[go: up one dir, main page]

JP4420393B2 - Refrigeration air conditioner - Google Patents

Refrigeration air conditioner Download PDF

Info

Publication number
JP4420393B2
JP4420393B2 JP2004219631A JP2004219631A JP4420393B2 JP 4420393 B2 JP4420393 B2 JP 4420393B2 JP 2004219631 A JP2004219631 A JP 2004219631A JP 2004219631 A JP2004219631 A JP 2004219631A JP 4420393 B2 JP4420393 B2 JP 4420393B2
Authority
JP
Japan
Prior art keywords
air
refrigeration
conditioning
heat transfer
refrigerant circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004219631A
Other languages
Japanese (ja)
Other versions
JP2006038352A (en
Inventor
秀史 上杉
泰寛 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2004219631A priority Critical patent/JP4420393B2/en
Priority to CNB200510087926XA priority patent/CN100523657C/en
Publication of JP2006038352A publication Critical patent/JP2006038352A/en
Application granted granted Critical
Publication of JP4420393B2 publication Critical patent/JP4420393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、空調と冷凍の両方を行なう冷凍空調装置に係り、特に空調装置と冷凍装置とがそれぞれ独立した冷媒回路を有する冷凍空調装置に好適なものである。   The present invention relates to a refrigeration air conditioner that performs both air conditioning and refrigeration, and is particularly suitable for a refrigeration air conditioner in which the air conditioner and the refrigeration apparatus have independent refrigerant circuits.

空調と冷凍の両方を行なう従来の冷凍空調装置として、特開2002−277097号公報(特許文献1)に開示されたものがある。この特許文献1の冷凍空調装置では、室外熱交換器の伝熱管が空調用及び冷凍用に共用され、単一の冷媒が使用されるように構成されている。   As a conventional refrigeration air conditioner that performs both air conditioning and refrigeration, there is one disclosed in Japanese Patent Application Laid-Open No. 2002-277097 (Patent Document 1). In the refrigerating and air-conditioning apparatus of Patent Document 1, the heat transfer tubes of the outdoor heat exchanger are shared for air conditioning and freezing, and a single refrigerant is used.

また、従来の冷凍空調装置として、特開2001−289532号公報(特許文献2)に開示されたものがある。この特許文献2の実施の形態9に係る冷凍空調装置は、冷房運転時に凝縮器となり暖房運転時に蒸発器となる空調用伝熱管を有する空調用冷媒回路で空調用冷凍サイクルを構成し、常に凝縮器となる冷凍用伝熱管を有する冷凍用冷媒回路で冷凍用冷凍サイクルを構成し、前記空調用伝熱管と前記冷凍用伝熱管とを伝熱フインを介して一体的に形成して冷凍空調熱交換器を構成し、前記冷凍空調熱交換器に通風する送風機を備えるようにしたものである。   Moreover, as a conventional refrigeration air conditioner, there is one disclosed in JP 2001-289532 A (Patent Document 2). The refrigerating and air-conditioning apparatus according to Embodiment 9 of Patent Document 2 constitutes an air-conditioning refrigeration cycle with an air-conditioning refrigerant circuit having an air-conditioning heat transfer tube that becomes a condenser during cooling operation and an evaporator during heating operation, and is always condensed. A refrigeration cycle is configured by a refrigeration refrigerant circuit having a refrigeration heat transfer tube serving as a refrigerator, and the air conditioning heat transfer tube and the refrigeration heat transfer tube are integrally formed via a heat transfer fin, thereby refrigeration air conditioning heat. The exchanger is configured to include a blower that ventilates the refrigeration air-conditioning heat exchanger.

特開2002−277097号公報JP 2002-277097 A 特開2001−289532号公報JP 2001-289532 A

しかし、上述した特許文献1の冷凍空調装置では、室外熱交換器の伝熱管が空調用及び冷凍用に共用され、単一の冷媒が使用されており、空調と冷凍では使用用途に基づく蒸発温度が異なるため、いずれか一方(通常は低い方)の蒸発温度に合わせた冷凍サイクル運転を行なわせる必要がある。このため、空調、冷凍の両方にした冷凍サイクル運転を行なわせることが困難であった。 However, in the refrigerating and air-conditioning apparatus of Patent Document 1 described above, the heat transfer pipe of the outdoor heat exchanger is shared for air-conditioning and freezing, and a single refrigerant is used. Therefore, it is necessary to perform the refrigeration cycle operation in accordance with either one (usually the lower) evaporation temperature. Therefore, air conditioning, it is difficult to perform a refrigeration cycle operation that is appropriate to both the refrigeration.

また、この特許文献1の冷凍空調装置では、空調側の暖房運転時に、空調側の室外熱交換器が蒸発器となり、冷凍側の室外熱交換器が凝縮器となるため、冷凍サイクルにおける冷媒の放熱量と吸熱量のバランスを取るように、空調暖房能力と冷凍冷却能力の大小に応じて室外熱交換器を蒸発器か凝縮器のいずれかのモードに切り換えて使用する必要がある。しかし、この種の装置が使用される代表例であるコンビニエンスストアにおいては、空調側室内機が2台ないし3台、冷凍側冷却器であるショーケースが5台から7台接続されることが多く、これら機器の運転オンオフに伴い煩雑なモード切り換えが発生し、切り換え動作に伴うエネルギーロスや四方弁の切り換え不完全といった信頼性上の問題も発生している。   In the refrigerating and air-conditioning apparatus disclosed in Patent Document 1, during the heating operation on the air conditioning side, the outdoor heat exchanger on the air conditioning side serves as an evaporator and the outdoor heat exchanger on the freezing side serves as a condenser. In order to balance the amount of heat released and the amount of heat absorbed, it is necessary to switch the outdoor heat exchanger to either the evaporator or the condenser mode according to the size of the air conditioning heating capacity and the refrigeration cooling capacity. However, in a convenience store that is a typical example in which this type of device is used, two to three air conditioner side indoor units and five to seven showcases that are refrigeration side coolers are often connected. As these devices are turned on and off, complicated mode switching occurs, resulting in reliability problems such as energy loss accompanying switching operation and incomplete switching of the four-way valve.

一方、上述した特許文献2の冷凍空調装置には、冷凍空調熱交換器に通風する送風機の制御に関してはなんら開示されていない。この特許文献2の冷凍空調装置において、例えば空冷熱交換器に通風する送風機の通風量が一定であるとした場合には、次のような問題が生ずる。すなわち、空調用伝熱管が凝縮器として冷房運転される際に、冷凍用伝熱管も凝縮器として動作するので、冷凍空調用熱交換器の全体が凝縮器として機能する。これによって空調用冷媒回路及び冷凍用冷媒回路の何れかの凝縮圧力が極端に上昇してしまうおそれがあり、両冷媒回路に適した運転を行なうことが難しいという問題が生ずる。また、空調用伝熱管が蒸発器として暖房運転される際に、冷凍用伝熱管が凝縮器として動作するので、両冷媒回路に適した運転を行なうことが難しいという問題が生ずる。   On the other hand, the refrigerating and air-conditioning apparatus of Patent Document 2 described above does not disclose anything about the control of the blower that ventilates the refrigerating and air-conditioning heat exchanger. In the refrigerating and air-conditioning apparatus disclosed in Patent Document 2, for example, when the amount of ventilation of the blower that is ventilated to the air-cooled heat exchanger is constant, the following problem occurs. That is, when the air-conditioning heat transfer tube is air-cooled as a condenser, the refrigeration heat-transfer tube also operates as a condenser, so that the entire refrigeration air-conditioning heat exchanger functions as a condenser. As a result, the condensation pressure of either the air conditioning refrigerant circuit or the refrigeration refrigerant circuit may be extremely increased, which causes a problem that it is difficult to perform an operation suitable for both refrigerant circuits. Further, when the air-conditioning heat transfer tube is heated as an evaporator, the refrigeration heat transfer tube operates as a condenser, which causes a problem that it is difficult to perform an operation suitable for both refrigerant circuits.

