[go: up one dir, main page]

JP4461695B2 - Porous carbon electrode substrate and method for producing the same - Google Patents

Porous carbon electrode substrate and method for producing the same Download PDF

Info

Publication number
JP4461695B2
JP4461695B2 JP2003079694A JP2003079694A JP4461695B2 JP 4461695 B2 JP4461695 B2 JP 4461695B2 JP 2003079694 A JP2003079694 A JP 2003079694A JP 2003079694 A JP2003079694 A JP 2003079694A JP 4461695 B2 JP4461695 B2 JP 4461695B2
Authority
JP
Japan
Prior art keywords
range
porous carbon
electrode substrate
carbon electrode
basis weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003079694A
Other languages
Japanese (ja)
Other versions
JP2004288489A (en
Inventor
崇史 千田
幹夫 井上
賢也 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003079694A priority Critical patent/JP4461695B2/en
Publication of JP2004288489A publication Critical patent/JP2004288489A/en
Application granted granted Critical
Publication of JP4461695B2 publication Critical patent/JP4461695B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Ceramic Products (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池、特に固体高分子型燃料電池のガス拡散電極を構成するのに好適な多孔質炭素電極基材に関する。
【0002】
【従来の技術】
固体高分子型燃料電池(以下、本明細書において特に断らない限り燃料電池という)のガス拡散電極(以下、本明細書において特に断らない限り電極という)には、導電性が高いこと、集電能に優れていること、電極反応に寄与する物質の拡散が良好であること、といった本来的な機能はもちろんのこと、ハンドリングに耐える機械的強度を有していることが要求される。
【0003】
そのような電極を構成する基材としては、通常、実質的に二次元平面内において無作為な方向に分散せしめられた炭素短繊維とフェノール樹脂等の熱硬化性樹脂とを含む複合シートを焼成し、熱硬化性樹脂を炭素化することによって得られた、実質的に二次元平面内において無作為な方向に分散せしめられた炭素短繊維を炭素化物で結着してなる炭素繊維・炭素複合材料製のものが用いられている(たとえば、特許文献1参照)。
【0004】
ところで、そのような電極基材は、一般に、3点曲げ試験における曲げ弾性率が十数GPaと高く、ロール状に巻き取るのが極めて難しい。したがって、焼成はバッチ式によっているが、バッチ式でとり得る昇温速度はせいぜい数℃/分程度までであるため、生産性が低く、製造コストが高い。また、昇降温を繰り返し行うことから加熱炉の消耗も激しい。
【0005】
一方、加熱炉内に、実質的に二次元平面内において無作為な方向に分散せしめられた炭素短繊維と熱硬化性樹脂とを含む複合シートを連続的に走行せしめながら焼成する方法も提案されてはいる(たとえば、特許文献2参照)。この方法は、バッチ式にくらべて昇温速度を大きくとることができるうえに、焼成を連続的に行うことから生産性が高い。しかしながら、一方で、熱硬化性樹脂の目付、昇温速度、最高焼成温度等の条件をバランスよく制御しないと、得られる電極基材は、導電性の低いものとなったり、機械的強度の低いものとなったりする。導電性が低いと、それを用いる燃料電池の発電効率は低いものとなる。また、機械的強度が低いと、ハンドリング性に問題がでてくる。
【0006】
【特許文献1】
特開平7−48182号公報
【0007】
【特許文献2】
WO 01/56103号公報
【0008】
【発明が解決しようとする課題】
本発明の目的は、従来の技術の上述した問題点を解決し、導電性や機械的強度が高く、ハンドリング性にも優れる、燃料電池の電極を構成するのに好適な多孔質炭素電極基材と、そのような多孔質炭素電極基材を高い生産性で製造する方法を提供するにある。
【0009】
上記目的を達成するために、本発明は、実質的に二次元平面内において無作為な方向に分散せしめられた炭素短繊維がひび割れを有する炭素化物で結着されており、かつ、3点曲げ試験における最大荷重が少なくとも0.5Nで曲げ弾性率が1〜10GPaの範囲内にあり、厚みが0.1〜0.25mmの範囲内にあり、厚み方向の電気抵抗が12mΩ・cm以下であることを特徴とする多孔質炭素電極基材を提供する。
【0010】
炭素短繊維は、平均繊維径が5〜20μmの範囲内にあり、平均繊維長が3〜20mmの範囲内にあるのが好ましい。また、炭素短繊維の目付は1750g/mの範囲内にあるのが好ましく、炭素化物の目付は1850g/mの範囲内にあるのが好ましい。さらに、本発明の電極基材は、ナトリウムが2,000ppm以下の範囲内で含まれていることが好ましく、また、炭素化物が結晶サイズ20オングストローム以上の黒鉛であることが好ましい
【0011】
3点曲げ試験は、JIS K 6911に規定される方法に準拠して行う。このとき、試験片の幅は15mm、長さは40mm、支点間距離は15mmとする。また、支点と圧子の曲率半径は3mm、荷重印加速度は2mm/分とする。なお、最大荷重や曲げ弾性率について電極基材が異方性を有している場合には、曲げ弾性率の最も高い方向を試験片の長さ方向とし、等方性の場合には、後述する方法によって得られる帯状の電極基材の長さ方向を試験片の長さ方向とする。電極基材の最大荷重や曲げ弾性率は、ロール状への巻き取りやすさや、ハンドリング性の良否を示す指標となる。
【0012】
また、厚み方向の電気抵抗は、2.0cm×2.5cmの電極基材を試験片とし、その試験片を金メッキを施したステンレス製の電極で挟み、1.0MPaの加圧下に電極間に1Aの電流を流したときの電圧降下から次式によって求める。
【0013】
R=V×2.0×2.5×1,000
ただし、R:厚み方向の電気抵抗(mΩ・cm2
V:電圧降下(V)
さらに、電極基材の厚みは、電極基材に0.15MPaの面圧を付与したときの厚みをマイクロメーターを用いて測定することによって求める。
【0014】
炭素短繊維の平均繊維径は、電極基材の5,000倍の電子顕微鏡写真から任意の10本の炭素短繊維を選択してその繊維径を測定し、その単純平均値として求める。横断面の形状が円形でない、たとえば楕円径である場合には、長径と短径の平均値を繊維径とする。
【0015】
また、炭素短繊維の平均繊維長は、電極基材の製造に用いる炭素短繊維シートを大気中にて600℃で加熱し、炭素短繊維を残してそれ以外のバインダ等を焼き飛ばすことによって得られた任意の30本の炭素短繊維について5倍の光学顕微鏡写真を撮影し、写真から各炭素短繊維の長さを測定し、その単純平均値として求める。
【0016】
さらに、炭素短繊維の目付は、電極基材の製造に用いる炭素短繊維シートを大気中にて600℃で加熱し、炭素短繊維を残してそれ以外のバインダ等を焼き飛ばすことによって得られた炭素短繊維の重量から求める。
【0017】
また、炭素化物の目付は、電極基材の目付から上述の方法によって求めた炭素短繊維の目付を差し引くことによって求める。
【0018】
空孔率は、電極基材の真密度と見掛密度とから算出する。真密度の測定は、よく知られた浮遊法やピクノメータ法等によることができる。また、見掛密度は電極基材の厚みと目付とから算出する。
【0019】
本発明は、また、上述した目的を達成するために、目付が15〜60g/m2の範囲内にある、実質的に二次元平面内において無作為な方向に分散せしめられた炭素短繊維と、目付が13〜150g/m2の範囲内にある熱硬化性樹脂とを含む帯状の複合シートを、不活性雰囲気に保たれた加熱炉内を連続的に走行せしめながら10〜1,000℃/分の範囲内の速度で少なくとも1,200℃まで昇温し、焼成して熱硬化性樹脂を炭素化した後、ロール状に巻き取ることを特徴とする多孔質炭素電極基材の製造方法を提供する。800℃までの温度域における昇温速度は、800℃を超える温度域におけるそれよりも低くするのが好ましく、その場合、800℃までの温度域における昇温速度を10〜800℃/分の範囲内とするのが好ましい。また、複合シートを加熱、加圧成形した後に焼成するのも好ましい。
【0020】
昇温速度は、加熱炉入口の温度と、加熱炉内の最高温度と、加熱炉入口から導入されるシートが最高温度域まで移動するのに要する時間(移動時間)とから次式によって求める。ここで、加熱炉入口とは、雰囲気が大気から不活性雰囲気へと切り替わる加熱炉入口側の部位である。
【0021】
V=(T2−T1)/t
ただし、V :昇温速度(℃/分)
T1:加熱炉入口の温度(℃)
T2:加熱炉内の最高温度(℃)
t :移動時間
なお、加熱炉はただ1個である必要はなく、2個以上の加熱炉による多段焼成を行うこともできる。2個の加熱炉を用いる場合には、1段目の加熱炉の昇温速度は上式から求め、2段目の加熱炉の昇温速度は、上式におけるT1を、前段の加熱炉の最高温度、すなわち1段目の加熱炉の最高温度として求める。3個以上の加熱炉を用いる場合にも同様である。
【0022】
本発明の電極基材は、少なくとも片面に、導電性を有するガス拡散層を形成してガス拡散電極とすることができる。また、両面に触媒層を有する固体高分子電解質膜の少なくとも片面に、ガス拡散電極をガス拡散層側において接合することによって固体高分子型燃料電池ユニットを構成することができる。さらに、その燃料電池ユニットの複数個を積層することによって固体高分子型燃料電池を構成することができる。
【0023】
【発明の実施の形態】
本発明の多孔質炭素電極基材をその製造方法とともに詳細に説明するに、本発明においては、まず、目付が15〜60g/m2の範囲内にある、炭素短繊維が実質的に二次元平面内において無作為な方向に分散せしめられた炭素短繊維シートを準備する。
【0024】
炭素短繊維を構成する炭素繊維としては、ポリアクリロニトリル(PAN)系、ピッチ系、レーヨン系等の炭素繊維を用いることができる。なかでも、機械的強度に優れ、しかも、適度な柔軟性を有する電極基材が得られることから、PAN系やピッチ系、特にPAN系の炭素繊維を用いるのが好ましい。
【0025】
そのような炭素繊維は、平均繊維径(単繊維の平均繊維径)が5〜20μmの範囲内にあるものを選択するのが好ましい。平均繊維径が5μm未満のものを用いると、炭素繊維の種類等にもよるが、得られる電極基材の柔軟性が低下することがある。また、平均繊維径が20μmを超えるようなものを用いると、得られる電極基材の機械的強度が低下することがある。より好ましい平均繊維径の範囲は6〜13μmであり、さらに好ましい範囲は6〜10μmである。
