[go: up one dir, main page]

JP4405458B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP4405458B2
JP4405458B2 JP2005317064A JP2005317064A JP4405458B2 JP 4405458 B2 JP4405458 B2 JP 4405458B2 JP 2005317064 A JP2005317064 A JP 2005317064A JP 2005317064 A JP2005317064 A JP 2005317064A JP 4405458 B2 JP4405458 B2 JP 4405458B2
Authority
JP
Japan
Prior art keywords
insulating film
gate insulating
film
channel region
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005317064A
Other languages
Japanese (ja)
Other versions
JP2006100842A (en
Inventor
秀喜 佐竹
豪 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005317064A priority Critical patent/JP4405458B2/en
Publication of JP2006100842A publication Critical patent/JP2006100842A/en
Application granted granted Critical
Publication of JP4405458B2 publication Critical patent/JP4405458B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/68Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
    • H10D64/681Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered
    • H10D64/683Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered being parallel to the channel plane
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/68Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
    • H10D64/691Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator comprising metallic compounds, e.g. metal oxides or metal silicates 

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

この発明は、微細化に適した高誘電率のゲート絶縁膜を持つ半導体装置に関する。   The present invention relates to a semiconductor device having a high dielectric constant gate insulating film suitable for miniaturization.

これまでLSIは、スケーリング則に則って素子の微細化と高集積化が進められてきた。スケーリング則は、ゲート絶縁膜厚やゲート長等、MOSトランジスタの高さ方向と横方向の寸法を比例的に縮小することで、トランジスタ特性を正常に保持しながら、微細化する手法である。このスケーリング則を次世代のLSIに適用しようとすると、ゲート絶縁膜の膜厚は2nm以下と小さくなる。   Until now, LSIs have been miniaturized and highly integrated in accordance with the scaling law. The scaling law is a technique for miniaturization while maintaining normal transistor characteristics by proportionally reducing the height and lateral dimensions of the MOS transistor such as the gate insulating film thickness and the gate length. If this scaling law is applied to the next generation LSI, the thickness of the gate insulating film becomes as small as 2 nm or less.

ゲート絶縁膜には従来より、シリコン酸化膜(SiO2膜)が一般に用いられている。しかし、シリコン酸化膜は2nm以下になるとトンネル電流が無視できない大きさになる。そこで、シリコン酸化膜に代わって、より誘電率の高いゲート絶縁膜を用いる試みがなされている。誘電率の高い絶縁膜を用いれば、比較的厚い膜厚としてリーク電流を抑制しながら、シリコン酸化膜換算膜厚2nm以下を実現することができるからである。具体的に、シリコン酸化膜に代わるゲート絶縁膜材料として、ZrO2,HfO2等の金属酸化物が注目されている。   Conventionally, a silicon oxide film (SiO 2 film) is generally used as the gate insulating film. However, when the silicon oxide film has a thickness of 2 nm or less, the tunnel current cannot be ignored. Therefore, an attempt has been made to use a gate insulating film having a higher dielectric constant in place of the silicon oxide film. This is because if an insulating film having a high dielectric constant is used, a silicon oxide equivalent film thickness of 2 nm or less can be realized while suppressing a leakage current as a relatively thick film thickness. Specifically, metal oxides such as ZrO 2 and HfO 2 have attracted attention as gate insulating film materials that can replace silicon oxide films.

しかし、ZrO2,HfO2等の金属酸化物膜は、原子半径の大きい金属原子と原子半径の小さい酸素の結合により構成されるため、欠陥が発生しやすく、安定性に欠けるという問題がある。特に、ゲート電極とドレイン、ソース拡散層とのオーバーラップ部のような大きな電界がかかる箇所では、原子欠損や未結合手に起因する絶縁破壊が生じやすく、十分な信頼性が得られないという問題があった。   However, since metal oxide films such as ZrO 2 and HfO 2 are composed of bonds between metal atoms having a large atomic radius and oxygen having a small atomic radius, there is a problem that defects are likely to occur and stability is lacking. In particular, in areas where a large electric field is applied, such as the overlap between the gate electrode, drain, and source diffusion layer, dielectric breakdown due to atomic vacancies or dangling bonds is likely to occur, and sufficient reliability cannot be obtained. was there.

この発明は、上記事情を考慮してなされたもので、金属原子を含んだ絶縁破壊耐性の高いゲート絶縁膜構造を持つ半導体装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a semiconductor device having a gate insulating film structure containing metal atoms and having high dielectric breakdown resistance.