そこで、空調用熱交換器と冷凍用伝熱管とを完全に別体のものとし、それぞれの熱交換器に送風機を独立して設けることが考えられるが、この場合には、装置全体が大型化するという問題が生ずる。   Therefore, it is conceivable that the heat exchanger for air conditioning and the heat transfer pipe for refrigeration are completely separate, and a fan is provided independently for each heat exchanger. Problem arises.

本発明の目的は、装置全体を小型化しつつ、空調用冷媒回路及び冷凍用冷媒回路に適切な運転を行なうことができる冷凍空調装置を得ることにある。   An object of the present invention is to obtain a refrigerating and air-conditioning apparatus capable of appropriately operating the air-conditioning refrigerant circuit and the refrigerating refrigerant circuit while downsizing the entire apparatus.

前記目的を達成するために、本発明は、冷房運転時に凝縮器となり暖房運転時に蒸発器となる空調用伝熱管を有する空調用冷媒回路で空調用冷凍サイクルを構成し、凝縮器となる冷凍用伝熱管を有する冷凍用冷媒回路で冷凍用冷凍サイクルを構成し、前記空調用伝熱管と前記冷凍用伝熱管とを伝熱フインを介して一体的に形成して冷凍空調熱交換器を構成し、前記冷凍空調熱交換器に通風する送風機を備える冷凍空調装置において、前記空調用伝熱管が凝縮器として冷房運転される際に、前記空調用冷媒回路と前記冷凍用冷媒回路の何れか高い方の凝縮圧力に基づいて、前記送風機の回転数を制御する制御装置を備え、前記制御装置は、前記空調用冷媒回路に使用される冷媒と前記冷凍用冷媒回路に使用される冷媒とが異なる種類である場合に、前記空調用伝熱管が凝縮器として冷房運転される際に前記空調用冷媒回路に使用される冷媒の凝縮圧力を同じ飽和温度に相当する前記冷凍用冷媒回路に使用される冷媒の物性値に基づいて空調用冷媒の凝縮圧力と対応できるように補正換算した凝縮圧力を求め、その補正換算した凝縮圧力と前記冷凍用冷媒回路の凝縮圧力とを仕較して何れか高い方の凝縮圧力に基づいて前記送風機の回転数を制御するようにしたことにある。 In order to achieve the above object, the present invention comprises an air-conditioning refrigeration cycle having an air-conditioning refrigerant circuit having an air-conditioning heat transfer tube which becomes a condenser during cooling operation and becomes an evaporator during heating operation, and is used for refrigeration as a condenser. A refrigeration cycle is configured by a refrigeration refrigerant circuit having a heat transfer tube, and the refrigeration air conditioning heat exchanger is configured by integrally forming the air conditioning heat transfer tube and the refrigeration heat transfer tube via a heat transfer fin. In the refrigerating and air-conditioning apparatus comprising a blower that ventilates the refrigerating and air-conditioning heat exchanger, when the air-conditioning heat transfer tube is air-cooled as a condenser, the higher one of the air-conditioning refrigerant circuit and the refrigerating refrigerant circuit A control device that controls the rotational speed of the blower based on the condensing pressure of the refrigerant, and the control device is a type in which a refrigerant used in the refrigerant circuit for air conditioning is different from a refrigerant used in the refrigerant circuit for freezing. If it is When the air-conditioning heat transfer tube is air-cooled as a condenser, the condensation pressure of the refrigerant used in the refrigerant circuit for air-conditioning is changed to the physical property value of the refrigerant used in the refrigerant circuit for freezing corresponding to the same saturation temperature. Based on the condensation pressure of the air-conditioning refrigerant so as to correspond to the condensing pressure of the air-conditioning refrigerant, and the correction-condensed condensing pressure is compared with the condensing pressure of the refrigeration refrigerant circuit to obtain the higher condensing pressure. Based on this, the rotational speed of the blower is controlled .

また、前記目的を達成するために、本発明は、冷房運転時に凝縮器となり暖房運転時に蒸発器となる空調用伝熱管を有する空調用冷媒回路で空調用冷凍サイクルを構成し、凝縮器となる冷凍用伝熱管を有する冷凍用冷媒回路で冷凍用冷凍サイクルを構成し、前記空調用伝熱管と前記冷凍用伝熱管とを伝熱フインを介して一体的に形成して冷凍空調熱交換器を構成し、前記冷凍空調熱交換器に通風する送風機を備える冷凍空調装置において、前記空調用伝熱管が凝縮器として冷房運転される際に、前記空調用冷媒回路と前記冷凍用冷媒回路の何れか高い方の凝縮圧力に基づいて、前記送風機の回転数を制御する制御装置を備え、前記制御装置は、前記空調用伝熱管が蒸発器として暖房運転される際に、前記空調用冷媒回路の蒸発圧力に基づいて、前記送風機の回転数を制御するようにしたことにある。
係る本発明のより好ましい具体的な構成例は次の通りである。
(1)前記制御装置は、前記空調用伝熱管が蒸発器として暖房運転される際に、前記空調用冷媒回路の蒸発圧力に基づいて、前記送風機の回転数を制御すること。
)前記()に加えて、前記空調用伝熱管が蒸発器として暖房運転される際に前記冷凍用冷媒回路の凝縮圧力を調整する凝縮圧力調整装置を備えること。
)前記()に加えて、前記凝縮圧力調整装置は凝縮圧力調整弁で構成され、前記凝縮圧力調整弁は、前記冷凍用冷媒回路に設けられ、前記空調用伝熱管が蒸発器として暖房運転される際に前記冷凍用冷媒回路の凝縮圧力が所定圧力以上となるように絞り動作すること。
)前記()から()の何れかに加えて、前記冷凍空調熱交換器は、前記送風機の駆動によって流入する空気の流れ方向に対して、伝熱管が複数の列を構成するように配置されており、冷凍用冷媒回路に属する伝熱管が空気の流れに対して上流側となる列に位置するように構成されていること。
In order to achieve the above object, the present invention comprises an air-conditioning refrigeration cycle having an air-conditioning refrigerant circuit having an air-conditioning heat transfer tube which becomes a condenser during cooling operation and becomes an evaporator during heating operation, and becomes a condenser. A refrigeration cycle is constituted by a refrigeration refrigerant circuit having a refrigeration heat transfer tube, and the refrigeration air conditioning heat exchanger is formed by integrally forming the air conditioning heat transfer tube and the refrigeration heat transfer tube via a heat transfer fin. In the refrigerating and air-conditioning apparatus comprising the blower that is configured to ventilate the refrigerating and air-conditioning heat exchanger, when the air-conditioning heat transfer tube is cooled as a condenser, the air-conditioning refrigerant circuit and the refrigerating refrigerant circuit are either A control device that controls the rotational speed of the blower based on a higher condensing pressure is provided, and the control device evaporates the air conditioning refrigerant circuit when the air conditioning heat transfer tube is heated as an evaporator. Based on pressure In that so as to control the rotational speed of the blower.
A more preferable specific configuration example of the present invention is as follows.
(1) pre-SL control apparatus, when the air-conditioning heat-transfer tube is heating operation as an evaporator, on the basis of the evaporation pressure of the air conditioning refrigerant circuit, controlling the rotation speed of the blower.
( 2 ) In addition to the above ( 1 ), a condensing pressure adjusting device that adjusts the condensing pressure of the refrigerant circuit for refrigeration when the air-conditioning heat transfer tube is heated as an evaporator is provided.
( 3 ) In addition to ( 2 ), the condensing pressure adjusting device is constituted by a condensing pressure adjusting valve, the condensing pressure adjusting valve is provided in the refrigerant circuit for refrigeration, and the heat transfer tube for air conditioning serves as an evaporator. When the heating operation is performed, the throttle operation is performed so that the condensing pressure of the refrigerant circuit for refrigeration becomes a predetermined pressure or more.
( 4 ) In addition to any one of ( 1 ) to ( 3 ), in the refrigeration air conditioning heat exchanger, the heat transfer tubes form a plurality of rows with respect to the flow direction of the air flowing in by driving the blower. The heat transfer tubes belonging to the refrigerant circuit for refrigeration are arranged so as to be positioned in a row upstream of the air flow.