【0026】
炭素短繊維は、上述した炭素繊維をカットすることによって得るが、そのとき、平均繊維長が3〜20mmの範囲内になるようにするのが好ましい。平均繊維長が3mm未満のものを用いると、得られる電極基材の、曲げに対する最大荷重や弾性率等の機械的特性が低下することがある。また、平均繊維長が20mmを超えるようなものを用いると、後述する抄造時における分散性が悪くなり、得られる電極基材における炭素短繊維の目付のばらつきが大きくなって品質が悪くなることがある。より好ましい平均繊維長の範囲は4〜17mmであり、さらに好ましい範囲は5〜15mmである。
【0027】
炭素短繊維シートは、乾式抄造法によって得ることもできるが、水を抄造媒体とする湿式抄造法によるのが簡便であり、しかも、炭素短繊維の分散性のよい均質なシートが得られるので好ましい。乾式抄造法、湿式抄造法のいずれによっても、帯状のシートを得ることができる。なお、形態保持性やハンドリング性等を向上させるために必要であれば、炭素短繊維シートに、1〜30重量%程度の範囲内において、ポリビニルアルコール、セルロース、ポリエステル、エポキシ樹脂、フェノール樹脂、アクリル樹脂等の有機質バインダを付与してもよい。
【0028】
炭素短繊維シートの製造にあたっては、炭素短繊維の目付が15〜60g/m2の範囲内になるようにするのが好ましい。目付が15g/m2未満では、得られる電極基材の機械的強度が不足することがある。また、60g/m2を超えると、得られる電極基材の剛性が高くなり、柔軟性が損なわれることがある。一方、炭素短繊維の目付は、後述する熱硬化性樹脂の目付とともに得られる電極基材の空孔率を決める。空孔率70〜90%という好ましい空孔率を達成するためにも、炭素短繊維の目付は上述の範囲内にするのがよい。より好ましい目付の範囲は17〜50g/m2であり、さらに好ましい範囲は20〜40g/m2である。
【0029】
さて、本発明においては、得られた炭素短繊維シートに、焼成により炭素化し、炭素短繊維同士を結着する熱硬化性樹脂を含浸し、複合シートを得る。
【0030】
熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、フラン樹脂、メラミン樹脂等を用いることができる。これらの少なくとも1種を含む混合樹脂であってもよい。なかでも、炭素化収率の高いフェノール樹脂を用いるのが好ましい。
【0031】
炭素短繊維シートと熱硬化性樹脂との複合シートを、焼成の前に加熱、加圧して成形しておくのも好ましい。この成形により、厚みや空孔率をより適切化できる。温度は、100〜250℃、好ましくは120〜200℃、さらに好ましくは140〜180℃とする。加圧力は、0.01〜2MPa、好ましくは0.05〜1.5MPa、さらに好ましくは0.1〜1MPaとする。
【0032】
ところで、本発明のような連続焼成においては、昇温速度が速いため、バッチ式による場合にくらべて得られる電極基材にナトリウムやカルシウム等の金属が残留しやすい。これらの金属のイオンは、固体高分子電解質のプロトン伝導性の低下を引き起こす。したがって、フェノール樹脂を用いる場合でも、金属を含まない触媒を用いて製造されたものを選択するのが好ましい。そのようなフェノール樹脂としては、アンモニアレゾール型フェノール樹脂、ノボラック型フェノール樹脂等がある。なお、電極基材に含まれるナトリウムやカルシウムの量は、蛍光X線分析法によって測定することができるが、ナトリウムの量は、2,000ppm以下、好ましくは1,000ppm以下、さらに好ましく500ppm以下になるようにするのがよい。また、カルシウムの量は、100ppm以下、好ましくは70ppm以下、さらに好ましくは50ppm以下となるようにするのがよい。そうすることにより、固体高分子電解質のプロトン伝導性の低下を抑制することができるようになる。
【0033】
熱硬化性樹脂には、得られる電極基材の導電性等の電気的特性をより向上させるために、1〜30重量%程度の範囲で、カーボンブラック、黒鉛粉、膨張黒鉛、炭素質ミルド繊維等の導電性粉末を混入するのも好ましい。なかでも、カーボンブラックや黒鉛粉を用いるのが好ましい。最も好ましいのは黒鉛粉である。
【0034】
上述した熱硬化性樹脂は、炭素短繊維シートに、目付が13〜150g/m2範囲内になるように含浸する。熱硬化性樹脂の目付は、得られる電極基材における、炭素短繊維同士を結着している炭素化物の目付に関連する。この炭素化物の目付は、あまり低いと得られる電極基材の機械的強度が低くなり、また、あまり高いと得られる電極基材の柔軟性が低下するようになるので、5〜60g/m2の範囲内とするのが好ましいが、そうするために、熱硬化性樹脂を目付が13〜150g/m2の範囲内になるように含浸する。炭素化物の目付は、18〜50g/m2の範囲内にあるのがより好ましいが、そうするために必要な熱硬化性樹脂の目付は、45〜125g/m2の範囲内である。最も好ましいのは、炭素化物の目付が20〜40g/m2の範囲内にある場合であるが、そうするために必要な熱硬化性樹脂の目付は、50〜100g/m2の範囲内である。一方、熱硬化性樹脂の目付は、前述の炭素短繊維の目付とともに得られる電極基材の空孔率を決める。空孔率70〜90%という好ましい空孔率を達成するためにも、熱硬化性樹脂の目付は上述の範囲内にするのがよい。
【0035】
さて、本発明においては、帯状の複合シート、すなわち、炭素短繊維と熱硬化性樹脂とを含む帯状の複合シートを、不活性雰囲気に保たれた加熱炉内に導き、その加熱炉内を連続的に走行させながら10〜1,000℃/分の範囲内の速度で少なくとも1,200℃まで昇温し、焼成して熱硬化性樹脂を炭素化する。これにより、実質的に二次元平面内において無作為な方向に分散せしめられた炭素短繊維が炭素化物で結着されている多孔質炭素電極基材が得られる。得られる電極基材は、ロール状に巻き取る。
【0036】
加熱炉としては、いわゆる連続焼成炉を用いることができ、炉内の不活性雰囲気は、炉内に窒素ガスやアルゴンガス等の不活性ガスを流通させることによって得ることができる。
【0037】
焼成にあたっては、昇温速度を10〜1,000℃/分の範囲内とし、その速度で少なくとも1,200℃まで昇温する。昇温速度が10℃/分未満では、生産性が著しく低下して製造コストが上昇するうえに、熱硬化性樹脂が緩やかに炭素化されるために炭素化物の適度なひび割れが起こらなくなり、得られる電極基材は、導電性を維持しつつも柔軟性の極めて低いものとなる。逆に、昇温速度が1000℃/分を超えると、熱硬化性樹脂が急激に炭素化されるために炭素化物の著しいひび割れが発生し、得られる電極基材は、導電性等の電気的特性や強度等の機械的特性の著しく低いものとなり、また、皺や反りの多いものとなる。好ましい昇温速度の範囲は200〜900℃/分であり、さらに好ましい範囲は300〜800℃/分である。
【0038】
また、800℃までの温度域における昇温速度は、800℃を超える温度域におけるそれよりも低くするのが好ましい。というのは、800℃までの温度域における、熱硬化性樹脂が炭素化される過程における重量減少は、800℃を超える温度域におけるそれよりも非常に大きいが、800℃までの温度域における昇温速度を800℃を超える温度域におけるそれより低くすると、得られる電極基材の導電性等の電気的特性や強度等の機械的特性の低下をより一層抑制することができるようになるからである。
【0039】
焼成温度は、少なくとも1,200℃とすることが必要であるが、1,500〜3,000℃の最高焼成温度で焼成するのが好ましい。最高焼成温度が1,500℃以上であると、熱硬化性樹脂の黒鉛化が進み、得られる電極基材中における不純物が減少して導電性等の電気的特性がさらに向上するようになる。一方、最高焼成温度が3,000℃を超えると、運転コストが上昇するばかりでなく、加熱炉の消耗が激しくなってその維持コストが上昇し、生産コストが上昇するようになる。より好ましい最高焼成温度の範囲は1,600〜2,500℃であり、さらに好ましい範囲は1,700〜2、000℃である。なお、黒鉛化の程度は、透過法による広角X線回折により測定される炭素(002)ピークの半値幅から求めた結晶サイズから判断できる。また、黒鉛の結晶サイズは、20オングストローム以上であるのが好ましく、30オングストローム以上であるのがより好ましく、40オングストローム以上であるのが最も好ましい。結晶サイズが20オングストローム以上であるということは、熱硬化性樹脂の黒鉛化が進んでいるということであり、得られる電極基材中の不純物が少なくなって固体高分子電解質のプロトン伝導性の低下を抑制でき、また、得られる電極基材の導電性が向上するようになる。
【0040】
かくして、実質的に二次元平面内において無作為な方向に分散せしめられた炭素短繊維が炭素化物で結着されており、かつ、3点曲げ試験における最大荷重が少なくとも0.5Nであって曲げ弾性率が1〜10GPaの範囲内にあり、厚みが0.1〜0.25mmの範囲内にあり、厚み方向の電気抵抗が12mΩ・cm2以下である、図1に示すような多孔質炭素電極基材が得られる。図1において、線状に見えるのが炭素短繊維であり、それらに付着しているのが熱硬化性樹脂の炭素化物である。
【0041】
本発明の電極基材の3点曲げ試験における最大荷重は、少なくとも0.5Nである。そのような電極基材は、割れにくく、ハンドリング性に優れている。最大荷重は0.6N以上であるのが好ましく、0.7N以上であるのがさらに好ましい。
【0042】
また、3点曲げ試験における曲げ弾性率は、電極基材の対変形性や柔軟性に関係し、曲げ弾性率が1GPa未満であるようなものは、外力が作用したときに容易に変形してしまう。また、10GPaを超えるようなものは、柔軟性が極めて低く、ロール状への巻き取りが難しくなり、ハンドリング性が悪化する。曲げ弾性率の好ましい範囲は3〜9GPaであり、さらに好ましい範囲は5〜8GPaである。
【0043】
電極基材の厚みは、0.1〜0.25mmの範囲内にある。電極基材の厚みは、せん断力が作用したときの割れや柔軟性に関係する。厚みが0.1mm未満では、電極を構成し、燃料電池を構成したとき、セパレータからせん断力を受けたときに容易に割れてしまう。また、0.25mmを超えるようなものは、柔軟性が大きく低下し、ロール状への巻き取りが難しくなったり、ハンドリング性が悪化したりする。好ましい厚みの範囲は0.11〜0.22mmであり、より好ましい範囲は0.12〜0.16mmである。
【0044】
また、電極基材の厚み方向の電気抵抗は12mΩ・cm2以下である。厚み方向の電気抵抗は、電極を構成し、燃料電池を構成したとき、発電効率に関係する。そして、厚み方向の電気抵抗が12mΩ・cm2を超えると、オーム損による電圧降下が大きくなり、発電効率が大きく低下する。電気抵抗は9mΩ・cm2以下であるのが好ましく、6mΩ・cm2以下であるのがさらに好ましい。
【0045】
本発明の電極基材は、また、空孔率が70〜90%の範囲内にあるのが好ましい。空孔率がこの範囲にあると、電極を構成し、燃料電池を構成したとき、燃料電池内部の水の蒸発をより抑制することができて、固体高分子電解質が乾燥してプロトン伝導性が低下するのを抑制することができるようになるとともに、ガス拡散性が向上し、発電効率が向上するようになる。より好ましい空孔率の範囲は72〜88%であり、さらに好ましい範囲は75〜85%である。