この発明の一態様に係る半導体装置は、半導体基板と、この半導体基板にチャネル領域を挟んで対向するように形成されたソース及びドレイン拡散層と、前記半導体基板上に、チャネル長方向に所定の濃度変化を示す金属原子を含んで形成されたゲート絶縁膜と、このゲート絶縁膜上に形成されたゲート電極と、を有しており、前記ゲート絶縁膜は、前記チャネル領域の直上に位置する第1のゲート絶縁膜と、それ以外の領域を覆うと共に前記第1のゲート絶縁膜より低い濃度の金属原子を含み前記第1のゲート絶縁膜と接合されてなる第2のゲート絶縁膜と、を備え、前記第1のゲート絶縁膜と前記第2のゲート絶縁膜の接合部は、前記ソース拡散層と前記チャネル領域の接合端及び前記ドレイン拡散層と前記チャネル領域の接合端に対して前記チャネル長方向で一致していることを特徴とする。   A semiconductor device according to an aspect of the present invention includes a semiconductor substrate, a source and drain diffusion layer formed so as to face the semiconductor substrate with a channel region interposed therebetween, and a predetermined length in the channel length direction on the semiconductor substrate. A gate insulating film formed including a metal atom exhibiting a change in concentration; and a gate electrode formed on the gate insulating film, the gate insulating film being positioned immediately above the channel region. A first gate insulating film and a second gate insulating film that covers the other region and includes metal atoms having a lower concentration than the first gate insulating film and is bonded to the first gate insulating film; The junction between the first gate insulating film and the second gate insulating film is connected to the junction end of the source diffusion layer and the channel region and the junction end of the drain diffusion layer and the channel region. And wherein the match with the channel length direction.

この発明によれば、ゲート絶縁膜の高誘電率が要求される部分のみに金属原子を必要な濃度に導入した金属酸化物膜を用いることにより、金属原子に起因する欠陥による絶縁破壊耐性の劣化を効果的に抑制して、MISトランジスタの微細化と高集積化を図ることができる。   According to the present invention, by using a metal oxide film in which a metal atom is introduced at a required concentration only in a portion where a high dielectric constant of the gate insulating film is required, deterioration of dielectric breakdown resistance due to defects caused by the metal atom is reduced. MIS transistor can be effectively suppressed, and miniaturization and high integration of the MIS transistor can be achieved.

以下、図面を参照して、この発明の実施の形態を説明する。図1は、一実施の形態による集積回路のMISトランジスタ構造を示す。p型シリコン基板1には、素子分離絶縁膜2が埋め込み形成されて、素子形成領域が区画されている。このシリコン基板1に、チャネル領域4を挟んで対向するように、ソース、ドレイン拡散層3が形成されている。シリコン基板1にはゲート絶縁膜5を介してゲート電極6が形成されている。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 illustrates an MIS transistor structure of an integrated circuit according to one embodiment. An element isolation insulating film 2 is embedded in the p-type silicon substrate 1 to define an element formation region. Source and drain diffusion layers 3 are formed on the silicon substrate 1 so as to face each other with the channel region 4 interposed therebetween. A gate electrode 6 is formed on the silicon substrate 1 via a gate insulating film 5.

ゲート絶縁膜5は、チャネル領域4の直上に位置する第1のゲート絶縁膜5aと、それ以外の領域を覆う第2のゲート絶縁膜5bとから構成されている。第1のゲート絶縁膜5aと第2のゲート絶縁膜5bは共に、金属原子と酸素原子を含有する膜(以下、単に金属酸化物膜という)であり、膜厚は約10nmである。但し、第1のゲート絶縁膜5aの金属原子濃度は、第2のゲート絶縁膜5bのそれより高く設定されている。また、適当な工程での熱処理によって、第1のゲート絶縁膜4aと第2のゲート絶縁膜5bの間で、Zr濃度分布が滑らかに変化するようにしている。金属酸化物膜は代表的には、ZrOx膜である。   The gate insulating film 5 is composed of a first gate insulating film 5a positioned immediately above the channel region 4 and a second gate insulating film 5b covering the other regions. Both the first gate insulating film 5a and the second gate insulating film 5b are films containing metal atoms and oxygen atoms (hereinafter simply referred to as metal oxide films) and have a film thickness of about 10 nm. However, the metal atom concentration of the first gate insulating film 5a is set higher than that of the second gate insulating film 5b. In addition, the Zr concentration distribution smoothly changes between the first gate insulating film 4a and the second gate insulating film 5b by heat treatment in an appropriate process. The metal oxide film is typically a ZrOx film.

