JP4469002B2 - Structure coated with superhydrophobic nanostructure composite and its production method - Google Patents
Structure coated with superhydrophobic nanostructure composite and its production method Download PDFInfo
- Publication number
- JP4469002B2 JP4469002B2 JP2008154121A JP2008154121A JP4469002B2 JP 4469002 B2 JP4469002 B2 JP 4469002B2 JP 2008154121 A JP2008154121 A JP 2008154121A JP 2008154121 A JP2008154121 A JP 2008154121A JP 4469002 B2 JP4469002 B2 JP 4469002B2
- Authority
- JP
- Japan
- Prior art keywords
- nanostructure
- solid substrate
- polymer
- silica
- superhydrophobic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002086 nanomaterial Substances 0.000 title claims description 119
- 230000003075 superhydrophobic effect Effects 0.000 title claims description 55
- 239000002131 composite material Substances 0.000 title claims description 26
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 159
- 229920000642 polymer Polymers 0.000 claims description 135
- 239000000758 substrate Substances 0.000 claims description 108
- 239000000377 silicon dioxide Substances 0.000 claims description 80
- 239000007787 solid Substances 0.000 claims description 70
- 229920002873 Polyethylenimine Polymers 0.000 claims description 68
- 229910021645 metal ion Inorganic materials 0.000 claims description 44
- 239000002121 nanofiber Substances 0.000 claims description 35
- 125000001165 hydrophobic group Chemical group 0.000 claims description 23
- 239000002082 metal nanoparticle Substances 0.000 claims description 20
- 239000007788 liquid Substances 0.000 claims description 19
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 17
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 14
- 229910052737 gold Inorganic materials 0.000 claims description 12
- 239000010931 gold Substances 0.000 claims description 12
- 150000002500 ions Chemical class 0.000 claims description 12
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 10
- 229910000510 noble metal Inorganic materials 0.000 claims description 10
- 239000011248 coating agent Substances 0.000 claims description 8
- 238000000576 coating method Methods 0.000 claims description 8
- 229910052697 platinum Inorganic materials 0.000 claims description 8
- 229910052709 silver Inorganic materials 0.000 claims description 7
- 230000001376 precipitating effect Effects 0.000 claims description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 5
- 239000004332 silver Substances 0.000 claims description 5
- 239000000470 constituent Substances 0.000 claims description 4
- 230000002269 spontaneous effect Effects 0.000 claims description 2
- 239000000243 solution Substances 0.000 description 64
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 52
- 239000011521 glass Substances 0.000 description 41
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 37
- 239000000463 material Substances 0.000 description 26
- 239000007864 aqueous solution Substances 0.000 description 25
- 238000000034 method Methods 0.000 description 25
- 239000010410 layer Substances 0.000 description 24
- 229910052751 metal Inorganic materials 0.000 description 22
- 239000002184 metal Substances 0.000 description 22
- -1 polypropylene Polymers 0.000 description 20
- 239000002585 base Substances 0.000 description 17
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- 239000000975 dye Substances 0.000 description 13
- 239000000123 paper Substances 0.000 description 13
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical group C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 12
- 238000007654 immersion Methods 0.000 description 11
- 239000011259 mixed solution Substances 0.000 description 11
- 229910052723 transition metal Inorganic materials 0.000 description 11
- 239000000843 powder Substances 0.000 description 10
- 230000002209 hydrophobic effect Effects 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 239000002105 nanoparticle Substances 0.000 description 9
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 9
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 8
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 8
- 241000209094 Oryza Species 0.000 description 8
- 235000007164 Oryza sativa Nutrition 0.000 description 8
- 125000000217 alkyl group Chemical group 0.000 description 8
- 235000011114 ammonium hydroxide Nutrition 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 8
- 239000010949 copper Substances 0.000 description 8
- KQAHMVLQCSALSX-UHFFFAOYSA-N decyl(trimethoxy)silane Chemical compound CCCCCCCCCC[Si](OC)(OC)OC KQAHMVLQCSALSX-UHFFFAOYSA-N 0.000 description 8
- 239000000835 fiber Substances 0.000 description 8
- 235000009566 rice Nutrition 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 239000011247 coating layer Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000001878 scanning electron micrograph Methods 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 229940124024 weight reducing agent Drugs 0.000 description 7
- 239000004793 Polystyrene Substances 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- 150000001450 anions Chemical class 0.000 description 6
- 150000001768 cations Chemical class 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000003638 chemical reducing agent Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 239000012153 distilled water Substances 0.000 description 6
- 238000010304 firing Methods 0.000 description 6
- 229910010272 inorganic material Inorganic materials 0.000 description 6
- 239000011147 inorganic material Substances 0.000 description 6
- 229910044991 metal oxide Inorganic materials 0.000 description 6
- 150000004706 metal oxides Chemical class 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 229920002223 polystyrene Polymers 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 229910052763 palladium Inorganic materials 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- XLYOFNOQVPJJNP-ZSJDYOACSA-N Heavy water Chemical compound [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 4
- 229920006187 aquazol Polymers 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 238000006722 reduction reaction Methods 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 150000003624 transition metals Chemical class 0.000 description 4
- 238000005160 1H NMR spectroscopy Methods 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical group C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 240000002853 Nelumbo nucifera Species 0.000 description 3
- 235000006508 Nelumbo nucifera Nutrition 0.000 description 3
- 235000006510 Nelumbo pentapetala Nutrition 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 239000012736 aqueous medium Substances 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052746 lanthanum Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000012860 organic pigment Substances 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 239000011135 tin Substances 0.000 description 3
- NBXZNTLFQLUFES-UHFFFAOYSA-N triethoxy(propyl)silane Chemical compound CCC[Si](OCC)(OCC)OCC NBXZNTLFQLUFES-UHFFFAOYSA-N 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 229910052693 Europium Inorganic materials 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- MEWGTFVEQWELBF-UHFFFAOYSA-N [4-(chloromethyl)phenyl]-triethoxysilane Chemical compound CCO[Si](OCC)(OCC)C1=CC=C(CCl)C=C1 MEWGTFVEQWELBF-UHFFFAOYSA-N 0.000 description 2
- ZXOFHTCCTUEJQJ-UHFFFAOYSA-N [4-(chloromethyl)phenyl]-trimethoxysilane Chemical compound CO[Si](OC)(OC)C1=CC=C(CCl)C=C1 ZXOFHTCCTUEJQJ-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- JJQZDUKDJDQPMQ-UHFFFAOYSA-N dimethoxy(dimethyl)silane Chemical compound CO[Si](C)(C)OC JJQZDUKDJDQPMQ-UHFFFAOYSA-N 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- SBRXLTRZCJVAPH-UHFFFAOYSA-N ethyl(trimethoxy)silane Chemical compound CC[Si](OC)(OC)OC SBRXLTRZCJVAPH-UHFFFAOYSA-N 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 229940001447 lactate Drugs 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 229910052752 metalloid Inorganic materials 0.000 description 2
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000002059 nanofabric Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000010944 silver (metal) Substances 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 239000005361 soda-lime glass Substances 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 2
- 229910052716 thallium Inorganic materials 0.000 description 2
- DENFJSAFJTVPJR-UHFFFAOYSA-N triethoxy(ethyl)silane Chemical compound CCO[Si](CC)(OCC)OCC DENFJSAFJTVPJR-UHFFFAOYSA-N 0.000 description 2
- JCVQKRGIASEUKR-UHFFFAOYSA-N triethoxy(phenyl)silane Chemical compound CCO[Si](OCC)(OCC)C1=CC=CC=C1 JCVQKRGIASEUKR-UHFFFAOYSA-N 0.000 description 2
- ZNOCGWVLWPVKAO-UHFFFAOYSA-N trimethoxy(phenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC=C1 ZNOCGWVLWPVKAO-UHFFFAOYSA-N 0.000 description 2
- LGROXJWYRXANBB-UHFFFAOYSA-N trimethoxy(propan-2-yl)silane Chemical compound CO[Si](OC)(OC)C(C)C LGROXJWYRXANBB-UHFFFAOYSA-N 0.000 description 2
- HQYALQRYBUJWDH-UHFFFAOYSA-N trimethoxy(propyl)silane Chemical compound CCC[Si](OC)(OC)OC HQYALQRYBUJWDH-UHFFFAOYSA-N 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- JWZZKOKVBUJMES-UHFFFAOYSA-N (+-)-Isoprenaline Chemical compound CC(C)NCC(O)C1=CC=C(O)C(O)=C1 JWZZKOKVBUJMES-UHFFFAOYSA-N 0.000 description 1
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- XJOUCILNLRXRTF-UHFFFAOYSA-N 1,2,3,4,5,6-hexakis(bromomethyl)benzene Chemical compound BrCC1=C(CBr)C(CBr)=C(CBr)C(CBr)=C1CBr XJOUCILNLRXRTF-UHFFFAOYSA-N 0.000 description 1
- GUXJXWKCUUWCLX-UHFFFAOYSA-N 2-methyl-2-oxazoline Chemical compound CC1=NCCO1 GUXJXWKCUUWCLX-UHFFFAOYSA-N 0.000 description 1
- KSCAZPYHLGGNPZ-UHFFFAOYSA-N 3-chloropropyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)CCCCl KSCAZPYHLGGNPZ-UHFFFAOYSA-N 0.000 description 1
- OXYZDRAJMHGSMW-UHFFFAOYSA-N 3-chloropropyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)CCCCl OXYZDRAJMHGSMW-UHFFFAOYSA-N 0.000 description 1
- URDOJQUSEUXVRP-UHFFFAOYSA-N 3-triethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CCO[Si](OCC)(OCC)CCCOC(=O)C(C)=C URDOJQUSEUXVRP-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- PTKWYSNDTXDBIZ-UHFFFAOYSA-N 9,10-dioxoanthracene-1,2-disulfonic acid Chemical compound C1=CC=C2C(=O)C3=C(S(O)(=O)=O)C(S(=O)(=O)O)=CC=C3C(=O)C2=C1 PTKWYSNDTXDBIZ-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- 239000004251 Ammonium lactate Substances 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 240000007124 Brassica oleracea Species 0.000 description 1
- 235000003899 Brassica oleracea var acephala Nutrition 0.000 description 1
- 235000011301 Brassica oleracea var capitata Nutrition 0.000 description 1
- 235000001169 Brassica oleracea var oleracea Nutrition 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910020366 ClO 4 Inorganic materials 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- HGSOXVYDNYGQLL-UHFFFAOYSA-H F[Ti](F)(F)(F)(F)F.N Chemical compound F[Ti](F)(F)(F)(F)F.N HGSOXVYDNYGQLL-UHFFFAOYSA-H 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910003771 Gold(I) chloride Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910019595 ReF 6 Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910002808 Si–O–Si Inorganic materials 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000005456 alcohol based solvent Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 150000001343 alkyl silanes Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229940059265 ammonium lactate Drugs 0.000 description 1
- 235000019286 ammonium lactate Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 159000000032 aromatic acids Chemical class 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- RZOBLYBZQXQGFY-HSHFZTNMSA-N azanium;(2r)-2-hydroxypropanoate Chemical compound [NH4+].C[C@@H](O)C([O-])=O RZOBLYBZQXQGFY-HSHFZTNMSA-N 0.000 description 1
- 239000000987 azo dye Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- ZMAPKOCENOWQRE-UHFFFAOYSA-N diethoxy(diethyl)silane Chemical compound CCO[Si](CC)(CC)OCC ZMAPKOCENOWQRE-UHFFFAOYSA-N 0.000 description 1
- VSYLGGHSEIWGJV-UHFFFAOYSA-N diethyl(dimethoxy)silane Chemical compound CC[Si](CC)(OC)OC VSYLGGHSEIWGJV-UHFFFAOYSA-N 0.000 description 1
- YYLGKUPAFFKGRQ-UHFFFAOYSA-N dimethyldiethoxysilane Chemical compound CCO[Si](C)(C)OCC YYLGKUPAFFKGRQ-UHFFFAOYSA-N 0.000 description 1
- FPVGTPBMTFTMRT-UHFFFAOYSA-L disodium;2-amino-5-[(4-sulfonatophenyl)diazenyl]benzenesulfonate Chemical compound [Na+].[Na+].C1=C(S([O-])(=O)=O)C(N)=CC=C1N=NC1=CC=C(S([O-])(=O)=O)C=C1 FPVGTPBMTFTMRT-UHFFFAOYSA-L 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- IINNWAYUJNWZRM-UHFFFAOYSA-L erythrosin B Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C1=C2C=C(I)C(=O)C(I)=C2OC2=C(I)C([O-])=C(I)C=C21 IINNWAYUJNWZRM-UHFFFAOYSA-L 0.000 description 1
- 239000004174 erythrosine Substances 0.000 description 1
- 235000012732 erythrosine Nutrition 0.000 description 1
- 229940011411 erythrosine Drugs 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- CWAFVXWRGIEBPL-UHFFFAOYSA-N ethoxysilane Chemical compound CCO[SiH3] CWAFVXWRGIEBPL-UHFFFAOYSA-N 0.000 description 1
- WIEGKKSLPGLWRN-UHFFFAOYSA-N ethyl 3-oxobutanoate;titanium Chemical compound [Ti].CCOC(=O)CC(C)=O WIEGKKSLPGLWRN-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 235000019233 fast yellow AB Nutrition 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- FDWREHZXQUYJFJ-UHFFFAOYSA-M gold monochloride Chemical compound [Cl-].[Au+] FDWREHZXQUYJFJ-UHFFFAOYSA-M 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- CZWLNMOIEMTDJY-UHFFFAOYSA-N hexyl(trimethoxy)silane Chemical compound CCCCCC[Si](OC)(OC)OC CZWLNMOIEMTDJY-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 239000005355 lead glass Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- ARYZCSRUUPFYMY-UHFFFAOYSA-N methoxysilane Chemical compound CO[SiH3] ARYZCSRUUPFYMY-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- YZMHQCWXYHARLS-UHFFFAOYSA-N naphthalene-1,2-disulfonic acid Chemical compound C1=CC=CC2=C(S(O)(=O)=O)C(S(=O)(=O)O)=CC=C21 YZMHQCWXYHARLS-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 150000002891 organic anions Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- DCKVFVYPWDKYDN-UHFFFAOYSA-L oxygen(2-);titanium(4+);sulfate Chemical compound [O-2].[Ti+4].[O-]S([O-])(=O)=O DCKVFVYPWDKYDN-UHFFFAOYSA-L 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 229920000765 poly(2-oxazolines) Polymers 0.000 description 1
- 229920003213 poly(N-isopropyl acrylamide) Polymers 0.000 description 1
- 229920000333 poly(propyleneimine) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 239000013460 polyoxometalate Substances 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- GEMJZZWKASRCFH-UHFFFAOYSA-N pyrene-1,2,3,4-tetrasulfonic acid Chemical compound OS(=O)(=O)C1=C(S(O)(=O)=O)C(S(O)(=O)=O)=C2C(S(=O)(=O)O)=CC3=CC=CC4=CC=C1C2=C34 GEMJZZWKASRCFH-UHFFFAOYSA-N 0.000 description 1
- VPFNQPKIUJJSEN-UHFFFAOYSA-N pyrene-1,2-dicarboxylic acid Chemical compound C1=CC=C2C=CC3=C(C(O)=O)C(C(=O)O)=CC4=CC=C1C2=C43 VPFNQPKIUJJSEN-UHFFFAOYSA-N 0.000 description 1
- SGJUITZZLRFAJC-UHFFFAOYSA-N pyrene-1,2-disulfonic acid Chemical compound C1=CC=C2C=CC3=C(S(O)(=O)=O)C(S(=O)(=O)O)=CC4=CC=C1C2=C43 SGJUITZZLRFAJC-UHFFFAOYSA-N 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- HUAUNKAZQWMVFY-UHFFFAOYSA-M sodium;oxocalcium;hydroxide Chemical compound [OH-].[Na+].[Ca]=O HUAUNKAZQWMVFY-UHFFFAOYSA-M 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- YNHJECZULSZAQK-UHFFFAOYSA-N tetraphenylporphyrin Chemical compound C1=CC(C(=C2C=CC(N2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3N2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 YNHJECZULSZAQK-UHFFFAOYSA-N 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910000348 titanium sulfate Inorganic materials 0.000 description 1
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 description 1
- 239000005052 trichlorosilane Substances 0.000 description 1
- ZLGWXNBXAXOQBG-UHFFFAOYSA-N triethoxy(3,3,3-trifluoropropyl)silane Chemical compound CCO[Si](OCC)(OCC)CCC(F)(F)F ZLGWXNBXAXOQBG-UHFFFAOYSA-N 0.000 description 1
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 1
- BJDLPDPRMYAOCM-UHFFFAOYSA-N triethoxy(propan-2-yl)silane Chemical compound CCO[Si](OCC)(OCC)C(C)C BJDLPDPRMYAOCM-UHFFFAOYSA-N 0.000 description 1
- JLGNHOJUQFHYEZ-UHFFFAOYSA-N trimethoxy(3,3,3-trifluoropropyl)silane Chemical compound CO[Si](OC)(OC)CCC(F)(F)F JLGNHOJUQFHYEZ-UHFFFAOYSA-N 0.000 description 1
- HILHCDFHSDUYNX-UHFFFAOYSA-N trimethoxy(pentyl)silane Chemical compound CCCCC[Si](OC)(OC)OC HILHCDFHSDUYNX-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 125000001834 xanthenyl group Chemical group C1=CC=CC=2OC3=CC=CC=C3C(C12)* 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Laminated Bodies (AREA)
Description
本発明は、任意形状の固体基材表面がポリエチレンイミン骨格を有するポリマーとシリカとがナノメートルオーダーで複合化されてなるナノ構造体で緻密に被覆され、そのナノ構造体表面に疎水性基が結合されてなる、超疎水性ナノ構造複合体で被覆された構造物及び該構造物の製造方法に関する。また、前記ナノ構造体中のポリエチレンイミン骨格を有するポリマーを除去し、残りのシリカを主構成成分とするナノ構造体表面に疎水性基が結合されてなる、超疎水性ナノ構造複合体で被覆された構造物及び該構造物の製造方法に関する。 In the present invention, a solid substrate surface having an arbitrary shape is densely coated with a nanostructure formed by combining a polymer having a polyethyleneimine skeleton and silica in a nanometer order, and a hydrophobic group is formed on the nanostructure surface. The present invention relates to a structure coated with a superhydrophobic nanostructure composite, and a method for producing the structure. In addition, the polymer having a polyethyleneimine skeleton in the nanostructure is removed, and the surface is covered with a superhydrophobic nanostructure composite in which a hydrophobic group is bonded to the surface of the nanostructure mainly composed of silica. And a method of manufacturing the structure.