【0046】
また、電極基材の表面に撥水加工を施すのも好ましい。表面が撥水性を有すると、電極を構成し、燃料電池を構成したとき、発電反応の生成水による目詰まりを抑制することができるようになり、反応に必要な物質を十分に供給することができるようになって発電効率が向上する。そのような撥水加工は、電極基材の表面に、テトラフルオロエチレン樹脂(PTFE)、パーフルオロアルコキシ樹脂(PFA)、フッ化エチレンプロピレン樹脂(FEP)、フッ化エチレンテトラフルオロエチレン樹脂(ETFE)等のフッ素系樹脂を、1〜50重量%程度、好ましく5〜40重量%程度、さらに好ましくは10〜30重量%程度付与することによって行うことができる。
【0047】
さて、本発明の電極基材は、少なくとも片面に導電性を有するガス拡散層を形成してガス拡散電極とすることができる。ガス拡散層を設けると、表面の凹凸が覆われ、平滑となるため、電極を構成し、燃料電池を構成したとき、触媒層との電気的接触を確保しやすくなる。また、固体高分子電解質膜の損傷もより確実に防止することができるようになる。そのようなガス拡散層は、電極基材の表面に、上述した撥水加工で用いたのと同様のフッ素系樹脂と、上述した熱硬化性樹脂に混入したのと同様の導電性粉末との混合物を付与することによって行うことができる。導電性粉末の混入量は、10〜50重量%程度、好ましくは15〜45重量%程度、さらに好ましくは20〜40重量%程度である。
【0048】
そのようなガス拡散電極は、ガス拡散層側において、それを、両面に触媒層を有する固体高分子電解質膜の少なくとも片面に接合することで燃料電池ユニットを構成することができる。また、そのような燃料電池ユニットの複数個を積層することによって燃料電池を構成することができる。触媒層は、固体高分子電解質と触媒担持カーボンを含む層からなる。触媒としては、通常、白金が用いられる。アノード側に一酸化炭素を含む改質ガスが供給される燃料電池にあっては、アノード側の触媒としては白金およびルテニウムを用いるのが好ましい。固体高分子電解質は、プロトン伝導性、耐酸化性、耐熱性の高い、パーフルオロスルホン酸系の高分子を材料とするものが好ましく用いられる。かかる燃料電池ユニットや燃料電池の構成自体は、よく知られているところである。
【0049】
【実施例および比較例】
実施例1:
東レ株式会社製ポリアクリロニトリル系炭素繊維“トレカ”T−300−6K(平均単繊維径:7μm、単繊維数:6,000本)を12mmの長さにカットし、水を抄造媒体として抄造し、さらにポリビニルアルコールの10重量%水性分散液に浸漬し、乾燥して、炭素繊維の目付が約50g/m2の帯状炭素短繊維シートを得た。ポリビニルアルコールの付着量は、約20重量%に相当する。
【0050】
次に、上記炭素短繊維シートに、フェノール樹脂の10重量%メタノール溶液を、炭素短繊維シート100重量部に対してフェノール樹脂が125重量部になるように含浸し、90℃で乾燥した後、1.5MPaの加圧下に150℃で30分加熱し、フェノール樹脂を硬化させた。フェノール樹脂としては、アルカリレゾール型フェノール樹脂100重量部と同重量部のノボラック型フェノール樹脂との混合樹脂を用いた。炭素短繊維シートに付着しているフェノール樹脂の目付は、約63g/m2となる。
【0051】
次に、上記炭素短繊維とフェノール樹脂との複合シートを、窒素ガス雰囲気に保たれた、最高温度が2,000℃の加熱炉に導入し、加熱炉内を連続的に走行させながら、800℃までは110℃/分、800℃を超える温度では150℃/分の昇温速度で焼成し、ロール状に巻き取った。得られた多孔質炭素電極基材の諸元を、既述のものも含めて以下に示す。
【0052】
炭素短繊維の平均繊維径 :7μm
炭素短繊維の平均繊維長 :12mm
炭素短繊維の目付 :50g/m2
3点曲げ試験における最大荷重 :1.1N
3点曲げ試験における曲げ弾性率:6.6GPa
厚み :0.21mm
厚み方向の電気抵抗 :8mΩ・cm2
炭素化物の目付 :40g/m2
空孔率 :80%
黒鉛結晶サイズ :43オングストローム
ナトリウム量 :40ppm
カルシウム量 :50ppm
実施例2:
実施例1において、フェノール樹脂を硬化させるときの圧力を0.5MPaとするとともに、昇温速度を、800℃までは380℃/分、800℃を超える温度では500℃/分とした。得られた多孔質炭素電極基材の諸元を、既述のものも含めて以下に示す。
【0053】
炭素短繊維の平均繊維径 :7μm
炭素短繊維の平均繊維長 :12mm
炭素短繊維の目付 :50g/m2
3点曲げ試験における最大荷重 :0.8N
3点曲げ試験における曲げ弾性率:5.0GPa
厚み :0.22mm
厚み方向の電気抵抗 :10mΩ・cm2
炭素化物の目付 :40g/m2
空孔率 :80%
黒鉛結晶サイズ :44オングストローム
ナトリウム量 :50ppm
カルシウム量 :30ppm
実施例3:
実施例1において、炭素繊維の目付が24/m2の炭素短繊維シートを用い、その炭素短繊維シートに、フェノール樹脂の10重量%メタノール溶液を、炭素短繊維シート100重量部に対してフェノール樹脂が125重量部になるように含浸し、90℃で乾燥した後、0.5MPaの加圧下に150℃で30分加熱し、フェノール樹脂を硬化させた。フェノール樹脂としては、アルカリレゾール型フェノール樹脂100重量部と、同重量部のノボラック型フェノール樹脂と、これらのフェノール樹脂100重量部に対して75重量部の黒鉛粉と、これらのフェノール樹脂100重量部に対して75重量部のカーボンブラックとを混合してなる混合樹脂を用いた。炭素短繊維シートに付着しているフェノール樹脂の目付は、約26g/m2となる。
【0054】
次に、上記炭素短繊維とフェノール樹脂との複合シートを、窒素ガス雰囲気に保たれた、最高温度が2,000℃の加熱炉に連続的に導入し、800℃までは380℃/分、800℃を超える温度では500℃/分の昇温速度で焼成し、ロール状に巻き取った。得られた多孔質炭素電極基材の諸元を、既述のものも含めて以下に示す。
【0055】
炭素短繊維の平均繊維径 :7μm
炭素短繊維の平均繊維長 :12mm
炭素短繊維の目付 :24g/m2
3点曲げ試験における最大荷重 :0.9N
3点曲げ試験における曲げ弾性率:9.0GPa
厚み :0.17mm
厚み方向の電気抵抗 :4mΩ・cm2
炭素化物の目付 :15g/m2
空孔率 :80%
黒鉛結晶サイズ :48オングストローム
ナトリウム量 :20ppm
カルシウム量 :40ppm
比較例:
実施例1において、フェノール樹脂を硬化させるときの圧力を0.5MPaに変更した。また、焼成にはバッチ式の加熱炉を用い、昇温速度を800℃までは1℃/分、800℃を超える温度では2℃/分とした。得られた多孔質炭素電極基材の諸元を、既述のものも含めて以下に示す。
【0056】
炭素短繊維の平均繊維径 :7μm
炭素短繊維の平均繊維長 :12mm
炭素短繊維の目付 :50g/m2
3点曲げ試験における最大荷重 :1.3N
3点曲げ試験における曲げ弾性率:12.0GPa
厚み :0.19mm
厚み方向の電気抵抗 :5mΩ・cm2
炭素化物の目付 :40g/m2
空孔率 :80%
黒鉛結晶サイズ :49オングストローム
ナトリウム量 :10ppm
カルシウム量 :40ppm
上記実施例1〜3の多孔質炭素電極基材は、3点曲げ試験における最大荷重が大きく、曲げ弾性率は適度でハンドリング性に優れ、しかも、導電性が高い。これに対して、比較例の多孔質炭素電極基材は、曲げ弾性率が大きすぎて柔軟性を欠き、ハンドリング性に劣る。
【0057】
本発明は、実質的に二次元平面内において無作為な方向に分散せしめられた炭素短繊維がひび割れを有する炭素化物で結着されており、かつ、3点曲げ試験における最大荷重が少なくとも0.5Nであって曲げ弾性率が1〜10GPaの範囲内にあり、厚みが0.1〜0.25mmの範囲内にあり、厚み方向の電気抵抗が12mΩ・cm以下である多孔質炭素電極基材を、目付が15〜60g/mの範囲内にある、実質的に二次元平面内において無作為な方向に分散せしめられた炭素短繊維と、目付が13〜150g/mの範囲内にある熱硬化性樹脂とを含む帯状のシートを、不活性雰囲気に保たれた加熱炉内を連続的に走行せしめながら10〜1,000℃/分の範囲内の速度で少なくとも1,200℃まで昇温し、焼成して熱硬化性樹脂を炭素化した後、ロール状に巻き取ることによって得るものであり、実施例と比較例との対比からも明らかなように、導電性や機械的強度が高く、ハンドリング性に優れている。そのため、燃料電池のガス拡散電極を構成するのに好適である。また、連続焼成を行うので生産性が高く、生産コストを低減できる。
【図面の簡単な説明】
【図1】本発明の一形態に係る多孔質炭素電極基材の電子顕微鏡写真(倍率:60倍)である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a porous carbon electrode substrate suitable for constituting a gas diffusion electrode of a fuel cell, particularly a polymer electrolyte fuel cell.
[0002]
[Prior art]
A gas diffusion electrode (hereinafter referred to as an electrode unless otherwise specified in the present specification) of a polymer electrolyte fuel cell (hereinafter referred to as a fuel cell unless otherwise specified in the present specification) has a high conductivity and a current collecting ability. It is required to have mechanical strength that can withstand handling, as well as the original functions such as being excellent in resistance and diffusion of substances that contribute to electrode reactions.
[0003]
As a base material constituting such an electrode, a composite sheet containing carbon short fibers dispersed in a substantially random direction in a substantially two-dimensional plane and a thermosetting resin such as a phenol resin is usually fired. Carbon fiber / carbon composite obtained by carbonizing carbon short fibers dispersed in a random direction in a substantially two-dimensional plane, obtained by carbonizing a thermosetting resin The thing made from material is used (for example, refer patent document 1).