図2は、ゲート絶縁膜5がZrOx膜である場合について、チャネル長方向のZr濃度分布を示している。望ましくは、チャネル領域4の直上(即ちy1−y2の範囲)の第1のゲート絶縁膜5aでは、ZrOx中のZr原子濃度が1atm%以上、40atm%以下に設定され、それ以外の領域を覆う第2のゲート絶縁膜5bでは、Zr原子濃度が第1のゲート絶縁膜5aより低く、1atm%以下に抑えられる。この様なZr濃度分布を与えることにより、第1のゲート絶縁膜5aは25程度の大きな比誘電率を持つものとなる。また第2のゲート絶縁膜5bは、Zr濃度を低く抑えた結果として、原子欠損やダングリングボンド等に起因する絶縁破壊に対する耐性が高いものとなる。   FIG. 2 shows the Zr concentration distribution in the channel length direction when the gate insulating film 5 is a ZrOx film. Desirably, in the first gate insulating film 5a immediately above the channel region 4 (that is, in the range of y1-y2), the Zr atom concentration in ZrOx is set to 1 atm% or more and 40 atm% or less, and covers other regions. In the second gate insulating film 5b, the Zr atom concentration is lower than that of the first gate insulating film 5a and can be suppressed to 1 atm% or less. By giving such a Zr concentration distribution, the first gate insulating film 5a has a large relative dielectric constant of about 25. The second gate insulating film 5b has high resistance to dielectric breakdown caused by atomic deficiency, dangling bonds, etc. as a result of keeping the Zr concentration low.

素子が形成された基板は、層間絶縁膜7で覆われる。この層間絶縁膜7にコンタクト孔が開けられて、電極配線8が形成される。   The substrate on which the element is formed is covered with an interlayer insulating film 7. Contact holes are formed in the interlayer insulating film 7 to form electrode wirings 8.

この様なMISトランジスタの製造工程を、図3〜図7を参照して説明する。p型シリコン基板1は、面方位(100)、比抵抗4〜6Ωcmのものを用いる。図3に示すように、シリコン基板1の素子分離領域に、RIEにより溝を形成し、この溝に素子分離絶縁膜2を埋め込む。素子分離絶縁膜2は、有機シラン(TEOS)を用いた減圧CVDによるシリコン酸化膜である。   A manufacturing process of such a MIS transistor will be described with reference to FIGS. A p-type silicon substrate 1 having a plane orientation (100) and a specific resistance of 4 to 6 Ωcm is used. As shown in FIG. 3, a trench is formed in the element isolation region of the silicon substrate 1 by RIE, and the element isolation insulating film 2 is embedded in this trench. The element isolation insulating film 2 is a silicon oxide film formed by low pressure CVD using organosilane (TEOS).

次いで、図4に示すように、基板全面に、レーザアブレーション成膜法によって、金属酸化物膜からなる第1のゲート絶縁膜5aを約10nm堆積する。具体的に金属酸化物膜は、ZrOx膜である。このとき成膜条件は、酸素分圧1〜100mTorrの雰囲気中で、基板温度500〜800℃とする。これにより、Zr濃度1〜40atm%のZrOx膜が得られる。   Next, as shown in FIG. 4, a first gate insulating film 5a made of a metal oxide film is deposited on the entire surface of the substrate by a laser ablation film forming method by about 10 nm. Specifically, the metal oxide film is a ZrOx film. At this time, the film forming conditions are a substrate temperature of 500 to 800 ° C. in an atmosphere with an oxygen partial pressure of 1 to 100 mTorr. Thereby, a ZrOx film having a Zr concentration of 1 to 40 atm% is obtained.

次に、図5に示すように、CVD法によりシリコン窒化膜11を堆積して、シリコン窒化膜11と第1のゲート絶縁膜5aの積層膜をチャネル領域中央部に残るようにパターニングする。そして砒素のイオン注入を行って、n+型のドレイン、ソース拡散層3を形成する。イオン注入条件は例えば、加速電圧10keV、ドーズ量1×1015/cm2とする。 Next, as shown in FIG. 5, a silicon nitride film 11 is deposited by the CVD method, and the laminated film of the silicon nitride film 11 and the first gate insulating film 5a is patterned so as to remain in the center of the channel region. Then, arsenic ions are implanted to form n + -type drain and source diffusion layers 3. The ion implantation conditions are, for example, an acceleration voltage of 10 keV and a dose of 1 × 10 15 / cm 2 .