また、前記目的を達成するために、本発明は、冷房運転時に凝縮器となり暖房運転時に蒸発器となる空調用伝熱管を有する空調用冷媒回路で空調用冷凍サイクルを構成し、凝縮器となる冷凍用伝熱管を有する冷凍用冷媒回路で冷凍用冷凍サイクルを構成し、前記空調用伝熱管と前記冷凍用伝熱管とを伝熱フインを介して一体的に形成して冷凍空調熱交換器を構成し、前記冷凍空調熱交換器に通風する送風機を備える冷凍空調装置において、前記空調用伝熱管が蒸発器として暖房運転される際に、前記空調用冷媒回路の蒸発圧力に基づいて、前記送風機の回転数を制御する制御装置を備え、前記空調用伝熱管が蒸発器として暖房運転される際に前記冷凍用冷媒回路の凝縮圧力を調整する凝縮圧力調整装置を備えるようにしたことにある。 In order to achieve the above object, the present invention comprises an air-conditioning refrigeration cycle having an air-conditioning refrigerant circuit having an air-conditioning heat transfer tube which becomes a condenser during cooling operation and becomes an evaporator during heating operation, and becomes a condenser. A refrigeration cycle is constituted by a refrigeration refrigerant circuit having a refrigeration heat transfer tube, and the refrigeration air conditioning heat exchanger is formed by integrally forming the air conditioning heat transfer tube and the refrigeration heat transfer tube via a heat transfer fin. In the refrigerating and air-conditioning apparatus comprising the blower configured to ventilate the refrigeration air-conditioning heat exchanger, when the air-conditioning heat transfer tube is heated as an evaporator, the blower is based on the evaporation pressure of the air-conditioning refrigerant circuit And a condensing pressure adjusting device for adjusting the condensing pressure of the refrigeration refrigerant circuit when the air-conditioning heat transfer tube is heated as an evaporator .

係る本発明のより好ましい具体的な構成例は次の通りである。
(1)前記冷凍空調熱交換器は、前記送風機の駆動によって流入する空気の流れ方向に対して、伝熱管が複数の列を構成するように配置されており、冷凍用冷媒回路に属する伝熱管が空気の流れに対して上流側となる列に位置するように構成されていること。
A more preferable specific configuration example of the present invention is as follows.
(1) before SL refrigerating and air-conditioning heat exchanger, the flow direction of the air flowing by the driving of the blower is arranged so as the heat transfer tubes form a plurality of columns, heat belonging to the refrigeration refrigerant circuit It is configured so that the heat pipes are positioned in a row upstream of the air flow.

本発明によれば、空調用伝熱管と冷凍用伝熱管とを伝熱フインを介して一体的に形成して冷凍空調熱交換器を構成し、前記空調用伝熱管が凝縮器として冷房運転される際に、空調用冷媒回路と冷凍用冷媒回路の何れか高い方の凝縮圧力に基づいて、送風機の回転数を制御する制御装置を備え、前記制御装置は、前記空調用冷媒回路に使用される冷媒と前記冷凍用冷媒回路に使用される冷媒とが異なる種類である場合に、前記空調用伝熱管が凝縮器として冷房運転される際に前記空調用冷媒回路に使用される冷媒の凝縮圧力を同じ飽和温度に相当する前記冷凍用冷媒回路に使用される冷媒の物性値に基づいて空調用冷媒の凝縮圧力と対応できるように補正換算した凝縮圧力を求め、その補正換算した凝縮圧力と前記冷凍用冷媒回路の凝縮圧力とを仕較して何れか高い方の凝縮圧力に基づいて前記送風機の回転数を制御するようにしているので、装置全体を小型化しつつ、前記空調用冷媒回路と前記冷凍用冷媒回路のそれぞれに適切な冷媒を使用して当該空調用冷媒回路及び冷凍用冷媒回路に適切な運転を行なうことができる冷凍空調装置が得られる。 According to the present invention, constitutes a refrigeration air conditioning heat exchanger formed integrally with the air-conditioning heat-transfer pipe and the refrigerating heat transfer pipe through the heat transfer fins, the air-conditioning heat-transfer tube is cooling operation as a condenser A control device that controls the rotational speed of the blower based on the higher condensing pressure of the air conditioning refrigerant circuit or the refrigeration refrigerant circuit, and the control device is used in the air conditioning refrigerant circuit. When the refrigerant used in the refrigerant circuit for refrigeration is of a different type, the condensation pressure of the refrigerant used in the refrigerant circuit for air conditioning when the heat transfer tube for air conditioning is cooled as a condenser Based on the physical property value of the refrigerant used in the refrigerant circuit for refrigeration corresponding to the same saturation temperature to obtain a condensed pressure converted to be compatible with the condensed pressure of the air conditioning refrigerant, and the corrected converted condensed pressure and the Condensation pressure of refrigerant circuit for refrigeration Since Tsukamatsu較to based on any higher condensing pressure so as to control the rotational speed of the blower, while miniaturizing the whole apparatus, suitable for each of the refrigeration refrigerant circuit and the air conditioning refrigerant circuit Thus, a refrigerating and air-conditioning apparatus that can perform an appropriate operation on the air-conditioning refrigerant circuit and the refrigerating refrigerant circuit using a simple refrigerant is obtained.

また、本発明によれば、空調用伝熱管と冷凍用伝熱管とを伝熱フインを介して一体的に形成して冷凍空調熱交換器を構成し、前記空調用伝熱管が凝縮器として冷房運転される際に、空調用冷媒回路と冷凍用冷媒回路の何れか高い方の凝縮圧力に基づいて、送風機の回転数を制御する制御装置を備え、前記制御装置は、前記空調用伝熱管が蒸発器として暖房運転される際に、前記空調用冷媒回路の蒸発圧力に基づいて、前記送風機の回転数を制御するようにしているので、装置全体を小型化しつつ、前記空調用冷媒回路及び前記冷凍用冷媒回路に適切な運転を行なうことができると共に、空調暖房の蒸発温度の低下を抑えるように外気温度の低下に応じて回転数を増加し、暖房負荷が冷凍負荷より大きくなる冬期において必要な空調暖房能力を確保できる冷凍空調装置が得られるFurther, according to this onset bright, constitutes a refrigeration air conditioning heat exchanger formed integrally with the air-conditioning heat-transfer pipe and refrigeration heat transfer pipe through the heat transfer fins, the air-conditioning heat exchanger tube as a condenser A control device that controls the rotational speed of the blower based on the higher condensing pressure of the air conditioning refrigerant circuit or the refrigeration refrigerant circuit during cooling operation, and the control device includes the air conditioning heat transfer tube Is controlled as the evaporator, the rotational speed of the blower is controlled based on the evaporation pressure of the air conditioning refrigerant circuit, and the air conditioning refrigerant circuit and In the winter when the refrigerant circuit for refrigeration can be appropriately operated, and the rotational speed is increased in accordance with a decrease in the outside air temperature so as to suppress a decrease in the evaporation temperature of the air conditioning and heating, so that the heating load is larger than the refrigeration load. Necessary air conditioning heating capacity Retention can be refrigeration and air conditioning device can be obtained.

また、本発明の好ましい具体的構成によれば、前記空調用伝熱管が蒸発器として暖房運転される際に前記冷凍用冷媒回路の凝縮圧力を調整する凝縮圧力調整装置を備えるようにしているので、暖房負荷が冷凍負荷より大きくなる冬期において必要な空調暖房能力を確保しながら、風量が冷凍側の必要風量より大きいために冷凍の凝縮圧力が低下して、圧力址が規定値より下がり過ぎて圧縮機内部の差圧給油に支障が出るのを回避することが可能で、空調側風量による影響を受けにくい安定した冷凍側の運転を確保できる。   According to a preferred specific configuration of the present invention, since the air-conditioning heat transfer tube is provided with a condensing pressure adjusting device that adjusts the condensing pressure of the refrigerant circuit for refrigeration when heating operation is performed as an evaporator. , While ensuring the necessary air conditioning heating capacity in the winter when the heating load is greater than the refrigeration load, the refrigeration condensing pressure decreases because the air volume is greater than the required air volume on the refrigeration side, and the pressure 址 falls below the specified value. It is possible to avoid a problem in the differential pressure oil supply inside the compressor, and it is possible to secure a stable operation on the refrigeration side that is hardly affected by the air volume on the air conditioning side.