[0004]
By the way, such an electrode base material generally has a bending elastic modulus as high as a dozen GPa in a three-point bending test, and it is extremely difficult to wind it in a roll shape. Therefore, although the baking is performed by a batch method, the temperature increase rate that can be taken by the batch method is at most about several degrees C / min. Therefore, the productivity is low and the manufacturing cost is high. In addition, the heating furnace is heavily consumed due to repeated heating and cooling.
[0005]
On the other hand, a method is also proposed in which a composite sheet containing short carbon fibers and thermosetting resin dispersed in a random direction in a substantially two-dimensional plane is fired while continuously running in a heating furnace. (For example, refer to Patent Document 2). This method can increase the rate of temperature rise compared to the batch method, and has high productivity because firing is performed continuously. However, on the other hand, unless conditions such as the basis weight of the thermosetting resin, the heating rate, and the maximum firing temperature are controlled in a well-balanced manner, the obtained electrode base material has low conductivity or low mechanical strength. It becomes a thing. If the conductivity is low, the power generation efficiency of a fuel cell using the conductivity is low. Moreover, when mechanical strength is low, a problem will arise in handling property.
[0006]
[Patent Document 1]
JP 7-48182 A
[0007]
[Patent Document 2]
WO 01/56103 Publication
[0008]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems of the prior art, and have a high conductivity and mechanical strength, and excellent handling properties, and is a porous carbon electrode substrate suitable for constituting a fuel cell electrode. And providing a method for producing such a porous carbon electrode substrate with high productivity.
[0009]
  In order to achieve the above object, the present invention provides a carbon short fiber dispersed in a random direction in a substantially two-dimensional plane.Have cracksIt is bound with carbonized material, has a maximum load in a three-point bending test of at least 0.5 N, a bending elastic modulus in the range of 1 to 10 GPa, and a thickness in the range of 0.1 to 0.25 mm. Yes, electrical resistance in the thickness direction is 12 mΩ · cm2A porous carbon electrode substrate characterized by the following is provided.
[0010]
The short carbon fibers preferably have an average fiber diameter in the range of 5 to 20 μm and an average fiber length in the range of 3 to 20 mm. In addition, the basis weight of short carbon fiber is17~50g / m2It is preferable to be in the range of18~50g / m2It is preferable to be within the range. Furthermore, the electrode substrate of the present invention comprisesSodium is preferably contained within a range of 2,000 ppm or less, and the carbonized product is preferably graphite having a crystal size of 20 angstroms or more..
[0011]
The three-point bending test is performed in accordance with the method specified in JIS K 6911. At this time, the width of the test piece is 15 mm, the length is 40 mm, and the distance between fulcrums is 15 mm. Further, the radius of curvature of the fulcrum and the indenter is 3 mm, and the load application speed is 2 mm / min. When the electrode base material has anisotropy with respect to the maximum load and bending elastic modulus, the direction with the highest bending elastic modulus is the length direction of the test piece. The length direction of the strip-shaped electrode substrate obtained by the method is the length direction of the test piece. The maximum load and the flexural modulus of the electrode base material are indicators for the ease of winding into a roll and the quality of handling properties.
[0012]
In addition, the electrical resistance in the thickness direction is as follows: a 2.0 cm × 2.5 cm electrode substrate is used as a test piece, and the test piece is sandwiched between gold-plated stainless steel electrodes and pressed between electrodes under a pressure of 1.0 MPa. It is obtained from the voltage drop when a current of 1 A is passed by the following equation.
[0013]
R = V × 2.0 × 2.5 × 1,000
Where R: electrical resistance in the thickness direction (mΩ · cm2)
V: Voltage drop (V)
Furthermore, the thickness of the electrode substrate is determined by measuring the thickness when a surface pressure of 0.15 MPa is applied to the electrode substrate using a micrometer.
[0014]
The average fiber diameter of the short carbon fibers is determined as a simple average value by selecting any 10 short carbon fibers from an electron micrograph of 5,000 times the electrode substrate and measuring the fiber diameter. When the cross-sectional shape is not circular, for example, an elliptical diameter, the average value of the major axis and the minor axis is taken as the fiber diameter.
[0015]
Also, the average fiber length of the short carbon fibers is obtained by heating the short carbon fiber sheet used in the production of the electrode substrate at 600 ° C. in the atmosphere, and burning the other binders, etc., leaving the short carbon fibers. An optical microscope photograph of 5 times is taken for any 30 short carbon fibers thus obtained, the length of each short carbon fiber is measured from the photograph, and is determined as a simple average value.
[0016]
Furthermore, the basis weight of the short carbon fibers was obtained by heating the short carbon fiber sheet used in the production of the electrode substrate at 600 ° C. in the atmosphere, and burning the other binders and the like leaving the short carbon fibers. Obtained from the weight of short carbon fiber.
[0017]
Further, the basis weight of the carbonized material is obtained by subtracting the basis weight of the short carbon fiber obtained by the above-described method from the basis weight of the electrode base material.
[0018]
The porosity is calculated from the true density and the apparent density of the electrode substrate. The true density can be measured by a well-known floating method or pycnometer method. The apparent density is calculated from the thickness and basis weight of the electrode base material.
[0019]
In order to achieve the above-mentioned object, the present invention has a basis weight of 15 to 60 g / m.2Carbon short fibers dispersed in a random direction in a substantially two-dimensional plane, and a basis weight of 13 to 150 g / m.2The belt-shaped composite sheet containing the thermosetting resin in the range of 10 to 1,000 ° C./min at least at a speed while continuously running in the heating furnace maintained in an inert atmosphere. There is provided a method for producing a porous carbon electrode substrate, which is heated to 1,200 ° C., baked to carbonize the thermosetting resin, and then wound into a roll. The temperature increase rate in the temperature range up to 800 ° C. is preferably lower than that in the temperature range exceeding 800 ° C., and in that case, the temperature increase rate in the temperature range up to 800 ° C. is in the range of 10 to 800 ° C./min. It is preferable to be inside. Moreover, it is also preferable that the composite sheet be fired after being heated and pressure-molded.
[0020]
The temperature increase rate is obtained from the following equation from the temperature at the entrance of the heating furnace, the maximum temperature in the heating furnace, and the time required for the sheet introduced from the entrance of the heating furnace to move to the maximum temperature range (movement time). Here, the heating furnace inlet is a part on the heating furnace inlet side where the atmosphere is switched from the atmosphere to the inert atmosphere.
[0021]
V = (T2-T1) / t
V: Temperature increase rate (° C / min)
T1: Temperature at the furnace entrance (° C)
T2: Maximum temperature in the heating furnace (° C)
t: Travel time
Note that the number of heating furnaces need not be only one, and multistage baking can be performed using two or more heating furnaces. When two heating furnaces are used, the temperature increase rate of the first stage heating furnace is obtained from the above equation, and the temperature increase rate of the second stage heating furnace is determined by calculating T1 in the above equation with that of the preceding heating furnace. The maximum temperature, that is, the maximum temperature of the first stage furnace is obtained. The same applies when three or more heating furnaces are used.
[0022]
The electrode base material of the present invention can be a gas diffusion electrode by forming a conductive gas diffusion layer on at least one surface. Moreover, a polymer electrolyte fuel cell unit can be constituted by joining a gas diffusion electrode on at least one surface of a solid polymer electrolyte membrane having a catalyst layer on both sides on the gas diffusion layer side. Furthermore, a polymer electrolyte fuel cell can be configured by stacking a plurality of the fuel cell units.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
The porous carbon electrode substrate of the present invention will be described in detail together with its production method. In the present invention, the basis weight is first 15 to 60 g / m.2In this range, a carbon short fiber sheet in which carbon short fibers are dispersed in a random direction in a substantially two-dimensional plane is prepared.
[0024]
As the carbon fiber constituting the short carbon fiber, carbon fiber such as polyacrylonitrile (PAN), pitch, or rayon can be used. Among them, it is preferable to use PAN-based or pitch-based, particularly PAN-based carbon fibers because an electrode base material having excellent mechanical strength and appropriate flexibility can be obtained.
[0025]
Such carbon fibers are preferably selected to have an average fiber diameter (average fiber diameter of single fibers) in the range of 5 to 20 μm. When the fiber having an average fiber diameter of less than 5 μm is used, the flexibility of the obtained electrode substrate may be lowered depending on the type of carbon fiber. Moreover, when a fiber having an average fiber diameter exceeding 20 μm is used, the mechanical strength of the obtained electrode substrate may be lowered. A more preferable range of the average fiber diameter is 6 to 13 μm, and a further preferable range is 6 to 10 μm.
[0026]
The short carbon fiber is obtained by cutting the carbon fiber described above, and it is preferable that the average fiber length is within the range of 3 to 20 mm. If the average fiber length is less than 3 mm, the mechanical properties such as the maximum load against bending and the elastic modulus of the obtained electrode substrate may be lowered. Moreover, when the fiber having an average fiber length exceeding 20 mm is used, the dispersibility during papermaking described later is deteriorated, and the variation in the basis weight of the short carbon fiber in the obtained electrode base material is increased, resulting in poor quality. is there. A more preferable range of the average fiber length is 4 to 17 mm, and a further preferable range is 5 to 15 mm.
[0027]
The carbon short fiber sheet can be obtained by a dry papermaking method, but is preferable because it is easy to use a wet papermaking method using water as a papermaking medium, and a uniform sheet with good dispersibility of carbon short fibers is obtained. . A belt-like sheet can be obtained by either a dry papermaking method or a wet papermaking method. In addition, if it is necessary to improve the form retainability and handling properties, the carbon short fiber sheet is within a range of about 1 to 30% by weight, and the polyvinyl alcohol, cellulose, polyester, epoxy resin, phenol resin, acrylic You may provide organic binders, such as resin.
[0028]
In the production of the carbon short fiber sheet, the basis weight of the carbon short fiber is 15 to 60 g / m.2It is preferable to be within the range. The basis weight is 15g / m2If it is less than this, the mechanical strength of the obtained electrode substrate may be insufficient. 60g / m2If it exceeds 1, the rigidity of the obtained electrode base material becomes high, and the flexibility may be impaired. On the other hand, the basis weight of the short carbon fibers determines the porosity of the electrode substrate obtained together with the basis weight of the thermosetting resin described later. In order to achieve a preferable porosity of 70 to 90%, the basis weight of the short carbon fibers should be within the above-mentioned range. A more preferable basis weight range is 17 to 50 g / m.2And a more preferable range is 20 to 40 g / m.2It is.
[0029]
In the present invention, the obtained short carbon fiber sheet is impregnated with a thermosetting resin that is carbonized by firing and binds the short carbon fibers together to obtain a composite sheet.
[0030]
As the thermosetting resin, phenol resin, epoxy resin, furan resin, melamine resin, or the like can be used. A mixed resin containing at least one of these may be used. Among these, it is preferable to use a phenol resin having a high carbonization yield.
[0031]
It is also preferable that a composite sheet of a carbon short fiber sheet and a thermosetting resin is molded by heating and pressing before firing. By this molding, the thickness and porosity can be made more appropriate. The temperature is 100 to 250 ° C, preferably 120 to 200 ° C, more preferably 140 to 180 ° C. The applied pressure is 0.01 to 2 MPa, preferably 0.05 to 1.5 MPa, more preferably 0.1 to 1 MPa.
[0032]
By the way, in continuous baking like this invention, since a temperature increase rate is quick, metals, such as sodium and calcium, remain easily on the electrode base material obtained compared with the case of a batch type. These metal ions cause a decrease in proton conductivity of the solid polymer electrolyte. Therefore, even when a phenol resin is used, it is preferable to select one produced using a metal-free catalyst. Examples of such phenol resins include ammonia resol type phenol resins and novolac type phenol resins. The amount of sodium and calcium contained in the electrode substrate can be measured by fluorescent X-ray analysis, but the amount of sodium is 2,000 ppm or less, preferably 1,000 ppm or less, more preferably 500 ppm or less. It is good to be. The amount of calcium is 100 ppm or less, preferably 70 ppm or less, and more preferably 50 ppm or less. By doing so, the fall of the proton conductivity of a solid polymer electrolyte can be suppressed.
[0033]
For thermosetting resins, carbon black, graphite powder, expanded graphite, carbonaceous milled fibers are used in the range of about 1 to 30% by weight in order to further improve the electrical properties such as conductivity of the obtained electrode substrate. It is also preferable to mix conductive powder such as. Among these, it is preferable to use carbon black or graphite powder. Most preferred is graphite powder.
[0034]
The thermosetting resin described above has a basis weight of 13 to 150 g / m on a carbon short fiber sheet.2Impregnation to be within range. The basis weight of the thermosetting resin is related to the basis weight of the carbonized material binding the short carbon fibers in the obtained electrode base material. If the basis weight of the carbonized material is too low, the mechanical strength of the obtained electrode base material becomes low, and if it is too high, the flexibility of the obtained electrode base material is lowered, so that 5 to 60 g / m.2In order to do so, the basis weight of the thermosetting resin is 13 to 150 g / m.2So as to be within the range of The basis weight of the carbonized product is 18 to 50 g / m.2However, the basis weight of the thermosetting resin necessary to do so is 45 to 125 g / m.2Is within the range. Most preferably, the basis weight of the carbonized material is 20 to 40 g / m.2However, the basis weight of the thermosetting resin necessary to do so is 50 to 100 g / m.2Is within the range. On the other hand, the basis weight of the thermosetting resin determines the porosity of the electrode substrate obtained together with the basis weight of the carbon short fibers described above. In order to achieve a preferable porosity of 70 to 90%, the basis weight of the thermosetting resin is preferably within the above range.
