JP4482699B2 - Glass substrate for flat panel display - Google Patents
Glass substrate for flat panel display Download PDFInfo
- Publication number
- JP4482699B2 JP4482699B2 JP2004017775A JP2004017775A JP4482699B2 JP 4482699 B2 JP4482699 B2 JP 4482699B2 JP 2004017775 A JP2004017775 A JP 2004017775A JP 2004017775 A JP2004017775 A JP 2004017775A JP 4482699 B2 JP4482699 B2 JP 4482699B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- glass substrate
- temperature
- thermal expansion
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
- C03C3/087—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
- Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
- Gas-Filled Discharge Tubes (AREA)
Description
本発明は、フラットパネルディスプレイ装置、特にプラズマディスプレイ装置に適したガラス基板に関するものである。 The present invention relates to a glass substrate suitable for a flat panel display device, particularly a plasma display device.
プラズマディスプレイ装置は、次のようにして作製される。まず、前面ガラス基板表面にITO膜やネサ膜等からなる透明電極を成膜し、その上に誘電体材料を塗布して500〜600℃程度の温度で焼成し誘電体層を形成する。また、Al、Ag、Ni等からなる電極が形成された背面ガラス基板に、背面誘電体材料を塗布して500〜600℃程度の温度で焼成して誘電体層を形成し、その上に隔壁材料を塗布して500〜600℃程度の温度で焼成して隔壁を形成することにより回路を形成する。その後、前面ガラス基板と背面ガラス基板を対向させて電極等の位置合わせを行って、周囲を500〜600℃程度の温度でフリットシールすることにより作製される。 The plasma display device is manufactured as follows. First, a transparent electrode made of an ITO film, a nesa film or the like is formed on the surface of the front glass substrate, a dielectric material is applied thereon, and baked at a temperature of about 500 to 600 ° C. to form a dielectric layer. Further, a back dielectric material is applied to a back glass substrate on which an electrode made of Al, Ag, Ni, or the like is formed, and is baked at a temperature of about 500 to 600 ° C. to form a dielectric layer, on which a partition wall is formed. A circuit is formed by applying a material and baking it at a temperature of about 500 to 600 ° C. to form a partition. Thereafter, the front glass substrate and the rear glass substrate are opposed to each other to align the electrodes and the like, and the periphery is frit-sealed at a temperature of about 500 to 600 ° C.
従来、ガラス基板としては、フロート法等によって1.8〜3.0mmの肉厚に成形されたソーダ石灰ガラス(熱膨張係数 約84×10-7/℃)が一般的に用いられてきた。また、絶縁ペースト、リブペースト、フリットシールといった周辺材料の熱膨張係数もソーダ石灰ガラスに合わせて、70〜90×10-7/℃の範囲に調整されている。 Conventionally, as a glass substrate, soda-lime glass (coefficient of thermal expansion of about 84 × 10 −7 / ° C.) formed to a thickness of 1.8 to 3.0 mm by a float method or the like has been generally used. In addition, the thermal expansion coefficient of peripheral materials such as insulating paste, rib paste, and frit seal is also adjusted in the range of 70 to 90 × 10 −7 / ° C. in accordance with soda lime glass.
ところが、ソーダ石灰ガラスは歪点が500℃程度と低いため、570〜600℃の温度で熱処理する際に、熱変形や熱収縮が起こり、寸法が著しく変化する。その結果、前面ガラス基板と背面ガラス基板を対向させる際、電極の位置合わせを精度よく実現することが難しく、特に大型高精細のプラズマディスプレイ装置を作製する上で困難を生じていた。 However, since soda-lime glass has a strain point as low as about 500 ° C., when heat-treated at a temperature of 570 to 600 ° C., thermal deformation and thermal shrinkage occur, and the dimensions change remarkably. As a result, when the front glass substrate and the back glass substrate are made to face each other, it is difficult to realize the alignment of the electrodes with high accuracy, and in particular, it is difficult to produce a large and high-definition plasma display device.
また、ソーダ石灰ガラスは、150℃での体積電気抵抗率(log ρ)が8.4Ω・cmと低く、ガラス中のアルカリ成分の移動度が大きい。従って、ガラス中のアルカリ成分がITO膜やネサ膜等の薄膜電極と反応し、電極材料の電気抵抗値を変化させる問題も有している。 In addition, soda-lime glass has a low volume resistivity (log ρ) at 150 ° C. of 8.4 Ω · cm, and the mobility of alkali components in the glass is large. Accordingly, the alkali component in the glass reacts with a thin film electrode such as an ITO film or a nesa film, thereby causing a problem of changing the electric resistance value of the electrode material.
これらの事情から、ソーダ石灰ガラスと同等の熱膨張係数を有し、ソーダ石灰ガラスよりも高い体積電気抵抗率と歪点を有するガラスがガラス基板に使用され、大型高精細のプラズマディスプレイ装置が作製されている。
しかしながら、特許文献1、2に開示されているようなガラスは、ソーダ石灰ガラスに比べ、ガラスの高温粘度が高い。そのため、ガラスの溶融温度や成形温度を高くしなければならなくなり、溶融や成形が困難となる。特に、フロート成形の場合、安価に大型のガラス基板を得やすいが、ガラスの高温粘度が高いと、溶融ガラスを板状に成形するためのフロートバスの温度を高くしなければならず、フロートバスからのスズの揮発量が増加し、ガラス表面に悪影響を及ぼすことになる。 However, glasses such as those disclosed in Patent Documents 1 and 2 have a higher high-temperature viscosity of glass than soda-lime glass. Therefore, it is necessary to increase the melting temperature and molding temperature of the glass, and melting and molding become difficult. In particular, in the case of float molding, it is easy to obtain a large glass substrate at a low cost. However, if the high-temperature viscosity of the glass is high, the temperature of the float bath for molding molten glass into a plate shape must be increased. The amount of volatilization of tin from the steel increases, which adversely affects the glass surface.
本発明の目的は、溶融性、成形性に優れ、ディスプレイ装置を製造する際の熱工程で熱変形や熱収縮が問題とならず、しかも、ガラス中のアルカリ成分とITO膜やネサ膜等の薄膜電極が反応しにくいフラットパネルディスプレイ装置用ガラス基板を提供することである。 The object of the present invention is excellent in meltability and moldability, and heat deformation and heat shrinkage are not a problem in a heat process when manufacturing a display device. Moreover, an alkali component in glass, an ITO film, a nesa film, etc. It is to provide a glass substrate for a flat panel display device in which a thin film electrode hardly reacts.
本発明のフラットパネルディスプレイ装置用ガラス基板は、質量百分率で、ガラス組成として、SiO 2 50〜60%、Al 2 O 3 5〜15%、MgO 4〜10%、CaO 0〜3%、SrO 0〜18%、BaO 2〜18%、RO(ROはMgO、CaO、SrO、BaOを表わす) 20〜30%、Na 2 O 0〜10%、K 2 O 0〜12%、R 2 O(R 2 OはNa 2 O、K 2 Oを表わす) 7〜12.5%未満、ZrO 2 1〜10%を含有するとともに、歪点が575℃以上であり、104dPa・sの粘度に相当するガラス融液の温度が1120℃以下であり、且つ、150℃における体積電気抵抗率(log ρ)が11.0Ω・cm以上であることを特徴とする。 The glass substrate for a flat panel display device of the present invention is in mass percentage and has a glass composition of SiO 2 50-60%, Al 2 O 3 5-15%, MgO 4-10%, CaO 0-3%, SrO 0. ~18%, BaO 2~18%, RO (RO represents MgO, CaO, SrO, and BaO) 20~30%, Na 2 O 0~10%, K 2 O 0~12%, R 2 O (R 2 O represents Na 2 O, K 2 O) 7 to less than 12.5%, ZrO 2 1 to 10%, strain point is 575 ° C. or higher, corresponding to a viscosity of 10 4 dPa · s The glass melt has a temperature of 1120 ° C. or lower, and a volume resistivity (log ρ) at 150 ° C. of 11.0 Ω · cm or higher.
本発明のガラス基板は、高温粘度が低く、溶融性や成形性に優れている。さらに、歪点及び体積電気抵抗率が高く、また、周辺材料との整合性が取れる熱膨張係数を有しているため、フラットパネルディスプレイ装置、特に、プラズマディスプレイ装置のガラス基板として好適である。 The glass substrate of the present invention has a low high temperature viscosity and is excellent in meltability and moldability. Further, since it has a high strain point and a high volume resistivity, and has a thermal expansion coefficient that can be matched with the surrounding materials, it is suitable as a glass substrate for flat panel display devices, particularly plasma display devices.
本発明のフラットパネルディスプレイ装置用ガラス基板は、ガラスの高温粘度が低いため、優れた溶融性及び成形性を有する。具体的には、104dPa・sの粘度に相当するガラス融液の温度が1120℃以下(好ましくは1110℃以下)である。尚、この温度が1120℃より高くなると、成形が難しくなるばかりか成形装置に負担が掛かる。 The glass substrate for a flat panel display device of the present invention has excellent meltability and moldability because the high temperature viscosity of the glass is low. Specifically, the temperature of the glass melt corresponding to a viscosity of 10 4 dPa · s is 1120 ° C. or lower (preferably 1110 ° C. or lower). In addition, when this temperature becomes higher than 1120 degreeC, not only shaping | molding will become difficult, but a burden will be applied to a shaping | molding apparatus.
104dPa・sの粘度に相当するガラス融液の温度を1120℃以下にするには、RO(ROはMgO、CaO、SrO、BaOを表わす)やR2O(R2OはNa2O、K2Oを表わす)を多く含有させることで調整することができる。 In order to set the temperature of the glass melt corresponding to a viscosity of 10 4 dPa · s to 1120 ° C. or less, RO (RO represents MgO, CaO, SrO, BaO) or R 2 O (R 2 O is Na 2 O). , Which represents a large amount of K 2 O).
しかし、ROの含有量が多くなると、ガラスが失透して成形し難くなったり、ガラスのクラック抵抗(耐クラック性)が低下し、ガラス基板搬送工程等で、ガラス基板に傷が付き割れやすくなる。 However, when the RO content increases, the glass becomes devitrified and it becomes difficult to mold, or the crack resistance (crack resistance) of the glass decreases, and the glass substrate is easily damaged and cracked in the glass substrate transporting process and the like. Become.