固体表面に水滴が接触した際、水滴の接触角が150°以上である場合には超疎水性と定義されている。接触角が70〜150°の範囲は、疎水性と定義される。一般に疎水性は表面張力が低い分子残基で表面が被われることで発現するものであるが、超疎水性は表面張力が低い分子残基だけで発現させることは困難である。 It is defined as superhydrophobic when a water droplet contacts with a solid surface and the contact angle of the water droplet is 150 ° or more. The range where the contact angle is 70 to 150 ° is defined as hydrophobic. In general, hydrophobicity is expressed by covering a surface with molecular residues having a low surface tension, but superhydrophobicity is difficult to express only with molecular residues having a low surface tension.
一方、自然界の生物には超疎水性を示すものが多い。例えば、蓮、稲、キャベツなどの葉は水滴を完全に弾く超撥水性を有する。例えば、蓮の葉の超撥水性は葉の表面構造と深く関係していることが知られている。即ち、ナノファイバーが表面全体に広がりながら表層を形成し、その上にナノファイバーの会合体のようなミクロンサイズの凸起物が一定距離で最表面層を作りあげており、且つこれらのナノファイバーの表面に疎水性ワックスが存在することが知られている。このことは、超疎水性を発現するには表面荒さ、即ち、ナノ次元での表面構造・形状の制御が最重要であることを示唆する。 On the other hand, many organisms in the natural world show superhydrophobicity. For example, leaves such as lotus, rice and cabbage have super water repellency that completely repels water droplets. For example, it is known that the super water repellency of a lotus leaf is closely related to the surface structure of the leaf. That is, the surface layer is formed while the nanofibers are spread over the entire surface, and micron-sized protrusions such as nanofiber aggregates are formed on the outermost surface layer at a certain distance. It is known that hydrophobic wax exists on the surface. This suggests that the control of the surface roughness, that is, the surface structure / shape in the nano-dimension is the most important for developing the superhydrophobicity.
蓮の効果とも言われる超疎水性発現の構造原理は、多くの人工蓮類似構造設計法の開発の指針となり、ナノ材料の進歩に伴い、この数年、多様な超疎水性材料が数多く開発されてきた。例えば、カーボンナノチューブを基材表面に規則的に配列させることで、接触角を170°以上に持ち上げることが報告されている(非特許文献1参照)。また、白金コートされたシリコン表面に、電気化学プロセスでポリピロールのナノファイバーを成長させ、表面接触角を170°以上にすることが報告されている(非特許文献2参照)。また、ガラス基材表面に400℃以上の温度で、酸化亜鉛のナノ結晶シーズ膜を形成させた後、その上でロッド状の酸化亜鉛のナノファイバーを無数に成長させることで、超疎水性を発現している(非特許文献3参照)。 The structural principle of superhydrophobic expression, also referred to as the effect of lotus, has become a guideline for the development of many artificial lotus-like structural design methods, and with the progress of nanomaterials, a number of various superhydrophobic materials have been developed in recent years. I came. For example, it has been reported that the contact angle is increased to 170 ° or more by regularly arranging carbon nanotubes on the surface of the substrate (see Non-Patent Document 1). It has also been reported that polypyrrole nanofibers are grown on a platinum-coated silicon surface by an electrochemical process to increase the surface contact angle to 170 ° or more (see Non-Patent Document 2). In addition, after forming a zinc oxide nanocrystal seeds film on the surface of the glass substrate at a temperature of 400 ° C. or higher, an infinite number of rod-shaped zinc oxide nanofibers are grown on the glass substrate surface, thereby increasing superhydrophobicity. It is expressed (see Non-Patent Document 3).
単純な方法としては、例えば、ポリプロピレンの溶液に一定の貧溶剤を加え、それを基材表面にキャストし、温度調整することにより、ポリプロピレンのナノ粒子からなるネットワーク構造を形成させ、それにより接触角を160°まで上げたことが報告されている(非特許文献4)。また、ケイ素、ホウ素、ナトリウムの酸化物からなるガラスに相分離構造を持たせ、それをさらに化学処理でエッチングすることにより、その表面に凹凸構造を誘導した後、最後に、表面にフッ素化合物を反応させることで超疎水性を発現できる(特許文献1参照。)。さらに、ポリアリールアミンとポリアクリル酸との積層膜を作製したのち、その表面を化学法で処理することで表面ポーラス構造を誘導し、その上にシリカナノ粒子を固定した後、最後にフッ素アルキル残基を有するシランカップリング剤で疎水化させることで、超疎水性界表面を構築することも知られている(特許文献2参照)。 As a simple method, for example, a certain poor solvent is added to a solution of polypropylene, and it is cast on the surface of a substrate, and the temperature is adjusted, thereby forming a network structure composed of polypropylene nanoparticles, and thereby a contact angle. Has been reported to be increased to 160 ° (Non-Patent Document 4). In addition, a glass composed of oxides of silicon, boron, and sodium has a phase separation structure, and it is further etched by chemical treatment to induce a concavo-convex structure on the surface, and finally a fluorine compound is applied to the surface. Superhydrophobicity can be expressed by reacting (see Patent Document 1). Furthermore, after producing a laminated film of polyarylamine and polyacrylic acid, the surface is treated with a chemical method to induce a surface porous structure, and silica nanoparticles are fixed thereon, and finally a fluorine alkyl residue is finally obtained. It is also known to construct a superhydrophobic boundary surface by hydrophobizing with a silane coupling agent having a group (see Patent Document 2).
上記で提案されている方法の中で、無機材質をベースにする超疎水性表面の場合、ナノ構造を備える表面荒さを作製する工程は煩雑であり、コストも高い。また、有機ポリマーをベースにする超疎水性表面の場合、コストは低いが、得られた超疎水性表面の耐溶剤性、耐腐食性が低く、実用上の問題がある。 Among the methods proposed above, in the case of a superhydrophobic surface based on an inorganic material, the process of producing the surface roughness provided with the nanostructure is complicated and expensive. Further, in the case of a superhydrophobic surface based on an organic polymer, the cost is low, but the solvent resistance and corrosion resistance of the obtained superhydrophobic surface are low, which causes a practical problem.
ファイバー状のナノ構造体が基材表面を緻密に覆いながら、マイクロサイズのドメインを全面にて点在させるようなナノ構造複合体表面を構築することは、超疎水性発現の前提条件であるが、どのような材料、そしてどのような方法を経てナノ構造複合体表面を構築するかについて、まだ多くの探索が必要となる。特に、一時的に接触角だけが高く、超疎水性を示すものでも、水に長時間浸漬してしまうと超疎水性は消えてしまうことも多い。従って、水に浸けたままでも半永久または永久的な超疎水性(超撥水性)を示す材料開発は挑戦的な課題である。 While it is a prerequisite for the development of superhydrophobicity, it is necessary to construct a nanostructure composite surface in which micro-sized domains are scattered over the entire surface while the fiber-like nanostructure covers the substrate surface densely. There is still a lot of exploration about what materials, and what methods are used to build nanostructured composite surfaces. In particular, even if the contact angle is temporarily high and exhibits superhydrophobicity, the superhydrophobicity often disappears when immersed in water for a long time. Therefore, the development of materials that exhibit semipermanent or permanent superhydrophobicity (superwater repellency) even when immersed in water is a challenging task.
上記実情を鑑み、本発明が解決しようとする課題は、任意形状の固体基材上に、半永久的な超疎水性を発現させた構造物、およびその簡便且つ効率的な製造方法を提供することにある。 In view of the above circumstances, the problem to be solved by the present invention is to provide a structure in which semipermanent superhydrophobicity is expressed on a solid substrate of an arbitrary shape, and a simple and efficient manufacturing method thereof. It is in.
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、有機物であるポリマーと無機物であるシリカとがナノメートルオーダーで複合化されてなるナノ構造体が基材表面全体に広がり、それが基材を完全に被覆するほどの皮膜として基材上に複雑構造のナノ界面を形成している構造物を得た後、その表面を疎水化処理することにより、超疎水性表面を有する構造物が得られることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a nanostructure formed by combining an organic polymer and an inorganic silica in nanometer order spreads over the entire surface of the substrate. After obtaining a structure that forms a nanostructure with a complex structure on the substrate as a film that completely covers the substrate, the surface is hydrophobized to form a superhydrophobic surface. The present inventors have found that a structure having the same can be obtained, and have completed the present invention.
即ち、本発明は、固体基材の表面が、超疎水性ナノ構造複合体で被覆されてなる構造物であって、該超疎水性ナノ構造複合体が、ポリエチレンイミン骨格を有するポリマーとシリカとを含有するナノ構造体、又は該ナノ構造体中のポリマーを焼成によって除去した構造体中の該シリカに疎水性基が結合してなる複合体であることを特徴とする、超疎水性表面を有する構造物とその製造方法を提供するものである。 That is, the present invention is a structure in which the surface of a solid substrate is coated with a superhydrophobic nanostructure composite, and the superhydrophobic nanostructure composite comprises a polymer having a polyethyleneimine skeleton and silica. A super-hydrophobic surface, characterized in that the structure is a composite comprising a structure in which a hydrophobic group is bonded to the silica in a structure obtained by removing the polymer in the nano-structure by baking. The structure which has it and its manufacturing method are provided.
本発明の超疎水性表面を有する構造物は、任意形状の金属、ガラス、無機金属酸化物、プラスチック、繊維、紙などの固体基材表面に、超疎水性ナノ構造複合体が形成されているものであり、該構造物自体は、複雑な平面、曲面、棒状、管状等のいずれの形態であってもよく、また、管内、管外、容器内、容器外のいずれにも限定的または包括的に超疎水性を発現させることができる。また、被覆する超疎水性ナノ構造複合体は、ポリエチレンイミン骨格を有するポリマー溶液と固体基材との接触によって該基材上に形成されるポリマー層をテンプレートとすることから、固体基材表面の一部のみを選択して被覆することも容易である。また、固体基材表面の超疎水性ナノ構造複合体は基本的にシリカであるため、耐溶剤性、耐腐食性にも強いコーティング材に展開することができる。更には、該複合体中に、金属イオン、金属ナノ粒子などの様々な機能性パーツを組み込むことも容易である。従って、超疎水性に様々な付加機能を発現させて利用する様々なデバイスへ利用することができる。具体的には、超疎水性コーティング、超疎水性発色材料、超疎水性抗菌塗料、触媒付与型マイクロリアクター、酵素固定装置、物質の分離精製装置、血液循環装置、マイクロ流路、溶液輸送/移動装置、自己洗浄型容器、印刷用ノズル、チップ、センサー、各種マイクロ電池構築など、産業上幅広い分野への応用展開が可能である。 In the structure having a superhydrophobic surface of the present invention, a superhydrophobic nanostructure composite is formed on the surface of a solid substrate such as metal, glass, inorganic metal oxide, plastic, fiber, paper, etc. of any shape. The structure itself may be in any form such as a complex plane, curved surface, rod shape, tubular shape, etc., and is limited or comprehensive in any of the inside, outside the tube, inside the container, and outside the container. In particular, superhydrophobicity can be expressed. In addition, since the superhydrophobic nanostructure composite to be coated uses a polymer layer formed on the substrate by contact between the polymer solution having a polyethyleneimine skeleton and the solid substrate as a template, It is also easy to select and coat only a part. Further, since the superhydrophobic nanostructure composite on the surface of the solid substrate is basically silica, it can be developed into a coating material that is also resistant to solvents and corrosion. Furthermore, it is easy to incorporate various functional parts such as metal ions and metal nanoparticles into the composite. Therefore, it can be used for various devices that utilize various functions added to the superhydrophobicity. Specifically, super-hydrophobic coating, super-hydrophobic coloring material, super-hydrophobic antibacterial paint, catalyzed microreactor, enzyme immobilization device, substance separation and purification device, blood circulation device, microchannel, solution transport / transfer It can be applied to a wide range of industrial fields such as equipment, self-cleaning containers, printing nozzles, chips, sensors, and various micro battery construction.
本発明者らは既に、直鎖状ポリエチレンイミン骨格を有するポリマーが水性媒体中で自己組織化的に成長する結晶性会合体を反応場にし、溶液中でその会合体表面にてアルコキシシランを加水分解的に縮合させ、シリカを析出させることで得られる、ナノファイバーを基本ユニットにした複雑形状のシリカ含有ナノ構造体を提供した(特開2005−264421号公報、特開2005−336440号公報、特開2006−063097号公報、特開2007−051056号公報参照。)。 The present inventors have already used a crystalline aggregate in which a polymer having a linear polyethyleneimine skeleton grows in an aqueous medium in a self-organizing manner as a reaction field, and hydrolyzes alkoxysilane on the surface of the aggregate in a solution. Provided is a silica-containing nanostructure having a complicated shape having a nanofiber as a basic unit, which is obtained by decomposing condensation and precipitating silica (Japanese Patent Laid-Open No. 2005-264421, Japanese Patent Laid-Open No. 2005-336440, (See JP 2006-063097 A and JP 2007-051056 A.)
この技術の基本原理は、溶液中でポリエチレンイミン骨格含有ポリマーの結晶性会合体を自発的に生長させることであり、一旦結晶性会合体ができたら、後は単に該結晶性会合体の分散液中にシリカソースを混合して、結晶性会合体表面上だけでのシリカの析出を自然に任せることになる(いわゆる、ゾルゲル反応)。この手法で得られるシリカ含有ナノ構造体は基本的にナノファイバーを構造形成のユニットとするものであり、それらユニットの空間的配列によって全体の構造体の形状を誘導するため、ナノレベルの隙間が多く、表面積が大きい。これはちょうどナノレベルで荒い表面構造形成を満たす効率的なプロセスになるものと考えられる。 The basic principle of this technique is to spontaneously grow a crystalline aggregate of a polymer containing a polyethyleneimine skeleton in a solution. Once a crystalline aggregate is formed, the dispersion of the crystalline aggregate is then simply used. A silica source is mixed therein, and the deposition of silica is allowed to occur naturally only on the surface of the crystalline aggregate (so-called sol-gel reaction). The silica-containing nanostructures obtained by this method basically have nanofibers as units for structure formation, and the spatial arrangement of these units induces the shape of the entire structure, so that nano-level gaps are not generated. Many have a large surface area. This is considered to be an efficient process that satisfies the rough surface structure formation at the nano level.
上記で提案した溶液中でのポリエチレンイミン骨格含有ポリマーの結晶性会合体の生長を、任意形状の固体基材の表面にて進行させ、基材上にポリマーの結晶性会合体の層が形成できれば、その固体基材上にシリカとポリマーとが複合化された新しい表面を有するナノ構造物を構築することができると考えられる。この作業モデルをさらに拡張すれば、固体基材上に形成させる層がポリマーの結晶性会合体ではなく、ポリエチレンイミン骨格含有ポリマーの非結晶性の分子会合体からなる安定な層であっても、同様にシリカとポリマーとが複合化された新しいナノ表面を構築することができると考えられる。 If the growth of the crystalline aggregate of the polyethyleneimine skeleton-containing polymer in the solution proposed above proceeds on the surface of a solid substrate of any shape, and a layer of the crystalline aggregate of the polymer can be formed on the substrate It is considered that a nanostructure having a new surface in which silica and a polymer are combined on the solid substrate can be constructed. If this working model is further expanded, even if the layer formed on the solid substrate is not a crystalline aggregate of a polymer, but a stable layer consisting of an amorphous molecular aggregate of a polyethyleneimine skeleton-containing polymer, Similarly, it is thought that a new nano surface in which silica and a polymer are combined can be constructed.