[0035]
In the present invention, a strip-shaped composite sheet, that is, a strip-shaped composite sheet containing short carbon fibers and a thermosetting resin, is led into a heating furnace maintained in an inert atmosphere, and the heating furnace is continuously provided. The temperature is raised to at least 1,200 ° C. at a speed in the range of 10 to 1,000 ° C./min while being run, and baked to carbonize the thermosetting resin. As a result, a porous carbon electrode substrate is obtained in which carbon short fibers dispersed in a random direction in a substantially two-dimensional plane are bound with a carbonized material. The obtained electrode substrate is wound into a roll.
[0036]
A so-called continuous firing furnace can be used as the heating furnace, and an inert atmosphere in the furnace can be obtained by circulating an inert gas such as nitrogen gas or argon gas in the furnace.
[0037]
In firing, the temperature raising rate is set within a range of 10 to 1,000 ° C./min, and the temperature is raised to at least 1,200 ° C. at that rate. If the rate of temperature increase is less than 10 ° C./min, the productivity is significantly reduced and the production cost is increased. Further, since the thermosetting resin is gradually carbonized, appropriate cracking of the carbonized product does not occur. The electrode substrate thus obtained has extremely low flexibility while maintaining conductivity. On the other hand, when the rate of temperature rise exceeds 1000 ° C./min, the thermosetting resin is abruptly carbonized, resulting in significant cracking of the carbonized material. Mechanical properties such as properties and strength are extremely low, and there are many wrinkles and warping. A preferable temperature increase rate range is 200 to 900 ° C./min, and a more preferable range is 300 to 800 ° C./min.
[0038]
Moreover, it is preferable to make the temperature increase rate in the temperature range up to 800 ° C. lower than that in the temperature range exceeding 800 ° C. This is because the weight loss in the process of carbonizing the thermosetting resin in the temperature range up to 800 ° C is much larger than that in the temperature range above 800 ° C, but the increase in the temperature range up to 800 ° C. If the temperature rate is lower than that in the temperature range exceeding 800 ° C., it is possible to further suppress deterioration of electrical characteristics such as conductivity and mechanical characteristics such as strength of the obtained electrode base material. is there.
[0039]
The firing temperature is required to be at least 1,200 ° C., but firing is preferably performed at a maximum firing temperature of 1,500 to 3,000 ° C. When the maximum firing temperature is 1,500 ° C. or more, graphitization of the thermosetting resin proceeds, impurities in the obtained electrode base material are reduced, and electrical characteristics such as conductivity are further improved. On the other hand, when the maximum firing temperature exceeds 3,000 ° C., not only the operating cost increases, but also the heating furnace is exhausted, its maintenance cost increases, and the production cost increases. A more preferable range of the maximum firing temperature is 1,600 to 2,500 ° C, and a more preferable range is 1,700 to 2,000 ° C. The degree of graphitization can be determined from the crystal size obtained from the half-value width of the carbon (002) peak measured by wide-angle X-ray diffraction by the transmission method. The crystal size of graphite is preferably 20 angstroms or more, more preferably 30 angstroms or more, and most preferably 40 angstroms or more. The fact that the crystal size is 20 angstroms or more means that graphitization of the thermosetting resin is progressing, and the proton conductivity of the solid polymer electrolyte is lowered due to less impurities in the obtained electrode substrate. And the conductivity of the obtained electrode base material is improved.
[0040]
Thus, carbon short fibers dispersed in a random direction in a substantially two-dimensional plane are bound with carbonized material, and the maximum load in a three-point bending test is at least 0.5 N and bending is performed. The elastic modulus is in the range of 1 to 10 GPa, the thickness is in the range of 0.1 to 0.25 mm, and the electric resistance in the thickness direction is 12 mΩ · cm.2The following porous carbon electrode substrate as shown in FIG. 1 is obtained. In FIG. 1, short carbon fibers appear to be linear, and a carbonized product of a thermosetting resin adheres to them.
[0041]
The maximum load in the three-point bending test of the electrode base material of the present invention is at least 0.5N. Such an electrode base material is hard to break and has excellent handling properties. The maximum load is preferably 0.6 N or more, and more preferably 0.7 N or more.
[0042]
The flexural modulus in the three-point bending test is related to the deformability and flexibility of the electrode base material, and those having a flexural modulus of less than 1 GPa are easily deformed when an external force is applied. End up. Moreover, the thing exceeding 10 GPa has very low flexibility, it becomes difficult to wind up into a roll shape, and handling properties deteriorate. A preferable range of the flexural modulus is 3 to 9 GPa, and a more preferable range is 5 to 8 GPa.
[0043]
The thickness of the electrode substrate is in the range of 0.1 to 0.25 mm. The thickness of the electrode substrate is related to cracking and flexibility when a shearing force is applied. If the thickness is less than 0.1 mm, when the electrode is constituted and the fuel cell is constituted, it is easily cracked when receiving a shearing force from the separator. Moreover, the thing exceeding 0.25 mm will reduce a softness | flexibility largely, and winding up to a roll shape will become difficult, or handling property will deteriorate. A preferable thickness range is 0.11 to 0.22 mm, and a more preferable range is 0.12 to 0.16 mm.
[0044]
The electric resistance in the thickness direction of the electrode substrate is 12 mΩ · cm.2It is as follows. The electric resistance in the thickness direction is related to the power generation efficiency when an electrode is formed and a fuel cell is formed. And the electric resistance in the thickness direction is 12 mΩ · cm2If it exceeds, the voltage drop due to ohmic loss increases, and the power generation efficiency decreases greatly. Electrical resistance is 9mΩ · cm2Or less, preferably 6 mΩ · cm2More preferably, it is as follows.
[0045]
The electrode substrate of the present invention preferably has a porosity in the range of 70 to 90%. When the porosity is within this range, when the electrode is configured and the fuel cell is configured, evaporation of water inside the fuel cell can be further suppressed, the solid polymer electrolyte is dried and proton conductivity is reduced. While being able to suppress that it falls, gas diffusibility improves and power generation efficiency comes to improve. A more preferable range of the porosity is 72 to 88%, and a further preferable range is 75 to 85%.
[0046]
It is also preferable to apply a water repellent treatment to the surface of the electrode substrate. When the surface has water repellency, it becomes possible to suppress clogging caused by water generated in the power generation reaction when an electrode is configured and a fuel cell is configured, and a substance necessary for the reaction can be sufficiently supplied. It becomes possible to improve power generation efficiency. Such water-repellent processing is performed on the surface of the electrode base material by using tetrafluoroethylene resin (PTFE), perfluoroalkoxy resin (PFA), fluorinated ethylene propylene resin (FEP), and fluorinated ethylene tetrafluoroethylene resin (ETFE). Can be carried out by applying about 1 to 50% by weight, preferably about 5 to 40% by weight, and more preferably about 10 to 30% by weight.
[0047]
Now, the electrode base material of the present invention can be formed into a gas diffusion electrode by forming a conductive gas diffusion layer on at least one surface. When the gas diffusion layer is provided, the unevenness on the surface is covered and smoothed, so that when the electrode is configured and the fuel cell is configured, it is easy to ensure electrical contact with the catalyst layer. In addition, damage to the solid polymer electrolyte membrane can be prevented more reliably. Such a gas diffusion layer is composed of the same fluorine-based resin as used in the above-described water-repellent processing on the surface of the electrode base material and the same conductive powder mixed in the above-described thermosetting resin. This can be done by applying the mixture. The mixing amount of the conductive powder is about 10 to 50% by weight, preferably about 15 to 45% by weight, and more preferably about 20 to 40% by weight.
[0048]
Such a gas diffusion electrode can constitute a fuel cell unit by bonding it to at least one side of a solid polymer electrolyte membrane having a catalyst layer on both sides on the gas diffusion layer side. In addition, a fuel cell can be configured by stacking a plurality of such fuel cell units. The catalyst layer is composed of a layer containing a solid polymer electrolyte and catalyst-supporting carbon. As the catalyst, platinum is usually used. In a fuel cell in which a reformed gas containing carbon monoxide is supplied to the anode side, it is preferable to use platinum and ruthenium as the catalyst on the anode side. As the solid polymer electrolyte, a material made of a perfluorosulfonic acid polymer having high proton conductivity, oxidation resistance and high heat resistance is preferably used. Such a fuel cell unit and the configuration of the fuel cell itself are well known.
[0049]
Examples and Comparative Examples
Example 1:
Polyacrylonitrile-based carbon fiber “Torayca” T-300-6K (average single fiber diameter: 7 μm, number of single fibers: 6,000 fibers) manufactured by Toray Industries, Inc. is cut to a length of 12 mm, and water is used as a papermaking medium. Furthermore, it is immersed in a 10% by weight aqueous dispersion of polyvinyl alcohol and dried to give a carbon fiber weight of about 50 g / m.2A belt-like carbon short fiber sheet was obtained. The amount of polyvinyl alcohol attached corresponds to about 20% by weight.
[0050]
Next, the carbon short fiber sheet is impregnated with a phenol resin 10 wt% methanol solution so that the phenol resin is 125 parts by weight with respect to 100 parts by weight of the carbon short fiber sheet, and dried at 90 ° C. The phenol resin was cured by heating at 150 ° C. for 30 minutes under a pressure of 1.5 MPa. As the phenol resin, a mixed resin of 100 parts by weight of an alkali resol type phenol resin and the same part by weight of a novolac type phenol resin was used. The basis weight of the phenol resin adhering to the carbon short fiber sheet is about 63 g / m.2It becomes.
[0051]
Next, the composite sheet of short carbon fibers and phenol resin is introduced into a heating furnace having a maximum temperature of 2,000 ° C. maintained in a nitrogen gas atmosphere, and continuously running in the heating furnace, It was baked at a heating rate of 110 ° C./min up to 110 ° C./min. The specifications of the obtained porous carbon electrode substrate including those described above are shown below.
[0052]
Average fiber diameter of short carbon fibers: 7 μm
Average fiber length of short carbon fibers: 12 mm
Carbon short fiber basis weight: 50 g / m2
Maximum load in 3-point bending test: 1.1N
Flexural modulus in 3-point bending test: 6.6 GPa
Thickness: 0.21mm
Electrical resistance in the thickness direction: 8 mΩ · cm2
Carbonized product weight: 40 g / m2
Porosity: 80%
Graphite crystal size: 43 Å
Sodium content: 40 ppm
Calcium content: 50ppm
Example 2:
In Example 1, the pressure at which the phenol resin was cured was 0.5 MPa, and the rate of temperature increase was 380 ° C./min up to 800 ° C., and 500 ° C./min at temperatures exceeding 800 ° C. The specifications of the obtained porous carbon electrode substrate including those described above are shown below.
[0053]
Average fiber diameter of short carbon fibers: 7 μm
Average fiber length of short carbon fibers: 12 mm
Carbon short fiber basis weight: 50 g / m2
Maximum load in 3-point bending test: 0.8N
Flexural modulus in 3-point bending test: 5.0 GPa
Thickness: 0.22mm
Electrical resistance in the thickness direction: 10 mΩ · cm2
Carbonized product weight: 40 g / m2
Porosity: 80%
Graphite crystal size: 44 Å
Sodium content: 50ppm
Calcium content: 30ppm
Example 3:
In Example 1, the basis weight of the carbon fiber is 24 / m.2The carbon short fiber sheet was impregnated with a 10 wt% methanol solution of phenol resin so that the phenol resin was 125 parts by weight with respect to 100 parts by weight of the carbon short fiber sheet, and 90 ° C. After drying, the phenol resin was cured by heating at 150 ° C. for 30 minutes under a pressure of 0.5 MPa. Examples of the phenol resin include 100 parts by weight of an alkali resol type phenol resin, the same part by weight of a novolac type phenol resin, 75 parts by weight of graphite powder with respect to 100 parts by weight of these phenol resins, and 100 parts by weight of these phenol resins. A mixed resin obtained by mixing 75 parts by weight of carbon black was used. The basis weight of the phenol resin adhering to the carbon short fiber sheet is about 26 g / m.2It becomes.
[0054]
Next, the composite sheet of the short carbon fiber and the phenol resin is continuously introduced into a heating furnace having a maximum temperature of 2,000 ° C. maintained in a nitrogen gas atmosphere, and up to 800 ° C. at 380 ° C./min. At a temperature exceeding 800 ° C., it was fired at a heating rate of 500 ° C./min and wound up into a roll. The specifications of the obtained porous carbon electrode substrate including those described above are shown below.
[0055]
Average fiber diameter of short carbon fibers: 7 μm
Average fiber length of short carbon fibers: 12 mm
Carbon short fiber basis weight: 24 g / m2
Maximum load in 3-point bending test: 0.9N
Bending elastic modulus in three-point bending test: 9.0 GPa
Thickness: 0.17mm
Electrical resistance in the thickness direction: 4 mΩ · cm2
Carbonized product weight: 15 g / m2
Porosity: 80%
Graphite crystal size: 48 Angstrom
Sodium content: 20 ppm
Calcium content: 40ppm
Comparative example:
In Example 1, the pressure when curing the phenol resin was changed to 0.5 MPa. In addition, a batch-type heating furnace was used for firing, and the temperature increase rate was 1 ° C./min up to 800 ° C., and 2 ° C./min at temperatures exceeding 800 ° C. The specifications of the obtained porous carbon electrode substrate including those described above are shown below.
[0056]
Average fiber diameter of short carbon fibers: 7 μm
Average fiber length of short carbon fibers: 12 mm
Carbon short fiber basis weight: 50 g / m2
Maximum load in 3-point bending test: 1.3N
Flexural modulus in three-point bending test: 12.0 GPa
Thickness: 0.19mm
Electrical resistance in the thickness direction: 5 mΩ · cm2
Carbonized product weight: 40 g / m2
Porosity: 80%
Graphite crystal size: 49 Å
Sodium content: 10ppm
Calcium content: 40ppm
The porous carbon electrode substrates of Examples 1 to 3 have a large maximum load in a three-point bending test, a moderate bending elastic modulus, excellent handling properties, and high conductivity. On the other hand, the porous carbon electrode substrate of the comparative example has a bending elastic modulus that is too large and lacks flexibility and is inferior in handling properties.
[0057]
  The present invention provides a short carbon fiber dispersed in a random direction in a substantially two-dimensional plane.Have cracksIt is bound with carbonized material, and the maximum load in the three-point bending test is at least 0.5 N, the bending elastic modulus is in the range of 1 to 10 GPa, and the thickness is in the range of 0.1 to 0.25 mm. The electrical resistance in the thickness direction is 12 mΩ · cm2A porous carbon electrode substrate having a basis weight of 15 to 60 g / m2Carbon short fibers dispersed in a random direction in a substantially two-dimensional plane, and a basis weight of 13 to 150 g / m.2At least 1 at a speed in the range of 10 to 1000 ° C./min while continuously running a belt-like sheet containing a thermosetting resin in the range of 10 to 1,000 ° C./min while being continuously run in a heating furnace maintained in an inert atmosphere. , Heated to 200 ° C., baked to carbonize the thermosetting resin, and then wound into a roll. As is clear from the comparison between the examples and the comparative examples, the conductivity is High mechanical strength and excellent handling. Therefore, it is suitable for constituting a gas diffusion electrode of a fuel cell. Moreover, since continuous baking is performed, productivity is high and production cost can be reduced.
[Brief description of the drawings]
FIG. 1 is an electron micrograph (magnification: 60 times) of a porous carbon electrode substrate according to an embodiment of the present invention.

Claims (13)

実質的に二次元平面内において無作為な方向に分散せしめられた炭素短繊維がひび割れを有する炭素化物で結着されており、かつ、3点曲げ試験における最大荷重が少なくとも0.5Nで曲げ弾性率が1〜10GPaの範囲内にあり、厚みが0.1〜0.25mmの範囲内にあり、厚み方向の電気抵抗が12mΩ・cm以下であることを特徴とする多孔質炭素電極基材。Carbon short fibers dispersed in a random direction in a substantially two-dimensional plane are bound with carbonized material having cracks , and the bending load is elastic at a maximum load of at least 0.5 N in a three-point bending test. A porous carbon electrode substrate having a rate in the range of 1 to 10 GPa, a thickness in the range of 0.1 to 0.25 mm, and an electric resistance in the thickness direction of 12 mΩ · cm 2 or less. . 炭素短繊維は、平均繊維径が5〜20μmの範囲内にあり、平均繊維長が3〜20mmの範囲内にある、請求項1に記載の多孔質炭素電極基材。  The porous carbon electrode substrate according to claim 1, wherein the short carbon fibers have an average fiber diameter in the range of 5 to 20 µm and an average fiber length in the range of 3 to 20 mm. 炭素短繊維の目付が1750g/mの範囲内にある、請求項1または2に記載の多孔質炭素電極基材。Basis weight of short carbon fibers is in the range of 17 ~ 50 g / m 2, the porous carbon electrode substrate according to claim 1 or 2. 炭素化物の目付が1850g/mの範囲内にある、請求項1〜3のいずれかに記載の多孔質炭素電極基材。Basis weight of the carbonized material is in the range of 18 ~ 50 g / m 2, the porous carbon electrode substrate according to any one of claims 1 to 3. ナトリウムが2,000ppm以下の範囲内で含まれている、請求項1〜4のいずれかに記載の多孔質炭素電極基材。The porous carbon electrode base material in any one of Claims 1-4 in which sodium is contained within the range of 2,000 ppm or less . 炭素化物が結晶サイズ20オングストローム以上の黒鉛である、請求項1〜5のいずれかに記載の多孔質炭素電極基材。The porous carbon electrode substrate according to any one of claims 1 to 5 , wherein the carbonized material is graphite having a crystal size of 20 angstroms or more . 目付が15〜60g/mの範囲内にある、実質的に二次元平面内において無作為な方向に分散せしめられた炭素短繊維と、目付が13〜150g/mの範囲内にある熱硬化性樹脂とを含む帯状の複合シートを、不活性雰囲気に保たれた加熱炉内を連続的に走行せしめながら10〜1,000℃/分の範囲内の速度で少なくとも1,200℃まで昇温し、焼成して熱硬化性樹脂を炭素化した後、ロール状に巻き取ることを特徴とする多孔質炭素電極基材の製造方法。Basis weight in the range of 15 to 60 g / m 2, substantially heat that the short carbon fibers were dispersed in random directions in a two-dimensional plane, in a range having a basis weight of 13~150g / m 2 The belt-shaped composite sheet containing the curable resin is raised to at least 1200 ° C. at a speed in the range of 10 to 1,000 ° C./min while continuously running in a heating furnace maintained in an inert atmosphere. A method for producing a porous carbon electrode substrate, which is heated and baked to carbonize the thermosetting resin and then wound into a roll. 800℃までの温度域における昇温速度を、800℃を超える温度域におけるそれよりも低くする、請求項7に記載の多孔質炭素電極基材の製造方法。  The manufacturing method of the porous carbon electrode base material of Claim 7 which makes the temperature increase rate in the temperature range up to 800 degreeC lower than it in the temperature range over 800 degreeC. 800℃までの温度域における昇温速度を10〜800℃/分の範囲内とする、請求項8に記載の多孔質炭素電極基材の製造方法。  The manufacturing method of the porous carbon electrode base material of Claim 8 which makes the temperature increase rate in the temperature range to 800 degreeC in the range of 10-800 degree-C / min. 加熱、加圧成形した複合シートを焼成する、請求項7〜9のいずれかに記載の多孔質炭素電極基材の製造方法。  The manufacturing method of the porous carbon electrode base material in any one of Claims 7-9 which bakes the composite sheet heat-pressed and shape | molded. 請求項1〜6のいずれかに記載の多孔質炭素電極基材の少なくとも片面に、導電性を有するガス拡散層を形成してなることを特徴とするガス拡散電極。  A gas diffusion electrode comprising an electrically conductive gas diffusion layer formed on at least one surface of the porous carbon electrode substrate according to claim 1. 両面に触媒層を有する固体高分子電解質膜の少なくとも片面に、請求項11に記載のガス拡散電極をガス拡散層側において接合してなることを特徴とする燃料電池ユニット。  A fuel cell unit comprising the gas diffusion electrode according to claim 11 bonded to at least one surface of a solid polymer electrolyte membrane having catalyst layers on both sides on the gas diffusion layer side. 請求項12に記載の燃料電池ユニットの複数個を積層してなることを特徴とする燃料電池。  A fuel cell comprising a plurality of the fuel cell units according to claim 12 stacked.
JP2003079694A 2003-03-24 2003-03-24 Porous carbon electrode substrate and method for producing the same Expired - Lifetime JP4461695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003079694A JP4461695B2 (en) 2003-03-24 2003-03-24 Porous carbon electrode substrate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003079694A JP4461695B2 (en) 2003-03-24 2003-03-24 Porous carbon electrode substrate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004288489A JP2004288489A (en) 2004-10-14
JP4461695B2 true JP4461695B2 (en) 2010-05-12

Family

ID=33293736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003079694A Expired - Lifetime JP4461695B2 (en) 2003-03-24 2003-03-24 Porous carbon electrode substrate and method for producing the same

Country Status (1)

Country Link
JP (1) JP4461695B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175328A (en) * 2012-02-24 2013-09-05 Mitsubishi Rayon Co Ltd Manufacturing method of precursor sheet for porous electrode substrate and precursor sheet, and manufacturing method of porous electrode substrate and electrode substrate

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9346673B2 (en) 2004-06-23 2016-05-24 Samsung Sdi Co., Ltd. Electrode for fuel cell, membrane-electrode assembly for fuel cell comprising the same, fuel cell system comprising the same, and method for preparing the electrode
KR100578981B1 (en) 2004-09-08 2006-05-12 삼성에스디아이 주식회사 Electrode for fuel cell, fuel cell system comprising same
KR100658675B1 (en) 2004-11-26 2006-12-15 삼성에스디아이 주식회사 Electrode for fuel cell, fuel cell comprising same and method for manufacturing electrode for fuel cell
KR100669456B1 (en) * 2004-11-26 2007-01-15 삼성에스디아이 주식회사 Electrode for fuel cell, fuel cell comprising same and method for manufacturing electrode for fuel cell
JP4781016B2 (en) * 2005-06-21 2011-09-28 株式会社巴川製紙所 Manufacturing method of gas diffusion electrode for fuel cell
KR100684797B1 (en) 2005-07-29 2007-02-20 삼성에스디아이 주식회사 Electrode for fuel cell, membrane-electrode assembly comprising same and fuel cell system comprising same
GB0902312D0 (en) * 2009-02-12 2009-04-01 Johnson Matthey Plc Gas diffusion substrate
JP5398297B2 (en) * 2009-02-20 2014-01-29 三菱レイヨン株式会社 Method for producing porous carbon electrode substrate
EP2514587A4 (en) 2009-12-17 2017-01-11 Toray Industries, Inc. Layered carbon-fiber product, preform, and processes for producing these
JP2011151009A (en) * 2009-12-22 2011-08-04 Mitsubishi Rayon Co Ltd Method of manufacturing porous electrode substrate
EP2549010A4 (en) 2010-03-19 2017-08-02 Toray Industries, Inc. Method for cutting carbon fiber base
JP5497563B2 (en) * 2010-07-09 2014-05-21 三菱レイヨン株式会社 Method for producing porous carbon electrode substrate
CN103329323B (en) 2011-01-27 2018-04-27 三菱化学株式会社 Porous electrode substrate, manufacturing method thereof, precursor sheet, membrane-electrode assembly, and solid polymer fuel cell
JP6023548B2 (en) 2011-12-07 2016-11-09 フタムラ化学株式会社 Method for producing conductive continuous porous film
JP5621923B2 (en) * 2012-03-30 2014-11-12 三菱レイヨン株式会社 Porous electrode substrate, production method thereof and precursor sheet
US8518596B1 (en) * 2012-05-16 2013-08-27 GM Global Technology Operations LLC Low cost fuel cell diffusion layer configured for optimized anode water management
JP6557824B2 (en) * 2015-10-13 2019-08-14 株式会社大原興商 Carbon electrode and carbon electrode manufacturing method
KR102339301B1 (en) * 2016-07-22 2021-12-14 미쯔비시 케미컬 주식회사 Porous substrate, porous electrode, carbon fiber paper, carbon fiber paper manufacturing method, porous substrate manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6713034B2 (en) * 2000-01-27 2004-03-30 Mitsubishi Rayon Co., Ltd. Porous carbon electrode material, method for manufacturing the same, and carbon fiber paper
JP5102923B2 (en) * 2001-02-05 2012-12-19 三菱レイヨン株式会社 Method for winding resin-cured carbon-based or porous carbon-based sheet
JP4329296B2 (en) * 2001-02-28 2009-09-09 三菱化学株式会社 Conductive carbon fiber sheet and polymer electrolyte fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175328A (en) * 2012-02-24 2013-09-05 Mitsubishi Rayon Co Ltd Manufacturing method of precursor sheet for porous electrode substrate and precursor sheet, and manufacturing method of porous electrode substrate and electrode substrate

Also Published As

Publication number Publication date
JP2004288489A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
JP4461695B2 (en) Porous carbon electrode substrate and method for producing the same
JP4389535B2 (en) Porous carbon substrate, gas diffuser using the substrate, membrane-electrode assembly, and fuel cell
CN113228358B (en) Graphitized carbon substrate and gas diffusion layer using graphitized carbon substrate
US20030091891A1 (en) Catalyst composition for cell, gas diffusion layer, and fuel cell comprising the same
JP6717748B2 (en) Gas diffusion base material
EP3229299B1 (en) Carbon sheet, gas diffusion electrode base material, and fuel cell
KR20140006718A (en) Carbon substrate for gas diffusion layer, gas diffusion layer using the same, and electrode for fuel cell comprising the gas diffusion layer
WO2004085728A1 (en) Porous carbon base material, method for preparation thereof, gas-diffusing material, film-electrode jointed article, and fuel cell
JP5055682B2 (en) Porous carbon plate and method for producing the same
JP5544960B2 (en) Porous carbon sheet for polymer electrolyte fuel cell and method for producing the same
EP2396842B1 (en) Gas diffusion substrate
JP5464136B2 (en) Method for producing gas diffusion electrode substrate
KR102388815B1 (en) High density gas diffusion layer, preparing method thereof, electrode, membrane-electrode assembly, and fuel cell emplying the same
CA2434086A1 (en) Catalyst composition for cell, gas diffusion layer, and fuel cell comprising the same
CN1998100A (en) Low cost gas diffusion media for use in PEM fuel cells
CN103999276B (en) Gas diffusion substrate
JP2009234851A (en) Porous carbon sheet and its manufacturing process
JP5322213B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP4974700B2 (en) Carbon fiber sheet and manufacturing method thereof
JP3574831B2 (en) Porous carbon material for phosphoric acid type fuel cell and method for producing the same
JP5176021B6 (en) Gas diffusion substrate
JP5176021B2 (en) Gas diffusion substrate
JPH10223234A (en) Method for manufacturing porous electrode substrate for phosphoric acid type fuel cell
JP2008226579A (en) Porous carbon sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4461695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

EXPY Cancellation because of completion of term