また、R2Oの含有量が多くなると、ガラスの歪点が低下して、ディスプレイ装置を製造する際の熱工程で、熱変形や熱収縮が起こりやすくなったり、ガラスの体積電気抵抗率が低下して、ガラス中のアルカリ成分とITO膜やネサ膜等の薄膜電極が反応し電極材料の電気抵抗値が変化しやすくなる。 In addition, when the content of R 2 O increases, the strain point of the glass decreases, and thermal deformation and thermal shrinkage are likely to occur in the thermal process when manufacturing the display device. It falls, and the alkali component in glass reacts with a thin film electrode such as an ITO film or a nesa film, so that the electric resistance value of the electrode material easily changes.
そこで、本発明のフラットパネルディスプレイ装置用ガラス基板では、ROの中でも、耐クラック性に影響を与えないMgOを4質量%以上含有させて、更に、耐クラック性を低下させるCaOを3質量%以下にしている。同時に、ROの含有量を20〜30質量%に厳密に調整して、失透を抑え、耐クラック性の低下と高温粘度の上昇を抑制している。更に、R2Oの含有量を7〜12.5質量%未満に厳密に調整して、歪点及び体積電気抵抗率の低下を抑制している。このようにすることで、優れた耐クラック性、溶融性、成形性を有し、しかも、高い歪点と体積電気抵抗率を有するガラス基板を得ることができる。 Therefore, in the glass substrate for a flat panel display device of the present invention, 4% by mass or more of MgO that does not affect crack resistance is included in RO, and 3% by mass or less of CaO that further reduces crack resistance. I have to. At the same time, the RO content is strictly adjusted to 20 to 30% by mass to suppress devitrification, and suppress the decrease in crack resistance and the increase in high temperature viscosity. Furthermore, the content of R 2 O is strictly adjusted to 7 to less than 12.5% by mass to suppress a decrease in strain point and volume resistivity. By doing in this way, the glass substrate which has the outstanding crack resistance, a meltability, and a moldability, and also has a high strain point and volume electrical resistivity can be obtained.
尚、本発明のガラス基板は、ディスプレイ装置を製造する際の熱工程における熱変形や熱収縮の発生を抑えるために、ガラスの歪点が575℃以上(より好ましくは580℃以上)になるように調整している。 In the glass substrate of the present invention, the glass has a strain point of 575 ° C. or higher (more preferably 580 ° C. or higher) in order to suppress the occurrence of thermal deformation and thermal shrinkage in the heat process when manufacturing the display device. It is adjusted to.
また、ガラス中のアルカリ成分とITO膜やネサ膜等の薄膜電極との反応を抑えて電極材料の電気抵抗値を安定させるために、150℃におけるガラスの体積電気抵抗率が11.0Ω・cm以上(より好ましくは11.5Ω・cm以上)になるように調整している。 Further, in order to suppress the reaction between the alkali component in the glass and the thin film electrode such as ITO film or Nesa film and stabilize the electric resistance value of the electrode material, the volume electric resistivity of the glass at 150 ° C. is 11.0 Ω · cm. It is adjusted so that it is more (more preferably 11.5 Ω · cm or more).
ガラスの歪点や体積電気抵抗率を高くするには、R2Oの含有量を少なくすればよい。 In order to increase the strain point and volume resistivity of the glass, the content of R 2 O may be reduced.
また、本発明のガラス基板は、ガラスの熱膨張係数が75超〜100×10-7/℃(好ましくは75超〜90×10-7/℃)であるため、周辺材料と整合し、フリットシールを良好に行うことができる。尚、ガラスの熱膨張係数がこの範囲外であると、周辺材料の熱膨張係数と整合せず、フリットシールを良好に行うことが難しくなる。ガラスの熱膨張係数を上記範囲にするには、SiO2、Al2O3、Na2O、K2Oの含有量を調整すればよい。 The glass substrate of the present invention has a coefficient of thermal expansion of more than 75 to 100 × 10 −7 / ° C. (preferably more than 75 to 90 × 10 −7 / ° C.). Sealing can be performed satisfactorily. If the thermal expansion coefficient of the glass is out of this range, it does not match the thermal expansion coefficient of the surrounding materials, and it becomes difficult to perform frit sealing well. In order to make the thermal expansion coefficient of the glass within the above range, the contents of SiO 2 , Al 2 O 3 , Na 2 O, and K 2 O may be adjusted.
本発明のフラットパネルディスプレイ装置用ガラス基板に使用可能な具体的組成は、質量百分率で、SiO2 50〜70%、Al2O3 5〜15%、MgO 4〜10%、CaO 0〜3%、SrO 0〜18%、BaO 2〜18%、RO(ROはMgO、CaO、SrO、BaOを表わす) 20〜30%、Na2O 0〜10%、K2O 0〜15%、R2O(R2OはNa2O、K2Oを表わす) 7〜12.5%未満、ZrO2 0〜10%の範囲であり、この範囲内で上記条件を満たすように選択すればよい。 The specific composition that can be used for the glass substrate for a flat panel display device of the present invention is, by mass percentage, SiO 2 50 to 70%, Al 2 O 3 5 to 15%, MgO 4 to 10%, CaO 0 to 3%. SrO 0-18%, BaO 2-18%, RO (RO represents MgO, CaO, SrO, BaO) 20-30%, Na 2 O 0-10%, K 2 O 0-15%, R 2 O (R 2 O represents Na 2 O, K 2 O) 7 to less than 12.5% and ZrO 2 0 to 10%, and the range may be selected so as to satisfy the above condition.
本発明のフラットパネルディスプレイ装置用ガラス基板において、ガラスの組成を上記のように限定した理由は、次のとおりである。 In the glass substrate for a flat panel display device of the present invention, the reason for limiting the glass composition as described above is as follows.
SiO2は、ガラスのネットワークフォーマーを形成する成分である。その含有量は50〜60%、好ましくは52〜60%、より好ましくは54〜58%である。SiO2の含有量が多くなると、ガラスの高温粘度が高くなり、溶融、成形が難しくなったり、熱膨張係数が小さくなりすぎて周辺材料との整合性が取り難くなる。一方、含有量が少なくなると、熱膨張係数が大きくなりガラスの耐熱衝撃性が低下したり、ガラスの歪点が低下する傾向にあり、ディスプレイ装置を製造する際の熱工程で、ガラス基板に割れが発生したり、熱変形や熱収縮が起こりやすくなる。 SiO 2 is a component that forms a glass network former. The content is 50 to 60 %, preferably 52 to 60%, more preferably 54 to 58%. When the content of SiO 2 increases, the high-temperature viscosity of the glass increases, so that melting and molding become difficult, and the thermal expansion coefficient becomes too small, making it difficult to achieve consistency with surrounding materials. On the other hand, when the content decreases, the thermal expansion coefficient increases and the thermal shock resistance of the glass tends to decrease or the strain point of the glass tends to decrease, and the glass substrate is cracked in the thermal process when manufacturing the display device. Or heat deformation or shrinkage is likely to occur.
Al2O3は、ガラスの歪点を高くする成分である。その含有量は5〜15%、好ましくは5〜10%、より好ましくは5〜7%である。Al2O3の含有量が多くなると、ガラスの高温粘度が高くなり、溶融、成形が難しくなったり、熱膨張係数が小さくなり周辺材料との整合性が取り難くなる。一方、含有量が少なくなると、ガラスの歪点が低下する傾向にあり、ディスプレイ装置を製造する際の熱工程で、ガラス基板に割れが発生したり、熱変形や熱収縮が起こりやすくなる。 Al 2 O 3 is a component that increases the strain point of glass. Its content is 5-15%, preferably 5-10%, more preferably 5-7%. When the content of Al 2 O 3 increases, the high-temperature viscosity of the glass increases and melting and molding become difficult, and the thermal expansion coefficient decreases, making it difficult to achieve consistency with surrounding materials. On the other hand, when the content is reduced, the strain point of the glass tends to be lowered, and the glass substrate is easily cracked or thermally deformed or contracted easily in the heat process when manufacturing the display device.
MgOは、ガラスの耐クラック性を低下させずに、ガラスの歪点を上昇させ、ガラスの高温粘度のみを著しく低下させて溶融性や成形性を高める成分である。その含有量は4〜10%、好ましくは4〜9%、より好ましくは5〜8%である。MgOの含有量が多くなると、ガラスが失透しやすくなる傾向にあり成形し難くなる。一方、含有量が少なくなると、ガラスの歪点が低下する傾向にあり、ディスプレイ装置を製造する際の熱工程で、ガラス基板に割れが発生したり、熱変形や熱収縮が起こりやすくなる。また、ガラスの高温粘度が高くなり、溶融、成形が難しくなる。 MgO is a component that raises the strain point of the glass without reducing the crack resistance of the glass and significantly lowers only the high-temperature viscosity of the glass to improve the meltability and formability. Its content is 4 to 10%, preferably 4 to 9%, more preferably 5 to 8%. If the content of MgO is increased, the glass tends to be devitrified and it becomes difficult to mold. On the other hand, when the content is reduced, the strain point of the glass tends to be lowered, and the glass substrate is easily cracked or thermally deformed or contracted easily in the heat process when manufacturing the display device. Moreover, the high temperature viscosity of glass becomes high, and melting and forming become difficult.
CaOは、ガラスの高温粘度を低下させて溶融性や成形性を高める成分である。その含有量は0〜3%、好ましくは1〜3%、より好ましくは1.5〜2.5%である。CaOの含有量が多くなると、ガラスの耐クラック性が著しく低下し、ガラス基板の搬送工程等で、ガラス基板に傷が付き割れやすくなる。 CaO is a component that lowers the high-temperature viscosity of the glass and improves the meltability and moldability. Its content is 0 to 3%, preferably 1 to 3%, more preferably 1.5 to 2.5%. When the content of CaO is increased, the crack resistance of the glass is remarkably lowered, and the glass substrate is easily damaged and broken in the glass substrate transporting process and the like.
SrOは、ガラスの高温粘度を低下させて溶融性や成形性を高めたり、体積電気抵抗率を高める成分である。その含有量は0〜18%、好ましくは3〜12%、より好ましくは5〜9%である。SrOの含有量が多くなると、ガラスが失透しやすくなる傾向にあり成形し難くなる。また、ガラスの耐クラック性が低下し、ガラス基板の搬送工程等で、ガラス基板に傷が付き割れやすくなる。 SrO is a component that lowers the high-temperature viscosity of the glass to improve the meltability and formability, and increase the volume resistivity. Its content is 0-18%, preferably 3-12%, more preferably 5-9%. When the content of SrO increases, the glass tends to be devitrified and it becomes difficult to mold. Further, the crack resistance of the glass is lowered, and the glass substrate is easily scratched and broken during the glass substrate transport process.
BaOは、SrOと同様にガラスの高温粘度を低下させて溶融性や成形性を高めたり、体積電気抵抗率を高める成分である。その含有量は2〜18%、好ましくは5〜12%、より好ましくは6〜9%である。BaOの含有量が多くなると、ガラスが失透しやすくなる傾向にあり成形し難くなる。また、ガラスの耐クラック性が低下し、ガラス基板の搬送工程等で、ガラス基板に傷が付き割れやすくなる。一方、含有量が少なくなると、ガラスの高温粘度が高くなり、溶融、成形が難しくなる。 BaO, like SrO, is a component that lowers the high-temperature viscosity of glass to increase meltability and formability, or increase volume electrical resistivity. Its content is 2-18%, preferably 5-12%, more preferably 6-9%. When the content of BaO is increased, the glass tends to be devitrified and it is difficult to mold. Further, the crack resistance of the glass is lowered, and the glass substrate is easily scratched and broken during the glass substrate transport process. On the other hand, when the content decreases, the high-temperature viscosity of the glass increases, and melting and molding become difficult.
尚、ガラスの耐クラック性を低下させることなく、ガラスの高温粘度を低くして、溶融性と成形性を向上させるためには、MgO、CaO、SrO及びBaOの合量であるROを、20〜30%にする必要がある。ROの含有量が多くなると、ガラスの耐クラック性が低下し、製造工程において、ガラス基板が割れやすくなる。また、含有量が少なくなると、ガラスの高温粘度が上昇し、溶融、成形が難しくなる。好ましい範囲は22〜28%であり、より好ましくは23〜26%である。 In order to lower the high temperature viscosity of the glass and improve the meltability and formability without reducing the crack resistance of the glass, RO, which is the total amount of MgO, CaO, SrO and BaO, 20 Need to be ~ 30%. When the content of RO increases, the crack resistance of the glass decreases, and the glass substrate easily breaks in the manufacturing process. Moreover, when content decreases, the high temperature viscosity of glass will rise and it will become difficult to fuse | melt and shape | mold. A preferred range is 22-28%, more preferably 23-26%.
Na2Oは、ガラスの高温粘度を低下させて溶融性や成形性を高める成分である。また、ガラスの熱膨張係数を調整する成分でもある。その含有量は0〜10%、好ましくは2〜8%、より好ましくは4〜6%である。Na2Oの含有量が多くなると、ガラスの歪点が低下する傾向にあり、ディスプレイ装置を製造する際の熱工程で、熱変形や熱収縮が起こりやすくなる。また、ガラスの体積抵抗率が低くなり、ガラスとアルカリ成分とITO膜やネサ膜等の薄膜電極が反応して、電極材料の電気抵抗値が変化しやすくなる。更に、熱膨張係数が大きくなりすぎて、周辺材料の熱膨張係数と整合し難くなる。 Na 2 O is a component that lowers the high-temperature viscosity of the glass and improves the meltability and moldability. It is also a component that adjusts the thermal expansion coefficient of glass. Its content is 0-10%, preferably 2-8%, more preferably 4-6%. When the content of Na 2 O increases, the strain point of the glass tends to decrease, and thermal deformation and thermal shrinkage are likely to occur in the thermal process when manufacturing the display device. In addition, the volume resistivity of the glass is lowered, and the glass, the alkali component, and the thin film electrode such as the ITO film or the nesa film react to easily change the electric resistance value of the electrode material. Furthermore, the coefficient of thermal expansion becomes too large, making it difficult to match the coefficient of thermal expansion of the surrounding material.
K2Oは、Na2Oと同様に、ガラスの高温粘度を低下させて溶融性や成形性を高める成分である。また、ガラスの熱膨張係数を調整する成分でもある。その含有量は0〜12%、好ましくは3〜12%、より好ましくは4〜7%である。K2Oの含有量が多くなると、ガラスの歪点が低下する傾向にあり、ディスプレイ装置を製造する際の熱工程で、熱変形や熱収縮が起こりやすくなる。また、ガラスの体積抵抗率が低くなり、ガラスとアルカリ成分とITO膜やネサ膜等の薄膜電極が反応して、電極材料の電気抵抗値が変化しやすくなる。更に、熱膨張係数が大きくなりすぎて、周辺材料の熱膨張係数と整合し難くなる。 K 2 O, like Na 2 O, is a component that lowers the high-temperature viscosity of glass and improves meltability and moldability. It is also a component that adjusts the thermal expansion coefficient of glass. Its content is 0 to 1 2%, preferably 3 to 12%, more preferably 4% to 7%. When the content of K 2 O increases, the strain point of the glass tends to decrease, and thermal deformation and thermal contraction are likely to occur in the thermal process when manufacturing the display device. In addition, the volume resistivity of the glass is lowered, and the glass, the alkali component, and the thin film electrode such as the ITO film or the nesa film react to easily change the electric resistance value of the electrode material. Furthermore, the coefficient of thermal expansion becomes too large, making it difficult to match the coefficient of thermal expansion of the surrounding material.
尚、ガラスの歪点や体積電気抵抗率を著しく低下させることなく、ガラスの高温粘度を低下させ、しかも、周辺材料の熱膨張係数と整合する熱膨張係数を得るには、Na2O及びK2Oの合量であるR2Oを、7〜12.5%未満にする必要がある。R2Oの含有量が多くなると、ガラスの歪点や体積電気抵抗率が低下する傾向にあり、また、熱膨張係数が大きくなりすぎて、周辺材料の熱膨張係数と整合し難くなる。一方、R2Oの含有量が少なくなると、ガラスの高温粘度が上昇し、溶融、成形が難しくなる。また、熱膨張係数が小さくなりすぎて、周辺材料の熱膨張係数と整合し難くなる。好ましい範囲は7〜12%であり、より好ましくは9〜11.5%である。 In order to reduce the high temperature viscosity of the glass without significantly reducing the strain point and volume resistivity of the glass and to obtain a thermal expansion coefficient that matches the thermal expansion coefficient of the surrounding material, Na 2 O and K the R 2 O is a total amount of 2 O, must be less than 7 to 12.5%. When the content of R 2 O increases, the strain point and volume resistivity of the glass tend to decrease, and the thermal expansion coefficient becomes too large, making it difficult to match the thermal expansion coefficient of the surrounding materials. On the other hand, when the content of R 2 O decreases, the high temperature viscosity of the glass increases, and melting and molding become difficult. In addition, the thermal expansion coefficient becomes too small, making it difficult to match the thermal expansion coefficient of the surrounding material. A preferable range is 7 to 12%, and more preferably 9 to 11.5%.
ZrO2は、ガラスの歪点を高める成分である。その含有量は1〜10%、好ましくは1〜7%、より好ましくは2〜5%である。ZrO2の含有量が多くなると、失透ブツが発生する傾向にあり、成形が難しくなる。
ZrO 2 is a component that increases the strain point of glass. Its content is 1-10 %, preferably 1-7%, more preferably 2-5%. If the content of ZrO 2 is increased, devitrification will tend to occur and molding becomes difficult.
尚、本発明において、上記成分以外にも、例えば、X線着色を抑えるために、CeO2を5%まで、紫外線着色を防止するために、TiO2を3%まで、液相温度を低下させて、成形性を向上させるために、Y2O3、La2O3、Nb2O3を各3%まで、着色剤として、Fe2O3、CoO、NiO、Cr2O3、Nd2O3を各2%まで、清澄剤として、As2O3、Sb2O3、SnO2、SO3、F、Cl等を合量で1%まで添加することが可能である。但し、フロート法で成形する場合、As2O3、Sb2O3はフロートバス中で還元されて金属異物となるため、導入は避けるべきである。 In the present invention, in addition to the above components, for example, to reduce X-ray coloring, the liquid phase temperature is lowered to 5% CeO 2 and to 3% TiO 2 to prevent ultraviolet coloring. In order to improve the moldability, Y 2 O 3 , La 2 O 3 and Nb 2 O 3 are each added up to 3% as colorants, and Fe 2 O 3 , CoO, NiO, Cr 2 O 3 , Nd 2 It is possible to add up to 2% of O 3 each, and as a clarifier, As 2 O 3 , Sb 2 O 3 , SnO 2 , SO 3 , F, Cl, etc. can be added up to 1% in total. However, when forming by the float process, As 2 O 3 and Sb 2 O 3 are reduced in the float bath to become metal foreign matter, so introduction should be avoided.
次に、本発明のフラットパネルディスプレイ装置用ガラス基板を製造する方法を説明する。 Next, a method for producing a glass substrate for a flat panel display device of the present invention will be described.
まず、上記のガラス組成範囲となるようにガラス原料を調合する。続いて、調合したガラス原料を連続溶融炉に投入して加熱溶融し、脱泡した後、成形装置に供給して板状に成形し徐冷することでガラス基板を得ることができる。 First, a glass raw material is prepared so that it may become said glass composition range. Subsequently, the prepared glass raw material is put into a continuous melting furnace, heated and melted, defoamed, then supplied to a forming apparatus, formed into a plate shape, and slowly cooled to obtain a glass substrate.
尚、本発明のガラス基板は、フロート法で板状に成形することが好ましいが、この方法以外にも、スロットダウンドロー法、オーバーフローダウンドロー法、リドロー法等の様々な成形方法を採用することができる。 The glass substrate of the present invention is preferably formed into a plate shape by a float method, but other than this method, various forming methods such as a slot down draw method, an overflow down draw method, and a redraw method may be adopted. Can do.
以下、本発明のフラットパネルディスプレイ装置用ガラス基板を実施例に基づいて詳細に説明する。 Hereinafter, the glass substrate for flat panel display devices of the present invention will be described in detail based on examples.
表1、2は、本発明の実施例(試料No.1〜9)及び比較例(試料No.10、11)を示すものである。尚、試料No.11は、市販されているプラズマディスプレイ装置用の高歪点ガラスである。 Tables 1 and 2 show examples (sample Nos. 1 to 9) and comparative examples (samples No. 10 and 11) of the present invention. Sample No. 11 is a commercially available high strain point glass for plasma display devices.
表中の各試料は、次のようにして作製した。 Each sample in the table was prepared as follows.
まず、表の組成となるようにガラス原料を調合し、白金ポットを用いて1450〜1600℃で4時間溶融した。その後、溶融ガラスをカーボン板の上に流し出して板状に成形し、徐冷後、板厚が2.8mmになるように両面研磨して、得られた板ガラスを200mm角の大きさに切断加工することで試料ガラスを作製した。 First, the glass raw material was prepared so that it might become the composition of a table | surface, and it melted at 1450-1600 degreeC for 4 hours using the platinum pot. Thereafter, the molten glass is poured onto a carbon plate, formed into a plate shape, slowly cooled, then polished on both sides so that the plate thickness becomes 2.8 mm, and the obtained plate glass is cut into a size of 200 mm square. Sample glass was produced by processing.
このようして得られた各試料について、熱膨張係数、歪点、104dPa・sの粘度に相当するガラス融液の温度、体積電気抵抗率及びクラック抵抗を測定し、結果を表に示した。 For each sample thus obtained, the coefficient of thermal expansion, strain point, glass melt temperature corresponding to a viscosity of 10 4 dPa · s, volume resistivity and crack resistance were measured, and the results are shown in the table. It was.
表から明らかなように、実施例である試料No.1〜9の各試料は、104dPa・sに相当するガラス融液の温度が1120℃以下と低く成形性にも優れていた。また、熱膨張係数が83.0〜85.0×10-7/℃であり、周辺材料と良好に整合する熱膨張係数を有しており、しかも、歪点は580℃であり、熱処理工程におけるガラス基板の熱変形や熱収縮を抑えることができる。更に、150℃における体積電気抵抗率は12.4Ω・cm以上であり、クラック抵抗は400mN以上であった。 As is apparent from the table, sample No. In each of the samples 1 to 9, the temperature of the glass melt corresponding to 10 4 dPa · s was as low as 1120 ° C. or less, and the moldability was excellent. The thermal expansion coefficient is 83.0 to 85.0 × 10 −7 / ° C., the thermal expansion coefficient is well matched with the surrounding materials, and the strain point is 580 ° C. It is possible to suppress thermal deformation and thermal shrinkage of the glass substrate. Furthermore, the volume electrical resistivity at 150 ° C. was 12.4 Ω · cm or more, and the crack resistance was 400 mN or more.
これに対して、比較例である試料No.10は、歪点が555℃と低いため、熱処理工程において、ガラス基板に熱変形や熱収縮が生じやすいと予想される。また、試料No.11は、104dPa・sに相当するガラス融液の温度が1160℃と高く、成形性が劣っていた。 In contrast, Sample No. as a comparative example. No. 10 has a low strain point of 555 ° C., so that it is expected that the glass substrate is likely to be thermally deformed or contracted in the heat treatment step. Sample No. No. 11, the temperature of the glass melt corresponding to 10 4 dPa · s was as high as 1160 ° C., and the moldability was poor.
尚、熱膨張係数については、直径5.0mm、長さ20mmの円柱状の試料を作製し、ディラトメーターで30〜380℃における平均熱膨張係数を測定した。 In addition, about the thermal expansion coefficient, the cylindrical sample of diameter 5.0mm and length 20mm was produced, and the average thermal expansion coefficient in 30-380 degreeC was measured with the dilatometer.
また、歪点については、ASTM C336−71に基づいて測定した。尚、この温度が高い程、ディスプレイ装置を製造する際の熱工程におけるガラス基板の熱変形や熱収縮を抑えることができる。 Further, the strain point was measured based on ASTM C336-71. In addition, the higher this temperature is, the more the thermal deformation and thermal shrinkage of the glass substrate in the thermal process when manufacturing the display device can be suppressed.
ガラスの粘度が104dPa・sに相当するガラス融液の温度については、白金球引き上げ法により測定した。尚、この温度は、ガラスを板状に成形する際の目安になり、この温度が低い方が成形性が良いことになる。 The glass melt temperature corresponding to a glass viscosity of 10 4 dPa · s was measured by a platinum ball pulling method. In addition, this temperature becomes a standard at the time of shape | molding glass in plate shape, and the one where this temperature is lower will have a good moldability.
体積電気抵抗率については、ASTM C657−78に基づいて150℃における値を測定した。尚、この値が高い程、ガラス中のアルカリ成分とITO膜やネサ膜等の薄膜電極との反応を抑えて電極材料の電気抵抗値を安定させることができる。 About volume electrical resistivity, the value in 150 degreeC was measured based on ASTMC657-78. In addition, the higher this value is, the more the electrical resistance value of the electrode material can be stabilized by suppressing the reaction between the alkali component in the glass and the thin film electrode such as ITO film or Nesa film.
耐クラック抵抗の測定は、和田らが提案した方法(M.Wada et al. Proc., the Xth ICG, vol.11, Ceram. Soc., Japan, Kyoto, 1974, p39)を用いた。この方法は、ビッカース硬度計のステージに試料ガラスを置き、試料ガラスの表面に菱形状のダイヤモンド圧子を種々の荷重で15秒間押し付ける。そして、除荷後15秒までに圧痕の四隅から発生するクラック数をカウントし、最大発生しうるクラック数(4ヶ)に対する割合を求め、クラック発生率とする。また、クラック発生率が50%になるときの荷重を「クラック抵抗」とした。クラック抵抗が大きいということは、高い荷重でもクラックが発生しにくい、つまり、耐クラック性に優れているということである。 For the measurement of crack resistance, the method proposed by Wada et al. (M. Wada et al. Proc., The Xth ICG, vol. 11, Ceram. Soc., Japan, Kyoto, 1974, p39) was used. In this method, a sample glass is placed on the stage of a Vickers hardness tester, and a diamond-shaped diamond indenter is pressed against the surface of the sample glass with various loads for 15 seconds. Then, the number of cracks generated from the four corners of the indentation is counted by 15 seconds after the unloading, and the ratio to the maximum number of cracks (4) that can be generated is obtained to obtain the crack generation rate. Further, the load when the crack occurrence rate was 50% was defined as “crack resistance”. A large crack resistance means that cracks are unlikely to occur even under high loads, that is, excellent crack resistance.
尚、クラック発生率の測定は、同一荷重で20回測定し、その平均値を求めた。また、測定条件は、気温25℃、湿度30%の条件で行った。 The crack occurrence rate was measured 20 times with the same load, and the average value was obtained. The measurement conditions were a temperature of 25 ° C. and a humidity of 30%.
また、熱膨張係数、密度、クラック抵抗の測定については、熱履歴の影響を受けないように、熱処理したものを用いて測定した。この熱処理は、試料を、室温からガラスの歪点+80℃まで10℃/分の昇温速度で加熱し、その温度で1時間保持し、その後、500℃まで2℃/分の降温速度で冷却し、続けて、室温まで10℃/分の降温速度で冷却する条件で行った。 In addition, the thermal expansion coefficient, density, and crack resistance were measured using heat-treated materials so as not to be affected by thermal history. In this heat treatment, the sample is heated from room temperature to the glass strain point + 80 ° C. at a rate of temperature increase of 10 ° C./min, held at that temperature for 1 hour, and then cooled to 500 ° C. at a rate of temperature decrease of 2 ° C./min. Then, it was performed under the condition of cooling to room temperature at a temperature decreasing rate of 10 ° C./min.
本発明のフラットパネルディスプレイ装置用ガラス基板は、プラズマディスプレイ装置用途に限られるものではなく、例えば、電界放射型ディスプレイ、エレクトロルミネッセンスディスプレイ用途に用いることも可能である。 The glass substrate for a flat panel display device of the present invention is not limited to the plasma display device application, and can be used for, for example, a field emission display and an electroluminescence display.
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2004017775A JP4482699B2 (en) | 2004-01-27 | 2004-01-27 | Glass substrate for flat panel display |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2004017775A JP4482699B2 (en) | 2004-01-27 | 2004-01-27 | Glass substrate for flat panel display |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2005213048A JP2005213048A (en) | 2005-08-11 |
| JP4482699B2 true JP4482699B2 (en) | 2010-06-16 |
Family
ID=34902464
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2004017775A Expired - Fee Related JP4482699B2 (en) | 2004-01-27 | 2004-01-27 | Glass substrate for flat panel display |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4482699B2 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101443284B (en) * | 2006-05-10 | 2013-06-12 | 旭硝子株式会社 | Float glass for display substrate and manufacturing method thereof |
-
2004
- 2004-01-27 JP JP2004017775A patent/JP4482699B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JP2005213048A (en) | 2005-08-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3731281B2 (en) | Substrate glass composition | |
| JP4898792B2 (en) | High-deformation point glass composition for substrates | |
| JP2002025762A (en) | Glass board for inorganic el display | |
| JP4686858B2 (en) | Glass substrate for flat panel display | |
| JP2005089286A (en) | Glass base plate for flat panel display device | |
| JPH09301732A (en) | Glass composition for substrates | |
| JP4962898B2 (en) | Glass substrate for flat panel display | |
| JP2001226138A (en) | Glass substrate for flat panel display device | |
| JP3804159B2 (en) | Glass substrate and glass substrate for PDP | |
| JP4320772B2 (en) | Glass substrate for flat panel display | |
| JP3800656B2 (en) | Glass composition for substrate | |
| CN102417295A (en) | Glass composition for substrate | |
| JP4853817B2 (en) | Glass substrate for flat panel display | |
| JP4389257B2 (en) | Glass substrate for flat panel display | |
| JP4288657B2 (en) | Glass substrate for flat panel display | |
| JP2003335547A (en) | Glass substrate for flat panel display equipment | |
| JP4169013B2 (en) | Substrate glass composition | |
| JP2005162536A (en) | Glass substrate for flat panel display device | |
| KR101090783B1 (en) | Glass substrate for flat panel display device | |
| JP4265157B2 (en) | Glass substrate for flat panel display | |
| JP4482699B2 (en) | Glass substrate for flat panel display | |
| JP4756428B2 (en) | Glass substrate for flat panel display | |
| JP4924974B2 (en) | Glass substrate for flat panel display | |
| JPH1143347A (en) | Glass composition for substrates | |
| JP4958062B2 (en) | Glass substrate for flat panel display |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061011 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090316 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091026 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091222 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100215 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100228 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130402 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140402 Year of fee payment: 4 |
|
| LAPS | Cancellation because of no payment of annual fees |