従って、上記課題解決の根本的な問題は、如何に固体基材の表面にポリエチレンイミン骨格含有ポリマーの自己組織化会合体の安定な層(皮膜)を形成させるかだけになる。ポリエチレンイミン骨格含有ポリマーの重要な特徴は、塩基性であること、そして極めて高い極性を有することである。従って、ポリエチレンイミン骨格含有ポリマーは金属基材、ガラス基材、無機金属酸化物基材、極性表面を有するプラスチック基材、セルロース基材など多くの電子受容体基材類や、ルイス酸性基材類、酸性基材類、極性基材類、水素結合性基材類等の様々な表面と強い相互作用力(吸着力)を有する。本発明者らは、ポリエチレンイミン骨格含有ポリマーのこの特徴を生かし、任意形状の固体基材表面と一定濃度、一定温度のポリエチレンイミン骨格含有ポリマーとの分子溶液と接触(浸漬)させることにより、溶液中の該ポリマーが固体基材表面に吸引され、結果的には該ポリマーの分子会合体からなる層が、固体基材表面の接触させた部分の全面に渡り容易に形成できることを見出した。更にこのようにして得られたポリマー層で被覆された固体基材をシリカソース液中に浸漬させることで、固体基材を複雑な構造を有するシリカとポリマーとが複合してなるナノ構造体で被覆させることができ、そのナノ構造体のシリカの部分に疎水性基を有するシラン類を化学結合させることにより、固体基材上に超疎水性を発現する表面を構築した。 Therefore, the fundamental problem in solving the above problem is only how to form a stable layer (film) of the self-assembled aggregate of the polyethyleneimine skeleton-containing polymer on the surface of the solid substrate. An important feature of a polymer containing a polyethyleneimine skeleton is that it is basic and has a very high polarity. Accordingly, the polyethyleneimine skeleton-containing polymer is a metal substrate, a glass substrate, an inorganic metal oxide substrate, a plastic substrate having a polar surface, a cellulose substrate, a lot of electron acceptor substrates, and Lewis acidic substrates. It has a strong interaction force (adsorption force) with various surfaces such as acidic substrates, polar substrates and hydrogen bonding substrates. Taking advantage of this feature of the polyethyleneimine skeleton-containing polymer, the present inventors contacted (immersed) a molecular substrate solution of a solid substrate surface of an arbitrary shape and a polyethyleneimine skeleton-containing polymer having a constant concentration and a constant temperature to obtain a solution. It was found that the polymer therein was attracted to the surface of the solid substrate, and as a result, a layer composed of molecular aggregates of the polymer could be easily formed over the entire contacted portion of the surface of the solid substrate. Furthermore, the solid base material coated with the polymer layer thus obtained is immersed in a silica source solution, so that the solid base material is a nanostructure composed of a complex silica and polymer. A surface that exhibits superhydrophobicity on a solid substrate was constructed by chemically bonding silanes having hydrophobic groups to the silica portion of the nanostructure.
なお、本発明においてナノ構造体とは、ナノメートルオーダーの繰り返し単位(ユニット)からなる一定の形状を有する構造体のことを言うものであり、詳しくは、ナノ構造体(y1)は上記したポリマーとシリカとを主構成成分とするユニットからなる構造体であり、ナノ構造体(y2)はシリカを主構成成分とするユニットからなる構造体である。このナノ構造体(y1)、(y2)を疎水化処理することによって得られるものが、それぞれ超疎水性ナノ構造複合体(Z1)、(Z2)である。 In the present invention, the nanostructure means a structure having a certain shape composed of repeating units (units) on the order of nanometers. Specifically, the nanostructure (y1) is the polymer described above. The nanostructure (y2) is a structure composed of units containing silica as a main constituent. Superhydrophobic nanostructure composites (Z1) and (Z2) are obtained by hydrophobizing the nanostructures (y1) and (y2), respectively.
本発明の超疎水性表面を有する構造物(以下構造物と略す)は、固体基材(X)の表面がポリエチレンイミン骨格(a)を有するポリマー(A)とシリカ(B)とを含有するナノ構造材(y1)、または該ナノ構造体(y1)中のポリマー(A)を焼成により除去して得られるナノ構造材(y2)によって被覆され、その構造体表面のシリカ部分に疎水性基が結合したものである。さらに、本発明の構造物は、該ナノ構造体(y1)中に、金属イオン、金属ナノ粒子を含有させることもできる。従って、本発明の構造物は、固体基材、ポリマー、シリカ、シリカに結合した疎水性基、金属イオン、金属ナノ粒子等により構成される。ここでいう金属ナノ粒子は後述するように、金属微粒子がナノメートルオーダーの大きさで存在しているものを示すものであって、必ずしも完全な球形である必要はないが、便宜上「粒子」と記載する。以下、本発明を詳細に述べる。 The structure having a superhydrophobic surface of the present invention (hereinafter abbreviated as structure) contains a polymer (A) having a polyethyleneimine skeleton (a) on the surface of a solid substrate (X) and silica (B). The nanostructure material (y1) or the nanostructure material (y2) obtained by removing the polymer (A) in the nanostructure (y1) by firing is coated with a hydrophobic group on the silica portion of the structure surface. Are combined. Furthermore, the structure of this invention can also contain a metal ion and a metal nanoparticle in this nanostructure (y1). Therefore, the structure of the present invention is composed of a solid substrate, a polymer, silica, a hydrophobic group bonded to silica, metal ions, metal nanoparticles, and the like. As described later, the metal nanoparticles referred to here indicate that the metal fine particles are present in a size of the order of nanometers, and need not be perfectly spherical, but for convenience, the term “particle” Describe. The present invention will be described in detail below.
[固体基材]
本発明において使用する固体基材(X)としては、後述するポリエチレンイミン骨格(a)を有するポリマー(A)が吸着できるものであれば特に限定されず、例えば、ガラス、金属、金属酸化物などの無機材料系基材、樹脂(プラスチック)、セルロース、繊維、紙などの有機材料系基材等、更にはガラス、金属、金属酸化物表面をエッチング処理した基材、樹脂基材の表面をプラズマ処理、オゾン処理した基材などを使用できる。
[Solid substrate]
The solid substrate (X) used in the present invention is not particularly limited as long as the polymer (A) having a polyethyleneimine skeleton (a) described later can be adsorbed. For example, glass, metal, metal oxide, etc. Inorganic material base material, organic material base material such as resin (plastic), cellulose, fiber, paper, etc. Furthermore, glass, metal, metal oxide surface, etched base material, surface of resin base material Treated and ozone treated substrates can be used.
無機材料系ガラス基材としては、特に限定することではないが、例えば、耐熱ガラス(ホウケイ酸ガラス)、ソーダライムガラス、クリスタルガラス、鉛や砒素を含まない光学ガラスなどのガラスを好適に用いることができる。ガラス基材の使用においては、必要に応じ、表面を水酸化ナトリウムなどのアルカリ溶液でエッチングして用いることができる。 Although it does not specifically limit as an inorganic material type glass substrate, For example, glass, such as heat resistant glass (borosilicate glass), soda-lime glass, crystal glass, optical glass which does not contain lead and arsenic, is used suitably. Can do. In the use of a glass substrate, the surface can be used by etching with an alkaline solution such as sodium hydroxide, if necessary.
無機材料系金属基材としては特に限定しないが、例えば、鉄、銅、アルミ、ステンレス、亜鉛、銀、金、白金、またはこれらの合金などからなる基材を好適に用いることができる。 Although it does not specifically limit as an inorganic material type metal base material, For example, the base material which consists of iron, copper, aluminum, stainless steel, zinc, silver, gold | metal | money, platinum, or these alloys etc. can be used suitably.
無機材料系金属酸化物基材としては、特に限定することではないが、例えば、ITO(インジウムティンオキシド)、酸化スズ、酸化銅、酸化チタン、酸化亜鉛、アルミナなどを好適に用いることができる。 Although it does not specifically limit as an inorganic material type metal oxide base material, For example, ITO (indium tin oxide), a tin oxide, copper oxide, a titanium oxide, a zinc oxide, an alumina etc. can be used suitably.
樹脂基材としては、例えば、ポリエチレン、ポリプロピレン、ポリカボナート、ポリエステル、ポリスチレン、ポリメタクリレート、ポリ塩化ビニール、ポリエチレンアルコール、ポリイミド、ポリアミド、ポリウレタン、エポキシ樹脂、セルロースなどの各種ポリマーの加工品を用いることができる。各種ポリマーの使用においては、必要に応じ、表面をプラズマまたはオゾン処理したものであっても、硫酸またはアルカリ等で処理したものであっても良い。 As the resin base material, for example, processed products of various polymers such as polyethylene, polypropylene, polycarbonate, polyester, polystyrene, polymethacrylate, polyvinyl chloride, polyethylene alcohol, polyimide, polyamide, polyurethane, epoxy resin, and cellulose can be used. it can. In the use of various polymers, the surface may be treated with plasma or ozone, or treated with sulfuric acid or alkali, if necessary.
固体基材(X)の形状については、特に限定されるものではなく、平面状若しくは曲面状板、またはフィルムでも良い。特に、複雑形状加工品の管状チューブ、管状チューブのらせん体、マイクロチューブ;また、任意形状の(例えば、球形、四角形、三角形、円柱形等)容器;また、任意形状の(例えば、円柱形、四角形、三角形等)棒または繊維状態の固体基材でも好適に用いることができる。 The shape of the solid substrate (X) is not particularly limited, and may be a flat or curved plate or a film. In particular, a tubular tube, a spiral tube of a tubular tube, a microtube; a container having an arbitrary shape (for example, a spherical shape, a square shape, a triangular shape, a cylindrical shape); an arbitrary shape (for example, a cylindrical shape, (Rectangle, triangle, etc.) A rod or a solid substrate in a fiber state can also be suitably used.
後述する、本発明の構造物の製造方法において、焼成工程によりポリマー(A)を除去する場合には、焼成温度において変質しない固体基材を用いる必要があることは勿論である。 In the method for producing the structure of the present invention, which will be described later, when the polymer (A) is removed by the firing step, it is needless to say that a solid substrate that does not deteriorate at the firing temperature must be used.
[ポリエチレンイミン骨格(a)を有するポリマー(A)]
本発明において、固体基材(X)上に形成するポリマー層には、ポリエチレンイミン骨格(a)を有するポリマー(A)を用いることを必須とする。該ポリエチレンイミン骨格(a)を有するポリマー(A)としては、線状、星状、櫛状構造の単独重合体であっても、他の繰り返し単位を有する共重合体であっても良い。共重合体の場合には、該ポリマー(A)中のポリエチレンイミン骨格(a)のモル比が20%以上であることが、安定なポリマー層を形成できる点から好ましく、該ポリエチレンイミン骨格(a)の繰り返し単位数が10以上である、ブロック共重合体であることがより好ましい。
[Polymer having Polyethyleneimine Skeleton (a) (A)]
In the present invention, it is essential to use a polymer (A) having a polyethyleneimine skeleton (a) for the polymer layer formed on the solid substrate (X). The polymer (A) having the polyethyleneimine skeleton (a) may be a linear, star-shaped or comb-shaped homopolymer, or a copolymer having other repeating units. In the case of a copolymer, the molar ratio of the polyethyleneimine skeleton (a) in the polymer (A) is preferably 20% or more from the viewpoint of forming a stable polymer layer. It is more preferable that it is a block copolymer having 10 or more repeating units.
前記ポリエチレンイミン骨格(a)としては、直鎖状または分岐状のいずれでも良いが、結晶性会合体形成能が高い直鎖状ポリエチレンイミン骨格であることがより好ましい。また単独重合体であっても共重合体であっても、ポリエチレンイミン骨格部分に相当する分子量が500〜1,000,000の範囲であると、安定なポリマー層を基材(X)上に形成することができる点から好ましい。これらポリエチレンイミン骨格(a)を有するポリマー(A)は市販品または本発明者らがすでに開示した合成法(前記特許文献参照。)により得ることができる。 The polyethyleneimine skeleton (a) may be either linear or branched, but is more preferably a linear polyethyleneimine skeleton having a high ability to form a crystalline aggregate. Whether the polymer is a homopolymer or a copolymer, a stable polymer layer is formed on the substrate (X) when the molecular weight corresponding to the polyethyleneimine skeleton is in the range of 500 to 1,000,000. It is preferable because it can be formed. The polymer (A) having the polyethyleneimine skeleton (a) can be obtained from a commercially available product or a synthesis method already disclosed by the present inventors (see the above-mentioned patent document).
後述するように、前記ポリマー(A)は様々な溶液に溶解して用いることができるが、この時、ポリエチレンイミン骨格(a)を有するポリマー(A)以外に、該ポリマー(A)と相溶するその他のポリマーと混合して用いることができる。その他のポリマーとしては、例えば、ポリエチレングリコール、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド、ポリ(N−イソプロピルアクリルアミド)、ポリヒドロキシエチルアクリレート、ポリメチルオキサゾリン、ポリエチルオキサゾリン、ポリプロピレンイミンなどを挙げることができる。これらのその他のポリマーを用いることにより、得られる構造物中の表面にあるナノ構造体の厚み、ひいては超疎水性ナノ構造複合体の厚みを容易に調整することが可能となる。 As will be described later, the polymer (A) can be used by dissolving in various solutions. At this time, in addition to the polymer (A) having the polyethyleneimine skeleton (a), the polymer (A) is compatible with the polymer (A). It can be used by mixing with other polymers. Examples of the other polymer include polyethylene glycol, polyvinyl alcohol, polyvinyl pyrrolidone, polyacrylamide, poly (N-isopropylacrylamide), polyhydroxyethyl acrylate, polymethyloxazoline, polyethyloxazoline, and polypropyleneimine. By using these other polymers, it is possible to easily adjust the thickness of the nanostructure on the surface of the resulting structure, and thus the thickness of the superhydrophobic nanostructure composite.
[シリカ(B)]
本発明で得られる構造物の基材表面は、ポリマー(A)とシリカ(B)とを主構成成分とするナノ構造体(y1)、またはシリカ(B)を主構成成分とするナノ構造体(y2)で被覆されてなるものであることが大きな特徴である。シリカ(B)形成に必要なシリカソースとしては、例えば、アルコキシシラン類、水ガラス、ヘキサフルオロシリコンアンモニウム等を用いることができる。
[Silica (B)]
The surface of the base material of the structure obtained by the present invention is a nanostructure (y1) containing polymer (A) and silica (B) as main constituents, or a nanostructure containing silica (B) as main constituents. The main feature is that it is coated with (y2). As a silica source required for forming silica (B), for example, alkoxysilanes, water glass, hexafluorosilicon ammonium and the like can be used.
アルコキシシラン類としては、テトラメトキシシラン、メトキシシラン縮合体のオリゴマー、テトラエトキシシラン、エトキシシラン縮合体のオリゴマーを好適に用いることができる。さらに、アルキル置換アルコキシシラン類の、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、iso−プロピルトリメトキシシラン、iso−プロピルトリエトキシシラン等、更に、3−クロロプロピルトリメトキシシラン、3−クロロプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトトリエトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、3,3,3−トリフルオロプロピルトリエトキシシラン、3−メタクリルオキシプロピルトリメトキシシラン、3−メタクリルオキシプロピルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、p−クロロメチルフェニルトリメトキシシラン、p−クロロメチルフェニルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン等を、単一で、又は混合して用いることができる。 As the alkoxysilanes, tetramethoxysilane, oligomers of methoxysilane condensates, tetraethoxysilane, oligomers of ethoxysilane condensates can be suitably used. Further, alkyl-substituted alkoxysilanes such as methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, iso-propyltrimethoxysilane, iso-propyltriethoxysilane, etc., 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycid Xylpropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptotriethoxysilane, 3,3 -Trifluoropropyltrimethoxysilane, 3,3,3-trifluoropropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, p -Chloromethylphenyltrimethoxysilane, p-chloromethylphenyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane and the like can be used alone or in combination.
また、上記シリカソースに、他のアルコキシ金属化合物を混合して用いることもできる。例えば、テトラブトキシチタン、テトライソプロポキシチタン、または水性媒体中安定なチタニウムビス(アンモニウムラクテート)ジヒドロキシド水溶液、チタニウムビス(ラクテート)の水溶液、チタニウムビス(ラクテート)のプロパノール/水混合液、チタニウム(エチルアセトアセテート)ジイソプロポオキシド、硫酸チタン、ヘキサフルオロチタンアンモニウム等を用いることができる。 In addition, other silica metal compounds may be mixed with the silica source. For example, tetrabutoxytitanium, tetraisopropoxytitanium, or an aqueous solution of titanium bis (ammonium lactate) dihydroxide stable in an aqueous medium, an aqueous solution of titanium bis (lactate), a propanol / water mixture of titanium bis (lactate), titanium (ethyl) Acetoacetate) diisopropoxide, titanium sulfate, hexafluorotitanium ammonium and the like can be used.
[金属イオン]
本発明の構造物における基材表面は、前述のナノ構造体で被覆されている。このナノ構造体(y1)中には金属イオンを安定に取り込むことができ、従って、金属イオンを含有する超疎水性ナノ構造複合体で被覆された構造物を得ることができる。
[Metal ions]
The surface of the base material in the structure of the present invention is covered with the nanostructure described above. In this nanostructure (y1), metal ions can be stably incorporated, and thus a structure coated with a superhydrophobic nanostructure composite containing metal ions can be obtained.
前記ポリマー(A)中のポリエチレンイミン骨格(a)は金属イオンに対して強い配位能力を有するため、金属イオンは該骨格中のエチレンイミン単位と配位結合して金属イオン錯体を形成する。該金属イオン錯体は金属イオンがエチレンイミン単位に配位されることにより得られるものであり、イオン結合等の過程と異なり、該金属イオンがカチオンでも、またはアニオンでも、エチレンイミン単位への配位により錯体を形成することができる。従って、金属イオンの金属種は、ポリマー(A)中のエチレンイミン単位と配位結合できるものであれば制限されず、アルカリ金属、アルカリ土類金属、遷移金属、半金属、ランタン系金属、ポリオキソメタレート類の金属化合物等のいずれでも良く、単独種であっても複数種が混合されていても良い。 Since the polyethyleneimine skeleton (a) in the polymer (A) has a strong coordination ability with respect to metal ions, the metal ions coordinate with the ethyleneimine units in the skeleton to form a metal ion complex. The metal ion complex is obtained by coordination of a metal ion to an ethyleneimine unit. Unlike a process such as ionic bonding, the metal ion is coordinated to an ethyleneimine unit regardless of whether the metal ion is a cation or an anion. Can form a complex. Accordingly, the metal species of the metal ion is not limited as long as it can coordinate with the ethyleneimine unit in the polymer (A), and is not limited to alkali metal, alkaline earth metal, transition metal, metalloid, lanthanum metal, poly Any of metal compounds such as oxometalates may be used, and they may be used alone or in combination.
上記アルカリ金属としては、Li,Na,K,Cs等が挙げられ、該アルカリ金属のイオンの対アニオンとしては、Cl,Br,I,NO3,SO4,PO4,ClO4,PF6,BF4,F3CSO3などが挙げられる。 Examples of the alkali metal include Li, Na, K, Cs and the like, and examples of counter ions of the alkali metal ions include Cl, Br, I, NO 3 , SO 4 , PO 4 , ClO 4 , PF 6 , Examples thereof include BF 4 and F 3 CSO 3 .
アルカリ土類金属としては、Mg,Ba,Ca等が挙げられる。 Examples of the alkaline earth metal include Mg, Ba, and Ca.
遷移金属系の金属イオンとしては、それが遷移金属カチオン(Mn+)であっても、または遷移金属が酸素との結合からなる酸根アニオン(MOx n−)、またはハロゲン類結合からなるアニオン(MLx n−)であっても、好適に用いることができる。なお、本明細書において遷移金属とは、周期表第3族のSc,Y、及び、第4〜12族で第4〜6周期にある遷移金属元素を指す。 As a transition metal-based metal ion, even if it is a transition metal cation (M n + ), an acid group anion (MO x n− ) composed of a bond with oxygen, or an anion composed of a halogen bond ( ML x n− ) can also be suitably used. In the present specification, the transition metal refers to Sc, Y in Group 3 of the periodic table, and transition metal elements in Groups 4 to 12 in the 4th to 6th periods.
遷移金属カチオンとしては、各種の遷移金属のカチオン(Mn+)、例えば、Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Y,Zr,Mo,Ru,Rh,Pd,Ag,Cd,W,Os,Ir,Pt,Au,Hgの一価、二価、三価または四価のカチオンなどが挙げられる。これら金属カチオンの対アニオンは、Cl,NO3,SO4、またはポリオキソメタレート類アニオン、あるいはカルボン酸類の有機アニオンのいずれであってもよい。ただし、Ag,Au,Ptなど、エチレンイミン骨格により還元されやすいものは、pHを酸性条件にする等、還元反応を抑制してイオン錯体を調製することが好ましい。 Examples of transition metal cations include cations of various transition metals (M n + ), such as Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ru, Rh, Pd, and Ag. , Cd, W, Os, Ir, Pt, Au, Hg, monovalent, divalent, trivalent or tetravalent cations. Counteranion of these metal cations, Cl, NO 3, SO 4 or polyoxometalate compound anion, or may be an organic anion of carboxylic acids. However, for those that are easily reduced by the ethyleneimine skeleton, such as Ag, Au, and Pt, it is preferable to prepare an ionic complex by suppressing the reduction reaction, for example, by adjusting the pH to an acidic condition.
また遷移金属アニオンとしては、各種の遷移金属アニオン(MOx n−)、例えば、MnO4,MoO4,ReO4,WO3,RuO4,CoO4,CrO4,VO3,NiO4,UO2のアニオン等が挙げられる。 Examples of the transition metal anion include various transition metal anions (MO x n− ) such as MnO 4 , MoO 4 , ReO 4 , WO 3 , RuO 4 , CoO 4 , CrO 4 , VO 3 , NiO 4 , UO 2. Anions and the like.
本発明における金属イオンとしては、前記遷移金属アニオンが、ポリマー(A)中のエチレンイミン単位に配位した金属カチオンを介してシリカ(B)中に固定された、ポリオキソメタレート類の金属化合物の形態であってもよい。該ポリオキソメタレート類の具体例としては、遷移金属カチオンと組み合わせられたモリブデン酸塩、タングステン酸塩、バナジン酸塩類等を挙げることができる。 As the metal ion in the present invention, a metal compound of polyoxometalates in which the transition metal anion is fixed in silica (B) through a metal cation coordinated to an ethyleneimine unit in the polymer (A). It may be a form. Specific examples of the polyoxometalates include molybdate, tungstate and vanadate in combination with a transition metal cation.
さらに、各種の金属が含まれたアニオン(MLx n−)、例えば、AuCl4,PtCl6,RhCl4,ReF6,NiF6,CuF6,RuCl6,In2Cl6等、金属がハロゲンに配位されたアニオンもイオン錯体形成に好適に用いることができる。 Furthermore, anions (ML x n− ) containing various metals, such as AuCl 4 , PtCl 6 , RhCl 4 , ReF 6 , NiF 6 , CuF 6 , RuCl 6 , In 2 Cl 6, etc. The coordinated anion can also be suitably used for forming an ion complex.
また、半金属系イオンとしては、Al,Ga,In,Tl,Ge,Sn,Pb,Sb,Biのイオンが挙げられ、なかでもAl,Ga,In,Sn,Pb,Tlのイオンが好ましい。 Further, examples of the metalloid ions include ions of Al, Ga, In, Tl, Ge, Sn, Pb, Sb, and Bi. Among them, ions of Al, Ga, In, Sn, Pb, and Tl are preferable.
ランタン系金属イオンとしては、例えば、La,Eu,Gd,Yb,Euなどの3価のカチオンが挙げられる。 Examples of the lanthanum metal ions include trivalent cations such as La, Eu, Gd, Yb, and Eu.
[金属ナノ粒子]
上記した通り、本発明では金属イオンを構造物中のナノ構造体中に取り込むことができる。従って、これらの金属イオンのなかでも、還元反応により還元されやすい金属イオンは、金属ナノ粒子に変換させることで、該構造体(y1)中に金属ナノ粒子を含有させることができる。
[Metal nanoparticles]
As described above, in the present invention, metal ions can be incorporated into the nanostructures in the structure. Accordingly, among these metal ions, metal ions that are easily reduced by a reduction reaction can be converted into metal nanoparticles, whereby the metal nanoparticles can be contained in the structure (y1).
金属ナノ粒子の金属種としては、例えば、銅、銀、金、白金、パラジウム、マンガン、ニッケル、ロジウム、コバルト、ルテニウム、レニウム、モリブデン、鉄等が挙げられ、ナノ構造体(y1)中の金属ナノ粒子は一種であっても、二種以上であってもよい。これら金属種の中でも、特に、銀、金、白金、パラジウムは、その金属イオンがエチレンイミン単位に配位された後、室温または加熱状態で自発的に還元されるため特に好ましい。 Examples of the metal species of the metal nanoparticles include copper, silver, gold, platinum, palladium, manganese, nickel, rhodium, cobalt, ruthenium, rhenium, molybdenum, iron, and the like, and the metal in the nanostructure (y1) One kind or two or more kinds of nanoparticles may be used. Among these metal species, silver, gold, platinum, and palladium are particularly preferable because the metal ions are spontaneously reduced at room temperature or in a heated state after being coordinated to the ethyleneimine unit.
ナノ構造体(y1)中の金属ナノ粒子の大きさは、1〜20nmの範囲に制御できる。また、金属ナノ粒子は、ポリマー(A)とシリカ(B)とのナノ構造体(y1)の内部、または外表面に固定することができる。 The size of the metal nanoparticles in the nanostructure (y1) can be controlled in the range of 1 to 20 nm. Moreover, a metal nanoparticle can be fixed to the inside or the outer surface of the nanostructure (y1) of the polymer (A) and silica (B).
[有機色素分子]
本発明において、構造物を被覆するナノ構造体(y1)中のポリエチレンイミン骨格(a)はアミノ基、ヒドロキシ基、カルボン酸基、スルホン酸基、リン酸基を有する化合物と、水素結合及び/又は静電気引力により、物理的な結合構造を構成することができる。従って、これらの官能基を有する有機色素分子等を該ナノ構造体(y1)中に含有させることが可能である。
[Organic dye molecules]
In the present invention, the polyethyleneimine skeleton (a) in the nanostructure (y1) covering the structure is composed of a compound having an amino group, a hydroxy group, a carboxylic acid group, a sulfonic acid group, a phosphoric acid group, a hydrogen bond and / or Alternatively, a physical coupling structure can be formed by electrostatic attraction. Therefore, organic dye molecules having these functional groups and the like can be contained in the nanostructure (y1).
前記有機色素分子としては、単官能酸性化合物、または二官能以上の多官能酸性化合物を好適に用いることができる。 As the organic dye molecule, a monofunctional acidic compound or a bifunctional or higher polyfunctional acidic compound can be suitably used.
具体的には、例えば、テトラフェニルポルフィリンテトラカルボン酸、ピレンジカルボン酸などの芳香族酸類、ナフタレンジスルホン酸、ピレンジスルホン酸、ピレンテトラスルホン酸、アンスラキノンジスルホン酸、テトラフェニルポルフィリンテトラスルホン酸、フタロシアニンテトラスルホン酸、ピペス(PIPES)などの芳香族または脂肪族のスルホン酸類、acid yellow,acid blue,acid red,direct blue,direct yellow,direct red系列のアゾ系染料等を挙げることができる。また、キサンテン骨格を有する色素、例えば、ローダミン、エリスロシン、エオシン系列の色素を用いることができる。 Specifically, for example, aromatic acids such as tetraphenylporphyrin tetracarboxylic acid and pyrene dicarboxylic acid, naphthalene disulfonic acid, pyrene disulfonic acid, pyrene tetrasulfonic acid, anthraquinone disulfonic acid, tetraphenyl porphyrin tetrasulfonic acid, phthalocyanine tetra Aromatic or aliphatic sulfonic acids such as sulfonic acid and pipes (PIPES), acid yellow, acid blue, acid red, direct blue, direct yellow, direct red series azo dyes and the like can be mentioned. In addition, a dye having a xanthene skeleton, for example, rhodamine, erythrosine, and eosin dyes can be used.
[ポリマー(A)とシリカ(B)とを含有するナノ構造体(y1)]
ポリマー(A)とシリカ(B)とを含有するナノ構造体(y1)は、基本的にはポリマー(A)がシリカ(B)でコートされた構造の複合ナノファイバーであり、それが基材表面での空間配列を変えながら、全体を覆った状態を構成し、様々なパターンまたはモルフォロジーを形成する。例えば、ナノファバーが固体基材上の全面に主として該ファイバーの長軸が垂直方向を向いて生えているような芝状(ナノ芝)または若干垂直方向よりも倒れている田んぼ状(ナノ田んぼ)、ナノファイバーが基材上全面で横倒れているような畳状(ナノ畳)、ナノファイバーが基材上の全面でネットワークを形成し、ネット状構造になっているスポンジ状(ナノスポンジ)など、多様多種の階層構造を構成することができる。
[Nanostructure (y1) containing polymer (A) and silica (B)]
The nanostructure (y1) containing the polymer (A) and silica (B) is basically a composite nanofiber having a structure in which the polymer (A) is coated with silica (B). While changing the spatial arrangement on the surface, the entire state is formed, and various patterns or morphologies are formed. For example, a turf shape (nano turf) in which the nanofabric is mainly grown on the entire surface of the solid substrate with the long axis of the fiber facing the vertical direction (nano turf), or a rice field that is slightly tilted from the vertical direction (nano rice field), A tatami-like shape (nano-tatami mat) in which the nanofibers lie down on the entire surface of the base material, a sponge-like shape (nano-sponge) in which the nanofibers form a network on the entire surface of the base material, A wide variety of hierarchical structures can be configured.
上記ナノ芝状またはナノ田んぼ状、ナノ畳状、ナノスポンジ状等の高次構造における、基本ユニットの複合ナノファイバーの太さは10〜200nmの範囲である。ナノ芝状、ナノ田んぼ状におけるナノファイバーの長さ(長軸方向)は50nm〜2μm範囲に制御することができる。 The thickness of the composite nanofiber of the basic unit in the higher order structure such as the nano turf shape, the nano rice field shape, the nano tatami shape, or the nano sponge shape is in the range of 10 to 200 nm. The length (major axis direction) of the nanofiber in the nano turf shape or the nano rice field shape can be controlled in the range of 50 nm to 2 μm.
固体基材上を被覆する際の厚さは、ナノファイバーの空間配列状態とも関連するが、概ね50nm〜20μm範囲で変化させることができる。ナノ芝状では、ナノファイバーが真っすぐ立ち伸びる傾向が強く、ファイバーの長さが基本的に厚みを構成し、一本一本のファイバーの長さはかなり揃った状態であることが特徴である。ナノ田んぼ状では、ナノファイバーが斜めに伸びる傾向が強く、皮膜厚みはファイバーの長さよりは小さい。また、ナノ田んぼ状の層の厚さは、ナノファイバーの横倒れの重なり状態で決定されることが特徴である。ナノスポンジ状の層の厚さはナノファイバーが規則性を有する複雑な絡みで盛り上がる度合いにより決まることが特徴である。ネットワークを形成している場合には、その重なり状態等によって厚みが決定される。 Although the thickness at the time of coating on the solid substrate is related to the spatial arrangement state of the nanofibers, it can be varied in a range of about 50 nm to 20 μm. Nano-turf shape is characterized by a strong tendency of nanofibers to stand upright, the length of the fibers basically constituting the thickness, and the length of each fiber is fairly uniform. In the nano rice field, the nanofibers tend to extend obliquely and the film thickness is smaller than the fiber length. In addition, the thickness of the nano rice field-like layer is characterized by being determined by the overlaid state of the nanofibers. The thickness of the nanosponge-like layer is characterized in that it is determined by the degree to which the nanofibers are swelled by complex entanglements having regularity. When a network is formed, the thickness is determined depending on the overlapping state.
ナノ構造体(y1)中、ポリマー(A)の成分は5〜30質量%で調整可能である。ポリマー(A)成分の含有量を変えることで、空間配列構造(高次構造)を変えることもできる。 In the nanostructure (y1), the component of the polymer (A) can be adjusted at 5 to 30% by mass. The spatial arrangement structure (higher order structure) can be changed by changing the content of the polymer (A) component.
また、該ナノ構造体(y1)中に金属イオン、金属ナノ粒子又は有機色素分子等を含有させる場合には、その種類によって高次構造を制御することも可能である。この場合においても、基本ユニットは前記したようなナノファイバーであり、これらが、組み合わさって複雑形状を形成する。 In addition, when a metal ion, metal nanoparticle, organic dye molecule, or the like is contained in the nanostructure (y1), the higher-order structure can be controlled depending on the type. Even in this case, the basic unit is a nanofiber as described above, and these combine to form a complex shape.
金属イオンを取り込む際の該金属イオン取り込み量としては、ポリマー(A)中のエチレンイミン単位1当量に対し、1/4〜1/200当量の範囲で調製することが好ましく、この比率を変えることによって、ナノ構造体からなる被覆層の厚みを変化させることができる。また、この時の被覆層は金属種に応じた発色をすることもある。 The amount of metal ions taken up when taking in metal ions is preferably adjusted in the range of 1/4 to 1/200 equivalent to 1 equivalent of ethyleneimine unit in polymer (A), and this ratio is changed. By this, the thickness of the coating layer made of the nanostructure can be changed. In addition, the coating layer at this time may develop color depending on the metal species.
金属ナノ粒子を取り込む際の該金属ナノ粒子取り込み量としては、ポリマー(A)中のエチレンイミン単位1当量に対し、1/4〜1/200当量の範囲で調製することが好ましく、この比率を変えることによって、ナノ構造体からなる被覆層の厚みを変化させることができる。また、この時の被覆層は金属種に応じた発色をすることもある。 The amount of metal nanoparticles incorporated when incorporating metal nanoparticles is preferably prepared in the range of 1/4 to 1/200 equivalent per 1 equivalent of ethyleneimine unit in the polymer (A). By changing the thickness, the thickness of the coating layer made of the nanostructure can be changed. In addition, the coating layer at this time may develop color depending on the metal species.
有機色素分子を取り込む際の該有機色素分子取り込み量としては、ポリマー(A)中のエチレンイミン単位1当量に対し、1/2〜1/200当量の範囲で調製することが好ましく、この比率を変化させることにより、ナノ構造体からなる被覆層の厚みや形状パターンを変えることもできる。 The organic dye molecule incorporation amount when incorporating the organic dye molecule is preferably prepared in the range of 1/2 to 1/200 equivalent per 1 equivalent of the ethyleneimine unit in the polymer (A). By changing the thickness, the thickness and shape pattern of the coating layer made of the nanostructure can be changed.
また、ナノ構造体(y1)には、金属イオン、金属ナノ粒子、有機色素分子等の2種以上を同時に取り込ませることもできる。 Moreover, 2 or more types, such as a metal ion, a metal nanoparticle, and an organic pigment | dye molecule | numerator, can also be simultaneously taken in into a nanostructure (y1).
[シリカ(B)を主構成成分とするナノ構造体(y2)]
上記で得られるポリマー(A)とシリカ(B)とを含有するナノ構造体(y1)を、固体基材(X)ごと焼成することで、ポリマー(A)が除去された、シリカ(B)を主構成成分とするナノ構造体(y2)で被覆された固体基材(X)を得ることができる。このとき、焼成によりポリマー(A)は消失するが、シリカ(B)はその構造を維持したままである。従って、ナノ構造体(y1)の空間配置によってナノ構造体(y2)の形状も決定される。すなわち、例えば、ナノファバーが固体基材上の全面に主として該ファイバーの長軸が垂直方向を向いて生えているような芝状(ナノ芝)または若干垂直方向よりも倒れている田んぼ状(ナノ田んぼ)、ナノファイバーが基材上全面で横倒れているような畳状(ナノ畳)、ナノファイバーが基材上の全面でネットワークを形成しているスポンジ状(ナノスポンジ)など、多様多種の階層構造を構成している。
[Nanostructure (y2) containing silica (B) as main component]
Silica (B) from which polymer (A) was removed by firing together with solid substrate (X) nanostructure (y1) containing polymer (A) and silica (B) obtained above It is possible to obtain a solid substrate (X) coated with a nanostructure (y2) having as a main component. At this time, although the polymer (A) disappears by firing, the silica (B) maintains its structure. Accordingly, the shape of the nanostructure (y2) is also determined by the spatial arrangement of the nanostructure (y1). That is, for example, the nanofabric is a turf shape (nano turf) in which the long axis of the fiber grows mainly on the entire surface of the solid substrate or is slightly tilted from the vertical direction (nano rice field) ), Tatami shape (nano tatami mat) in which nanofibers lie down on the entire surface of the substrate, and sponge shape (nano sponge) in which nanofibers form a network on the entire surface of the substrate. Make up structure.
[疎水化処理]
本発明では、超疎水性表面とするために疎水性基でナノ構造体(y1)又はナノ構造体(y2)の表面を修飾しなければならない。当該修飾は、疎水性基を有する化合物との接触で容易に行なうことができる。
[Hydrophobic treatment]
In the present invention, the surface of the nanostructure (y1) or nanostructure (y2) must be modified with a hydrophobic group in order to obtain a superhydrophobic surface. The modification can be easily performed by contact with a compound having a hydrophobic group.
前記疎水性基としては、例えば、炭素数1〜22のアルキル基、置換基を有していても良い芳香族基(置換基としては、炭素数1〜22のアルキル基、フッ素化アルキル基、部分フッ素化アルキル基等の疎水性基)、炭素数1〜22のフッ素化アルキル基、炭素数1〜22の部分フッ素化アルキル基等が挙げられる。 Examples of the hydrophobic group include an alkyl group having 1 to 22 carbon atoms and an aromatic group which may have a substituent (as the substituent, an alkyl group having 1 to 22 carbon atoms, a fluorinated alkyl group, Hydrophobic groups such as partially fluorinated alkyl groups), fluorinated alkyl groups having 1 to 22 carbon atoms, and partially fluorinated alkyl groups having 1 to 22 carbon atoms.
これらの疎水性基を効率的に前記ナノ構造体(y1)又はナノ構造体(y2)のシリカ(B)に修飾させるためには、当該疎水性基を有するシランカップリング剤を単独、又は混合して用いることが好ましい。 In order to efficiently modify these hydrophobic groups to the silica (B) of the nanostructure (y1) or nanostructure (y2), a silane coupling agent having the hydrophobic group is used alone or in combination. And preferably used.
前記シランカップリング剤として、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、iso−プロピルトリメトキシシラン、iso−プロピルトリエトキシシラン、ペンチルトリメトキシシラン、ヘキシルトリメトキシシラン等のアルキル基の炭素数が1〜22までのアルキルトリメトキシシランまたはアルキルトリクロロシラン類が挙げられる。 Examples of the silane coupling agent include methyltrimethoxysilane, dimethyldimethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, iso-propyltrimethoxysilane, iso Examples thereof include alkyltrimethoxysilanes or alkyltrichlorosilanes having an alkyl group having 1 to 22 carbon atoms such as propyltriethoxysilane, pentyltrimethoxysilane, and hexyltrimethoxysilane.
また、表面張力低下に有効なフッ素原子を有するものとして、(部分)フッ素化アルキル基を有するシランカップリング剤、例えば、3,3,3−トリフルオロプロピルトリメトキシシラン、トリデカフルオロ−1,1,2,2−テトラヒドロオクチル)トリクロロシラン等を用いることもできる。 Further, as having a fluorine atom effective for lowering the surface tension, a (partially) silane coupling agent having a fluorinated alkyl group, such as 3,3,3-trifluoropropyltrimethoxysilane, tridecafluoro-1, 1,2,2-tetrahydrooctyl) trichlorosilane and the like can also be used.
また、芳香族基を有するシランカップリング剤として、フェニルトリメトキシシラン、フェニルトリエトキシシラン、p−クロロメチルフェニルトリメトキシシラン、p−クロロメチルフェニルトリエトキシシラン等を、取り上げることができる。 Moreover, as a silane coupling agent having an aromatic group, phenyltrimethoxysilane, phenyltriethoxysilane, p-chloromethylphenyltrimethoxysilane, p-chloromethylphenyltriethoxysilane, and the like can be taken up.
[超疎水性表面を有する構造物の製造方法]
本発明の構造物の製造方法は、基本的には、
ポリエチレンイミン骨格(a)を有するポリマー(A)の溶液、ポリエチレンイミン骨格(a)を有するポリマー(A)と金属イオンとの混合溶液、ポリエチレンイミン骨格(a)を有するポリマー(A)と有機色素分子等との混合溶液を固体基材(X)の表面に接触させた後、該基材(X)を取り出し、基材(X)の表面にポリエチレンイミン骨格(a)を有するポリマー(A)と、併用された金属イオンや有機色素分子等とからなるポリマー層が形成した基材を得る工程(1)と、
前記ポリマー層が形成した基材とシリカソース液(B’)と、を接触させて基材表面に吸着したポリマー層中のポリエチレンイミン骨格(a)が有する触媒機能により、シリカ(B)がその上に析出して、ナノ構造体(y1)を形成すると共にそれで基材を被覆する工程(2)と、
前記工程(2)で得られたナノ構造体(y1)に疎水性基を有するシランカップリング剤を含む溶液を接触させることで、疎水性基をナノ構造体表面に導入する工程(3)
から構成される。これらの工程を経て、ポリエチレンイミンが表面組成に含まれた超疎水性表面をする構造物を製造することができる。
[Method for producing structure having superhydrophobic surface]
The manufacturing method of the structure of the present invention basically includes
Solution of polymer (A) having polyethyleneimine skeleton (a), mixed solution of polymer (A) having polyethyleneimine skeleton (a) and metal ion, polymer (A) having polyethyleneimine skeleton (a) and organic dye After contacting the mixed solution of molecules and the like with the surface of the solid substrate (X), the substrate (X) is taken out, and the polymer (A) having a polyethyleneimine skeleton (a) on the surface of the substrate (X) And a step (1) of obtaining a base material on which a polymer layer comprising metal ions or organic dye molecules used in combination is formed,
Due to the catalytic function of the polyethyleneimine skeleton (a) in the polymer layer adsorbed on the substrate surface by contacting the substrate formed by the polymer layer with the silica source liquid (B ′), the silica (B) Depositing on top to form a nanostructure (y1) and coating the substrate with it (2);
Step (3) of introducing a hydrophobic group to the surface of the nanostructure by bringing the nanostructure (y1) obtained in the step (2) into contact with a solution containing a silane coupling agent having a hydrophobic group.
Consists of Through these steps, a structure having a superhydrophobic surface in which polyethyleneimine is included in the surface composition can be produced.
また、本発明の構造物の製法では、上記工程(1)および(2)を経て得られたナノ構造体(y1)で被覆された固体基材(X)を加熱焼成することで、ナノ構造体(y1)中のポリエチレンイミン骨格(a)を有するポリマー(A)を焼成除去する工程を設けることにより、ポリエチレンイミンが表面組成に含まれていない超疎水性表面を有する構造物を製造することができる。 Moreover, in the manufacturing method of the structure of the present invention, the solid substrate (X) coated with the nanostructure (y1) obtained through the above steps (1) and (2) is heated and fired to thereby form the nanostructure. Producing a structure having a superhydrophobic surface in which polyethyleneimine is not included in the surface composition by providing a step of baking and removing the polymer (A) having a polyethyleneimine skeleton (a) in the body (y1) Can do.
工程(1)において使用するポリエチレンイミン骨格(a)を有するポリマー(A)は前述のポリマーを使用できる。また、該ポリマー(A)の溶液を得る際に使用可能な溶媒としては、該ポリマー(A)が溶解するものであれば特に制限されず、例えば、水、メタノールやエタノールなどの有機溶剤、あるいはこれらの混合溶媒などを適宜使用できる。 As the polymer (A) having the polyethyleneimine skeleton (a) used in the step (1), the aforementioned polymer can be used. In addition, the solvent that can be used for obtaining the solution of the polymer (A) is not particularly limited as long as the polymer (A) can be dissolved, and examples thereof include water, organic solvents such as methanol and ethanol, These mixed solvents can be used as appropriate.
溶液中における該ポリマー(A)の濃度としては、固体基材(X)上にポリマー層を形成できる濃度であれば良いが、所望のパターン形成や、基材表面へ吸着するポリマー密度を高くする場合には、0.5質量%〜50質量%の範囲であることが好ましく、5質量%〜50質量%の範囲であるとより好ましい。 The concentration of the polymer (A) in the solution is not particularly limited as long as the polymer layer can be formed on the solid substrate (X), but the desired pattern formation and the density of the polymer adsorbed on the substrate surface are increased. In this case, the range is preferably 0.5% by mass to 50% by mass, and more preferably 5% by mass to 50% by mass.
ポリエチレンイミン骨格(a)を有するポリマー(A)の溶液中には、該溶剤に可溶でポリマー(A)と相溶可能な前述のその他のポリマーを混合することもできる。その他のポリマーの混合量としては、ポリエチレンイミン骨格(a)を有するポリマー(A)の濃度より高くても低くても良い。 In the solution of the polymer (A) having a polyethyleneimine skeleton (a), the above-mentioned other polymers that are soluble in the solvent and compatible with the polymer (A) can be mixed. The mixing amount of the other polymer may be higher or lower than the concentration of the polymer (A) having the polyethyleneimine skeleton (a).
金属イオンを含有するナノ構造体(y1)からなる被覆層を形成させる場合には、ポリエチレンイミン骨格(a)を有するポリマー(A)の溶液中に、当該金属イオンを混合する。該金属イオンの濃度はポリエチレンイミン骨格(a)中のエチレンイミン単位の1/4当量以下で調整することが好ましい。 When forming the coating layer which consists of nanostructure (y1) containing a metal ion, the said metal ion is mixed in the solution of the polymer (A) which has a polyethyleneimine frame | skeleton (a). The concentration of the metal ion is preferably adjusted to ¼ equivalent or less of the ethyleneimine unit in the polyethyleneimine skeleton (a).
また、有機色素分子等を含有するナノ構造体(y1)からなる被覆層を形成させる場合には、ポリエチレンイミン骨格(a)を有するポリマー(A)の溶液中に当該有機色素分子等を混合する。該有機色素分子等の濃度はポリエチレンイミン骨格(a)中のエチレンイミン単位の1/2当量以下で調整することが好ましい。 Moreover, when forming the coating layer which consists of nanostructure (y1) containing an organic pigment molecule etc., the said organic pigment molecule etc. are mixed in the solution of the polymer (A) which has a polyethyleneimine skeleton (a). . It is preferable to adjust the concentration of the organic dye molecule or the like to ½ equivalent or less of the ethyleneimine unit in the polyethyleneimine skeleton (a).
また、工程(1)においてポリマー層を作製するには、固体基材(X)をポリマー(A)の溶液と接触させる。接触法としては、所望の固体基材(X)をポリマー(A)の溶液に浸漬することが好適である。 Moreover, in order to produce a polymer layer in a process (1), a solid base material (X) is made to contact with the solution of a polymer (A). As the contact method, it is preferable to immerse the desired solid substrate (X) in the solution of the polymer (A).
浸漬法では、基材状態により、基材(非容器状)を溶液中に入れる、または溶液を基材(容器状)中に入れる方式で、基材と溶液を接触させることができる。浸漬の際、ポリマー(A)の溶液の温度は加熱状態であることが好ましく、概ね50〜90℃の温度であれば好適である。固体基材(X)をポリマー(A)の溶液と接触させる時間は特に制限されず、基材(X)の材質に合わせて、数秒から1時間で選択することが好ましい。基材の材質がポリエチレンイミンと強い結合能力を有する場合、例えば、ガラス、金属などでは数秒〜数分でよく、基材の材質がポリエチレンイミンと結合能力が弱い場合は数十分から1時間でも良い。 In the dipping method, the substrate and the solution can be brought into contact with each other in such a manner that the substrate (non-container shape) is placed in the solution or the solution is placed in the substrate (container shape) depending on the state of the substrate. During the immersion, the temperature of the polymer (A) solution is preferably in a heated state, and a temperature of about 50 to 90 ° C. is suitable. The time for bringing the solid substrate (X) into contact with the solution of the polymer (A) is not particularly limited, and is preferably selected within a few seconds to 1 hour according to the material of the substrate (X). When the material of the base material has a strong binding ability with polyethyleneimine, for example, it may be several seconds to several minutes for glass, metal, etc. good.
固体基材(X)とポリマー(A)の溶液を接触した後、該基材をポリマー(A)の溶液から取り出し、室温(25℃前後)に放置すると、自発的にポリマー(A)の集合体層が該基材(X)の表面に形成される。あるいは、該基材(X)をポリマー(A)の溶液から取り出してから、ただちに4〜30℃の蒸留水中、または室温〜氷点下温度のアンモニア水溶液中に入れることにより、自発的なポリマー(A)の集合体層を形成させても良い。 After contacting the solid substrate (X) with the polymer (A) solution, the substrate is taken out of the polymer (A) solution and allowed to stand at room temperature (around 25 ° C.). A body layer is formed on the surface of the substrate (X). Alternatively, the substrate (X) is taken out from the solution of the polymer (A), and then immediately put into distilled water at 4 to 30 ° C. or an aqueous ammonia solution at a room temperature to a freezing temperature, whereby the spontaneous polymer (A) An aggregate layer may be formed.
固体基材(X)の表面とポリマー(A)の溶液との接触方法では、例えば、スピンコータ、バーコータ、アプリケータなどによる塗布の他、ジェットプリンタによるプリントや印刷などの方法も使用できる。特に、微細なパターン状に接触させる場合には、ジェットプリンタよる方法が好適である。 As a method of contacting the surface of the solid substrate (X) with the solution of the polymer (A), for example, a method such as printing or printing with a jet printer can be used in addition to coating with a spin coater, bar coater, applicator or the like. In particular, when the contact is made in a fine pattern, a method using a jet printer is suitable.
工程(2)においては、工程(1)経由で形成したポリマー層とシリカソース液(B’)とを接触させ、ポリマー層表面にシリカ(B)を析出し、ポリマー(A)とシリカ(B)とのナノ構造体(y1)を形成させる。ポリマー層に金属イオンや有機色素分子等が含まれる場合でも、同様な方法でシリカ(B)を析出させ、目的のナノ構造体(y1)を形成させることができる。 In the step (2), the polymer layer formed via the step (1) is brought into contact with the silica source liquid (B ′) to deposit silica (B) on the surface of the polymer layer, and the polymer (A) and silica (B ) And a nanostructure (y1). Even when the polymer layer contains metal ions, organic dye molecules, or the like, the target nanostructure (y1) can be formed by precipitating silica (B) by the same method.
この時用いる、シリカソース液(B’)としては、前述した各種のシリカソースの水溶液や、アルコール類溶剤、例えば、メタノール、エタノール、プロパノールなどの水性有機溶剤溶液、またはこれらと水との混合溶剤溶液を用いることができる。また、pH値が9〜11の範囲に調整した水ガラス水溶液も用いることができる。用いるシリカソース液(B’)には、シリカ以外の金属アルコキシドを混合することもできる。 As the silica source liquid (B ′) used at this time, the above-mentioned various silica source aqueous solutions, alcohol solvents, for example, aqueous organic solvent solutions such as methanol, ethanol and propanol, or mixed solvents of these with water A solution can be used. Moreover, the water glass aqueous solution which adjusted the pH value to the range of 9-11 can also be used. The silica source liquid (B ′) to be used can be mixed with a metal alkoxide other than silica.
また、シリカソースとしてのアルコキシシラン類化合物は、無溶剤のバルク液のままでも使用可能である。 Moreover, the alkoxysilane compound as a silica source can be used even in a solvent-free bulk liquid.
ポリマー層が形成した固体基材をシリカソース液(B’)と接触させる方法としては、浸漬法を好ましく用いることができる。浸漬する時間は5〜60分であれば十分であるが、必要に応じ時間を更に長くすることもできる。シリカソース液(B’)の温度は室温でもよく、加熱状態でも良い。加熱の場合、シリカ(B)を固体基材(X)の表面にて規則的に析出させるため、温度を70℃以下に設定することが望ましい。 As a method for bringing the solid substrate formed with the polymer layer into contact with the silica source liquid (B ′), an immersion method can be preferably used. It is sufficient that the immersion time is 5 to 60 minutes, but the time can be further increased as necessary. The temperature of the silica source liquid (B ′) may be room temperature or a heated state. In the case of heating, it is desirable to set the temperature to 70 ° C. or lower in order to regularly deposit silica (B) on the surface of the solid substrate (X).
シリカソースの種類、濃度などの選定により、析出されるシリカ(B)とポリマー(A)とのナノ構造体(y1)の構造を調整することができ、目的に応じて、シリカソースの種類や濃度を適宜に選定することが好ましい。 By selecting the type and concentration of the silica source, the structure of the nanostructure (y1) of the precipitated silica (B) and the polymer (A) can be adjusted. It is preferable to select the concentration appropriately.
ポリエチレンイミンは貴金属イオン、例えば、金、白金、銀、パラジウムなどのイオンを金属ナノ粒子に還元することができる。従って、上記工程で得られた、ナノ構造体(y1)によって被覆された構造物を、当該貴金属イオンの水溶液と接触させる工程を経ることにより、該貴金属イオンをナノ構造体(y1)中で金属ナノ粒子に変換させることができ、金属ナノ粒子を有するナノ構造体を得ることができる。 Polyethyleneimine can reduce noble metal ions such as gold, platinum, silver, palladium and the like to metal nanoparticles. Accordingly, the structure obtained by the above-described process and covered with the nanostructure (y1) is contacted with the aqueous solution of the noble metal ion, whereby the noble metal ion is converted into a metal in the nanostructure (y1). The nanostructure which can be converted into a nanoparticle and has a metal nanoparticle can be obtained.
貴金属イオンの水溶液と接触させる方法は浸漬法を好ましく用いることができる。貴金属イオンの水溶液としては、塩化金酸、塩化金酸ナトリウム、塩化白金酸、塩化白金酸ナトリウム、硝酸銀等の水溶液を好適に用いることができ、貴金属イオンの水溶液濃度としては0.1〜5モル%であることが好ましい。 A dipping method can be preferably used as the method of contacting with an aqueous solution of noble metal ions. As the aqueous solution of noble metal ions, aqueous solutions of chloroauric acid, sodium chloroaurate, chloroplatinic acid, sodium chloroplatinate, silver nitrate and the like can be suitably used, and the aqueous solution concentration of noble metal ions is 0.1 to 5 mol. % Is preferred.
貴金属イオンの水溶液の温度は特に限定されず、室温〜90℃の範囲であれば良いが、還元反応を促進するためであれば、50〜90℃の加熱された水溶液を用いることが好ましい。また、構造物を金属イオンの水溶液中に浸漬する時間は0.5〜3時間であればよく、加熱された水溶液に浸漬する場合は30分程度で十分である。 The temperature of the aqueous solution of noble metal ions is not particularly limited, and may be in the range of room temperature to 90 ° C. However, in order to promote the reduction reaction, it is preferable to use a heated aqueous solution of 50 to 90 ° C. Moreover, the time for immersing the structure in the aqueous solution of metal ions may be 0.5 to 3 hours, and about 30 minutes is sufficient when immersed in the heated aqueous solution.
ポリエチレンイミン単独では還元されにくい金属イオンの場合には、前記で得られた金属イオンを有する構造物中の当該金属イオンを、還元剤、特に低分子量の還元剤溶液または水素ガスと接触させる工程を併用して、該金属イオンを還元することにより、当該金属のナノ粒子を含有するナノ構造体を得ることもできる。 In the case of a metal ion that is difficult to reduce with polyethyleneimine alone, a step of bringing the metal ion in the structure having the metal ion obtained above into contact with a reducing agent, particularly a low molecular weight reducing agent solution or hydrogen gas, In combination, by reducing the metal ions, a nanostructure containing the metal nanoparticles can be obtained.
この時使用できる還元剤としては、例えば、アスコルビン酸、アルデヒド、ヒドラジン、水素化硼素ナトリウム、水素化硼素アンモニウム、水素などが例として挙げられる。還元剤を用いて金属イオンを還元する際には、その反応は水性媒体中で行うことができ、金属イオンが含まれた構造物を還元剤溶液中に浸漬する方法、または水素ガス雰囲気中放置させる方法を用いることができる。この時、還元剤水溶液の温度は室温〜90℃以下の範囲であればよく、また還元剤の濃度としては1〜5モル%であることが好ましい。 Examples of the reducing agent that can be used at this time include ascorbic acid, aldehyde, hydrazine, sodium borohydride, ammonium borohydride, hydrogen, and the like. When reducing metal ions using a reducing agent, the reaction can be carried out in an aqueous medium. The structure containing the metal ions is immersed in the reducing agent solution or left in a hydrogen gas atmosphere. Can be used. At this time, the temperature of the reducing agent aqueous solution may be in the range of room temperature to 90 ° C., and the concentration of the reducing agent is preferably 1 to 5 mol%.
ここで適応できる金属イオンの金属種としては、特に限定されないが、還元反応が速やかに進行する点から、銅、マンガン、クロム、ニッケル、錫、バナジウム、パラジウムであることが好ましい。 The metal species of the metal ion that can be applied here are not particularly limited, but copper, manganese, chromium, nickel, tin, vanadium, and palladium are preferable because the reduction reaction proceeds promptly.
ナノ構造体(y1)中のポリマー(B)を加熱焼成によって除去し、ナノ構造体(y2)とする場合、焼成温度は300〜600℃に設定することができる。この工程を行なう場合には、固体基材(X)はガラス、金属酸化物、金属など耐熱性無機材質から選択することになる。 When the polymer (B) in the nanostructure (y1) is removed by heating and baking to obtain the nanostructure (y2), the baking temperature can be set to 300 to 600 ° C. When this step is performed, the solid substrate (X) is selected from heat-resistant inorganic materials such as glass, metal oxide, and metal.
加熱焼成時間としては1〜7時間の範囲であることが望ましいが、温度が高い時は短時間焼成でよく、温度が低い時は、時間を長くすること等、適宜調整することが好ましい。 The heating and firing time is desirably in the range of 1 to 7 hours, but it may be fired for a short time when the temperature is high, and it is preferable to appropriately adjust the time such as increasing the time when the temperature is low.
上記で得られたナノ構造体(y1)又はナノ構造体(y2)で被覆されている固体基材(X)を、前述した疎水性基を有するシランカップリング剤と接触させる工程を経て、表面を超疎水性に変換する。 Through the step of bringing the solid substrate (X) coated with the nanostructure (y1) or nanostructure (y2) obtained above into contact with the silane coupling agent having a hydrophobic group described above, the surface To superhydrophobic.
このとき、疎水性基を有するシランカップリング剤はクロロホルム、塩化メチレン、シクロヘキサノン、キシレン、トルエン、エタノール、メタノールなどの溶剤に溶解させて用いることができる。これらの溶剤は単独または混合して用いることもでき、またシランカップリング剤の濃度は1〜5wt%に調整することが好ましい。 At this time, the silane coupling agent having a hydrophobic group can be used by dissolving in a solvent such as chloroform, methylene chloride, cyclohexanone, xylene, toluene, ethanol, methanol and the like. These solvents can be used alone or in combination, and the concentration of the silane coupling agent is preferably adjusted to 1 to 5 wt%.
さらに、上記溶液は、1〜5wt%のアンモニア水のエタノール溶液と混合して用いることが望ましい。混合の際の体積比としては、シランカップリング剤溶液の1当量に対し、アンモニア水エタノール溶液を5〜10当量の範囲にすることが好適である。 Furthermore, it is desirable to use the above solution by mixing it with an ethanol solution of 1-5 wt% ammonia water. As a volume ratio at the time of mixing, it is suitable to make the ammonia water ethanol solution into the range of 5-10 equivalent with respect to 1 equivalent of a silane coupling agent solution.
シランカップリング剤との接触は、上記で得られた混合溶液中に浸漬する方法によることが好ましく、シランカップリング剤のアルキルシランがナノ構造体(y1)又はナノ構造体(y2)中のシリカ(B)部分にSi−O−Si結合で導入され、最終の超疎水性ナノ表面を有する構造物に変換できる。 The contact with the silane coupling agent is preferably by a method of immersing in the mixed solution obtained above, and the alkylsilane of the silane coupling agent is silica in the nanostructure (y1) or nanostructure (y2). (B) It can be converted into a structure having a final superhydrophobic nanosurface introduced by Si—O—Si bond in the part.
上記溶液中に浸漬する時間は1時間〜3日の範囲で、溶液中のシランカップリング剤の濃度やアンモニアの濃度などにより適宜選択することが好ましい。一定濃度の溶液中、浸漬時間を長くするにつれて、接触角を徐々に大きくすることができ、一定時間経過後では接触角は最高の数値180°近くなる。この数値が現れる時点で、表面の疎水性残基導入が飽和状態であるとみなすことができる。目的とする疎水性のレベルによって、浸漬時間を選択することができる。 The immersion time in the solution is preferably in the range of 1 hour to 3 days, and is suitably selected depending on the concentration of the silane coupling agent and the concentration of ammonia in the solution. The contact angle can be gradually increased as the immersion time is increased in the solution having a constant concentration, and the contact angle becomes close to the maximum value of 180 ° after the fixed time. When this number appears, the introduction of hydrophobic residues on the surface can be considered saturated. Depending on the desired level of hydrophobicity, the immersion time can be selected.
以下、実施例により本発明をさらに詳しく説明する。なお、特に断わりがない限り、「%」は「質量%」を表わす。 Hereinafter, the present invention will be described in more detail with reference to examples. Unless otherwise specified, “%” represents “mass%”.
[走査電子顕微鏡によるナノ構造体の形状分析]
単離乾燥したナノ構造体を両面テープにてサンプル支持台に固定し、それをキーエンス製表面観察装置VE−9800にて観察した。
[Shape analysis of nanostructures by scanning electron microscope]
The isolated and dried nanostructure was fixed to a sample support with a double-sided tape, and observed with a surface observation device VE-9800 manufactured by Keyence.
[接触角測定]
接触角は自動接触角計Contact Angle System OCA (Dataphysics社製)により測定した。
[Contact angle measurement]
The contact angle was measured with an automatic contact angle meter Contact Angle System OCA (manufactured by Dataphysics).
合成例1
<直鎖状のポリエチレンイミン(L−PEI)の合成>
市販のポリエチルオキサゾリン(数平均分子量50,000,平均重合度5,000,Aldrich社製)3gを、5モル/Lの塩酸15mLに溶解させた。その溶液をオイルバスにて90℃に加熱し、その温度で10時間攪拌した。反応液にアセトン50mLを加え、ポリマーを完全に沈殿させ、それを濾過し、メタノールで3回洗浄し、白色のポリエチレンイミンの粉末を得た。得られた粉末を1H−NMR(重水、日本電子株式会社製、AL300、300MHz)にて同定したところ、ポリエチルオキサゾリンの側鎖エチル基に由来したピーク1.2ppm(CH3)と2.3ppm(CH2)が完全に消失していることが確認された。即ち、ポリエチルオキサゾリンが完全に加水分解され、ポリエチレンイミンに変換されたことが示された。
Synthesis example 1
<Synthesis of linear polyethyleneimine (L-PEI)>
3 g of commercially available polyethyloxazoline (number average molecular weight 50,000, average polymerization degree 5,000, manufactured by Aldrich) was dissolved in 15 mL of 5 mol / L hydrochloric acid. The solution was heated to 90 ° C. in an oil bath and stirred at that temperature for 10 hours. Acetone 50 mL was added to the reaction solution to completely precipitate the polymer, which was filtered and washed three times with methanol to obtain a white polyethyleneimine powder. When the obtained powder was identified by 1 H-NMR (heavy water, manufactured by JEOL Ltd., AL300, 300 MHz), the peak derived from the side chain ethyl group of polyethyloxazoline was 1.2 ppm (CH 3 ) and 2. It was confirmed that 3 ppm (CH 2 ) disappeared completely. That is, it was shown that polyethyloxazoline was completely hydrolyzed and converted to polyethyleneimine.
その粉末を5mLの蒸留水に溶解し、攪拌しながら、その溶液に15%のアンモニア水50mLを滴下した。その混合液を一晩放置した後、沈殿したポリマー会合体粉末を濾過し、そのポリマー会合体粉末を冷水で3回洗浄した。洗浄後の結晶粉末をデシケータ中で室温乾燥し、線状のポリエチレンイミン(L−PEI)を得た。収量は2.2g(結晶水含有)であった。ポリオキサゾリンの加水分解により得られるポリエチレンイミンは、側鎖だけが反応し、主鎖には変化がない。従って、L−PEIの重合度は加水分解前の5,000と同様である。 The powder was dissolved in 5 mL of distilled water, and 50 mL of 15% aqueous ammonia was added dropwise to the solution while stirring. The mixture was allowed to stand overnight, and then the precipitated polymer aggregate powder was filtered, and the polymer aggregate powder was washed three times with cold water. The crystal powder after washing was dried in a desiccator at room temperature to obtain linear polyethyleneimine (L-PEI). The yield was 2.2 g (including crystal water). In polyethyleneimine obtained by hydrolysis of polyoxazoline, only the side chain reacts and the main chain does not change. Therefore, the polymerization degree of L-PEI is the same as 5,000 before hydrolysis.
合成例2
<ベンゼン環中心の星状ポリエチレンイミン(B−PEI)合成>
Jin,J.Mater.Chem.,13,672−675(2003)に示された方法に従い、前駆体ポリマーであるベンゼン環中心に6本のポリメチルオキサゾリンのアームが結合した星状ポリメチルオキサゾリンの合成を次の通り行った。
Synthesis example 2
<Synthesis of star-shaped polyethyleneimine (B-PEI) centered on benzene ring>
Jin, J .; Mater. Chem. , 13, 672-675 (2003), a star-shaped polymethyloxazoline in which six polymethyloxazoline arms were bonded to the center of the benzene ring as a precursor polymer was synthesized as follows.
磁気攪拌子がセットされたスリ口試験管中に、重合開始剤としてヘキサキス(ブロモメチル)ベンゼン0.021g(0.033mmol)を入れ、試験管の口に三方コックをつけた後、真空状態にしてから窒素置換を行った。窒素気流下で三方コックの導入口からシリンジを用いて2−メチル−2−オキサゾリン2.0ml(24mmol)、N,N−ジメチルアセトアミド4.0mlを順次加えた。試験管をオイルバス上で60℃まで加熱し、30分間保ったところ、混合液は透明になった。透明混合液をさらに100℃まで加熱し、その温度で20時間攪拌して、前駆体ポリマーを得た。この混合液の1H−NMR測定から、モノマーの転化率は98モル%、収量は1.8gであった。この転化率によりポリマーの平均重合度を見積もったところ、各アームの平均重合度は115であった。また、GPCによる分子量測定では、ポリマーの質量平均分子量は22,700であり、分子量分布は1.6であった。 Put 0.021 g (0.033 mmol) of hexakis (bromomethyl) benzene as a polymerization initiator in a test tube set with a magnetic stirrer, attach a three-way cock to the test tube, and then put it in a vacuum state. Was replaced with nitrogen. Under a nitrogen stream, 2.0 ml (24 mmol) of 2-methyl-2-oxazoline and 4.0 ml of N, N-dimethylacetamide were sequentially added from the inlet of the three-way cock using a syringe. When the test tube was heated to 60 ° C. on an oil bath and kept for 30 minutes, the mixture became transparent. The transparent mixture was further heated to 100 ° C. and stirred at that temperature for 20 hours to obtain a precursor polymer. From this mixture the 1 H-NMR measurement of the liquid, the conversion of monomer is 98 mol%, the yield was 1.8 g. When the average degree of polymerization of the polymer was estimated based on this conversion, the average degree of polymerization of each arm was 115. Moreover, in the molecular weight measurement by GPC, the mass average molecular weight of the polymer was 22,700, and the molecular weight distribution was 1.6.
この前駆体ポリマーを用い、上記合成例1と同様な方法によりポリメチルオキサゾリンを加水分解し、6本のポリエチレンイミンがベンゼン環コアに結合した星状ポリエチレンイミンB−PEIを得た。1H−NMR(TMS外部標準、重水中)測定の結果、加水分解前の前駆体ポリマーの側鎖メチルに由来した1.98ppmのピークは完全に消失したことが確認された。 Using this precursor polymer, polymethyloxazoline was hydrolyzed in the same manner as in Synthesis Example 1 to obtain star-shaped polyethyleneimine B-PEI in which 6 polyethyleneimines were bonded to the benzene ring core. As a result of 1 H-NMR (TMS external standard, heavy water) measurement, it was confirmed that the peak of 1.98 ppm derived from the side chain methyl of the precursor polymer before hydrolysis completely disappeared.
その粉末を5mLの蒸留水に溶解し、攪拌しながら、その溶液に15%のアンモニア水50mLを滴下した。その混合液を一晩放置した後、沈殿した結晶粉末を濾過し、その結晶粉末を冷水で3回洗浄した。洗浄後の結晶粉末をデシケータ中で室温(25℃)乾燥し、6本のポリエチレンイミンがベンゼン環コアに結合した星状ポリエチレンイミン(B−PEI)を得た。収量は1.3g(結晶水含有)であった。 The powder was dissolved in 5 mL of distilled water, and 50 mL of 15% aqueous ammonia was added dropwise to the solution while stirring. The mixture was allowed to stand overnight, and then the precipitated crystal powder was filtered, and the crystal powder was washed three times with cold water. The washed crystal powder was dried in a desiccator at room temperature (25 ° C.) to obtain star-shaped polyethyleneimine (B-PEI) in which six polyethyleneimines were bonded to the benzene ring core. The yield was 1.3 g (including crystal water).
実施例1
[超疎水性表面を有するガラス板構造物]
3×2cmのソーダライムガラス板を上記で得られた4%のL−PEIの水溶液(80℃液)に浸け、30秒間静置した。板を取り出し、室温にて5分間静置させた後、シリカソースの混合液(MS51*/蒸留水/IPA =0.5/3/3体積比)中に、室温で20分浸けた。板を液中から取り出し、エタノールで表面を洗浄し、室温にて乾燥させた。得られた板の表面をSEMで観察したところ、板表面全体はナノファイバーを基本ユニットとするナノ芝で被覆されていることが確認された(図1)。
Example 1
[Glass plate structure having superhydrophobic surface]
A 3 × 2 cm soda lime glass plate was immersed in the 4% aqueous solution of L-PEI obtained above (80 ° C. solution) and allowed to stand for 30 seconds. The plate was taken out and allowed to stand at room temperature for 5 minutes, and then immersed in a mixed solution of silica source (MS51 * / distilled water / IPA = 0.5 / 3/3 volume ratio) at room temperature for 20 minutes. The plate was taken out from the liquid, the surface was washed with ethanol, and dried at room temperature. When the surface of the obtained plate was observed by SEM, it was confirmed that the entire plate surface was covered with nano turf having nanofibers as a basic unit (FIG. 1).
一方、20%濃度のデシルトリメトキシシラン(DTMS)のクロロホルム溶液3mLを取り出し、それを30mLエタノールと混合した後、その液に0.6mLのアンモニア水(濃度28%)加えて、混合溶液を調製した。該混合液中に上記で調製したガラス板を浸漬し、室温下一定時間後取り出し、表面をエタノールで洗浄後、窒素ガスを流しながら乾燥させた。このようにして得た構造物の水接触角測定を行なった。図2に疎水化処理の浸漬時間による接触角変化を示した。図2中の挿絵は各時間帯での水滴接触角写真である。
*MS51:テトラメトキシシランの4量体(コルコート社製)。
On the other hand, 3 mL of 20% decyltrimethoxysilane (DTMS) chloroform solution was taken out, mixed with 30 mL ethanol, and then 0.6 mL ammonia water (concentration 28%) was added to the solution to prepare a mixed solution. did. The glass plate prepared above was immersed in the mixed solution, taken out after a certain time at room temperature, the surface was washed with ethanol, and dried while flowing nitrogen gas. The water contact angle of the structure thus obtained was measured. FIG. 2 shows changes in the contact angle depending on the immersion time of the hydrophobization treatment. The illustration in FIG. 2 is a water droplet contact angle photograph in each time zone.
* MS51: Tetramethoxysilane tetramer (manufactured by Colcoat).
実施例2
[超疎水性表面を有するガラス板構造物]
実施例1の経路で得る図1で示されたガラス板を500℃で2時間焼成し、内部のポリマーを除去した後(図3)、実施例1の同様な方法で、デシルトリメトキシシラン(DTMS)溶液中一定時間浸漬した後、各時間帯での接触角を測定した。図4にそれらの結果を示した。実施例1での結果に比べて、実施例2でのナノ芝中のポリエチレンイミン骨格のポリマーが除去された後の超疎水性化はもっと容易に進行することが示唆された。
Example 2
[Glass plate structure having superhydrophobic surface]
The glass plate shown in FIG. 1 obtained by the route of Example 1 was baked at 500 ° C. for 2 hours to remove the internal polymer (FIG. 3), and then the decyltrimethoxysilane ( (DTMS) After being immersed in the solution for a certain time, the contact angle in each time zone was measured. FIG. 4 shows the results. Compared with the result in Example 1, it was suggested that the superhydrophobization after the removal of the polymer of polyethyleneimine skeleton in the nano turf in Example 2 proceeds more easily.
実施例3
[水中で長期超疎水性を示す超疎水性表面を有するガラス板構造物]
実施例2の方法に示された疎水化処理段階で3時間浸漬してから得た構造物を、水道水中一定時間浸漬した後取り出し、接触角を測定した。表1に水道水中浸漬後の接触角を示した。接触角は1ヶ月後でも変化せず、超疎水性は保ったままであった。このことは、該構造物は水中でも長期に渡り水を弾く性質を有することを強く示唆する。即ち、該構造物は半永久性の超疎水性を有する。
Example 3
[Glass plate structure with superhydrophobic surface showing long-term superhydrophobicity in water]
The structure obtained after being immersed for 3 hours in the hydrophobizing treatment step shown in the method of Example 2 was taken out after being immersed for a certain time in tap water, and the contact angle was measured. Table 1 shows the contact angles after immersion in tap water. The contact angle did not change even after one month and remained superhydrophobic. This strongly suggests that the structure has the property of repelling water for a long time even in water. That is, the structure has semi-permanent superhydrophobicity.
実施例4
[超疎水性表面を有するポリスチレン板構造物]
2×2cmのポスチレン板を濃硫酸液中に3時間浸けた後、水、メタノールで表面を洗浄し、室温で5分間乾燥した。その後、該ポリスチレン板を4%のB−PEIの水溶液(80℃)に浸け、30秒間静置した。板を取り出し、室温にて5分間静置させた後、シリカソースの混合液(MS51/水/IPA=0.5/3/3体積比)につけた後、室温で20分静置した。板を液中から取り出し、エタノールで表面を洗浄し、室温にて乾燥させた。得られた板の表面をSEMで観察した。図5は板表面を被覆したナノファイバーの構造写真である。板表面全体はナノファイバーを基本ユニットとするナノ芝で被覆されていることが確認された。
Example 4
[Polystyrene plate structure having superhydrophobic surface]
A 2 × 2 cm polystyrene plate was immersed in a concentrated sulfuric acid solution for 3 hours, and then the surface was washed with water and methanol and dried at room temperature for 5 minutes. Thereafter, the polystyrene plate was immersed in a 4% aqueous solution of B-PEI (80 ° C.) and allowed to stand for 30 seconds. The plate was taken out and allowed to stand at room temperature for 5 minutes, then applied to a silica source mixture (MS51 / water / IPA = 0.5 / 3/3 volume ratio) and then allowed to stand at room temperature for 20 minutes. The plate was taken out from the liquid, the surface was washed with ethanol, and dried at room temperature. The surface of the obtained plate was observed with SEM. FIG. 5 is a structural photograph of nanofibers coated on the plate surface. It was confirmed that the entire surface of the plate was covered with nanograss with nanofibers as the basic unit.
一方、20%濃度のデシルトリメトキシシラン(DTMS)のクロロホルム溶液3mLを取り出し、それを30mLエタノールと混合した後、その液に0.6mLのアンモニア水(濃度28%)加えて、混合溶液を調製した。該混合液中に上記で調製したポリスチレン板を室温下24時間後浸漬した。板を取り出し、表面をエタノールで洗浄後、窒素ガスを流しながら乾燥した。得られた構造物の水接触角は176°であった。 On the other hand, 3 mL of 20% decyltrimethoxysilane (DTMS) chloroform solution was taken out, mixed with 30 mL ethanol, and then 0.6 mL ammonia water (concentration 28%) was added to the solution to prepare a mixed solution. did. The polystyrene plate prepared above was immersed in the mixed solution after 24 hours at room temperature. The plate was taken out, the surface was washed with ethanol, and dried while flowing nitrogen gas. The resulting structure had a water contact angle of 176 °.
実施例5
[超疎水性表面を有する銅板構造物]
1×1cmサイズの銅板を4%のL−PEIの水溶液(80℃液)に浸け、30秒間静置した。板を取り出し、室温にて5分間静置させた後、シリカソースの混合液(MS51/水/IPA=0.5/3/3)につけた後、室温で20分静置した。板を液中から取り出し、エタノールで表面を洗浄し、室温にて乾燥させた。得られた板の表面をSEMで観察した(図6)。銅板表面がナノファイバーを基本ユニットとするナノ構造体で覆われていることが確認された。これを実施例4で示した同様な方法で24時間疎水化処理した。得られた構造物の水接触角は178°であった。
Example 5
[Copper plate structure with superhydrophobic surface]
A 1 × 1 cm size copper plate was dipped in a 4% aqueous solution of L-PEI (80 ° C. solution) and allowed to stand for 30 seconds. The plate was taken out and allowed to stand at room temperature for 5 minutes, after being put on a mixed solution of silica source (MS51 / water / IPA = 0.5 / 3/3), and then allowed to stand at room temperature for 20 minutes. The plate was taken out from the liquid, the surface was washed with ethanol, and dried at room temperature. The surface of the obtained plate was observed with SEM (FIG. 6). It was confirmed that the copper plate surface was covered with a nanostructure having nanofibers as a basic unit. This was hydrophobized for 24 hours in the same manner as shown in Example 4. The water contact angle of the obtained structure was 178 °.
実施例6
[超疎水性表面中に金ナノ粒子を含む構造物]
実施例1で得たナノ芝被覆ガラス板を2mLのNaAuCl4・2H2Oの水溶液(1%)中に浸けて、80℃で1時間加熱した。ガラス管を取り出し、蒸留水、エタノール順に洗浄した後、室温で乾燥した。これで得たガラス板には薄いワインレッド色が現れた。このワインレッド色はガラス板内壁を被覆するナノ芝中に金ナノ粒子の存在を示すプラズモン吸収に由来する。反射スペクトル(日立製作所株式会社製、UV−3500)からも520nmをピークトップとする金ナノ粒子由来のプラズモン吸収が観測された。掻き落としたナノファイバーのTEM観察から、2〜3nm大きさの金ナノ粒子が確認された。上記金ナノ粒子が含まれたガラス板を実施例4で示した同様な方法で24時間疎水化処理した。得られた構造物の水接触角は179°であった。
Example 6
[Structure containing gold nanoparticles in superhydrophobic surface]
The nanoturf-coated glass plate obtained in Example 1 was immersed in 2 mL of an aqueous solution (1%) of NaAuCl 4 .2H 2 O and heated at 80 ° C. for 1 hour. The glass tube was taken out, washed with distilled water and ethanol in this order, and then dried at room temperature. A thin wine red color appeared on the glass plate thus obtained. This wine red color is derived from plasmon absorption indicating the presence of gold nanoparticles in the nano turf covering the inner wall of the glass plate. Plasmon absorption derived from gold nanoparticles having a peak top of 520 nm was also observed from a reflection spectrum (manufactured by Hitachi, Ltd., UV-3500). From TEM observation of the nanofiber scraped off, gold nanoparticles having a size of 2 to 3 nm were confirmed. The glass plate containing the gold nanoparticles was hydrophobized for 24 hours in the same manner as shown in Example 4. The water contact angle of the obtained structure was 179 °.
実施例7
[ガラス管内壁が超疎水性表面からなる管状構造物]
上記合成例1で得たポリマーL−PEIを蒸留水中に加え、90℃まで加熱し、4%の水溶液を調製した。ソーダライム材質のガラスピペット(内径6mm、長さ5cm)とシリンジをゴム管で連結し、該ガラス管中に一定目安のところまで前記加温したポリマー水溶液を吸い取ってから、30秒間静置した後、該ポリマー水溶液をシリンジの押し力で排出した。この操作でガラス管内壁にL−PEIポリマー層が形成された。該ガラス管を室温にて5分間静置したのち、ガラス管を20mLのMS51/水(体積比1/1)のシリカソース液中に30分間浸けた。ガラス管を取り出し、ガラス管内壁をエタノールで洗浄した後、それを室温で乾燥した。この作業後、ガラス管に薄青色の反射色が見えた。
Example 7
[Tubular structure with inner surface of glass tube made of superhydrophobic surface]
Polymer L-PEI obtained in Synthesis Example 1 was added to distilled water and heated to 90 ° C. to prepare a 4% aqueous solution. After connecting a glass pipette made of soda lime (inner diameter 6 mm, length 5 cm) and a syringe with a rubber tube, and sucking the heated polymer aqueous solution up to a certain standard in the glass tube, it was allowed to stand for 30 seconds. The polymer aqueous solution was discharged by a pushing force of a syringe. By this operation, an L-PEI polymer layer was formed on the inner wall of the glass tube. The glass tube was allowed to stand at room temperature for 5 minutes, and then the glass tube was immersed in 20 mL of a silica source solution of MS51 / water (volume ratio 1/1) for 30 minutes. After the glass tube was taken out and the inner wall of the glass tube was washed with ethanol, it was dried at room temperature. After this operation, a light blue reflected color was seen on the glass tube.
上記過程を経て得られたガラス管末端を少々潰し、その破片をSEMにて観察した。図7にはガラス管内壁表面のSEM写真の結果を示した。内壁には、ナノファイバーをユニット構造とする緻密な配列膜が形成した。上記方法で得たガラスピペットを3mLの20%濃度のデシルトリメトキシシラン(DTMS)のクロロホルム溶液、30mLエタノール、0.6mLのアンモニア水(濃度28%)で調製された混合溶液に室温下24時間浸漬した。ピペットを取り出し、表面をエタノールで洗浄後、窒素ガスを流しながら乾燥させた。このようにして得たピペットを27°の傾きで固定し、その中に水滴を落としたところ、水滴は一瞬で管内を流れ出た。水滴の流れを超高速カメラで観察したところ(図8)、水滴は丸々の球状で管内を転がりながら流れた。このことは管の内壁は超疎水性であることを強く示唆する。 The glass tube end obtained through the above process was slightly crushed, and the fragments were observed with SEM. FIG. 7 shows the result of the SEM photograph of the inner surface of the glass tube. On the inner wall, a dense array film having nanofibers as a unit structure was formed. The glass pipette obtained by the above method was added to a mixed solution prepared with 3 mL of 20% strength decyltrimethoxysilane (DTMS) chloroform solution, 30 mL ethanol, 0.6 mL aqueous ammonia (concentration 28%) at room temperature for 24 hours. Soaked. The pipette was taken out, the surface was washed with ethanol, and dried while flowing nitrogen gas. The pipette thus obtained was fixed at an inclination of 27 °, and when a water droplet was dropped therein, the water droplet flowed out of the pipe instantly. When the flow of water droplets was observed with an ultra-high speed camera (FIG. 8), the water droplets flowed in a round shape in a circular shape. This strongly suggests that the inner wall of the tube is superhydrophobic.
比較として、何も処理してないガラスピペットに同様に水滴を落としたが、水は付着状態のまま管内を流れることがなかった。図9は付着状態時のデジタルカメラ写真である。 For comparison, water drops were similarly dropped on an untreated glass pipette, but water did not flow through the tube in an attached state. FIG. 9 is a digital camera photograph in the attached state.
更に、超疎水性を示すピペットを用い、10%の塩化ナトリウム水溶液移動試験を行なった。毎回一定重さの溶液を吸い取り、その溶液を他のガラス管に移し、溶液移動に伴う液体重さ変化を調べた。20回繰り返し溶液移動でも、移動された溶液の重さには全く変化がなかった。即ち、超疎水性内壁を有するピペットを用いた場合、吸い取った溶液をピペット中付着などのロスなしに完璧に移すことができた。 Furthermore, a 10% sodium chloride aqueous solution migration test was performed using a pipette exhibiting superhydrophobicity. Each time a solution having a constant weight was sucked, the solution was transferred to another glass tube, and the change in the liquid weight accompanying the solution movement was examined. Even when the solution was repeatedly transferred 20 times, there was no change in the weight of the transferred solution. That is, when a pipette having a superhydrophobic inner wall was used, the sucked solution could be completely transferred without any loss such as adhesion in the pipette.
比較として、普通のピペットで同様な試験を行なったところ、溶液移動後ピペット内壁には必ず液滴が付着残存し、それが吸い取った溶液の2%相当であることがわかった。 As a comparison, when a similar test was performed with an ordinary pipette, it was found that droplets always adhered and remained on the inner wall of the pipette after moving the solution, which corresponded to 2% of the sucked solution.
以上の結果超疎水性表面を有するピペットは水溶液輸送で精密に溶液を移動させることができることが判明した。 As a result, it was found that a pipette having a superhydrophobic surface can accurately move the solution by aqueous solution transportation.
実施例8
[棉性糸表面が超疎水性表面からなる構造物]
50mgの凧糸を2%のL−PEIの水溶液(80℃液)に浸け、30秒間静置した。糸を取り出し、室温にて60分間静置させた後、シリカソースの混合液(MS51/水/IPA=0.5/3/3)中に室温下20分浸漬した。糸を液中から取り出し、エタノールで表面洗浄、室温乾燥を経て、シリカで表面被覆された糸の構造物を得た。得られた糸の表面をSEMで観察した(図10)。シリカ被覆前と後の表面比較から、糸の表面がナノファイバーを基本ユニットとするナノ構造体で覆われていることが確認された。これを実施例4で示した同様な方法で24時間疎水化処理した。
Example 8
[Structure in which the surface of the dwarf yarn is a superhydrophobic surface]
50 mg of the kite string was immersed in an aqueous solution of 2% L-PEI (80 ° C. solution) and allowed to stand for 30 seconds. The yarn was taken out and allowed to stand at room temperature for 60 minutes, and then immersed in a mixed solution of silica source (MS51 / water / IPA = 0.5 / 3/3) at room temperature for 20 minutes. The yarn was taken out from the liquid, subjected to surface washing with ethanol and drying at room temperature to obtain a yarn structure whose surface was coated with silica. The surface of the obtained yarn was observed with SEM (FIG. 10). From the surface comparison before and after the silica coating, it was confirmed that the surface of the yarn was covered with a nanostructure having a nanofiber as a basic unit. This was hydrophobized for 24 hours in the same manner as shown in Example 4.
このようにして得た構造物を水中に10分間浸漬後、取り出し、浸漬前後の重さを測った。浸漬前に12mgの構造物が浸漬後でも12mgままで、表面には水滴残留のような水濡れが全くなかった。比較に、未処理の凧糸15mgを水中に漬けてから取り出したら、完全に濡れた状態で、重さは8倍以上となった。このことは、超疎水性表面を有する糸は完全に水を弾くことができることを示唆する。 The structure thus obtained was immersed in water for 10 minutes and then taken out and weighed before and after immersion. Before immersion, 12 mg of the structure remained at 12 mg even after immersion, and there was no water wetting such as residual water droplets on the surface. For comparison, when 15 mg of untreated silk thread was dipped in water and taken out, the weight was 8 times or more in a completely wet state. This suggests that yarns with superhydrophobic surfaces can completely repel water.
実施例9
[濾紙表面が超疎水性表面からなる構造物]
2×2cm大きさの濾紙を2%のL−PEIの水溶液(80℃液)に浸け、30秒間静置した。濾紙を取り出し、室温にて60分間静置させた後、シリカソースの混合液(MS51/水/IPA=0.5/3/3)中に室温下20分浸漬した。濾紙を液中から取り出し、エタノールで表面洗浄、室温乾燥を経て、シリカで表面被覆された濾紙の構造物を得た。得られた濾紙の表面をSEMで観察した(図11)。シリカ被覆前後の表面比較から、濾紙の表面がナノファイバーを基本ユニットとするナノ構造体で覆われていることが確認された。これを実施例4で示した同様な方法で24時間疎水化処理した。
Example 9
[Structure in which the filter paper surface is a superhydrophobic surface]
A filter paper having a size of 2 × 2 cm was immersed in a 2% aqueous solution of L-PEI (80 ° C. solution) and allowed to stand for 30 seconds. The filter paper was taken out, allowed to stand at room temperature for 60 minutes, and then immersed in a mixed liquid of silica source (MS51 / water / IPA = 0.5 / 3/3) at room temperature for 20 minutes. The filter paper was taken out from the liquid, subjected to surface washing with ethanol and room temperature drying, to obtain a filter paper structure whose surface was coated with silica. The surface of the obtained filter paper was observed with SEM (FIG. 11). From the surface comparison before and after the silica coating, it was confirmed that the surface of the filter paper was covered with a nanostructure having nanofibers as a basic unit. This was hydrophobized for 24 hours in the same manner as shown in Example 4.
このようにして得た濾紙平面を3°の傾けに広げ、その上に水滴を落としたところ、水滴は水玉のように転がり濾紙表面から弾け落ちた。水は濾紙を濡らすことがなかった。 The plane of the filter paper obtained in this way was spread at an angle of 3 ° and a water droplet was dropped on it, and the water droplet rolled like a polka dot and bounced off the surface of the filter paper. The water did not wet the filter paper.
Claims (11)
該超疎水性ナノ構造複合体(Z1)がポリエチレンイミン骨格(a)を有するポリマー(A)とシリカ(B)とを含有するナノ構造体(y1)中の該シリカ(B)に疎水性基が結合してなる複合体であることを特徴とする超疎水性表面を有する構造物。 A solid substrate (X) having a surface coated with a superhydrophobic nanostructure composite (Z1),
The superhydrophobic nanostructure composite (Z1) has a hydrophobic group in the silica (B) in the nanostructure (y1) containing the polymer (A) having a polyethyleneimine skeleton (a) and silica (B). A structure having a superhydrophobic surface, wherein the structure is a complex formed by bonding.
前記工程(1−1)で得られたポリマー層を有する固体基材(X)と、シリカソース液(B’)とを接触して、固体基材(X)表面のポリマー層中にシリカ(B)を析出させ、ナノ構造体(y1)を形成させる工程(1−2)と、
前記工程(1−2)で得た固体基材上のナノ構造体(y1)の表面を、疎水性基を有するシランカップリング剤で処理する工程(1−3)と、
を有することを特徴とする超疎水性ナノ構造複合体で被覆された構造物の製造方法。 A step of immersing the solid substrate (X) in a solution containing the polymer (A) having a polyethyleneimine skeleton (a) and then taking it out to form a polymer layer on the surface of the solid substrate (X) ( 1- 1 ) and
The solid substrate (X) having the polymer layer obtained in the step (1-1) is brought into contact with the silica source liquid (B ′), and silica (in the polymer layer on the surface of the solid substrate (X)) B) precipitating, and step of forming nanostructures (y1) (1- 2),
The surface of the step (1 2) obtained in nanostructures on a solid substrate (y1), and treating with a silane coupling agent having a hydrophobic group (1-3),
A method for producing a structure coated with a superhydrophobic nanostructure composite, comprising:
前記工程(2−1)で得られたポリマー層を有する固体基材(X)と、シリカソース液(B’)とを接触して、固体基材(X)表面のポリマー層中にシリカ(B)を析出させ、ナノ構造体(y1)を形成させる工程(2−2)と、
前記工程(2−2)で得られたナノ構造体(y1)で被覆された固体基材(X)を、更に金、銀及び白金からなる群から選ばれる貴金属のイオン水溶液中に浸漬させることにより、該貴金属イオンをナノ構造体(y1)中に浸透させ、該ナノ構造体(y1)中のポリエチレンイミン骨格(a)による自発還元作用により、当該貴金属の金属ナノ粒子を形成する工程(2−3)と、
前記工程(2−3)で得た固体基材(X)上のナノ構造体(y1)の表面を、疎水性基を有するシランカップリング剤で処理する工程(2−4)、
を有することを特徴とする、金属ナノ粒子を含有する超疎水性ナノ構造複合体で被覆された構造物の製造方法。 A step of immersing the solid substrate (X) in a solution containing the polymer (A) having a polyethyleneimine skeleton (a) and then taking it out to form a polymer layer on the surface of the solid substrate (X) ( 2- 1) and
The solid substrate (X) having the polymer layer obtained in the step (2-1) is brought into contact with the silica source liquid (B ′), and silica (in the polymer layer on the surface of the solid substrate (X)) B) precipitating, and step of forming nanostructures (y1) (2- 2),
The solid substrate (X) coated with the nanostructure (y1) obtained in the step (2-2) is further immersed in an aqueous ionic solution of a noble metal selected from the group consisting of gold, silver and platinum. Step of allowing the noble metal ion to penetrate into the nanostructure (y1) and forming a metal nanoparticle of the noble metal by a spontaneous reduction action by the polyethyleneimine skeleton (a) in the nanostructure (y1) ( 2 - 3) and,
The step (2-3) obtained in the solid substrate (X) on the nanostructure surface of (y1), the step (2-4) is treated with a silane coupling agent having a hydrophobic group,
A method for producing a structure coated with a superhydrophobic nanostructure composite containing metal nanoparticles, comprising:
前記工程(3−1)で得られたポリマー層を有する固体基材(X)と、シリカソース液(B’)とを接触して、固体基材(X)表面のポリマー層中にシリカ(B)を析出させ、金属イオンを含むナノ構造体(y1)を形成させる工程(3−2)と、
前記工程(3−2)で得た固体基材(X)上のナノ構造体(y1)の表面を、疎水性基を有するシランカップリング剤で処理する工程(3−3)と、
を有することを特徴とする、金属イオンを含有する超疎水性ナノ構造複合体で被覆された構造物の製造方法。 The solid substrate (X) is immersed in a solution containing the polymer (A) having a polyethyleneimine skeleton (a) and metal ions, and then taken out. The solid substrate (X) contains metal ions on the surface thereof. A step ( 3-1 ) of forming a polymer layer;
The solid substrate (X) having the polymer layer obtained in the step (3-1) is brought into contact with the silica source liquid (B ′), and silica (in the polymer layer on the surface of the solid substrate (X)) B) precipitating, as in step (3-2) to form nanostructures (y1) containing a metal ion,
The surface of the step (3-2) obtained in the solid substrate (X) on the nanostructure (y1), and treating with a silane coupling agent having a hydrophobic group (3-3),
A method for producing a structure coated with a superhydrophobic nanostructure composite containing metal ions, comprising:
前記工程(4−1)で得られたポリマー層を有する固体基材(X)と、シリカソース液(B’)とを接触して、固体基材(X)表面のポリマー層中にシリカ(B)を析出させ、ナノ構造体(y1)を形成させる工程(4−2)と、
前記(4−2)で得たナノ構造体(y1)で被覆された固体基材(X)を焼成し、ナノ構造体(y1)中のポリエチレンイミン骨格(a)を有するポリマー(A)を除去してナノ構造体(y2)とする工程(4−3)と、
前記工程(4−3)で得た固体基材上のナノ構造体(y2)の表面を、疎水性基を有するシランカップリング剤で処理する工程(4−4)と、
を有することを特徴とする超疎水性ナノ構造複合体で被覆された構造物の製造方法。 A step of immersing the solid substrate (X) in a solution containing the polymer (A) having a polyethyleneimine skeleton (a) and then taking it out to form a polymer layer on the surface of the solid substrate (X) ( 4- 1) and
The solid substrate (X) having the polymer layer obtained in the step (4-1) is brought into contact with the silica source liquid (B ′), and silica (in the polymer layer on the surface of the solid substrate (X)) B) precipitating, and step of forming nanostructures (y1) (4- 2),
The (4-2) in the nanostructure (y1) coated with the solid substrate (X) is then fired to obtain, nanostructures polymer having (A) (y1) polyethyleneimine skeleton (a) in removed by the step of the nanostructure (y2) and (4-3),
The surface of the step (4-3) obtained in nanostructures on a solid substrate (y2), and treating with a silane coupling agent having a hydrophobic group (4 4),
A method for producing a structure coated with a superhydrophobic nanostructure composite, comprising:
該超疎水性ナノ構造複合体(Z2)がシリカ(B)を主構成成分とするナノ構造体(y2)中の該シリカ(B)に疎水性基が結合してなる複合体であることを特徴とする超疎水性表面を有する構造物。 The structure obtained by coating the surface of the solid substrate (X) obtained by the production method according to claim 8 with a superhydrophobic nanostructure composite (Z2),
The superhydrophobic nanostructure composite (Z2) is a composite formed by bonding a hydrophobic group to the silica (B) in the nanostructure (y2) containing silica (B) as a main constituent. A structure having a characteristic superhydrophobic surface.
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2008154121A JP4469002B2 (en) | 2008-06-12 | 2008-06-12 | Structure coated with superhydrophobic nanostructure composite and its production method |
| KR1020107017484A KR101210462B1 (en) | 2008-06-12 | 2009-05-25 | Structures coated with ultrahydrophobic nanostructure composite and processes for producing the same |
| US12/737,128 US8017234B2 (en) | 2008-06-12 | 2009-05-25 | Structural object coated with superhydrophobic nanostructure composite and process for producing the same |
| EP09762360.7A EP2286991A4 (en) | 2008-06-12 | 2009-05-25 | STRUCTURES COVERED WITH AN ULTRA-HYDROPHOBIC NANOSTRUCTURED COMPOSITE AND THEIR PRODUCTION PROCESS |
| CN200980121593.4A CN102056739B (en) | 2008-06-12 | 2009-05-25 | Structures coated with ultrahydrophobic nanostructure composite and processes for producing the same |
| PCT/JP2009/059506 WO2009150930A1 (en) | 2008-06-12 | 2009-05-25 | Structures coated with ultrahydrophobic nanostructure composite and processes for producing the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2008154121A JP4469002B2 (en) | 2008-06-12 | 2008-06-12 | Structure coated with superhydrophobic nanostructure composite and its production method |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2009297993A JP2009297993A (en) | 2009-12-24 |
| JP2009297993A5 JP2009297993A5 (en) | 2010-03-11 |
| JP4469002B2 true JP4469002B2 (en) | 2010-05-26 |
Family
ID=41545402
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2008154121A Active JP4469002B2 (en) | 2008-06-12 | 2008-06-12 | Structure coated with superhydrophobic nanostructure composite and its production method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4469002B2 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10534260B2 (en) | 2017-10-20 | 2020-01-14 | Toshiba Memory Corporation | Pattern formation method |
| KR20210061543A (en) * | 2019-11-20 | 2021-05-28 | 한국세라믹기술원 | Super water repellent surface implementation method and Super water repellent structure |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2017070280A1 (en) * | 2015-10-21 | 2017-04-27 | Corning Incorporated | Antimicrobial phase-separable glass/polymer composite articles and methods for making the same |
| CN106698583B (en) * | 2017-02-23 | 2019-10-25 | 西南大学 | A kind of preparation method of superhydrophobic melamine sponge adsorption type oil-water separation material and its product and application |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3533606B2 (en) * | 2002-02-15 | 2004-05-31 | 世明 白鳥 | Manufacturing method of super water repellent film |
| JP4413252B2 (en) * | 2007-09-03 | 2010-02-10 | 財団法人川村理化学研究所 | Nanostructure composite-coated structure and method for producing the same |
-
2008
- 2008-06-12 JP JP2008154121A patent/JP4469002B2/en active Active
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10534260B2 (en) | 2017-10-20 | 2020-01-14 | Toshiba Memory Corporation | Pattern formation method |
| KR20210061543A (en) * | 2019-11-20 | 2021-05-28 | 한국세라믹기술원 | Super water repellent surface implementation method and Super water repellent structure |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2009297993A (en) | 2009-12-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2009150930A1 (en) | Structures coated with ultrahydrophobic nanostructure composite and processes for producing the same | |
| JP4503086B2 (en) | Superhydrophobic powder, structure having superhydrophobic surface using the same, and production method thereof | |
| CN101815673B (en) | Process for producing nanostructure composite covered structure, nanostructure composite covered structure, and reactor using the nanostructure composite covered structure | |
| Purcar et al. | Antireflective coating based on TiO2 nanoparticles modified with coupling agents via acid-catalyzed sol-gel method | |
| WO2010018744A1 (en) | Ultrahydrophobic powder, structure with ultrahydrophobic surface, and processes for producing these | |
| KR101411769B1 (en) | Superhydrophilic coating compositions and their preparation | |
| US8591988B1 (en) | Method of fabrication of anchored nanostructure materials | |
| US20160002438A1 (en) | Core-shell nanoparticles and method for manufacturing the same | |
| Yu et al. | Liquid-repellent and self-repairing lubricant-grafted surfaces constructed by thiol-ene click chemistry using activated hollow silica as the lubricant reservoir | |
| JP4469002B2 (en) | Structure coated with superhydrophobic nanostructure composite and its production method | |
| JP5028549B2 (en) | Polysiloxane-containing nanostructure composite-coated structure and method for producing the same | |
| JP4510105B2 (en) | Titania nanostructure composite-coated structure and method for producing the same | |
| CN112143332A (en) | A kind of super-hydrophobic coating and preparation method thereof | |
| JP4413252B2 (en) | Nanostructure composite-coated structure and method for producing the same | |
| US8945691B2 (en) | Nano-material and method of fabrication | |
| JP4491037B1 (en) | Tubular structure for moving aqueous solution and manufacturing method thereof | |
| JP2011225694A (en) | Water-in-oil type emulsion using super hydrophobic powder as dispersant and method for producing the same | |
| JP2010196097A (en) | Method for producing structure coated with metal oxide, and structure coated with metal oxide | |
| JP2011020327A (en) | Structure with aqueous ink repellent surface and method for manufacturing this structure | |
| JP4338757B2 (en) | Catalyst fixed reactor for carbon-carbon bond formation reaction |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100126 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100126 |
|
| A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20100126 |
|
| TRDD | Decision of grant or rejection written | ||
| A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20100212 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100218 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100225 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 4469002 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130305 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130305 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140305 Year of fee payment: 4 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
| S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |