但し、回転数を上げ過ぎると水の揺動が大きくなり、実際の鋳込み時、波立ち、飛散の可能性が有る。
なお、実際の大きな鋳造品の場合、周速が同等レベルであれば低回転でも良く、鋳造品外径がφ300mmで30rpm、φ600mmで15rpm程度で十分な効果がある。
(Preliminary experiment)
Next, in order to confirm the effect of stirring according to the present invention, the behavior of beaker water and wax particles suspended in the beaker (specific gravity 0.99) was observed in a preliminary experiment. As shown in FIG. 3, a beaker 32 in which 100 wax particles 31 were suspended in water 30 was placed on a turntable 33 and rotated.
The rotation was carried out by changing the rotation speed as shown in Table 1, and the inversion interval was constant (10 seconds).
As a result, by adding inversion, a good stirring effect was obtained at a predetermined rotational speed. However, in this state, it is not possible to obtain a large stirring force such that the wax sinks. Therefore, the rib 32a as shown in FIG. 4 is installed on the inner surface of the beaker 32 so as to be positioned near the liquid surface. The wax behavior was observed by changing the number of ribs and the number of rotations. FIG. 5 shows the sedimentation depth of the wax that sinks to the deepest with the depth from the liquid surface to the bottom being 100%, and FIG. 6 shows the ratio to the total amount of wax that has settled from the liquid surface. As a result, the higher the rotational speed, the greater the stirring force, and the number of ribs peaked at 2 and the stirring effect decreased before and after. In addition, the stirring force becomes the highest during inversion. However, if the rotational speed is increased too much, the fluctuation of water increases, and there is a possibility of undulations and scattering during actual casting.
In the case of an actual large cast product, if the peripheral speed is at the same level, low rotation is possible, and if the outer diameter of the cast product is 30 rpm at φ300 mm and about 15 rpm at φ600 mm, a sufficient effect is obtained.
上記予備実験をもとに、前記実施形態の鋳造装置を用いてMg−Zn−RE系合金の鋳造を行った。
ターンテーブル上に内径φ300mm、高さ約1000mmの軟鋼製の鋳型を設置し、溶解炉にてMg合金を溶解した。合金はY=6.67wt%、Zn=4.91wt%、La(RE)=l.04wt%を目標に合金元素を調整した。溶解温度780℃で鋳型に注湯した。注湯直前からターンテーブルを30rpmで回転し、35秒毎に反転を繰り返した。鋳込み後、計10分回転を行った。反転時間は攪拌力が定常になる最短の時間とし、凝固までの反転回数をできるだけ多く取るようにした。これは反転時に大きな攪拌が起こるためである。また、比較のために回転を行わない鋳造も行った。溶解方法、鋳型形状は同様である。なお、回転条件1は、35秒後直ちに反転、これを繰り返し、回転条件2は、30秒後一旦回転を止め、5秒間溶湯を慣性で回した後反転、これを繰り返した。
鋳造の約1時間後、装置より鋳型を外し、鋳造品を取り出して成分分析を行った。その結果を図7に示す。
Based on the preliminary experiment, an Mg—Zn—RE alloy was cast using the casting apparatus of the above embodiment.
A mild steel mold having an inner diameter of 300 mm and a height of about 1000 mm was placed on the turntable, and the Mg alloy was melted in a melting furnace. The alloy is Y = 6.67 wt%, Zn = 4.91 wt%, La (RE) = l. The alloying elements were adjusted with the goal of 04 wt%. The mold was poured into a mold at a melting temperature of 780 ° C. The turntable was rotated at 30 rpm immediately before pouring, and reversal was repeated every 35 seconds. After casting, rotation was performed for a total of 10 minutes. The inversion time was set to the shortest time when the stirring force became steady, and the inversion time until solidification was taken as much as possible. This is because large agitation occurs during inversion. For comparison, casting without rotation was also performed. The dissolution method and mold shape are the same. The rotation condition 1 was reversed immediately after 35 seconds, and this was repeated, and the rotation condition 2 was stopped once after 30 seconds and turned over for 5 seconds and then reversed and repeated.
About 1 hour after casting, the mold was removed from the apparatus, and the cast product was taken out for component analysis. The result is shown in FIG.
製品部において、静止材の成分(×印)はプラス側にオーバーしているものが数点見られるが、回転攪拌したものはすべて目標範囲内に入っており、良好な成分値が得られていることがわかる。バラツキの幅を見ても回転のない通常の静止鋳造材は大きく振れているが、回転撹拌し凝固したものは変動幅が少なく、安定している。 In the product section, some of the components of the stationary material (x mark) are over on the plus side, but all of the components that are rotationally agitated are within the target range, and good component values are obtained. I understand that. Even if the width of variation is seen, a normal stationary cast material that does not rotate greatly fluctuates, but a material that has been solidified by rotating and stirring has a small fluctuation range and is stable.
また、回転攪拌材及び静止鋳造材において中心部、表面の径方向の成分値の違いも確認した。それらを図8、図9に示す。図8の回転攪拌材は鋳造品の上下方向、径方向とも目標範囲内に成分値は収まっている。それに対し図9の静止鋳造材は鋳造品底部から凝固の遅い上側に行くほど、また凝固の遅い径方向の中心部ほどLa、Zn、Y共、濃化して目標成分を逸脱している。すなわち、攪拌による本発明の効果は明らかである。
また鋳造組織の観察も行った。図10の顕微鏡写真に明らかなように、回転条件1によって回転攪拌した発明例の鋳造品は均質な等軸晶組織となっている。一方、攪拌を行わず静止して鋳造した比較例の鋳造品は、図11の顕微鏡写真に示すように、等軸晶にはなっておらず、底部から上に伸びた方向性のあるものである。そのため、結晶粒径も粗くなっており、重量偏析、粒界偏析が見られた。なお、図12において上記顕微鏡写真を模式的に示した。
以上、本発明について上記実施形態および実施例に基づいて説明したが、本発明は、上記説明に限定されるものではなく、発明の範囲内において当然に変更可能なものである。
Moreover, the difference of the component value of the radial direction of a center part and a surface was confirmed in the rotary stirring material and the stationary casting material. They are shown in FIGS. In the rotary stirrer of FIG. 8, the component values are within the target range in both the vertical direction and the radial direction of the cast product. On the other hand, in the stationary cast material of FIG. 9, the concentration of La, Zn, and Y deviates from the target component as it goes from the bottom of the cast product to the upper side where solidification is slow, and the center portion in the radial direction where solidification is slow. That is, the effect of the present invention by stirring is clear.
The cast structure was also observed. As apparent from the photomicrograph of FIG. 10, the cast product of the invention example that was rotationally stirred under rotational condition 1 had a homogeneous equiaxed crystal structure. On the other hand, as shown in the micrograph of FIG. 11, the cast product of the comparative example cast without being stirred is not an equiaxed crystal and has a direction extending upward from the bottom. is there. Therefore, the crystal grain size was also coarse, and weight segregation and grain boundary segregation were observed. In addition, the said micrograph was typically shown in FIG.
As mentioned above, although this invention was demonstrated based on the said embodiment and Example, this invention is not limited to the said description, Of course, it can change within the scope of the invention.
1 鋳型
2 押湯部
6 回転装置
60 ターンテーブル
61 モータ
7 回転制御部
8 撹拌部
11 マグネシウム合金溶湯
DESCRIPTION OF SYMBOLS 1 Mold 2 Feeding part 6 Rotating device 60 Turntable 61 Motor 7 Rotation control part 8 Stirring part 11 Magnesium alloy molten metal
Claims (12)
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2005072732A JP4314207B2 (en) | 2005-03-15 | 2005-03-15 | Casting method and casting apparatus |
| EP06729183A EP1859879B1 (en) | 2005-03-15 | 2006-03-15 | Method of casting and casting apparatus |
| PCT/JP2006/305162 WO2006098382A1 (en) | 2005-03-15 | 2006-03-15 | Method of casting and casting apparatus |
| US11/883,772 US7712511B2 (en) | 2005-03-15 | 2006-03-15 | Casting method and casting apparatus |
| DE602006014101T DE602006014101D1 (en) | 2005-03-15 | 2006-03-15 | METHOD OF CASTING AND CASTING DEVICE |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2005072732A JP4314207B2 (en) | 2005-03-15 | 2005-03-15 | Casting method and casting apparatus |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2006255716A JP2006255716A (en) | 2006-09-28 |
| JP4314207B2 true JP4314207B2 (en) | 2009-08-12 |
Family
ID=36991725
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2005072732A Expired - Lifetime JP4314207B2 (en) | 2005-03-15 | 2005-03-15 | Casting method and casting apparatus |
Country Status (4)
| Country | Link |
|---|---|
| EP (1) | EP1859879B1 (en) |
| JP (1) | JP4314207B2 (en) |
| DE (1) | DE602006014101D1 (en) |
| WO (1) | WO2006098382A1 (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4296158B2 (en) * | 2005-03-15 | 2009-07-15 | 株式会社日本製鋼所 | Method for producing Mg alloy |
| CN102554174B (en) * | 2011-12-26 | 2016-04-13 | 青岛正大重工有限公司 | A kind of method reducing gravity segregation in centrifugal casting |
| CN108311654B (en) * | 2018-02-09 | 2020-06-16 | 邢台德龙机械轧辊有限公司 | Production method for preparing thick-wall metal die by centrifugal method |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2116367A (en) * | 1935-10-17 | 1938-05-03 | Submarine Signal Co | Apparatus for treating metals |
| GB1472288A (en) | 1974-05-01 | 1977-05-04 | Tuchkevich N | Method of producing metal ingots |
| JPS55126345A (en) | 1979-03-23 | 1980-09-30 | Kawasaki Steel Corp | Casting method of large-size killed steel ingot of superior internal characteristic and less center segregation |
| GB8712743D0 (en) * | 1987-05-30 | 1987-07-01 | Ae Plc | Casting method |
| US6263951B1 (en) * | 1999-04-28 | 2001-07-24 | Howmet Research Corporation | Horizontal rotating directional solidification |
| JP2002331352A (en) | 2001-05-09 | 2002-11-19 | Mitsubishi Materials Corp | Manufacturing method for turbine blade |
| JP2002331354A (en) * | 2001-05-09 | 2002-11-19 | Mitsubishi Materials Corp | Manufacturing method for casting having fine unidirectional tesseral structure |
-
2005
- 2005-03-15 JP JP2005072732A patent/JP4314207B2/en not_active Expired - Lifetime
-
2006
- 2006-03-15 EP EP06729183A patent/EP1859879B1/en active Active
- 2006-03-15 WO PCT/JP2006/305162 patent/WO2006098382A1/en active Application Filing
- 2006-03-15 DE DE602006014101T patent/DE602006014101D1/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| WO2006098382A1 (en) | 2006-09-21 |
| EP1859879A1 (en) | 2007-11-28 |
| EP1859879A4 (en) | 2009-03-04 |
| JP2006255716A (en) | 2006-09-28 |
| EP1859879B1 (en) | 2010-05-05 |
| DE602006014101D1 (en) | 2010-06-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR101342297B1 (en) | Apparatus and method for producing liquid-solid metal composites | |
| JP4836244B2 (en) | Casting method | |
| US20080127777A1 (en) | Method for manufacturing a composite of carbon nanomaterial and metallic material | |
| JP3549054B2 (en) | Method and apparatus for producing metallic material in solid-liquid coexistence state, method and apparatus for producing semi-solid metal slurry | |
| JP2017164756A (en) | Agitation rotor and manufacturing method for aluminum alloy billet using the same | |
| US7712511B2 (en) | Casting method and casting apparatus | |
| JP4314207B2 (en) | Casting method and casting apparatus | |
| JP2017094391A (en) | Manufacturing method for aluminium alloy billet | |
| JP4253549B2 (en) | Manufacturing method of molding material | |
| JP7135556B2 (en) | Method for manufacturing titanium ingot | |
| JP5680244B1 (en) | Alloy refinement method and precipitate refinement apparatus used therefor | |
| US20070215311A1 (en) | Method and Device for the Production of Metal Slurry, and Method and Device for Produciton of Ingot | |
| JPH05295462A (en) | Aluminum refining method and apparatus | |
| JP5035508B2 (en) | Solidified aluminum alloy and method for producing the same | |
| JP2010159490A (en) | Method and apparatus for refining metal, refined metal, casting, metal product and electrolytic capacitor | |
| JP2008254040A (en) | Method for casting eutectic alloy | |
| JP2008254039A (en) | Casting method and casting device | |
| JPH05169193A (en) | Method for casting semi-solidified metal | |
| JP7406073B2 (en) | Manufacturing method for titanium ingots | |
| JP3027260B2 (en) | Method for producing semi-solid slurry | |
| JP2004255422A (en) | Apparatus and method for producing solid-liquid metal slurry | |
| CN112063904B (en) | Semisolid Mg-1.5Zn-3Y-0.13Al alloy slurry and preparation method and application thereof | |
| JP5408585B2 (en) | Grain refinement method for steel products | |
| JPH0871734A (en) | Method for casting steel ingot for plastic working | |
| US20120000317A1 (en) | Method Of Refining The Grain Structure Of Alloys |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081014 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081205 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090106 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090224 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20090205 |
|
| A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20090311 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090428 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090518 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120522 Year of fee payment: 3 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 4314207 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120522 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130522 Year of fee payment: 4 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140522 Year of fee payment: 5 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| EXPY | Cancellation because of completion of term |