次いで、再度レーザアブレーション成膜法によって、図6に示すように、金属酸化物からなる第2のゲート絶縁膜6bを約10nm堆積する。この場合も金属酸化物膜は、ZrOx膜である。このとき成膜条件は、酸素分圧1〜100mTorrの雰囲気中で、基板温度を350〜500℃と低くする。これにより、Zr濃度1atm%以下とZr濃度の低いZrOx膜が得られる。   Next, as shown in FIG. 6, a second gate insulating film 6b made of a metal oxide is deposited by about 10 nm again by a laser ablation film forming method. Also in this case, the metal oxide film is a ZrOx film. At this time, the film forming conditions are such that the substrate temperature is lowered to 350 to 500 ° C. in an atmosphere having an oxygen partial pressure of 1 to 100 mTorr. Thereby, a ZrOx film having a Zr concentration of 1 atm% or less and a low Zr concentration is obtained.

第2のゲート絶縁膜5bを成膜した後、同じ酸素分圧の雰囲気中で基板温度を700℃程度に上げて熱処理を行う。これにより、第1のゲート絶縁膜5aと第2のゲート絶縁膜5bの界面が欠陥等のない良好な接合になると同時に、第1のゲート絶縁膜5a中の金属原子が第2のゲート絶縁膜5bに拡散し、チャネル長方向の金属原子濃度分布の変化が滑らかなものとなる。   After the second gate insulating film 5b is formed, heat treatment is performed by raising the substrate temperature to about 700 ° C. in an atmosphere having the same oxygen partial pressure. As a result, the interface between the first gate insulating film 5a and the second gate insulating film 5b becomes a good junction without defects and the metal atoms in the first gate insulating film 5a become the second gate insulating film. It diffuses to 5b, and the change in the metal atom concentration distribution in the channel length direction becomes smooth.

この後、図7に示すように、多結晶シリコン膜を堆積し、パターニングしてゲート電極6を形成する。ゲート電極6は、第1のゲート絶縁膜5a上を覆い且つ両端部が第2のゲート絶縁膜5bを覆う状態にパターニングする。即ちゲート電極6は、そのチャネル長方向の両端部が第2のゲート絶縁膜5bを挟んでドレイン、ソース拡散層3とオーバーラップする状態にする。この後、図1に示すように、層間絶縁膜7を堆積し、これにコンタクト孔を形成して、電極配線8を形成する。   Thereafter, as shown in FIG. 7, a polycrystalline silicon film is deposited and patterned to form the gate electrode 6. The gate electrode 6 is patterned so as to cover the first gate insulating film 5a and both ends cover the second gate insulating film 5b. That is, the gate electrode 6 is in a state where both ends in the channel length direction overlap the drain and source diffusion layers 3 with the second gate insulating film 5b interposed therebetween. Thereafter, as shown in FIG. 1, an interlayer insulating film 7 is deposited, contact holes are formed therein, and electrode wiring 8 is formed.

以上のようにこの実施の形態では、金属酸化物からなるゲート絶縁膜の金属原子濃度をチャネル領域直上で高く、その両側のドレイン、ソース拡散層3とゲート電極6とがオーバーラップする部分では低くしている。このときMISトランジスタの基本的な電気的特性は、チャネル領域上の第1のゲート絶縁膜5aで決まる。そして、高電界がかかるゲート電極6とドレイン、ソース拡散層3とがオーバーラップする部分のゲート絶縁膜5bは、原子半径の大きい金属原子の濃度を低くしているため、絶縁破壊耐性が高いものとなる。   As described above, in this embodiment, the metal atom concentration of the gate insulating film made of metal oxide is high immediately above the channel region, and low at the portion where the drain, source diffusion layer 3 and gate electrode 6 on both sides overlap. is doing. At this time, basic electrical characteristics of the MIS transistor are determined by the first gate insulating film 5a on the channel region. The gate insulating film 5b in the portion where the gate electrode 6 to which a high electric field is applied overlaps with the drain and source diffusion layers 3 has a low dielectric breakdown resistance because the concentration of metal atoms having a large atomic radius is low. It becomes.

図8は、別の実施の形態による集積回路のMISトランジスタ部の構造を示している。図1の実施の形態と対応する部分には図1と同じ符号を付してある。この実施の形態でもゲート絶縁膜5は、チャネル領域4の直上にある第1のゲート絶縁膜5aとそれ以外の領域にある第2のゲート絶縁膜5bとからなる。第1のゲート絶縁膜5aは、先の実施の形態と同様に、ZrOx等の金属酸化物からなるのに対し、第2のゲート絶縁膜5bは基本的に金属原子を含まない絶縁膜、好ましくはシリコン酸化膜である。   FIG. 8 shows the structure of the MIS transistor portion of the integrated circuit according to another embodiment. Parts corresponding to those of the embodiment of FIG. 1 are denoted by the same reference numerals as those of FIG. Also in this embodiment, the gate insulating film 5 is composed of the first gate insulating film 5a immediately above the channel region 4 and the second gate insulating film 5b in other regions. As in the previous embodiment, the first gate insulating film 5a is made of a metal oxide such as ZrOx, while the second gate insulating film 5b is basically an insulating film containing no metal atoms, preferably Is a silicon oxide film.

但し、第2のゲート絶縁膜5bの第1のゲート絶縁膜5aに接する部分には、第1のゲート絶縁膜5aの金属原子を拡散させる。これにより、第1のゲート絶縁膜5aと第2のゲート絶縁膜5bとの界面を欠陥等のない良好な接合にすると同時に、ゲート絶縁膜中のチャネル長方向の金属原子濃度分布の変化を滑らかなものとしている。   However, the metal atoms of the first gate insulating film 5a are diffused into the portion of the second gate insulating film 5b in contact with the first gate insulating film 5a. As a result, the interface between the first gate insulating film 5a and the second gate insulating film 5b is made a good junction without defects and the like, and at the same time, the change in the metal atom concentration distribution in the channel length direction in the gate insulating film is smoothed. It is supposed to be.

この実施の形態の製造工程を、図9〜図13を参照して説明する。p型シリコン基板1は、面方位(100)、比抵抗4〜6Ωcmのものを用いる。図9に示すように、シリコン基板1の素子分離領域に、RIEにより溝を形成し、この溝に素子分離絶縁膜2を埋め込む。素子分離絶縁膜2は、有機シラン(例えばTEOS)を用いた減圧CVDによるシリコン酸化膜である。   The manufacturing process of this embodiment will be described with reference to FIGS. A p-type silicon substrate 1 having a plane orientation (100) and a specific resistance of 4 to 6 Ωcm is used. As shown in FIG. 9, a trench is formed in the element isolation region of the silicon substrate 1 by RIE, and the element isolation insulating film 2 is embedded in this trench. The element isolation insulating film 2 is a silicon oxide film formed by low pressure CVD using organosilane (for example, TEOS).

次いで、図10に示すように、基板全面に、レーザアブレーション成膜法によって、金属酸化物膜からなる第1のゲート絶縁膜5aを約10nm堆積する。具体的に金属酸化物膜は、ZrOx膜である。このとき成膜条件は、酸素分圧1〜100mTorrの雰囲気中で、基板温度500〜800℃とする。これにより、Zr濃度1〜40atm%のZrOx膜が得られる。   Next, as shown in FIG. 10, a first gate insulating film 5a made of a metal oxide film is deposited on the entire surface of the substrate by a laser ablation film forming method by about 10 nm. Specifically, the metal oxide film is a ZrOx film. At this time, the film forming conditions are a substrate temperature of 500 to 800 ° C. in an atmosphere with an oxygen partial pressure of 1 to 100 mTorr. Thereby, a ZrOx film having a Zr concentration of 1 to 40 atm% is obtained.

次に、図11に示すように、CVD法によりシリコン窒化膜11を堆積して、シリコン窒化膜11と第1のゲート絶縁膜5aの積層膜をチャネル領域中央部に残るようにパターニングする。そして砒素のイオン注入を行って、n+型のドレイン、ソース拡散層3を形成する。イオン注入条件は例えば、加速電圧10keV、ドーズ量1×1015/cm2とする。ここまでは、先の実施の形態と同様である。 Next, as shown in FIG. 11, a silicon nitride film 11 is deposited by the CVD method and patterned so that the laminated film of the silicon nitride film 11 and the first gate insulating film 5a remains in the center of the channel region. Then, arsenic ions are implanted to form n + -type drain and source diffusion layers 3. The ion implantation conditions are, for example, an acceleration voltage of 10 keV and a dose of 1 × 10 15 / cm 2 . Up to this point, it is the same as the previous embodiment.

この後、酸素ガスを含む雰囲気中で基板温度を500〜1000℃に設定して、シリコン基板1の表面を酸化することにより、図12に示すように、第2のゲート絶縁膜5bとなるシリコン酸化膜を形成する。この熱酸化工程で同時に、形成されるシリコン酸化膜の第1のゲート絶縁膜5aとの接合部には、第1のゲート絶縁膜5aの金属原子が拡散する。これにより、第1のゲート絶縁膜5aと第2のゲート絶縁膜5bとの界面は欠陥等のない良好な接合になる。   Thereafter, the temperature of the substrate is set to 500 to 1000 ° C. in an atmosphere containing oxygen gas, and the surface of the silicon substrate 1 is oxidized to form silicon that becomes the second gate insulating film 5b as shown in FIG. An oxide film is formed. At the same time in the thermal oxidation process, metal atoms of the first gate insulating film 5a are diffused into the junction of the silicon oxide film formed with the first gate insulating film 5a. As a result, the interface between the first gate insulating film 5a and the second gate insulating film 5b becomes a good junction without defects.

なお図12では、シリコン酸化膜の膜厚が第1のゲート絶縁膜5aより厚く形成した場合を示しているが、5〜500nm程度の範囲で任意に選択することができる。例えば、先の実施の形態と同様に、第1のゲート絶縁膜5aと第2のゲート絶縁膜5bを同程度の膜厚としてもよい。   FIG. 12 shows the case where the silicon oxide film is formed thicker than the first gate insulating film 5a, but can be arbitrarily selected within a range of about 5 to 500 nm. For example, similarly to the previous embodiment, the first gate insulating film 5a and the second gate insulating film 5b may have the same film thickness.

この後、図13に示すように、多結晶シリコン膜を堆積し、パターニングしてゲート電極6を形成する。ゲート電極6は、第1のゲート絶縁膜5a上を覆い且つ両端部が第2のゲート絶縁膜5bを覆う状態にパターニングする。即ちゲート電極6は、そのチャネル長方向の両端部が第2のゲート絶縁膜5bを挟んでドレイン、ソース拡散層3とオーバーラップする状態にする。この後、図1に示すように、層間絶縁膜7を堆積し、これにコンタクト孔を形成して、電極配線8を形成する。   Thereafter, as shown in FIG. 13, a polycrystalline silicon film is deposited and patterned to form the gate electrode 6. The gate electrode 6 is patterned so as to cover the first gate insulating film 5a and both ends cover the second gate insulating film 5b. That is, the gate electrode 6 is in a state where both ends in the channel length direction overlap the drain and source diffusion layers 3 with the second gate insulating film 5b interposed therebetween. Thereafter, as shown in FIG. 1, an interlayer insulating film 7 is deposited, contact holes are formed therein, and electrode wiring 8 is formed.

この実施の形態の場合、チャネル領域直上のゲート絶縁膜5aを金属酸化物膜とし、その両側のドレイン、ソース拡散層3とゲート電極6とがオーバーラップするゲート絶縁膜5bは金属原子を含まないシリコン酸化膜等により形成しており、MISトランジスタの基本的な電気的特性は、第1のゲート絶縁膜5aで決まる。そして、高電界がかかるゲート電極6とドレイン、ソース拡散層3とがオーバーラップする部分のゲート絶縁膜5bは、従来と同様にシリコン酸化膜を用いているため、絶縁破壊耐性が高いものとなる。   In the case of this embodiment, the gate insulating film 5a immediately above the channel region is a metal oxide film, and the gate insulating film 5b where the drain and source diffusion layers 3 and the gate electrode 6 overlap on both sides does not contain metal atoms. It is formed of a silicon oxide film or the like, and basic electrical characteristics of the MIS transistor are determined by the first gate insulating film 5a. Since the gate insulating film 5b where the gate electrode 6 to which a high electric field is applied overlaps with the drain / source diffusion layer 3 uses a silicon oxide film as in the conventional case, the gate insulating film 5b has high dielectric breakdown resistance. .

上記各実施の形態において、ドレイン、ソース拡散層3は、一回のイオン注入により、第1のゲート絶縁膜5aに自己整合された状態に形成している。これに対して、微細化したMISトランジスタでの短チャネル効果を抑制するためには、ドレイン、ソースをLDD構造とすることが好ましい。その様な実施の形態のMISトランジスタ構造を図14に示す。   In each of the above embodiments, the drain and source diffusion layers 3 are formed in a self-aligned state with the first gate insulating film 5a by one ion implantation. On the other hand, in order to suppress the short channel effect in the miniaturized MIS transistor, it is preferable that the drain and the source have an LDD structure. FIG. 14 shows the MIS transistor structure of such an embodiment.

図14のトランジスタの基本的構造は、図1と同様である。但し、ドレイン、ソース拡散層3は、第1のゲート絶縁膜5aに自己整合されて形成される低濃度のn-型層3aと、ゲート電極6の形成後にイオン注入により形成される高濃度のn+型層3bとから構成している。図8の実施の形態と同様に第2のゲート絶縁膜5bを金属原子が含まれないシリコン酸化膜等により形成する場合も、同様のLDD構造とすることが有効である。この様なLDD構造の採用により、短チャネル効果を抑制してMISトランジスタの微細化を図ることができる。 The basic structure of the transistor in FIG. 14 is the same as that in FIG. However, the drain and source diffusion layers 3 are formed by ion implantation after the low concentration n type layer 3a formed by self-alignment with the first gate insulating film 5a and the gate electrode 6 are formed. The n + type layer 3b is used. Similar to the embodiment of FIG. 8, the same LDD structure is effective when the second gate insulating film 5b is formed of a silicon oxide film or the like not containing metal atoms. By adopting such an LDD structure, the short channel effect can be suppressed and the MIS transistor can be miniaturized.

実施の形態では、金属酸化物膜をレーザアブレーション成膜法により堆積したが、他の方法例えば、スパッタ法、CVD法、単原子逐次堆積(AtomicLayerDeposition)法等を用いることもできる。また、金属酸化物膜として、ZrOxの他、HfOx,TaOx,LaOx,CeOx,AlOx等を用いることができ、或いはこれらにシリコンを含んだシリケート膜を用いることができる。   In the embodiment, the metal oxide film is deposited by the laser ablation film forming method, but other methods such as a sputtering method, a CVD method, a single atom sequential deposition method (Atomic Layer Deposition) method and the like can also be used. In addition to ZrOx, HfOx, TaOx, LaOx, CeOx, AlOx, or the like can be used as the metal oxide film, or a silicate film containing silicon can be used.

この発明の実施の形態によるMISトランジスタ構造を示す断面図である。It is sectional drawing which shows the MIS transistor structure by embodiment of this invention. 同実施の形態のMISトランジスタのゲート絶縁膜の金属原子濃度分布を示す図である。It is a figure which shows the metal atom concentration distribution of the gate insulating film of the MIS transistor of the embodiment. 同実施の形態の素子分離工程を湿す断面図である。It is sectional drawing which wets the element isolation process of the embodiment. 同実施の形態の第1のゲート絶縁膜形成工程を示す断面図である。It is sectional drawing which shows the 1st gate insulating film formation process of the embodiment. 同実施の形態の第1のゲート絶縁膜パターニングとドレイン、ソース拡散層形成工程を示す断面図である。It is sectional drawing which shows the 1st gate insulating film patterning and drain and source diffusion layer formation process of the embodiment. 同実施の形態の第2のゲート絶縁膜形成工程を示す断面図である。It is sectional drawing which shows the 2nd gate insulating film formation process of the embodiment. 同実施の形態のゲート電極形成工程を示す断面図である。It is sectional drawing which shows the gate electrode formation process of the embodiment. この発明の他の実施の形態によるMISトランジスタ構造を示す断面図である。It is sectional drawing which shows the MIS transistor structure by other Embodiment of this invention. 同実施の形態の素子分離工程を湿す断面図である。It is sectional drawing which wets the element isolation process of the embodiment. 同実施の形態の第1のゲート絶縁膜形成工程を示す断面図である。It is sectional drawing which shows the 1st gate insulating film formation process of the embodiment. 同実施の形態の第1のゲート絶縁膜パターニングとドレイン、ソース拡散層形成工程を示す断面図である。It is sectional drawing which shows the 1st gate insulating film patterning and drain and source diffusion layer formation process of the embodiment. 同実施の形態の第2のゲート絶縁膜形成工程を示す断面図である。It is sectional drawing which shows the 2nd gate insulating film formation process of the embodiment. 同実施の形態のゲート電極形成工程を示す断面図である。It is sectional drawing which shows the gate electrode formation process of the embodiment. この発明の他の実施の形態によるMISトランジスタ構造を示す断面図である。It is sectional drawing which shows the MIS transistor structure by other Embodiment of this invention.

符号の説明Explanation of symbols

1・・・p型シリコン基板、2・・・素子分離絶縁膜、3・・・ドレイン、ソース拡散層、4・・・チャネル領域、5a・・・第1のゲート絶縁膜、5b・・・第2のゲート絶縁膜、6・・・ゲート電極、7・・・層間絶縁膜、8・・・電極配線。   DESCRIPTION OF SYMBOLS 1 ... P-type silicon substrate, 2 ... Element isolation insulating film, 3 ... Drain, source diffusion layer, 4 ... Channel region, 5a ... 1st gate insulating film, 5b ... 2nd gate insulating film, 6 ... gate electrode, 7 ... interlayer insulating film, 8 ... electrode wiring.

Claims (2)

半導体基板と、
この半導体基板にチャネル領域を挟んで対向するように形成されたソース及びドレイン拡散層と、
前記半導体基板上に、チャネル長方向に所定の濃度変化を示す金属原子を含んで形成されたゲート絶縁膜と、
このゲート絶縁膜上に形成されたゲート電極と、
を有しており、
前記ゲート絶縁膜は、前記チャネル領域の直上に位置する第1のゲート絶縁膜と、それ以外の領域を覆うと共に前記第1のゲート絶縁膜より低い濃度の金属原子を含み前記第1のゲート絶縁膜と接合されてなる第2のゲート絶縁膜と、を備え、
前記第1のゲート絶縁膜と前記第2のゲート絶縁膜の接合部は、前記ソース拡散層と前記チャネル領域の接合端及び前記ドレイン拡散層と前記チャネル領域の接合端に対して前記チャネル長方向で一致している
ことを特徴とする半導体装置。
A semiconductor substrate;
A source and drain diffusion layer formed to face the semiconductor substrate across the channel region;
On the semiconductor substrate, a gate insulating film formed including metal atoms exhibiting a predetermined concentration change in the channel length direction;
A gate electrode formed on the gate insulating film;
Have
The gate insulating film includes a first gate insulating film located immediately above the channel region, and other regions, and includes metal atoms having a lower concentration than the first gate insulating film. A second gate insulating film joined to the film,
The junction between the first gate insulating film and the second gate insulating film is in the channel length direction with respect to the junction end of the source diffusion layer and the channel region and the junction end of the drain diffusion layer and the channel region. A semiconductor device characterized by
前記ゲート絶縁膜の金属原子濃度は、前記チャネル領域上の部分と前記ソース及びドレイン拡散層に重なる部分との間で滑らかに変化していることを特徴とする請求項1記載の半導体装置。   The semiconductor device according to claim 1, wherein the metal atom concentration of the gate insulating film smoothly changes between a portion on the channel region and a portion overlapping the source and drain diffusion layers.
JP2005317064A 2005-10-31 2005-10-31 Semiconductor device Expired - Fee Related JP4405458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005317064A JP4405458B2 (en) 2005-10-31 2005-10-31 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005317064A JP4405458B2 (en) 2005-10-31 2005-10-31 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000400568A Division JP3808702B2 (en) 2000-12-28 2000-12-28 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2006100842A JP2006100842A (en) 2006-04-13
JP4405458B2 true JP4405458B2 (en) 2010-01-27

Family

ID=36240289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005317064A Expired - Fee Related JP4405458B2 (en) 2005-10-31 2005-10-31 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4405458B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8969867B2 (en) 2012-01-18 2015-03-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102097171B1 (en) 2012-01-20 2020-04-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device

Also Published As

Publication number Publication date
JP2006100842A (en) 2006-04-13

Similar Documents

Publication Publication Date Title
US7479423B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP4538182B2 (en) MOSFET manufacturing method
JP3600476B2 (en) Method for manufacturing semiconductor device
JPH11214656A (en) Semiconductor device and manufacturing method thereof
JP4181537B2 (en) Semiconductor device and manufacturing method thereof
TW410418B (en) Semiconductor device and manufacturing method therefor
JP2009164424A (en) Semiconductor device and manufacturing method thereof
JP4405458B2 (en) Semiconductor device
JP3808702B2 (en) Manufacturing method of semiconductor device
JP2009054609A (en) P-channel MOS transistor, N-channel MOS transistor, and nonvolatile semiconductor memory device
JP2009267027A (en) Semiconductor device, and method for manufacturing thereof
JP4489104B2 (en) Manufacturing method of semiconductor device
JP2008021935A (en) Electronic device and manufacturing method thereof
JPS6251216A (en) Manufacturing method of semiconductor device
JP4076725B2 (en) Semiconductor device and manufacturing method thereof
JP2011165973A (en) Semiconductor device and method for manufacturing the same
JP2002270851A (en) Method for manufacturing semiconductor device
JP2004200595A (en) MIS transistor and method of manufacturing the same
JP2006060173A (en) Semiconductor device and manufacturing method thereof
JP7007013B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JPH04320036A (en) Semiconductor device and its manufacture
JP2858636B2 (en) Semiconductor device and manufacturing method thereof
JPH03259564A (en) Manufacture of semiconductor device
JP2004534401A (en) Method of manufacturing semiconductor device having a plurality of MOS transistors having gate oxides of different thickness
JP2006324644A (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees