JP4449068B2 - Electrodialyzer for recycling developer waste - Google Patents
Electrodialyzer for recycling developer waste Download PDFInfo
- Publication number
- JP4449068B2 JP4449068B2 JP2000133416A JP2000133416A JP4449068B2 JP 4449068 B2 JP4449068 B2 JP 4449068B2 JP 2000133416 A JP2000133416 A JP 2000133416A JP 2000133416 A JP2000133416 A JP 2000133416A JP 4449068 B2 JP4449068 B2 JP 4449068B2
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- liquid
- solution
- taah
- separate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002699 waste material Substances 0.000 title claims description 39
- 238000004064 recycling Methods 0.000 title 1
- 239000007788 liquid Substances 0.000 claims description 194
- 238000000909 electrodialysis Methods 0.000 claims description 58
- 239000007864 aqueous solution Substances 0.000 claims description 22
- 238000011033 desalting Methods 0.000 claims description 18
- 229920002120 photoresistant polymer Polymers 0.000 claims description 12
- 150000005622 tetraalkylammonium hydroxides Chemical class 0.000 claims description 6
- 230000001172 regenerating effect Effects 0.000 claims description 3
- 239000000243 solution Substances 0.000 description 113
- 239000012528 membrane Substances 0.000 description 33
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 32
- -1 oxalate ions Chemical class 0.000 description 27
- 239000003011 anion exchange membrane Substances 0.000 description 21
- 239000012535 impurity Substances 0.000 description 21
- 238000005341 cation exchange Methods 0.000 description 18
- 230000018109 developmental process Effects 0.000 description 15
- 239000012141 concentrate Substances 0.000 description 14
- 235000008504 concentrate Nutrition 0.000 description 13
- 238000011282 treatment Methods 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 230000007935 neutral effect Effects 0.000 description 8
- 150000001412 amines Chemical class 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000006864 oxidative decomposition reaction Methods 0.000 description 6
- 229920003934 Aciplex® Polymers 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000010612 desalination reaction Methods 0.000 description 3
- 239000003014 ion exchange membrane Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 125000005207 tetraalkylammonium group Chemical group 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 2
- 229960001231 choline Drugs 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000001728 nano-filtration Methods 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- VDZOOKBUILJEDG-UHFFFAOYSA-M tetrabutylammonium hydroxide Chemical compound [OH-].CCCC[N+](CCCC)(CCCC)CCCC VDZOOKBUILJEDG-UHFFFAOYSA-M 0.000 description 2
- KIZQNNOULOCVDM-UHFFFAOYSA-M 2-hydroxyethyl(trimethyl)azanium;hydroxide Chemical compound [OH-].C[N+](C)(C)CCO KIZQNNOULOCVDM-UHFFFAOYSA-M 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-L Phosphate ion(2-) Chemical compound OP([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-L 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001449 anionic compounds Chemical class 0.000 description 1
- RKTGAWJWCNLSFX-UHFFFAOYSA-M bis(2-hydroxyethyl)-dimethylazanium;hydroxide Chemical compound [OH-].OCC[N+](C)(C)CCO RKTGAWJWCNLSFX-UHFFFAOYSA-M 0.000 description 1
- 229940006460 bromide ion Drugs 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- JQDCIBMGKCMHQV-UHFFFAOYSA-M diethyl(dimethyl)azanium;hydroxide Chemical compound [OH-].CC[N+](C)(C)CC JQDCIBMGKCMHQV-UHFFFAOYSA-M 0.000 description 1
- MYRLVAHFNOAIAI-UHFFFAOYSA-M diethyl-bis(2-hydroxyethyl)azanium;hydroxide Chemical compound [OH-].OCC[N+](CC)(CC)CCO MYRLVAHFNOAIAI-UHFFFAOYSA-M 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-M dihydrogenphosphate Chemical compound OP(O)([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-M 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- KVFVBPYVNUCWJX-UHFFFAOYSA-M ethyl(trimethyl)azanium;hydroxide Chemical compound [OH-].CC[N+](C)(C)C KVFVBPYVNUCWJX-UHFFFAOYSA-M 0.000 description 1
- KGVNNTSVYGJCRV-UHFFFAOYSA-M ethyl-tris(2-hydroxyethyl)azanium;hydroxide Chemical compound [OH-].OCC[N+](CC)(CCO)CCO KGVNNTSVYGJCRV-UHFFFAOYSA-M 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000013101 initial test Methods 0.000 description 1
- 229910001412 inorganic anion Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 235000014666 liquid concentrate Nutrition 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000002891 organic anions Chemical class 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 229940085991 phosphate ion Drugs 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 description 1
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 description 1
- VHLDQAOFSQCOFS-UHFFFAOYSA-M tetrakis(2-hydroxyethyl)azanium;hydroxide Chemical compound [OH-].OCC[N+](CCO)(CCO)CCO VHLDQAOFSQCOFS-UHFFFAOYSA-M 0.000 description 1
- LPSKDVINWQNWFE-UHFFFAOYSA-M tetrapropylazanium;hydroxide Chemical compound [OH-].CCC[N+](CCC)(CCC)CCC LPSKDVINWQNWFE-UHFFFAOYSA-M 0.000 description 1
- GRNRCQKEBXQLAA-UHFFFAOYSA-M triethyl(2-hydroxyethyl)azanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CCO GRNRCQKEBXQLAA-UHFFFAOYSA-M 0.000 description 1
- JAJRRCSBKZOLPA-UHFFFAOYSA-M triethyl(methyl)azanium;hydroxide Chemical compound [OH-].CC[N+](C)(CC)CC JAJRRCSBKZOLPA-UHFFFAOYSA-M 0.000 description 1
- IJGSGCGKAAXRSC-UHFFFAOYSA-M tris(2-hydroxyethyl)-methylazanium;hydroxide Chemical compound [OH-].OCC[N+](C)(CCO)CCO IJGSGCGKAAXRSC-UHFFFAOYSA-M 0.000 description 1
Images
Landscapes
- Photosensitive Polymer And Photoresist Processing (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、半導体デバイス(LSI等)、液晶表示板(LCD)、カラーフィルター、プリント基板等の電子部品の製造等で発生する現像廃液の再生用電気透析装置に関する。
【0002】
【従来の技術】
LSI、LCD、プリント基板、カラーフィルター等の現像工程では、フォトレジストと呼ばれる感光性樹脂をウェハやガラス板等の基板上に塗り、例えば、現像パターンが描かれたマスクを介するなどして、フォトレジストを露光して光反応させ、現像液によりフォトレジストをエッチング(溶解)することで現像パターンを形成するフォトリソグラフィー法が用いられている。フォトレジストの種類としては露光された部分が現像液に可溶になる(エッチングされる)ポジ型フォトレジストや露光された部分が現像液に不溶になるネガ型フォトレジストがあり、前者の現像にはアルカリ現像液が主に用いられ、また、後者の現像にも少ないもののアルカリ現像液を用いるものがある。近年のLSI、LCDなどの電子産業分野ではメタル成分の混入を極めて嫌うため、かかるアルカリ現像液として水酸化テトラメチルアンモニウム(以下、時に「TMAH」と略称する)やコリン等の水酸化テトラアルキルアンモニウム(以下、時に「TAAH」と略称する)の水溶液(有機アルカリ水溶液)を用いるのが一般的である。従って、この場合、LSI、LCDなどの電子産業分野の現像工程で生じる現像廃液には主にTAAH(特にTMAH)と溶解フォトレジストが含まれる。
【0003】
近年、現像廃液に含まれるTAAHを再利用する為に濃縮回収する試みがなされており、その装置の一つとして電気透析装置も利用されている。電気透析の原理や利用法については、例えば、特開平7−328642号公報に記載されている。電気透析装置では、陰極と陽極の間にカチオン交換膜とアニオン交換膜が交互に並べられて複数のセルを構成している。アニオン交換膜を陰極に面した側に有するセルは濃縮液室として機能し、ここではTAAHが濃縮されて濃縮液となり、アニオン交換膜を陽極に面した側に有するセルは脱塩液室として機能し、ここではTAAHが減少して脱塩液となる。
【0004】
電気透析装置の電極液室としては陽極と接する陽極液室と陰極と接する陰極液室があり、陽極液と陰極液を別々の電極液として陽極液室と陰極液室にそれぞれ通す場合(図10参照)や、陽極液室と陰極液室の両電極液室に一つの共通電極液を通す場合がある(図11参照)。
【0005】
いずれの場合も、回収再生TAAH溶液となる濃縮液への不純物の混入を少なくする為に電極液(陽極液/陰極液)には現像廃液に含まれるTAAHと同種のTAAHの水溶液が使用されている。
【0006】
電極液室の隣は、現像廃液を通す脱塩液室(TAAHが減って脱塩廃液となる)、または、純水又はTAAH水溶液を通す濃縮液室(TAAHが増えて濃縮液となる)である。但し、特開平7−328642号公報、特開平11−190907号公報、特開平11−192481号公報等に開示される様に、場合によっては、上記TAAH水溶液として現像廃液やそのTAAH含有処理液を用いることもある。電極液室からの不純物(電極材からの溶質物、電極反応による生成物、発生ガス等)の回収再生TAAH溶液への混入の影響を極力少なくする為に電極液室と濃縮液室とを離し、電極液室の隣を脱塩液室とすることがあるが(図12と図13のセルスタック構造参照)、これに限られる訳ではない(図14と図15のセルスタック構造参照)。
【0007】
電気透析装置においては、電極液を循環して運転することが多く、この様な循環運転を続けていると電極液室を流れる電極液中の不純物量が増えてくる。特に電極液室の隣を濃縮液室とした場合は、濃縮液室を流れる濃縮液(回収再生TAAH溶液)に不純物が混入してくるので、定期的な電極液の交換が必要である。電極液室の隣を脱塩液室とした場合には、その程度を少なくできるものの脱塩液室を経由して濃縮液に不純物が混入してくるのでやはり定期的な電極液の交換が必要である。なお、電極液室はその構成により脱塩液室又は濃縮液室と同様に機能するので、電極液の成分(TAAH)濃度はその構成様式により、装置運転に伴って増減することがある。従って、導電率を所望の範囲内に保つ為に、成分濃度が上昇する時は純水で希釈したり、成分濃度が低下する時は電極液の成分(TAAH)を添加したりして電極液の成分濃度が或る範囲内になる様に、常時、定期又は不定期に調整することがある。
【0008】
【発明が解決しようとする課題】
特に、TAAHは陽極で酸化されて強いアミン臭を発する酸化分解生成物となり、これが主な不純物となるので、陽極液と陰極液を別々の電極液として用いる場合には特に陽極液室を流れる陽極液中では不純物が多くなり、一つの共通電極液を陽極液室と陰極液室とに通す場合にも該共通電極液中の不純物濃度は上昇する。上記酸化分解生成物の同定は未だできていないが、強い異臭がするので判別できる。
【0009】
従って、本発明は、電極液の不純物量の増加に起因する濃縮液への不純物の混入を可及的に少なくすると共に、電極液循環使用の場合は、電極液の交換頻度の低減も可能な現像廃液再生用電気透析装置を提供せんとするものである。
【0010】
【課題を解決するための手段】
本発明は、現像廃液から水酸化テトラアルキルアンモニウムを回収する電気透析装置であって、脱塩液室、濃縮液室、電極液室以外の別液室を陽極液室及び陰極液室の二電極液室の両方の隣に又は陽極液室の隣のみに配置し、該別液室に水酸化テトラアルキルアンモニウム含有水溶液を通す様に構成されていることを特徴とする現像廃液再生用電気透析装置を提供するものである。
【0011】
現像廃液に含まれる主な一成分は現像液の成分であり、上述の様にLSI、LCDなどの電子産業では、この成分はTAAHであるのが通常である。かかるTAAHとしては、例えば、水酸化テトラメチルアンモニウム(TMAH)、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム、水酸化メチルトリエチルアンモニウム、水酸化トリメチルエチルアンモニウム、水酸化ジメチルジエチルアンモニウム、水酸化トリメチル(2−ヒドロキシエチル)アンモニウム(即ち、コリン)、水酸化トリエチル(2−ヒドロキシエチル)アンモニウム、水酸化ジメチルジ(2−ヒドロキシエチル)アンモニウム、水酸化ジエチルジ(2−ヒドロキシエチル)アンモニウム、水酸化メチルトリ(2−ヒドロキシエチル)アンモニウム、水酸化エチルトリ(2−ヒドロキシエチル)アンモニウム、水酸化テトラ(2−ヒドロキシエチル)アンモニウムなど(特にTMAH)を挙げることができる。
【0012】
現像廃液中のテトラアルキルアンモニウム(TAA)イオン(TAA+)の対イオンは、水酸化物イオン(OH−)でTAAHとして含まれるのが通常であるが、現像液に或る程度の緩衝機能を持たせる場合や工場によっては現像廃液が他の排水と混合されたり中和される場合があるので、弗化物イオン、塩化物イオン、臭化物イオン、炭酸イオン、炭酸水素イオン、硫酸イオン、硫酸水素イオン、硝酸イオン、燐酸イオン、燐酸水素イオン、燐酸二水素イオン等の無機陰イオン、及び、蟻酸イオン、酢酸イオン、蓚酸イオン等の有機陰イオンから選ばれる少なくとも一種のイオンがTAAイオンの対イオンの少なくとも一部となるのが一般的である。特に炭酸イオン、炭酸水素イオンは、空気中の炭酸ガスが現像廃液中に溶け込んで少量存在することが多い。しかし、本明細書では説明の簡略化のために現像廃液が「TAAH」を含有するものとして、また、TMAHを用いる場合が多いので、これらを中心に説明する。また、現像廃液自体を直接的に本発明の電気透析装置に送液するケース以外に、逆浸透膜処理、蒸発処理、ナノフィルトレーション膜処理、イオン交換処理等の各種処理の少なくとも一つの処理を現像廃液に対して行って得られるTAAH含有処理液(例えば、特開平11−190907号公報、特開平11−192481号公報、特開平10−85741号公報等参照)を本発明の電気透析装置に送液するケースもあり、このケースも間接的ではあるが電気透析装置を用いて現像廃液の再生を図るものであり、本発明の範囲に含まれるが、本明細書では説明の簡略化のために前者のケースを中心に説明する。
【0013】
電気透析装置に使用されるイオン交換膜としては、カチオンとアニオンを選択的に分離できるものであれば特に限定されるものではなく、例えば、アシプレックス[旭化成工業(株)製]、セレミオン[旭硝子(株)製]、ネオセプタ[徳山曹達(株)製]、イオンクラッドEDSメンブレン[ポール(株)製]、ナフィオン(デュポン社製)等を挙げることができる。また、イオン交換膜の特性も一般的なものでよい。
【0014】
電気透析装置の一般的な構造は、特に限定されず、例えば、カチオン交換膜とアニオン交換膜とを、脱塩される液の流入孔及び流出孔、濃縮される液の流入孔及び流出孔が設けられているガスケットで適当な間隔を保って交互に複数積層して複数のセルのスタックを構成し、両端を一組の電極で挟んで構成すればよいが、本発明の電気透析装置では、別液室が設けられているのが特徴である。一組の電極間に入れる膜対の数は、特に限定されるものではないが、通常は10〜100である。ここで、「別液室」とは、これに通す液が電極液や濃縮液や脱塩液とは別扱いされることを意味し、従って、別液用の配管や水槽が電極液や濃縮液や脱塩液用とは別に用意される。
【0015】
ここで、アニオン交換膜の代りに、耐アルカリ性がアニオン交換膜よりも優れるポリビニールアルコール系等の中性膜を用いてもよい。中性膜はイオン性官能基の無い単なる高分子膜であるが、これはTAAイオンを通すもののその透過性はカチオン交換膜よりも低いので、両者間の輸率の差を利用してTAAイオンの電気透析による濃縮を行うことができるのである。但し、中性膜をアニオン交換膜の代りに用いた時は、アニオン交換膜の場合に比べて電流効率は悪くなる。
【0016】
この様な電気透析装置は一回通液(ワンパス)方式でもよいが、例えば、特開平7−328642号公報に開示される様な循環処理方式や多段処理方式を採ることもでき、また、回分式であっても半回分式であっても或いは連続式であってもよい。
【0017】
なお、ここで「濃縮液」、「脱塩液」とは、TAAH含有量が増加するか減少するかによって使い分けられる用語であり、どちらのTAAH濃度が高いか低いかを示すものではない。
【0018】
別液室を設け、その別液室にTAAH水溶液を別液として通すことで、電極液(特に陽極液)の不純物が濃縮液に混入するのを防ぎ、高純度の濃縮液を得ることができる。また、電極液循環使用の場合は電極液の交換頻度を少なくできるので、電極液としてのTAAH水溶液使用量及び排水量を減らせる利点がある。
【0019】
陽極液としてTAAH水溶液を使用すると、陽極でTAAHが酸化され、その酸化分解生成物が主な不純物として陽極液室で生じる。そこで、陽極液と陰極液を別個の電極液として用いる場合は、少なくとも陽極液室の隣には別液室を設ける。なお、この場合に、長時間の循環運転では陰極液の不純物(電極材からの溶質物等)濃度が上昇してくるので、陰極液室の隣にも別液室を設けてもよいのは勿論であるが、陰極液室ではTAAHの分解生成物は生じないのでその必要性がある場合は少なく、また、陰極液を濃縮液として扱える場合もある。陽極液及び陰極液として一つの共通電極液を用いる場合は、陽極で生成したTAAHの酸化分解生成物等の不純物は陰極液室にも入るので陰極液室の隣にも別液室を設ける。なお、別液室は陽極液室(及び陰極液室)の(各)隣に1室のみ設ける一室方式は勿論のこと、2室以上設ける多室方式であってもよい。後者の場合は、装置構成は複雑となるが、電極液からの不純物の濃縮液中への混入をより強力に防ぐことができる。
【0020】
また、従来は電極液としてTAAH水溶液を使用していたが、電極液室の隣りに別液室を設ける本発明の電気透析装置では、他の水溶液を電極液として使用することもできるようになる。例えば、陽極液と陰極液を別々の電極液として用いる場合は、陽極液として硫酸や硝酸等の水溶液を使用してもよく、別液室の隔離効果で脱塩液、濃縮液への不純物(この例では、特に硫酸イオンや硝酸イオン等)の混入が殆ど無く、また、この場合はTAAHを使用しないのでTAAHの酸化分解生成物も無く、強いアミン臭が生じない。この場合、陽極液室を形成する膜(陽極に隣接する膜)としては、硫酸イオンや硝酸イオン等のアニオン成分の脱塩液、濃縮液への混入(別液を介して)を少なくする為に、カチオン交換膜とするのが好ましい。なお、陰極液室ではTAAHの分解は生じないので、硫酸や硝酸等の他の水溶液を陰極液として用いるメリットはない。
【0021】
別液室に通す別液は、TAAHの水溶液とする。新品のTAAH水溶液や、回収再生TAAH水溶液を使用できるのは言うまでもないが、現像廃液やそれに由来するTAAH含有処理液を用いてもよい。また、本発明の電気透析装置から得られる脱塩廃液を別液として用いてもよい。この脱塩廃液は、脱塩液室に通していた液で、TAAH濃度は低下しているものの不純物濃度の上昇は殆どないので純度的に問題なく、これを直接系外へ排出するのではなく、排出前に更に別液室に通すことでTAAH回収率の向上やトータルな排水量の減少等の利点を得ることができる。別液室に通す別液としてこの脱塩廃液を用いる場合は、そのTAAH濃度は一般に0.01〜1重量%の範囲となる。該濃度は、現像廃液のTAAH濃度や回収再生TAAH溶液(濃縮液)の所望のTAAH濃度やTAAHの回収率等の諸条件で決まってくる。
【0022】
別液室に通す別液には電極液からの不純物が徐々に移行してくるので、別液は常時ワンパス(一回通液)、または、循環使用して定期的又は一部ずつ定常的あるいは不定期的に排出する必要がある。循環使用する場合、電極液に比べて、別液中の電極液に由来する不純物の濃度は十分に低いので、定期的又は一部ずつ定常的あるいは不定期的に系外へ排出する別液量やその交換の頻度は少なくてすむ。なお、上述の様に、別液室は多室方式に設けてもよい。
【0023】
別液室で用いる別液は電気透析槽の電気抵抗を大きく上げない程度の導電性を持っていれば良く、導電率の目安は1〜50mS/cmの範囲であるが、これに限定されず、この範囲以下やこの範囲以上の導電率であっても良い。但し、導電性が低すぎると電気透析槽の電気抵抗が上昇してしまう。また、逆に導電性が高すぎると、高TAAH濃度のために詰まる所TAAHを無駄に消費することになる。
【0024】
上述の様に、別液室で用いる別液は、TAAHの水溶液であり、新品TAAH水溶液や回収再生TAAH溶液を使用したり、これで調製してもよく、また、現像廃液やそれに由来するTAAH含有処理液、あるいは、本発明の電気透析装置から得られる脱塩廃液等を使用したり、これで調製してもよい。しかし、新品TAAH、回収再生TAAH溶液はそのまま現像液として使用が可能なこと、現像廃液やそれに由来するTAAH含有処理液は回収再生TAAH溶液の原料となることなどを勘案して、資源の有効活用を考えると、上記脱塩廃液を別液として使用するのが特に好ましい。また、前記したナノフィルトレーション膜処理で得られる濃縮液などを別液として用いることもできる。
【0025】
【発明の実施の形態】
次に、図面を参照しつつ本発明の実施の形態を説明するが、本発明はこれらに限定されるものではない。従来の電気透析装置の電極液の流し方や電気透析槽のセルスタック構造を概念的に示す図10〜15を含めた各図において、Eは電極液室、Eaは陽極液室、Ecは陰極液室、Oは別液室、Dは脱塩液室、Cは濃縮液室、Aはアニオン交換膜、Kはカチオン交換膜、Nは中性膜、E液は電極液、C液は濃縮液、D液は脱塩液、O液は別液室を流れる別液を表し、(C)は濃縮液室と同様に機能し得ることを示し、(D)は脱塩液室と同様に機能し得ることを示し、(N)は中性膜Nをアニオン交換膜の代りに使用してもよいことを示し、「C/D」は濃縮液室と脱塩液室の積層したセルスタック状態を示す。
【0026】
本発明の電気透析装置の電気透析槽のセルスタック構造としては、図1〜6に示される様な種々の方式を採ることができる。
【0027】
図1は、本発明の電気透析装置の電気透析槽のセルスタック構造の一例を概念的に示す概略説明図である。陽極液室Eaの隣の別液室Oは陽極に面してアニオン交換膜を有しているので、陽極液中のTAAイオンの該別液室への移動は殆ど阻まれるが、別液中の水酸化物イオンは該アニオン交換膜を通って陽極液室へ移動する。また、該別液室は陰極に面してカチオン交換膜を有するので、別液中のTAAイオンはその隣の濃縮液室Cへ移動する。一方、陰極液室Ecの隣の別液室Oは、陰極に面してカチオン交換膜を有しているので、別液中のTAAイオンが該カチオン交換膜を通って陰極液室に移動する。また、この別液室は陽極に面してアニオン交換膜を有するので別液中の水酸化物イオンはその隣の濃縮液室Cへ移動する。従って、これらの別液室は脱塩液室と同様に機能する。陽極液と陰極液として一つの共通電極液を用いる時、陽極液室と陰極液室は協働して濃縮液室と同様に機能し得る。なお、陽極では水酸化物イオンが電子を放出し水と酸素ガスを生成し、陰極では水素イオンが電子を受け取って水素ガスと水酸化物イオンが生成し、陽極液と陰極液中のイオンバランスが保たれている。
【0028】
脱塩液室Dは、陽極に面してアニオン交換膜を有し且つ陰極に面してカチオン交換膜を有するセルであり、TAAHの水酸化物イオンは該アニオン交換膜を通って陽極側に移動すると共にTAAHのTAAイオンは該カチオン交換膜を通って陰極側に移動する。移動した水酸化物イオンは次のカチオン交換膜で殆ど阻止され、移動したTAAイオンは次のアニオン交換膜で殆ど阻止される。濃縮液室Cは、陽極に面してカチオン交換膜を有し且つ陰極に面してアニオン交換膜を有するセルであり、その両側の脱塩液室からそれぞれ移動してくる水酸化物イオンとTAAイオンによりTAAHが濃縮される。なお、溶解フォトレジストは、そのカルボン酸基やフェノール性水酸基等がイオン化しているものの、高分子物質であるために殆どアニオン交換膜を通って移動せず、その濃度は各液中で殆ど変化しない。
【0029】
図2〜6は、本発明の電気透析装置の電気透析槽のセルスタック構造の他の例をそれぞれ概念的に示す概略説明図である。これらのセルスタック構造においても、各室の機能は、両イオン交換膜と陽極と陰極の関係から、図1のセルスタック構造について説明したと同様に考えることができる。
【0030】
図2のセルスタック構造では、図1の場合とは逆に別液室Oが濃縮液室と同様に機能する場合で、この場合は両電極液室Ea、Ecは脱塩液室と同様に機能し得る。
【0031】
図3のセルスタック構造では、陽極液室Eaの隣の別液室Oが濃縮液室と同様に機能し、陰極液室Ecの隣の別液室Oが脱塩液室と同様に機能する。従って、この場合、両方の別液室の別液を合流させて循環使用すると、そのTAAH濃度は実質的に変化しない。また、陽極液室Eaは脱塩液室と同様に機能し、陰極液室Ecは濃縮液室と同様に機能するので、両電極液を合流する様に共通の電極液として循環使用すると、そのTAAH濃度は殆ど変化しない。
【0032】
図4のセルスタック構造は、陽極液室Eaの隣の別液室Oが2枚のカチオン交換膜で構成されたセルであることを除いて図3のセルスタック構造と類似している。この別液室には陽極液室EaからTAAイオンが移動してくるが、この別液室の隣の濃縮液室Cにこの別液室からTAAイオンが移動していくので、TAAH物質収支は変わらないが、陰極液室Ecの隣の別液室O(脱塩液室と同様に機能)の別液と合流させるとTAAH濃度が減少するので、陽極液室Eaの隣の別液室Oも便宜上「(D)」と表示した。
【0033】
図5のセルスタック構造では、陽極液室Eaの隣の別液室Oが2枚のアニオン交換膜で構成されたセルであり、この別液室には隣の脱塩液室Dから水酸化物イオンが移動してくるが、陽極液室Eaにこの別液室から水酸化物イオンが移動していく。また、このセルスタック構造では、陰極液室Ecの隣の別液室Oが2枚のカチオン交換膜で構成されたセルであり、この別液室から陰極液室EcへTAAイオンが移動していくが、この別液室の隣の脱塩液室Dからこの別液室へTAAイオンが移動してくる。従って、両別液室中で別液のTAAH濃度は実質的に変化しない。
【0034】
図6のセルスタック構造では、陽極液室Eaの隣の別液室Oが2枚のカチオン交換膜で構成されたセルであり、この別液室には陽極液室EaからTAAイオンが移動してくるが、この別液室の隣の濃縮液室Cにもこの別液室からTAAイオンが移動していく。また、陰極液室Ecの隣の別液室Oが2枚のアニオン交換膜で構成されたセルであり、この別液室からその隣の濃縮液室Cへ水酸化物イオンが移動していくが、陰極液室Ecからこの別液室へ水酸化物イオンが移動してくる。従って、両別液室中で別液のTAAH濃度は実質的に変化しない。
【0035】
以上、本発明で採り得る電気透析槽のセルスタック構造について簡単に説明したが、脱塩液室からの脱塩廃液を別液として用いる場合に該脱塩廃液中の残留TAAHを更に効率的に濃縮液中に取り込む点では図1のセルスタック構造が好ましく、電極液と別液とを長期間循環使用できる点では図3のセルスタック構造が好ましい。また、電極液室と濃縮液室とを遠く隔てるという点では、図2や図5のセルスタック構造が好ましい。
【0036】
図7は、本発明の電気透析装置の一例を概念的に示す概略フロー図である。電極液(E液)、濃縮液(C液)、脱塩液(D液)、別液(O液)がそれぞれの水槽から電気透析槽に送液され、電気透析処理を受けた後にそれぞれの水槽に戻される様に循環する為のライン(配管)が設けられている。この例においては、必要に応じて、脱塩液槽には現像廃液が補給され、濃縮液槽には純水が補給され、電極液槽と別液室にはTMAHや純水が補給され、また、必要に応じて、電極液槽と別液室からは液のブローが行われる。なお、別液(O液)はワンパス(一回通液)としても定常的に一部をブローしてもよい。
【0037】
図8は、本発明の電気透析装置の他の一例を概念的に示す概略フロー図である。この例においては、電気透析処理で得られる脱塩廃液を別液(O液)として用いる点を除いて図7の例と実質的に同じであり、そのため図8の装置には脱塩液槽から別液槽へのライン(配管)が設けられている。その他は図7と同じなので、説明を省略する。下記の実施例1では、この様な装置をバッチ処理方式で用いた。
【0038】
図9は、従来の電気透析装置の一例を概念的に示す概略フロー図である。図7や図8の装置と異なり、別液室、別液槽が設けられていない。下記の比較例1では、この様な装置をバッチ処理方式で用いた。
【0039】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はこれに限定されるものではない。なお、フォトレジスト濃度は、フォトレジスト由来の290nmでの吸光度(Abs290nm)そのもので表した。
【0040】
実施例1
液晶工場から排出された現像廃液[TMAH=2.1重量%、フォトレジスト濃度(Abs290nm)=3.0]を原料として、図8の様なバッチ処理方式の電気透析装置を用い、脱塩液終点TMAH濃度0.1重量%、濃縮液終点TMAH濃度2.4重量%の条件でTMAHを濃縮回収した。ここで、バッチ処理方式と言うのは、脱塩液あるいは濃縮液が上記の終点条件になったところで更新されることを意味し、脱塩液槽から脱塩廃液を取り出して現像廃液を代りに入れ、濃縮液槽から濃縮液を取り出して純水を代りに入れることにより更新した。なお、電極液は一度も更新せずに循環使用し、別液室に通す別液としては脱塩廃液(脱塩液室に通して脱塩液終点TMAH濃度0.1重量%となった廃液で、従来はそのまま捨てていたもの)を用い、1日1回更新をした。電気透析槽は、カチオン交換膜(旭化成工業株式会社製アシプレックスK−501)とアニオン交換膜代替の中性膜(旭化成工業株式会社製アシプレックスPVA#100)で図3の様なセルスタック構造に構成したものである。電極液は、40mS/cmのTMAH水溶液を共通電極液として陽極液室と陰極液室に通した。別液は、導電率2.5mS/cmの脱塩廃液であり、更新時を除いて循環して別液室に供給した。なお、最初の別液としては、TMAHの新液を純水を用いて導電率2.5mS/cmに調整したものを用いた。
【0041】
上記装置を1日8時間の稼動率で15日間の運転を行った。15日後の電極液は強いアミン臭がし、別液も多少強いアミン臭がした。しかし、濃縮液については、試験当初から15日目に得られた全バッチの濃縮液のいずれも強いアミン臭はしなかった。
【0042】
比較例1
別液室を設けなかった図9の装置を用い、別液を使わなかった以外は、実施例1と実質的に同じ方法で試験を行った。電気透析槽は、カチオン交換膜(旭化成株式会社製アシプレックスK−501)とアニオン交換膜代替の中性膜(旭化成株式会社製アシプレックスPVA#100)で図15の様なセルスタック構造に構成したものである。15日後の電極液は強いアミン臭がし、15日目の濃縮液は試験初期のものと比べて僅かながらアミン臭が強かった。このことより、電極液のTMAH酸化分解生成物(特に陽極の酸化反応で生成)が不純物として濃縮液に混入したことが分かった。
【0043】
【発明の効果】
本発明の現像廃液再生用電気透析装置では、別液室を設けたために、電極液の不純物量の増加に起因する濃縮液への不純物の混入を可及的に少なくすることができ、また、電極液循環使用の場合は、電極液の交換頻度の低減も可能である。
【図面の簡単な説明】
【図1】図1は、本発明の電気透析装置の電気透析槽のセルスタック構造の一例を概念的に示す概略説明図である。
【図2】図2は、本発明の電気透析装置の電気透析槽のセルスタック構造の他の一例を概念的に示す概略説明図である。
【図3】図3は、本発明の電気透析装置の電気透析槽のセルスタック構造の更に他の一例を概念的に示す概略説明図である。
【図4】図4は、本発明の電気透析装置の電気透析槽のセルスタック構造の更に他の一例を概念的に示す概略説明図である。
【図5】図5は、本発明の電気透析装置の電気透析槽のセルスタック構造の更に他の一例を概念的に示す概略説明図である。
【図6】図6は、本発明の電気透析装置の電気透析槽のセルスタック構造の更に他の一例を概念的に示す概略説明図である。
【図7】図7は、本発明の電気透析装置の一例を概念的に示す概略フロー図である。
【図8】図8は、本発明の電気透析装置の他の一例を概念的に示す概略フロー図である。
【図9】図9は、従来の電気透析装置の一例を概念的に示す概略フロー図である。
【図10】図10は、陽極液と陰極液を別々の電極液として陽極液室と陰極液室にそれぞれ通す従来の電気透析方式を概念的に示す概略説明図である。
【図11】図11は、陽極液室と陰極液室の両方の電極液室に一つの共通電極液を通す従来の電気透析方式を概念的に示す概略説明図である。
【図12】図12は、従来の電気透析装置のセルスタック構造の一例を概念的に示す概略説明図である。
【図13】図13は、従来の電気透析装置のセルスタック構造の他の一例を概念的に示す概略説明図である。
【図14】図14は、従来の電気透析装置のセルスタック構造の更に他の一例を概念的に示す概略説明図である。
【図15】図15は、従来の電気透析装置のセルスタック構造の更に他の一例を概念的に示す概略説明図である。
【符号の説明】
E 電極液室
Ea 陽極液室
Ec 陰極液室
O 別液室
C 濃縮液室
D 脱塩液室
A アニオン交換膜
K カチオン交換膜
N 中性膜
E液 電極液
C液 濃縮液
D液 脱塩液
O液 別液
P ポンプ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrodialysis apparatus for regenerating development waste liquid generated in the manufacture of electronic devices such as semiconductor devices (LSIs, etc.), liquid crystal display panels (LCDs), color filters, and printed circuit boards.
[0002]
[Prior art]
In the development process of LSI, LCD, printed circuit boards, color filters, etc., a photosensitive resin called a photoresist is applied onto a substrate such as a wafer or glass plate, for example, through a mask on which a development pattern is drawn. A photolithographic method is used in which a resist is exposed to photoreact and a development pattern is formed by etching (dissolving) the photoresist with a developer. There are two types of photoresists: positive photoresists in which the exposed part is soluble (etched) in the developer and negative photoresists in which the exposed part is insoluble in the developer. Alkaline developer is mainly used, and there are also those that use an alkaline developer although the latter development is small. In recent electronic industry fields such as LSI and LCD, metal components are extremely disliked, so tetramethylammonium hydroxide (hereinafter sometimes abbreviated as “TMAH”) or tetraalkylammonium hydroxide such as choline is used as such an alkaline developer. It is common to use an aqueous solution (hereinafter referred to as “TAAH”) in water (organic alkaline aqueous solution). Accordingly, in this case, the development waste liquid generated in the development process in the electronic industry such as LSI and LCD mainly includes TAAH (particularly TMAH) and dissolved photoresist.
[0003]
In recent years, attempts have been made to concentrate and recover TAAH contained in a developing waste solution, and an electrodialysis apparatus is also used as one of the apparatuses. The principle and usage of electrodialysis are described, for example, in JP-A-7-328642. In the electrodialysis apparatus, a plurality of cells are configured by alternately arranging a cation exchange membrane and an anion exchange membrane between a cathode and an anode. The cell having the anion exchange membrane on the side facing the cathode functions as a concentrate chamber, where TAAH is concentrated to become a concentrate, and the cell having the anion exchange membrane on the side facing the anode functions as a desalting solution chamber. In this case, TAAH is reduced to a desalted solution.
[0004]
As an electrode solution chamber of an electrodialysis apparatus, there are an anolyte chamber in contact with the anode and a catholyte chamber in contact with the cathode. When the anolyte and the catholyte are passed through the anolyte chamber and the catholyte chamber as separate electrode solutions, respectively (FIG. 10). Or a common electrode solution may be passed through both the anolyte chamber and the catholyte chamber (see FIG. 11).
[0005]
In either case, an aqueous solution of TAAH of the same type as TAAH contained in the development waste solution is used for the electrode solution (anolyte / catholyte) in order to reduce the contamination of impurities into the concentrated solution that becomes the recovered and regenerated TAAH solution. Yes.
[0006]
Next to the electrode solution chamber is a desalting solution chamber (TAAH is reduced to become desalted waste solution) through which the developing waste solution passes, or a concentrated solution chamber (TAAH is increased to become concentrated solution) through which pure water or a TAAH aqueous solution is passed. is there. However, as disclosed in JP-A-7-328642, JP-A-11-190907, JP-A-11-192481, etc., in some cases, the development waste liquid or the TAAH-containing treatment liquid is used as the TAAH aqueous solution. Sometimes used. In order to minimize the influence of impurities from the electrode liquid chamber (solute materials from electrode materials, products generated by electrode reaction, generated gas, etc.) into the recovered and regenerated TAAH solution, the electrode liquid chamber and the concentrated liquid chamber should be separated. In some cases, the desalting solution chamber may be adjacent to the electrode solution chamber (see the cell stack structure in FIGS. 12 and 13), but is not limited to this (see the cell stack structure in FIGS. 14 and 15).
[0007]
An electrodialysis apparatus is often operated by circulating an electrode solution. If such a circulation operation is continued, the amount of impurities in the electrode solution flowing through the electrode solution chamber increases. In particular, when the electrode chamber is adjacent to the concentrate chamber, impurities are mixed into the concentrate (recovered and regenerated TAAH solution) flowing through the concentrate chamber, and therefore it is necessary to periodically replace the electrode solution. If the desalting chamber is next to the electrode chamber, impurities can be mixed into the concentrate via the desalting chamber, although the degree can be reduced. It is. In addition, since the electrode liquid chamber functions in the same manner as the desalting liquid chamber or the concentrated liquid chamber depending on its configuration, the concentration (TAAH) concentration of the electrode liquid may increase or decrease with the operation of the apparatus depending on the configuration mode. Therefore, in order to keep the conductivity within a desired range, when the component concentration increases, it is diluted with pure water, and when the component concentration decreases, the electrode solution component (TAAH) is added. In some cases, the concentration of the components is constantly, regularly or irregularly adjusted so as to be within a certain range.
[0008]
[Problems to be solved by the invention]
In particular, TAAH is oxidized at the anode to become an oxidative decomposition product that emits a strong amine odor, and this becomes a main impurity. Therefore, when the anolyte and the catholyte are used as separate electrode liquids, the anode flowing in the anolyte chamber is used. Impurities increase in the liquid, and even when one common electrode solution is passed through the anolyte chamber and the catholyte chamber, the impurity concentration in the common electrode solution increases. Although the identification of the oxidative decomposition product has not yet been made, it can be distinguished because it has a strong odor.
[0009]
Therefore, according to the present invention, the contamination of the concentrated liquid due to the increase in the amount of impurities in the electrode liquid is reduced as much as possible, and in the case of using the electrode liquid circulation, the frequency of electrode liquid replacement can be reduced. It is intended to provide an electrodialysis apparatus for developing waste liquid regeneration.
[0010]
[Means for Solving the Problems]
The present invention relates to an electrodialysis apparatus for recovering tetraalkylammonium hydroxide from a developing waste liquid, wherein a separate liquid chamber other than a desalting liquid chamber, a concentrated liquid chamber, and an electrode liquid chamber is used as two electrodes of an anolyte chamber and a catholyte chamber An electrodialyzer for developing waste liquid regeneration, which is arranged next to both of the liquid chambers or only next to the anolyte chamber and configured to pass a tetraalkylammonium hydroxide-containing aqueous solution through the separate liquid chamber. Is to provide.
[0011]
One main component contained in the developing waste liquid is a component of the developing solution. As described above, in the electronic industry such as LSI and LCD, this component is usually TAAH. Examples of such TAAH include tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, methyltriethylammonium hydroxide, trimethylethylammonium hydroxide, dimethyldiethylammonium hydroxide. , Trimethyl (2-hydroxyethyl) ammonium hydroxide (ie, choline), triethyl (2-hydroxyethyl) ammonium hydroxide, dimethyldi (2-hydroxyethyl) ammonium hydroxide, diethyldi (2-hydroxyethyl) ammonium hydroxide, Methyl tri (2-hydroxyethyl) ammonium hydroxide, ethyl tri (2-hydroxyethyl) ammonium hydroxide, tetra (2-hydroxyethyl) ammonium hydroxide It can be mentioned beam, such as the (especially TMAH).
[0012]
Tetraalkylammonium (TAA) ions (TAA) in developer wastewater + ) Is a hydroxide ion (OH − )) Is usually included as TAAH. However, the developer may have a certain degree of buffering function, or depending on the factory, the developer wastewater may be mixed or neutralized with other wastewater. Inorganic anions such as fluoride ion, chloride ion, bromide ion, carbonate ion, bicarbonate ion, sulfate ion, hydrogen sulfate ion, nitrate ion, phosphate ion, hydrogen phosphate ion, dihydrogen phosphate ion, formate ion, acetic acid In general, at least one ion selected from organic anions such as ions and oxalate ions is at least part of the counter ions of the TAA ions. In particular, carbonate ions and hydrogen carbonate ions are often present in a small amount as carbon dioxide in the air dissolves in the developing waste solution. However, in this specification, in order to simplify the description, it is assumed that the developing waste solution contains “TAAH”, and TMAH is often used. In addition to the case where the development waste liquid itself is directly fed to the electrodialysis apparatus of the present invention, at least one treatment of various treatments such as reverse osmosis membrane treatment, evaporation treatment, nanofiltration membrane treatment, ion exchange treatment, etc. The electrodialyzer of the present invention is prepared by subjecting a TAAH-containing treatment solution obtained by carrying out the treatment to a developing waste solution (for example, see JP-A-11-190907, JP-A-11-192481, JP-A-10-85741). There is also a case where the liquid is sent to the liquid, and this case is also indirect, but the development waste liquid is regenerated using an electrodialyzer and is included in the scope of the present invention. Therefore, the former case will be mainly described.
[0013]
The ion exchange membrane used in the electrodialyzer is not particularly limited as long as it can selectively separate cations and anions. For example, Aciplex [Asahi Kasei Kogyo Co., Ltd.], Ceremon [Asahi Glass] Co., Ltd.], Neoceptor [Tokuyama Soda Co., Ltd.], ion clad EDS membrane [Pole Co., Ltd.], Nafion (DuPont), and the like. Further, the characteristics of the ion exchange membrane may be general.
[0014]
The general structure of the electrodialyzer is not particularly limited. For example, the cation exchange membrane and the anion exchange membrane are divided into an inflow hole and an outflow hole for liquid to be desalted, and an inflow hole and an outflow hole for liquid to be concentrated. A plurality of cells may be stacked alternately with appropriate intervals at a provided gasket to form a stack of cells, and both ends may be sandwiched between a pair of electrodes, but in the electrodialysis apparatus of the present invention, It is characterized in that a separate liquid chamber is provided. The number of membrane pairs placed between a pair of electrodes is not particularly limited, but is usually 10 to 100. Here, the “separate liquid chamber” means that the liquid passed through it is treated separately from the electrode liquid, concentrated liquid, and desalted liquid. Prepared separately from the liquid and desalting solution.
[0015]
Here, instead of the anion exchange membrane, a neutral membrane such as polyvinyl alcohol having alkali resistance superior to that of the anion exchange membrane may be used. Neutral membranes are simply polymer membranes without ionic functional groups, but they can pass TAA ions, but their permeability is lower than that of cation exchange membranes. Thus, concentration by electrodialysis can be performed. However, when a neutral membrane is used instead of an anion exchange membrane, the current efficiency is worse than in the case of an anion exchange membrane.
[0016]
Such an electrodialysis apparatus may be a single-pass system (one-pass). For example, a circulation processing system or a multi-stage processing system as disclosed in JP-A-7-328642 can be adopted. It may be a formula, a semi-batch type, or a continuous type.
[0017]
Here, “concentrated solution” and “desalted solution” are terms that are selectively used depending on whether the TAAH content increases or decreases, and do not indicate which TAAH concentration is higher or lower.
[0018]
By providing a separate liquid chamber and allowing the TAAH aqueous solution to pass through the separate liquid chamber as a separate liquid, it is possible to prevent the impurities of the electrode liquid (particularly the anolyte) from entering the concentrated liquid and obtain a high-purity concentrated liquid. . In addition, when the electrode solution is used in circulation, the replacement frequency of the electrode solution can be reduced, so that there is an advantage that the amount of TAAH aqueous solution used as the electrode solution and the amount of drainage can be reduced.
[0019]
When a TAAH aqueous solution is used as the anolyte, TAAH is oxidized at the anode, and its oxidative decomposition products are generated as main impurities in the anolyte chamber. Therefore, when anolyte and catholyte are used as separate electrode solutions, a separate solution chamber is provided at least next to the anolyte chamber. In this case, since the concentration of impurities in the catholyte (such as solutes from the electrode material) increases during long-term circulation operation, another liquid chamber may be provided next to the catholyte chamber. Of course, in the catholyte chamber, no decomposition product of TAAH is produced, so there is little need for it, and the catholyte may be handled as a concentrate. When one common electrode solution is used as the anolyte and the catholyte, impurities such as oxidative decomposition products of TAAH produced at the anode also enter the catholyte chamber, so another liquid chamber is provided next to the catholyte chamber. The separate liquid chamber may be a single chamber system in which only one chamber is provided next to (each) the anolyte chamber (and the catholyte chamber), or may be a multi-chamber system in which two or more chambers are provided. In the latter case, the apparatus configuration is complicated, but it is possible to more strongly prevent impurities from the electrode solution from being mixed into the concentrated solution.
[0020]
Conventionally, a TAAH aqueous solution has been used as the electrode solution. However, in the electrodialysis apparatus of the present invention in which a separate liquid chamber is provided next to the electrode solution chamber, other aqueous solutions can be used as the electrode solution. . For example, when using an anolyte and a catholyte as separate electrode solutions, an aqueous solution such as sulfuric acid or nitric acid may be used as the anolyte, and the impurities ( In this example, there is almost no mixing of sulfate ion, nitrate ion, etc.). In this case, TAAH is not used, so there is no oxidative decomposition product of TAAH, and a strong amine odor does not occur. In this case, the membrane forming the anolyte chamber (the membrane adjacent to the anode) is used to reduce the amount of anion components such as sulfate ions and nitrate ions mixed into the desalting solution and concentrated solution (via another solution). Further, a cation exchange membrane is preferable. Since TAAH does not decompose in the catholyte chamber, there is no merit of using other aqueous solutions such as sulfuric acid and nitric acid as the catholyte.
[0021]
The separate liquid passed through the separate liquid chamber is an aqueous solution of TAAH. It goes without saying that a new TAAH aqueous solution or a recovered and regenerated TAAH aqueous solution can be used, but a development waste solution or a TAAH-containing treatment solution derived therefrom may be used. Moreover, you may use the desalination waste liquid obtained from the electrodialysis apparatus of this invention as another liquid. This desalted waste liquid is a liquid that has been passed through the desalted liquid chamber, and although the TAAH concentration has decreased, there is almost no increase in impurity concentration, so there is no problem in purity, and this is not directly discharged out of the system. Further, by passing it through a separate liquid chamber before discharge, it is possible to obtain advantages such as an improvement in the TAAH recovery rate and a reduction in the total amount of drainage. When this desalted waste liquid is used as a separate liquid to be passed through the separate liquid chamber, its TAAH concentration is generally in the range of 0.01 to 1% by weight. The concentration is determined by various conditions such as the TAAH concentration of the developing waste liquid, the desired TAAH concentration of the recovered and regenerated TAAH solution (concentrated liquid), the TAAH recovery rate, and the like.
[0022]
Impurities from the electrode liquid gradually migrate to the separate liquid that passes through the separate liquid chamber. Therefore, the separate liquid is always one-pass (single-flow liquid), or is used periodically or partly or periodically. It is necessary to discharge irregularly. When circulating, the concentration of impurities derived from the electrode solution in the separate solution is sufficiently low compared to the electrode solution, so the amount of the separate solution that is discharged regularly or partly regularly or irregularly outside the system And the frequency of the exchange is low. As described above, the separate liquid chamber may be provided in a multi-chamber system.
[0023]
The separate liquid used in the separate liquid chamber only needs to have conductivity that does not greatly increase the electric resistance of the electrodialysis tank, and the conductivity is in the range of 1 to 50 mS / cm, but is not limited thereto. The conductivity may be below this range or above this range. However, if the conductivity is too low, the electrical resistance of the electrodialysis tank will increase. On the other hand, if the conductivity is too high, the TAAH that is clogged due to the high TAAH concentration is wasted.
[0024]
As described above, the separate liquid used in the separate liquid chamber is an aqueous solution of TAAH, and a new TAAH aqueous solution or a recovered and regenerated TAAH solution may be used or may be prepared. The contained treatment liquid, the desalted waste liquid obtained from the electrodialysis apparatus of the present invention, or the like may be used or prepared with this. However, considering the fact that new TAAH and recovered TAAH solution can be used as a developer as they are, development waste solution and TAAH-containing processing solution derived from it can be used as raw materials for recovered and recovered TAAH solution. Therefore, it is particularly preferable to use the desalted waste liquid as a separate liquid. Further, a concentrated liquid obtained by the above-described nanofiltration membrane treatment can be used as a separate liquid.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto. In each of the drawings including FIGS. 10 to 15 conceptually showing the flow of the electrode solution and the cell stack structure of the electrodialysis tank of the conventional electrodialysis apparatus, E is an electrode solution chamber, Ea is an anolyte chamber, and Ec is a cathode. Liquid chamber, O is a separate liquid chamber, D is a desalted liquid chamber, C is a concentrated liquid chamber, A is an anion exchange membrane, K is a cation exchange membrane, N is a neutral membrane, E solution is an electrode solution, and C solution is concentrated Liquid, liquid D represents a desalted liquid, liquid O represents a separate liquid flowing in a separate liquid chamber, (C) indicates that it can function in the same manner as the concentrated liquid chamber, and (D) represents the same as the desalted liquid chamber. (N) indicates that the neutral membrane N may be used in place of the anion exchange membrane, and “C / D” indicates a stacked cell stack of the concentrate chamber and the desalting chamber. Indicates the state.
[0026]
As the cell stack structure of the electrodialysis tank of the electrodialysis apparatus of the present invention, various systems as shown in FIGS. 1 to 6 can be adopted.
[0027]
FIG. 1 is a schematic explanatory view conceptually showing an example of a cell stack structure of an electrodialysis tank of the electrodialysis apparatus of the present invention. Since the separate liquid chamber O adjacent to the anolyte chamber Ea has an anion exchange membrane facing the anode, the movement of TAA ions in the anolyte to the separate liquid chamber is almost prevented, but in the separate liquid The hydroxide ions move through the anion exchange membrane to the anolyte chamber. Further, since the separate liquid chamber faces the cathode and has a cation exchange membrane, TAA ions in the separate liquid move to the adjacent concentrated liquid chamber C. On the other hand, since the separate liquid chamber O adjacent to the catholyte chamber Ec has a cation exchange membrane facing the cathode, TAA ions in the separate liquid move to the catholyte chamber through the cation exchange membrane. . Further, since this separate liquid chamber has an anion exchange membrane facing the anode, the hydroxide ions in the separate liquid move to the adjacent concentrated liquid chamber C. Therefore, these separate liquid chambers function similarly to the desalting liquid chamber. When one common electrode solution is used as the anolyte and the catholyte, the anolyte chamber and the catholyte chamber can function in the same way as the concentrate chamber. At the anode, hydroxide ions emit electrons to generate water and oxygen gas, and at the cathode, hydrogen ions receive electrons to generate hydrogen gas and hydroxide ions, and the ion balance in the anolyte and catholyte Is maintained.
[0028]
The desalting solution chamber D is a cell having an anion exchange membrane facing the anode and a cation exchange membrane facing the cathode, and TAAH hydroxide ions pass through the anion exchange membrane to the anode side. While moving, TAA ions of TAAH move to the cathode side through the cation exchange membrane. The transferred hydroxide ions are almost blocked by the next cation exchange membrane, and the transferred TAA ions are almost blocked by the next anion exchange membrane. The concentrated liquid chamber C is a cell having a cation exchange membrane facing the anode and an anion exchange membrane facing the cathode, and hydroxide ions moving from the desalting liquid chambers on both sides of the cell. TAAH is concentrated by TAA ions. Although the dissolved photoresist has ionized carboxylic acid groups, phenolic hydroxyl groups, etc., the dissolved photoresist hardly moves through the anion exchange membrane because it is a polymer substance, and its concentration changes little in each solution. do not do.
[0029]
2 to 6 are schematic explanatory views conceptually showing other examples of the cell stack structure of the electrodialysis tank of the electrodialysis apparatus of the present invention. Also in these cell stack structures, the function of each chamber can be considered in the same manner as described for the cell stack structure in FIG. 1 from the relationship between both ion exchange membranes, the anode and the cathode.
[0030]
In the cell stack structure of FIG. 2, in contrast to the case of FIG. 1, the separate liquid chamber O functions similarly to the concentrated liquid chamber. In this case, both the electrode liquid chambers Ea and Ec are the same as the desalted liquid chamber. Can function.
[0031]
In the cell stack structure of FIG. 3, the separate liquid chamber O adjacent to the anolyte chamber Ea functions in the same manner as the concentrated liquid chamber, and the separate liquid chamber O adjacent to the catholyte chamber Ec functions in the same manner as the desalted liquid chamber. . Therefore, in this case, when the separate liquids in both separate liquid chambers are joined and circulated, the TAAH concentration does not substantially change. In addition, the anolyte chamber Ea functions in the same manner as the desalting solution chamber, and the catholyte chamber Ec functions in the same manner as the concentrated solution chamber. Therefore, when the two electrode solutions are combined and used as a common electrode solution, The TAAH concentration hardly changes.
[0032]
The cell stack structure of FIG. 4 is similar to the cell stack structure of FIG. 3 except that the separate liquid chamber O adjacent to the anolyte chamber Ea is a cell composed of two cation exchange membranes. TAA ions move from the anolyte chamber Ea to this separate liquid chamber, but TAA ions move from this separate liquid chamber to the concentrated liquid chamber C adjacent to this separate liquid chamber. Although it does not change, the TAAH concentration decreases when combined with another liquid in the separate liquid chamber O next to the catholyte chamber Ec (functioning in the same manner as the desalting liquid chamber), so the separate liquid chamber O next to the anolyte chamber Ea. Also, “(D)” is displayed for convenience.
[0033]
In the cell stack structure of FIG. 5, the separate liquid chamber O adjacent to the anolyte chamber Ea is a cell composed of two anion exchange membranes, and this separate liquid chamber is hydroxylated from the adjacent desalted liquid chamber D. Although the substance ions move, hydroxide ions move from the separate liquid chamber to the anolyte chamber Ea. In this cell stack structure, the separate liquid chamber O adjacent to the catholyte chamber Ec is a cell composed of two cation exchange membranes, and TAA ions move from the separate liquid chamber to the catholyte chamber Ec. However, TAA ions move from the desalting solution chamber D adjacent to the separate liquid chamber to the separate liquid chamber. Therefore, the TAAH concentration of the separate liquid is not substantially changed in both separate liquid chambers.
[0034]
In the cell stack structure of FIG. 6, the separate liquid chamber O adjacent to the anolyte chamber Ea is a cell composed of two cation exchange membranes, and TAA ions move from the anolyte chamber Ea to this separate liquid chamber. However, TAA ions move from the separate liquid chamber to the concentrated liquid chamber C adjacent to the separate liquid chamber. The separate liquid chamber O adjacent to the catholyte chamber Ec is a cell composed of two anion exchange membranes, and hydroxide ions move from the separate liquid chamber to the concentrated liquid chamber C adjacent thereto. However, hydroxide ions move from the catholyte chamber Ec to this separate chamber. Therefore, the TAAH concentration of the separate liquid is not substantially changed in both separate liquid chambers.
[0035]
As described above, the cell stack structure of the electrodialysis tank that can be used in the present invention has been briefly described. However, when the desalted waste liquid from the desalted liquid chamber is used as a separate liquid, the residual TAAH in the desalted waste liquid is more efficiently used. The cell stack structure of FIG. 1 is preferable in that it is taken into the concentrated liquid, and the cell stack structure of FIG. 3 is preferable in that the electrode liquid and the separate liquid can be circulated for a long period of time. Further, the cell stack structure shown in FIGS. 2 and 5 is preferable in that the electrode liquid chamber and the concentrated liquid chamber are separated from each other.
[0036]
FIG. 7 is a schematic flow diagram conceptually showing an example of the electrodialysis apparatus of the present invention. Electrode solution (E solution), concentrated solution (C solution), desalted solution (D solution), and separate solution (O solution) are sent from each water tank to the electrodialysis tank and subjected to electrodialysis treatment. A line (pipe) for circulation is provided so as to be returned to the water tank. In this example, as necessary, the desalting solution tank is replenished with development waste liquid, the concentrated liquid tank is replenished with pure water, and the electrode liquid tank and the separate liquid chamber are replenished with TMAH and pure water. Further, as required, liquid is blown from the electrode liquid tank and the separate liquid chamber. The separate liquid (O liquid) may be partly blown constantly even as a single pass.
[0037]
FIG. 8 is a schematic flow diagram conceptually showing another example of the electrodialysis apparatus of the present invention. This example is substantially the same as the example of FIG. 7 except that the desalted waste liquid obtained by electrodialysis is used as a separate liquid (O liquid). Therefore, the apparatus of FIG. A line (pipe) is provided from one to another liquid tank. Others are the same as in FIG. In Example 1 below, such an apparatus was used in a batch processing system.
[0038]
FIG. 9 is a schematic flow diagram conceptually showing an example of a conventional electrodialysis apparatus. Unlike the apparatus of FIG. 7 and FIG. 8, a separate liquid chamber and a separate liquid tank are not provided. In Comparative Example 1 below, such an apparatus was used in a batch processing system.
[0039]
【Example】
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. The photoresist concentration was expressed by the absorbance at 290 nm (Abs 290 nm) itself derived from the photoresist.
[0040]
Example 1
Desalination solution using a batch processing type electrodialyzer as shown in FIG. 8 using the development waste solution [TMAH = 2.1 wt%, photoresist concentration (Abs 290 nm) = 3.0] discharged from the liquid crystal factory as a raw material. TMAH was concentrated and recovered under the conditions of an end point TMAH concentration of 0.1% by weight and a concentrated liquid end point TMAH concentration of 2.4% by weight. Here, the batch processing method means that the desalted solution or concentrated solution is renewed when the above end point condition is satisfied, and the desalted waste solution is taken out from the desalted solution tank and used instead of the developing waste solution. It was renewed by taking out the concentrate from the concentrate tank and adding pure water instead. In addition, the electrode solution is circulated and used without being renewed, and as a separate solution to be passed through a separate solution chamber, a desalted waste solution (a waste solution having a desalted solution end point TMAH concentration of 0.1% by weight through the desalted solution chamber) In the past, it was updated once a day using what was previously discarded. The electrodialysis tank is composed of a cation exchange membrane (Asaplex K-501 manufactured by Asahi Kasei Kogyo Co., Ltd.) and a neutral membrane (Aciplex PVA # 100 manufactured by Asahi Kasei Kogyo Co., Ltd.) as a cell stack structure as shown in FIG. It is configured. The electrode solution was passed through an anolyte chamber and a catholyte chamber using a 40 mS / cm TMAH aqueous solution as a common electrode solution. The separate liquid was a desalted waste liquid having a conductivity of 2.5 mS / cm, and was circulated and supplied to the separate liquid chamber except at the time of renewal. As the first separate liquid, a TMAH new liquid adjusted to a conductivity of 2.5 mS / cm using pure water was used.
[0041]
The apparatus was operated for 15 days at an operation rate of 8 hours per day. The electrode solution after 15 days had a strong amine odor, and the other solution also had a slightly strong amine odor. However, with respect to the concentrated solution, none of the concentrated solutions of all batches obtained on the 15th day from the beginning of the test had a strong amine odor.
[0042]
Comparative Example 1
A test was performed in substantially the same manner as in Example 1 except that the apparatus shown in FIG. 9 without a separate liquid chamber was used and no separate liquid was used. The electrodialysis tank has a cell stack structure as shown in FIG. 15 with a cation exchange membrane (Aciplex K-501 manufactured by Asahi Kasei Co., Ltd.) and a neutral membrane (Aciplex PVA # 100 manufactured by Asahi Kasei Co., Ltd.). It is a thing. The electrode solution after 15 days had a strong amine odor, and the concentrated solution on the 15th day had a slightly stronger amine odor than the initial test. From this, it was found that the TMAH oxidative decomposition product of the electrode liquid (particularly generated by the oxidation reaction of the anode) was mixed in the concentrate as an impurity.
[0043]
【The invention's effect】
In the electrodialysis apparatus for developing waste liquid regeneration according to the present invention, since a separate liquid chamber is provided, it is possible to reduce the contamination of impurities into the concentrated liquid due to an increase in the amount of impurities in the electrode liquid as much as possible. In the case of using the electrode solution circulation, it is possible to reduce the exchange frequency of the electrode solution.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view conceptually showing an example of a cell stack structure of an electrodialysis tank of an electrodialysis apparatus of the present invention.
FIG. 2 is a schematic explanatory view conceptually showing another example of the cell stack structure of the electrodialysis tank of the electrodialysis apparatus of the present invention.
FIG. 3 is a schematic explanatory view conceptually showing still another example of the cell stack structure of the electrodialysis tank of the electrodialysis apparatus of the present invention.
FIG. 4 is a schematic explanatory view conceptually showing still another example of the cell stack structure of the electrodialysis tank of the electrodialysis apparatus of the present invention.
FIG. 5 is a schematic explanatory view conceptually showing still another example of the cell stack structure of the electrodialysis tank of the electrodialysis apparatus of the present invention.
FIG. 6 is a schematic explanatory view conceptually showing still another example of the cell stack structure of the electrodialysis tank of the electrodialysis apparatus of the present invention.
FIG. 7 is a schematic flow diagram conceptually showing an example of the electrodialysis apparatus of the present invention.
FIG. 8 is a schematic flow diagram conceptually showing another example of the electrodialysis apparatus of the present invention.
FIG. 9 is a schematic flow diagram conceptually showing an example of a conventional electrodialysis apparatus.
FIG. 10 is a schematic explanatory view conceptually showing a conventional electrodialysis system in which an anolyte and a catholyte are passed as separate electrode solutions through an anolyte chamber and a catholyte chamber, respectively.
FIG. 11 is a schematic explanatory view conceptually showing a conventional electrodialysis system in which one common electrode solution is passed through electrode solution chambers of both an anolyte chamber and a catholyte chamber.
FIG. 12 is a schematic explanatory view conceptually showing an example of a cell stack structure of a conventional electrodialysis apparatus.
FIG. 13 is a schematic explanatory view conceptually showing another example of a cell stack structure of a conventional electrodialysis apparatus.
FIG. 14 is a schematic explanatory view conceptually showing still another example of a cell stack structure of a conventional electrodialysis apparatus.
FIG. 15 is a schematic explanatory view conceptually showing still another example of a cell stack structure of a conventional electrodialysis apparatus.
[Explanation of symbols]
E Electrolyte chamber
Ea anolyte chamber
Ec Catholyte compartment
O Separate liquid chamber
C Concentrate chamber
D Desalination chamber
A Anion exchange membrane
K cation exchange membrane
N Neutral membrane
E liquid Electrode liquid
C liquid concentrate
D liquid Demineralized liquid
O solution Separate solution
P pump
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000133416A JP4449068B2 (en) | 2000-05-02 | 2000-05-02 | Electrodialyzer for recycling developer waste |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000133416A JP4449068B2 (en) | 2000-05-02 | 2000-05-02 | Electrodialyzer for recycling developer waste |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2001310189A JP2001310189A (en) | 2001-11-06 |
| JP4449068B2 true JP4449068B2 (en) | 2010-04-14 |
Family
ID=18641918
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2000133416A Expired - Fee Related JP4449068B2 (en) | 2000-05-02 | 2000-05-02 | Electrodialyzer for recycling developer waste |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4449068B2 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5429789B2 (en) * | 2009-04-21 | 2014-02-26 | 国立大学法人東北大学 | Electrodialysis machine |
-
2000
- 2000-05-02 JP JP2000133416A patent/JP4449068B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JP2001310189A (en) | 2001-11-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6488847B2 (en) | Process and equipment for recovering developer from photoresist development waste and reusing it | |
| US6083670A (en) | Process and equipment for rejuvenation treatment of photoresist development waste | |
| JP3543915B2 (en) | Recycling treatment method for photoresist developing waste liquid | |
| KR20000070984A (en) | Process for recovering organic hydroxides from waste solutions | |
| TWI230631B (en) | Purification of onium hydroxides by electrodialysis | |
| US5874204A (en) | Process for rejuvenation treatment of photoresist development waste | |
| JP3758011B2 (en) | Equipment for recovering and reusing recycled developer from photoresist developer waste | |
| JP4449068B2 (en) | Electrodialyzer for recycling developer waste | |
| JP2002253931A (en) | Method and apparatus for manufacturing regenerated tetraalkylammonium hydroxide | |
| JPH04228587A (en) | Method for recovering tetraalkylammonium hydroxide | |
| EP1235752B1 (en) | Process for recovering organic hydroxides from waste solutions | |
| JP3110513B2 (en) | Method for regenerating tetraalkylammonium hydroxide | |
| JP2001191080A (en) | Electrodeionization apparatus and electrodeionization treatment method using the same | |
| JP2005175118A (en) | Regenerating processing device for waste photoresist developer | |
| JP3656338B2 (en) | Photoresist development waste liquid processing method | |
| JP2003215810A (en) | Method for recovering developer from photoresist developer waste liquid | |
| JP3164968B2 (en) | Method and apparatus for treating wastewater containing tetraalkylammonium hydroxide | |
| JP4166864B2 (en) | Method for producing amino acid or salt thereof | |
| JPH11128691A (en) | Photoresist developer recovery and recovery system | |
| JP2001259665A (en) | Hydrosulfite manufacturing wastewater treatment method | |
| JP3663804B2 (en) | Photoresist development waste liquid processing method | |
| JPH10165933A (en) | Apparatus for recovery treatment of tetraalkylammonium hydroxide solution from photoresist developing waste solution | |
| JP2000093955A (en) | Method for treating spent photoresist developer | |
| JPH07100337A (en) | Treatment method for poorly water-soluble metal salts | |
| JP2000218136A (en) | Electric dialyzer for regeneration treatment of photoresist development waste liquid |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070315 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091224 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Effective date: 20100104 Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100117 |
|
| R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 3 Free format text: PAYMENT UNTIL: 20130205 |
|
| LAPS | Cancellation because of no payment of annual fees |