また、本発明の好ましい具体的構成によれば、前記冷凍空調熱交換器は、前記送風機の駆動によって流入する空気の流れ方向に対して、伝熱管が複数の列を構成するように配置されており、冷凍用冷媒回路に属する伝熱管が空気の流れに対して上流側となる列に位置するようにしているので、冷凍用冷媒回路に属する伝熱管での凝縮熱の一部が、空調用熱交換器部分の入口空気温度を高めることになり、空調の暖房運転時にはこの温度上昇分が蒸発器である空調用伝熱管への吸熱量として作用し、暖房能力の向上につながる。また、通常運転時より空調用熱交換器の着霜量が減少するため、空調暖房能力の低下を改善することが期待できる。   According to a preferred specific configuration of the present invention, the refrigeration air conditioning heat exchanger is arranged such that heat transfer tubes form a plurality of rows with respect to a flow direction of air flowing in by driving the blower. Since the heat transfer tubes belonging to the refrigerant circuit for refrigeration are positioned upstream of the air flow, a part of the condensation heat in the heat transfer tubes belonging to the refrigerant circuit for refrigeration is used for air conditioning. The air temperature at the inlet of the heat exchanger is increased, and during the heating operation of the air conditioning, this temperature rise acts as an amount of heat absorbed into the air conditioning heat transfer pipe as an evaporator, leading to an improvement in heating capacity. Moreover, since the amount of frost formation of the heat exchanger for air conditioning decreases from the time of normal operation, it can be expected to improve the deterioration of the air conditioning heating capacity.

さらに、本発明によれば、空調用伝熱管と冷凍用伝熱管とを伝熱フインを介して一体的に形成して冷凍空調熱交換器を構成し、前記空調用伝熱管が蒸発器として暖房運転される際に、前記空調用冷媒回路の蒸発圧力に基づいて、前記送風機の回転数を制御する制御装置を備え、前記空調用伝熱管が蒸発器として暖房運転される際に前記冷凍用冷媒回路の凝縮圧力を調整する凝縮圧力調整装置を備えるようにしているので、装置全体を小型化しつつ、空調用冷媒回路及び冷凍用冷媒回路に適切な運転を行なうことができると共に、暖房負荷が冷凍負荷より大きくなる冬期において必要な空調暖房能力を確保しながら、風量が冷凍側の必要風量より大きいために冷凍の凝縮圧力が低下して、圧力址が規定値より下がり過ぎて圧縮機内部の差圧給油に支障が出るのを回避することが可能で、空調側風量による影響を受けにくい安定した冷凍側の運転を確保できる冷凍空調装置が得られる。 Further, according to the present invention, the air-conditioning heat transfer tube and the refrigeration heat transfer tube are integrally formed through the heat transfer fin to constitute the refrigeration air-conditioning heat exchanger, and the air-conditioning heat transfer tube is heated as an evaporator. A control device that controls the rotational speed of the blower based on the evaporation pressure of the air conditioning refrigerant circuit when operated, and the refrigeration refrigerant when the air conditioning heat transfer tube is heated as an evaporator Since the condensing pressure adjusting device for adjusting the condensing pressure of the circuit is provided , it is possible to appropriately operate the air conditioning refrigerant circuit and the refrigeration refrigerant circuit while reducing the size of the entire device , and the heating load is refrigerated. While ensuring the required air conditioning heating capacity in the winter season when it exceeds the load, the refrigeration condensing pressure decreases because the air volume is larger than the required air volume on the refrigeration side, and the pressure drop falls below the specified value, causing a difference in the compressor. Pressure lubrication It is possible to avoid the trouble that out, the refrigeration air conditioning system is obtained which can ensure less susceptible stable refrigerating side operation the effect of the air-conditioning side airflow.

以下、本発明の一実施例の冷凍空調装置を図1から図4を用いて説明する。   Hereinafter, a refrigerating and air-conditioning apparatus according to an embodiment of the present invention will be described with reference to FIGS.

まず、本実施例の冷凍空調装置の構成に関して図1及び図2を参照しながら説明する。図1は本発明の一実施例の冷凍空調装置の構成図、図2は図1の冷凍空調熱交換器の伝熱管のパス配列の形態を表すモデル図である。   First, the configuration of the refrigerating and air-conditioning apparatus according to the present embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a configuration diagram of a refrigeration air-conditioning apparatus according to an embodiment of the present invention, and FIG. 2 is a model diagram showing a path arrangement form of heat transfer tubes of the refrigeration air-conditioning heat exchanger of FIG.

冷凍空調装置100は、1台の室外ユニット110、複数(図示例では2台)の空調用室内ユニット120、及び複数(図示例では5台)の冷凍用室内ユニット130を備えて構成されている。これらの構成要素110、120、130の間は冷媒配管、電気配線、及び信号配線などを介して接続されている。室外ユニット110は建物140の外部(室外)に設置され、空調用室内ユニット120及び冷凍用室内ユニット130は建物140の内部(室内)に設置されている。冷凍用室内ユニット130は冷蔵ショーケースや冷凍ショーケースなどで構成されている。   The refrigeration air conditioner 100 includes one outdoor unit 110, a plurality (two in the illustrated example) of air conditioning indoor units 120, and a plurality (five in the illustrated example) of refrigeration indoor units 130. . These components 110, 120, and 130 are connected via refrigerant piping, electrical wiring, signal wiring, and the like. The outdoor unit 110 is installed outside the building 140 (outside the room), and the air conditioning indoor unit 120 and the freezing indoor unit 130 are installed inside the building 140 (the room). The freezing indoor unit 130 includes a refrigerated showcase, a freezing showcase, and the like.

また、冷凍空調装置100は、空調用冷媒回路101、冷凍用冷媒回路102及びコントローラ200を備えて構成されている。コントローラ200は、マイコンなどで構成され、空調用冷媒回路101及び冷凍用冷媒回路102の構成要素や、送風機40、53、63などを制御する制御装置である。   The refrigeration air conditioner 100 includes an air conditioning refrigerant circuit 101, a refrigeration refrigerant circuit 102, and a controller 200. The controller 200 is configured by a microcomputer or the like, and is a control device that controls the components of the air conditioning refrigerant circuit 101 and the refrigeration refrigerant circuit 102, the fans 40, 53, 63, and the like.

空調冷媒回路101は、空調用圧縮機1、2、四方弁12、冷凍空調用熱交換器3、受液器4、アキュムレータ6、室外膨張弁13を室外側の主要部品として室外ユニット110内に備え、室内空調用熱交換器51、室内膨張弁52を室内側の主要部品として空調用室内ユニット120内に備えて構成されている。 Air conditioning refrigerant circuit 101, the air conditioning compressor 1, the four-way valve 12, the refrigerating air-conditioning heat exchanger 3, the receiver 4, the accumulator 6, the outdoor unit 110 and the outdoor expansion valve 13 as a main part of the outdoor side The indoor air conditioning heat exchanger 51 and the indoor expansion valve 52 are provided in the air conditioning indoor unit 120 as main components on the indoor side.

なお、空調用室内ユニット120には室内空調用送風機53が配置されており、この室内空調用送風機53が回転されることにより、室内空気は、空調用室内ユニット120内に吸込まれて室内空調用熱交換器51と強制的に熱交換され(加熱または冷却され)、空調用室内ユニット120から室内へ吹出されて室内の暖房または冷房が行なわれる。   The air conditioning indoor unit 120 is provided with an indoor air conditioning blower 53. By rotating the indoor air conditioning blower 53, the indoor air is sucked into the air conditioning indoor unit 120 and used for indoor air conditioning. Heat exchange with the heat exchanger 51 is forcibly (heated or cooled), and the indoor unit 120 for air conditioning is blown into the room to heat or cool the room.

一方、冷凍冷媒回路102は、冷凍用圧縮機21、冷凍空調用熱交換器3、受液器24、アキュムレータ26、凝縮圧力調整弁23を室外側の主要部品として室外ユニット110内に備え、室内冷凍用熱交換器61及び室内膨張弁62を室内側の主要部品として冷凍用室内ユニット130内に備えて構成されている。空調用冷媒回路101と冷凍用冷媒回路102の冷媒流路は完全に独立して形成されている。 On the other hand, the refrigeration refrigerant circuit 102, the refrigeration compressor 21, the refrigerating air-conditioning heat exchanger 3, the receiver 24, the accumulator 26, provided in the outdoor unit 110 of the condensing pressure regulating valve 23 as a main part of the outdoor side, The indoor refrigeration heat exchanger 61 and the indoor expansion valve 62 are provided in the refrigeration indoor unit 130 as main indoor components. The refrigerant flow paths of the air conditioning refrigerant circuit 101 and the refrigeration refrigerant circuit 102 are formed completely independently.

なお、冷凍用室内ユニット130には室内冷凍用送風機63が配置されており、この室内冷凍用送風機63が回転することにより、冷凍用室内ユニット130の庫内空気が循環されて室内冷凍用熱交換器61で冷却され、冷凍用室内ユニット130の庫内冷却が行なわれる。   An indoor refrigeration blower 63 is disposed in the refrigeration indoor unit 130. When the indoor refrigeration blower 63 rotates, the air in the refrigerator indoor unit 130 is circulated to exchange heat for indoor refrigeration. The inside of the freezing indoor unit 130 is cooled in the refrigerator.

冷凍空調用熱交換器3は、図2に示すように、空調用冷媒回路101の室外側空調用熱交換器の空調用伝熱管3aと、冷凍用冷媒回路102の室外側冷凍用熱交換器の冷凍用伝熱管3bと、これらの間にまたがって設けられた伝熱フイン3cとを備えて構成されている。すなわち、冷凍空調用熱交換器3は、空調用伝熱管3aと冷凍用伝熱管3bとを伝熱フイン3cを介して一体的に形成したプレートフインチユーブ型熱交換器で構成されている。   As shown in FIG. 2, the refrigeration and air conditioning heat exchanger 3 includes an air conditioning heat transfer pipe 3 a of an outdoor air conditioning heat exchanger of the air conditioning refrigerant circuit 101 and an outdoor refrigeration heat exchanger of the refrigeration refrigerant circuit 102. The refrigeration heat transfer tube 3b and a heat transfer fin 3c provided between them are configured. In other words, the refrigeration and air conditioning heat exchanger 3 is configured by a plate-inch-in-tube heat exchanger in which an air conditioning heat transfer tube 3a and a refrigeration heat transfer tube 3b are integrally formed via a heat transfer fin 3c.

この冷凍空調用熱交換器3へ室外空気を送るための送風機40が1個備えられている。そして、冷凍空調用熱交換器3において、送風機40により生じる空気流れの上流側に冷凍用パスの伝熱管3bが全て配置されると共に、空調用パスの伝熱管3aの一部が冷凍用パスの伝熱管3bと同じく空気流れの上流側に配置され、残りの伝熱管3aが空気流れの下流側に配置されている。   One blower 40 for sending outdoor air to the refrigeration / air-conditioning heat exchanger 3 is provided. In the refrigeration and air conditioning heat exchanger 3, all the heat transfer tubes 3b of the refrigeration path are arranged upstream of the air flow generated by the blower 40, and a part of the heat transfer tubes 3a of the air conditioning path is part of the refrigeration path. Like the heat transfer tube 3b, it is arranged on the upstream side of the air flow, and the remaining heat transfer tube 3a is arranged on the downstream side of the air flow.

次に、冷凍空調装置100の冷房運転時における動作について、図1、図3及び図4を参照しながら説明する。   Next, the operation | movement at the time of air_conditionaing | cooling operation of the refrigerating and air-conditioning apparatus 100 is demonstrated, referring FIG.1, FIG.3 and FIG.4.

冷凍空調装置100の冷房運転が開始されると、空調用冷媒回路101において、冷媒は図1の実線矢印のように流れる。空調用圧縮機1、2から吐出された空調用高温冷媒は、サイレンサー7、逆止弁9を経てオイルセパレータ5にて合流される。このオイルセパレータ5で、吐出冷媒に含まれる冷凍機油は、分離されて油戻し回路11を通って吸入側配管に戻される。一方、オイルセパレータ5で冷凍機油を分離された高温冷媒は、四方弁12にて冷房時は図1の実線方向に流れ、冷凍空調用熱交換器3の空調用パスの伝熱管3aに流入される。   When the cooling operation of the refrigerating and air-conditioning apparatus 100 is started, the refrigerant flows as indicated by solid line arrows in FIG. The high-temperature refrigerant for air conditioning discharged from the air-conditioning compressors 1 and 2 is joined by the oil separator 5 through the silencer 7 and the check valve 9. In the oil separator 5, the refrigerating machine oil contained in the discharged refrigerant is separated and returned to the suction side pipe through the oil return circuit 11. On the other hand, the high-temperature refrigerant from which the refrigeration oil is separated by the oil separator 5 flows in the direction of the solid line in FIG. 1 during cooling by the four-way valve 12 and flows into the heat transfer tube 3a of the air conditioning path of the heat exchanger 3 for refrigeration air conditioning. The

この高温冷媒は、冷凍空調用熱交換器3にて、送風機40により送られる室外空気へ放熱して凝縮する。凝縮した液冷媒は、逆止弁10を経て受液器4にいったん集められた後、冷凍空調用熱交換器3の空調用サブクーラ部分8に流入され、ここで室外空気との熱交換により過冷却されて、阻止弁14を経て空調用室内ユニット120へと送られる。   This high-temperature refrigerant is radiated and condensed in the outdoor air sent by the blower 40 in the heat exchanger 3 for refrigeration and air conditioning. The condensed liquid refrigerant is once collected in the liquid receiver 4 via the check valve 10 and then flows into the air conditioning subcooler portion 8 of the refrigeration air conditioning heat exchanger 3 where it is excessively exchanged by heat exchange with outdoor air. It is cooled and sent to the air conditioning indoor unit 120 through the blocking valve 14.

阻止弁14からの液冷媒は、室内空調用膨張弁52で減圧された後、室内空調用熟交換器51で室内空気と熱交換され、室内空気から吸熟して蒸発することにより室内空気を冷却する。蒸発し低温ガスとなった空調用冷媒は、阻止弁15より再び室外ユニット110に戻り、四方弁12、アキュムレータ6を経て、空調用圧縮機1、2に吸入される。   The liquid refrigerant from the blocking valve 14 is depressurized by the indoor air conditioning expansion valve 52, and then heat-exchanged with the indoor air by the indoor air conditioning mature exchanger 51, and is absorbed and evaporated from the indoor air to cool the indoor air. To do. The air-conditioning refrigerant evaporated into the low-temperature gas returns to the outdoor unit 110 again from the blocking valve 15 and is sucked into the air-conditioning compressors 1 and 2 through the four-way valve 12 and the accumulator 6.

一方、冷凍用冷媒回路102において、冷媒は図1の実線矢印のように流れる。冷凍用圧縮機21から吐出された冷凍用高温冷媒は、逆止弁22を経て冷凍空調用熱交換器3の冷凍用パスの伝熱管3bに流入される。この高温冷媒は、冷凍空調用熱交換器3にて、送風機40により送られる室外空気へ放熱して凝縮する。凝縮した液冷媒は、凝縮圧力調整装置の一例である凝縮圧力調整弁23を経て受液器24にいったん集められた後、冷凍空調用熱交換器3の冷凍用サブクーラ部分25に流入され、ここで室外空気との熱交換により過冷却されて、阻止弁27、ドライヤ28、サイトグラス29を経て冷凍用室内ユニット130へと送られる。また、阻止弁27の手前で分岐された液冷媒は、液バイパス回路31により減圧されて吸入側配管に戻る。この液バイパス回路31の作動は冷凍用圧縮機21の吐出ガス温度が所定の温度以上に上昇したときに行われるよう制御される。   On the other hand, in the refrigeration refrigerant circuit 102, the refrigerant flows as indicated by solid arrows in FIG. The refrigeration high-temperature refrigerant discharged from the refrigeration compressor 21 flows into the heat transfer pipe 3 b of the refrigeration path of the refrigeration air-conditioning heat exchanger 3 through the check valve 22. This high-temperature refrigerant is radiated and condensed in the outdoor air sent by the blower 40 in the heat exchanger 3 for refrigeration and air conditioning. The condensed liquid refrigerant is once collected in the liquid receiver 24 via the condensation pressure adjusting valve 23 which is an example of a condensing pressure adjusting device, and then flows into the refrigeration subcooler portion 25 of the refrigeration air conditioning heat exchanger 3. Then, it is supercooled by heat exchange with the outdoor air, and sent to the freezing indoor unit 130 through the blocking valve 27, the dryer 28, and the sight glass 29. The liquid refrigerant branched before the blocking valve 27 is decompressed by the liquid bypass circuit 31 and returns to the suction side pipe. The operation of the liquid bypass circuit 31 is controlled so as to be performed when the discharge gas temperature of the refrigeration compressor 21 rises above a predetermined temperature.

サイトグラス29からの液冷媒は、冷凍用室内ユニット130内の室内冷凍用膨張弁62で減圧された後、室内冷凍用熱交換器61でユニット庫内空気と熱交換され庫内空気から吸熟して蒸発することにより庫内空気を冷却する。蒸発し低温ガスとなった冷凍用冷媒は、阻止弁30より再び室外ユニット110に戻り、アキュムレータ26を経て、冷凍用圧縮機21に吸入される。   The liquid refrigerant from the sight glass 29 is depressurized by the indoor refrigeration expansion valve 62 in the refrigeration indoor unit 130, and then is heat-exchanged with the air in the unit cabinet by the indoor refrigeration heat exchanger 61 and is absorbed from the air in the cabinet. The inside air is cooled by evaporation. The refrigeration refrigerant evaporated into the low temperature gas returns to the outdoor unit 110 again from the blocking valve 30 and is sucked into the refrigeration compressor 21 through the accumulator 26.

このとき、送風機40は図3または図4の動作フローによって制御される。図3は空調用冷媒と冷凍用冷媒が同一種類の場合の動作フローであり、図4は両者が異なる種類の場合の動作フローである。   At this time, the blower 40 is controlled by the operation flow of FIG. 3 or FIG. FIG. 3 is an operation flow when the air-conditioning refrigerant and the refrigeration refrigerant are of the same type, and FIG. 4 is an operation flow when they are of different types.

冷房運転時においては、図3及び図4に示すように、空調用圧力センサ16で空調用冷媒回路101の凝縮圧力Aが検出されてコントローラ200に入力されると共に(ステップS1)、冷凍用圧力センサ32で冷凍用冷媒回路102の凝縮圧力Bが検出されてコントローラ200に入力される(ステップS2)。なお、空調用圧力センサ16は、2台の空調用圧縮機1、2の吐出側の合流点であるオイルセパレータ5と四方弁12との間の配管路の圧力を検出するようになっている。   During the cooling operation, as shown in FIGS. 3 and 4, the air pressure sensor 16 detects the condensation pressure A of the air conditioning refrigerant circuit 101 and inputs it to the controller 200 (step S1), and the refrigeration pressure. The condensation pressure B of the refrigerant circuit 102 for refrigeration is detected by the sensor 32 and input to the controller 200 (step S2). The air-conditioning pressure sensor 16 detects the pressure in the pipe line between the oil separator 5 and the four-way valve 12 that is a confluence on the discharge side of the two air-conditioning compressors 1 and 2. .

そして、空調用冷媒と冷凍用冷媒が同一のときは、図3に示すように、凝縮圧力Aと凝縮圧力Bとを直接比較する(ステップS4a)。また、空調用冷媒と冷凍用冷媒が異なる種類の場合には、図4に示すように、冷凍用冷媒の凝縮圧力Bを同じ飽和温度に相当する空調用冷媒の物性値に基づいて空調用冷媒の凝縮圧力と対応できるように補正換算した凝縮圧力B’を求め(ステップS3)、凝縮圧力Aと凝縮圧力B’とを比較する(ステップS4b)。   When the air conditioning refrigerant and the refrigeration refrigerant are the same, the condensation pressure A and the condensation pressure B are directly compared as shown in FIG. 3 (step S4a). Further, when the air-conditioning refrigerant and the refrigeration refrigerant are of different types, the air-conditioning refrigerant is based on the physical property value of the air-conditioning refrigerant corresponding to the same saturation temperature as shown in FIG. The condensing pressure B ′ corrected and converted so as to correspond to the condensing pressure is obtained (step S3), and the condensing pressure A and the condensing pressure B ′ are compared (step S4b).

その判定結果のいずれか高い方の圧力に基づいて、凝縮圧力の上昇を抑えるようにコントローラ200より送風機40の回転数出力の制御を行なう。すなわち、コントローラ200は、凝縮圧力Aが凝縮圧力BまたはB’より高い場合には、凝縮圧力Aに基いて送風機40の回転数を制御し(ステップS5)、凝縮圧力BまたはB’が凝縮圧力Aより高い場合には、凝縮圧力Bに基いて送風機40の回転数を制御する(ステップS6)。なお、凝縮圧力Bに基いて送風機40の回転数を制御する代わりに、凝縮圧力B’に基いて送風機40の回転数を制御するようにしてもよい。   Based on the higher pressure of the determination results, the controller 200 controls the rotational speed output of the blower 40 so as to suppress the increase in the condensation pressure. That is, when the condensing pressure A is higher than the condensing pressure B or B ′, the controller 200 controls the rotational speed of the blower 40 based on the condensing pressure A (step S5), and the condensing pressure B or B ′ is the condensing pressure. If it is higher than A, the rotational speed of the blower 40 is controlled based on the condensation pressure B (step S6). Instead of controlling the rotation speed of the blower 40 based on the condensation pressure B, the rotation speed of the blower 40 may be controlled based on the condensation pressure B ′.

次に、冷凍空調装置100の暖房運転時における動作について、図1を参照しながら説明する。冷凍空調装置100の暖房運転が開始されると、空調用冷媒回路101において、冷媒は図1の点線矢印のように流れる。空調用圧縮機1、2から吐出された空調用高温冷媒は、四方弁12までは冷房時と同じように流れるが、四方弁12にて点線方向に流れが切り換えられ、阻止弁15を経て空調用室内ユニット120へと送られる。空調用室内ユニット120では室内空調用熱交換器51で室内空気と熱交換され、室内空気へ放熱して凝縮することにより室内空気を加熱する。凝縮し液冷媒となった空調用冷媒は、阻止弁14より再び室外ユニット110に戻り、冷凍空調用熱交換器3の空調用サブクーラ部分8に流入される。冷媒は、ここで室外空気との熱交換により過冷却されて受液器4に集められた後、膨張弁13で減圧されて再び冷凍空調用熱交換器3の空調用パスの伝熱管3aに流入する。減圧された空調用冷媒は冷凍空調用熱交換器3にて送風機40により送られる室外空気と熱交換して吸熟して蒸発する。蒸発し低温ガスとなった空調用冷媒は、四方弁12、アキュムレータ6を経て、空調用圧縮機1、2に吸入される。   Next, the operation | movement at the time of the heating operation of the refrigerating air conditioner 100 is demonstrated, referring FIG. When the heating operation of the refrigerating and air-conditioning apparatus 100 is started, the refrigerant flows as indicated by the dotted arrows in FIG. The high-temperature air-conditioning refrigerant discharged from the air-conditioning compressors 1 and 2 flows to the four-way valve 12 in the same manner as during cooling, but the flow is switched in the dotted line direction by the four-way valve 12 and the air-conditioning passes through the blocking valve 15. Sent to the indoor unit 120. In the indoor unit for air conditioning 120, heat is exchanged with room air by the heat exchanger 51 for room air conditioning, and the room air is heated by releasing heat to the room air and condensing. The air-conditioning refrigerant condensed into the liquid refrigerant returns to the outdoor unit 110 again from the blocking valve 14 and flows into the air-conditioning subcooler portion 8 of the refrigerating and air-conditioning heat exchanger 3. Here, the refrigerant is supercooled by heat exchange with outdoor air and collected in the liquid receiver 4, and then depressurized by the expansion valve 13 and again into the heat transfer pipe 3 a of the air conditioning path of the refrigeration air conditioning heat exchanger 3. Inflow. The decompressed air-conditioning refrigerant exchanges heat with the outdoor air sent by the blower 40 in the refrigerating and air-conditioning heat exchanger 3 to be aged and evaporate. The air-conditioning refrigerant evaporated into the low-temperature gas is sucked into the air-conditioning compressors 1 and 2 through the four-way valve 12 and the accumulator 6.

一方、冷凍用冷媒回路102において、冷媒は図1の実線矢印のように流れる。すなわち、冷凍用冷媒回路102は、暖房運転時も冷房運転時と同じ冷媒回路動作である。この結果、冷凍空調用熱交換器3は空調用パスの伝熱管3aにおいては蒸発器、冷凍用パスの伝熱管3bにおいては凝縮器として機能する。この場合、いずれか所要風量の大きい方にて送風機40の制御を行なわせるが、暖房運転が行われるのは冬期であり、冷凍用冷媒回路102に接続されるショーケース等の冷蔵あるいは冷凍ユニットの冷却負荷は少なく凝縮に必要な風量は小さいため、空調用冷媒回路101の暖房運転に適した風量を選択する。   On the other hand, in the refrigeration refrigerant circuit 102, the refrigerant flows as indicated by solid arrows in FIG. That is, the refrigeration refrigerant circuit 102 performs the same refrigerant circuit operation during heating operation as during cooling operation. As a result, the refrigerating and air conditioning heat exchanger 3 functions as an evaporator in the heat transfer tube 3a of the air conditioning path and as a condenser in the heat transfer tube 3b of the refrigerating path. In this case, the blower 40 is controlled with the larger required air volume, but the heating operation is performed in the winter, and the refrigeration or refrigeration unit such as a showcase connected to the refrigerant circuit 102 for refrigeration is performed. Since the cooling load is small and the air volume necessary for condensation is small, an air volume suitable for the heating operation of the air conditioning refrigerant circuit 101 is selected.

暖房運転時においては空調用圧力センサ17で空調用冷媒回路101の蒸発圧力Cが検出されてコントローラ200に入力され、空調暖房の蒸発温度の低下を抑えるように外気温度の低下に応じて風量を増加するようにコントローラ200より送風機45の回転数出力の制御を行なう。なお、空調用圧力センサ17は、2台の空調用圧縮機1、2の吸込み側の合流点であるアキュムレータ6と四方弁12との間の配管路の圧力を検出するようになっている。   During the heating operation, the evaporation pressure C of the air conditioning refrigerant circuit 101 is detected by the air conditioning pressure sensor 17 and input to the controller 200, and the air volume is adjusted according to the decrease in the outside air temperature so as to suppress the decrease in the evaporation temperature of the air conditioning heating. The controller 200 controls the rotational speed output of the blower 45 so as to increase. The air-conditioning pressure sensor 17 detects the pressure in the pipe line between the accumulator 6 and the four-way valve 12, which is a confluence point on the suction side of the two air-conditioning compressors 1 and 2.

このとき、冷凍用冷媒回路102においては、冷凍空調用熱交換器3での凝縮に必要な風量より大きい風量で運転されるため、凝縮圧力が低下して冷凍用圧縮機21の高圧側圧力が下がる。このために、冷凍用圧縮機21の圧力比が規定値より下がり過ぎて圧縮機内部の差圧給油に支障が出る恐れがある。そこで、本実施例では、冷凍用冷媒回路102中の凝縮圧力調整弁23が一定以下の凝縮圧力とならないよう絞り動作することで規定の圧力比が確保されるようになっている。   At this time, the refrigeration refrigerant circuit 102 is operated with an air volume larger than that required for condensation in the refrigeration / air conditioning heat exchanger 3, so that the condensing pressure is reduced and the high-pressure side pressure of the refrigeration compressor 21 is increased. Go down. For this reason, the pressure ratio of the refrigeration compressor 21 may be lowered below a specified value, which may hinder the differential pressure lubrication inside the compressor. Therefore, in this embodiment, the specified pressure ratio is ensured by performing a throttling operation so that the condensing pressure adjusting valve 23 in the refrigerant circuit 102 for refrigeration does not reach a condensing pressure below a certain level.

なお、空調側が暖房運転を停止した場合は、冷凍用冷媒回路102単独の運転となり、空調冷房運転時と同様に冷凍用圧力センサ32で検出される凝縮圧力の値に基づいてコントローラ200より送風機40の回転数出力の制御を行なう。   When the air conditioning side stops the heating operation, the refrigerant refrigerant circuit 102 is operated alone, and the blower 40 is sent from the controller 200 based on the value of the condensation pressure detected by the freezing pressure sensor 32 as in the air conditioning cooling operation. The output of the rotation speed is controlled.

冷凍空調用熱交換器3の空調用パスの伝熱管3aと冷凍用パスの伝熱管3bを図2に示すように、送風機40により生じる空気流れの上流側に冷凍用パスの伝熱管3aを全て配置し、空調用パスの伝熱管3b一部は冷凍用パスの伝熱管3bと同じく空気流れの上流側に、残りは空気流れの下流側に位置させている。暖房運転時、膨張弁13で減圧された空調用冷媒は冷凍空調用熱交換器3にて送風機40により送られる室外空気と熱交換して吸熟して蒸発するが、図2に示すような配置とすることで、冷凍用パスの凝縮熱の一部が、空調用パス部分の入口空気温度を高めることになり、この温度上昇分が空調用パスの伝熱管での吸熱量増大となり、空調用冷媒回路101の暖房能力の増大につながる。   As shown in FIG. 2, the heat transfer pipe 3a of the air conditioning path and the heat transfer pipe 3b of the freezing path of the heat exchanger 3 for the refrigerating and air conditioning system are all connected to the upstream side of the air flow generated by the blower 40. A part of the heat transfer tube 3b of the air conditioning path is arranged on the upstream side of the air flow, and the rest is positioned on the downstream side of the air flow, like the heat transfer tube 3b of the refrigeration path. During the heating operation, the air-conditioning refrigerant depressurized by the expansion valve 13 exchanges heat with the outdoor air sent by the blower 40 in the refrigeration air-conditioning heat exchanger 3 and is condensed and evaporated. However, the arrangement shown in FIG. As a result, part of the heat of condensation in the refrigeration path increases the inlet air temperature of the air conditioning path, and this temperature rise increases the amount of heat absorbed in the heat transfer pipe of the air conditioning path. This leads to an increase in the heating capacity of the refrigerant circuit 101.

本実施例によれば、空調用伝熱管3aと冷凍用伝熱管3bとを伝熱フイン3cを介して一体的に形成して冷凍空調熱交換器3を構成し、空調用伝熱管3aが凝縮器として冷房運転される際に、空調用冷媒回路101と冷凍用冷媒回路102の何れか高い方の凝縮圧力に基づいて、送風機40の回転数を制御するコントローラ200を備えるようにしているので、装置全体を小型化しつつ、空調用冷媒回路101及び冷凍用冷媒回路102に適切な運転を行なうことができる冷凍空調装置100が得られる。   According to this embodiment, the air-conditioning heat transfer tube 3a and the refrigeration heat transfer tube 3b are integrally formed via the heat transfer fin 3c to constitute the refrigeration air-conditioning heat exchanger 3, and the air-conditioning heat transfer tube 3a is condensed. When the cooling operation is performed as the air conditioner, the controller 200 is provided to control the rotational speed of the blower 40 based on the higher condensing pressure of the air conditioning refrigerant circuit 101 or the refrigeration refrigerant circuit 102. A refrigerating and air-conditioning apparatus 100 can be obtained that can appropriately operate the air-conditioning refrigerant circuit 101 and the refrigerating refrigerant circuit 102 while downsizing the entire apparatus.

また、コントローラ200は、空調用冷媒回路101に使用される冷媒と冷凍用冷媒回路102に使用される冷媒とが異なる種類である場合に、空調用伝熱管3aが凝縮器として冷房運転される際に空調用冷媒回路101と冷凍用冷媒回路102の何れか高い方の凝縮圧力を低い方の冷媒の物性に基づく補正換算を行い、その補正換算した凝縮圧力と他の冷媒回路の凝縮圧力とを比較して何れか高い方の凝縮圧力に基づいて送風機40の回転数を制御するようにしているので、空調用冷媒回路101と冷凍用冷媒回路102のそれぞれに適切な冷媒を使用して、空調用冷媒回路101及び冷凍用冷媒回路102に適切な運転を行なうことができる。   Further, when the refrigerant used for the air-conditioning refrigerant circuit 101 and the refrigerant used for the refrigeration refrigerant circuit 102 are of different types, the controller 200 performs the cooling operation of the air-conditioning heat transfer tube 3a as a condenser. Then, the higher condensing pressure of the air conditioning refrigerant circuit 101 and the refrigeration refrigerant circuit 102 is corrected based on the physical properties of the lower refrigerant, and the corrected condensing pressure and the condensing pressure of the other refrigerant circuit are calculated. Since the rotational speed of the blower 40 is controlled based on the higher condensing pressure in comparison, an appropriate refrigerant is used for each of the air conditioning refrigerant circuit 101 and the refrigeration refrigerant circuit 102 to perform air conditioning. The refrigerant circuit 101 and the refrigeration refrigerant circuit 102 can be appropriately operated.

また、コントローラ200は、空調用伝熱管3aが蒸発器として暖房運転される際に、空調用冷媒回路101の蒸発圧力に基づいて、送風機40の回転数を制御するようにしているので、空調暖房の蒸発温度の低下を抑えるように外気温度の低下に応じて風量を増加し、暖房負荷が冷凍負荷より大きくなる冬期において必要な空調暖房能力を確保できる。   In addition, the controller 200 controls the rotation speed of the blower 40 based on the evaporation pressure of the air conditioning refrigerant circuit 101 when the air conditioning heat transfer tube 3a is operated for heating as an evaporator. The air volume is increased in accordance with the decrease in the outside air temperature so as to suppress the decrease in the evaporation temperature, and the necessary air conditioning heating capacity can be ensured in the winter season when the heating load is larger than the refrigeration load.

また、空調用伝熱管3aが蒸発器として暖房運転される際に冷凍用冷媒回路102の凝縮圧力を調整する凝縮圧力調整装置を備えるようにしているので、暖房負荷が冷凍負荷より大きくなる冬期において必要な空調暖房能力を確保しながら、風量が冷凍側の必要風量より大きいために冷凍の凝縮圧力が低下して、圧力比が規定値より下がり過ぎて圧縮機内部の差圧給油に支障が出るのを回避することが可能で、空調側風量による影響を受けにくい安定した冷凍側の運転を確保できる。   In addition, since the air conditioning heat transfer tube 3a is provided with a condensing pressure adjusting device that adjusts the condensing pressure of the refrigeration refrigerant circuit 102 when the heating operation is performed as an evaporator, in the winter season when the heating load is larger than the refrigeration load. Refrigeration condensing pressure decreases because the air volume is larger than the required air volume on the refrigeration side while ensuring the necessary air conditioning and heating capacity, and the pressure ratio falls below the specified value, which hinders the differential pressure lubrication inside the compressor. Therefore, stable operation on the refrigeration side that is hardly affected by the air volume on the air conditioning side can be secured.

また、冷凍空調熱交換器3は、送風機40の駆動によって流入する空気の流れ方向に対して、伝熱管が複数の列を構成するように配置されており、冷凍用冷媒回路102に属する伝熱管3bが空気の流れに対して上流側となる列に位置するようにしているので、冷凍用冷媒回路102に属する伝熱管3bでの凝縮熱の一部が、空調用熱交換器部分の入口空気温度を高めることになり、空調の暖房運転時にはこの温度上昇分が蒸発器である空調用伝熱管3aへの吸熱量として作用し、暖房能力の向上につながる。また、通常運転時より冷凍空調用熱交換器3の着霜量が減少するため、空調暖房能力の低下を改善することが期待できる。   The refrigerating and air-conditioning heat exchanger 3 is arranged such that the heat transfer tubes form a plurality of rows with respect to the flow direction of the air that flows in by driving the blower 40, and belongs to the refrigerant circuit for refrigeration 102. Since 3b is positioned in a row on the upstream side with respect to the air flow, a part of the heat of condensation in the heat transfer pipe 3b belonging to the refrigerant circuit for refrigeration 102 is the inlet air of the heat exchanger portion for air conditioning. The temperature is increased, and during the heating operation of the air conditioning, this temperature rise acts as an amount of heat absorbed into the heat transfer pipe 3a for air conditioning that is an evaporator, leading to an improvement in heating capacity. Moreover, since the amount of frost formation of the heat exchanger 3 for refrigeration air conditioning decreases from the time of a normal driving | operation, it can anticipate improving the fall of an air-conditioning heating capability.

本発明の一実施例の冷凍空調装置の構成図である。It is a block diagram of the refrigeration air conditioner of one Example of this invention. 図1の冷凍空調熱交換器の伝熱管のパス配列の形態を表すモデル図である。It is a model figure showing the form of the path | pass arrangement | sequence of the heat exchanger tube of the refrigeration air-conditioning heat exchanger of FIG. 図1の冷凍空調装置の空調用冷媒と冷凍用冷媒が同一種類の場合における冷房運転時の動作フロー図である。It is an operation | movement flowchart at the time of air_conditionaing | cooling operation in the case where the refrigerant | coolant for an air conditioning of the refrigeration air conditioning apparatus of FIG. 図1の冷凍空調装置の空調用冷媒と冷凍用冷媒が異なる種類の場合における冷房運転時の動作フロー図である。It is an operation | movement flowchart at the time of air_conditionaing | cooling operation in the case where the refrigerant | coolant for air conditioning and the refrigerant | coolant for freezing of the refrigeration air conditioning apparatus of FIG. 1 differ.

符号の説明Explanation of symbols

1…空調用圧縮機、2…空調用圧縮機、3…冷凍空調用熱交換器、3a…空調用伝熱管、3b…冷凍用伝熱管、3c…伝熱フイン、4…受液器、5…オイルセパレータ、6…アキュムレータ、7…サイレンサー、8…空調用サブクーラ、9…逆止弁、10…逆止弁、11…油戻し回路、12…四方弁、13…室外膨張弁、14…阻止弁、15…阻止弁、16…空調用圧力センサ、17…空調用圧力センサ、21…冷凍用圧縮機、22…逆止弁、23…凝縮圧力調整弁(凝縮圧力調整装置)、24…受液器、25…冷凍用サブクーラ、26…アキュムレータ、27…阻止弁、28…ドライヤ、29…サイトグラス、30…阻止弁、31…液バイパス回路、32…冷凍用圧力センサ、33…冷凍用圧力センサ、40…送風機、51…室内空調用熱交換器、52…室内空調用膨張弁、53…室内空調用送風機、61…室内冷凍用熱交換器、62…室内冷凍用膨張弁、63…室内冷凍用送風機、100…冷凍空調装置、101…空調用冷媒回路、102…冷凍用冷媒回路、110…室外ユニット、120…空調用室内ユニット、130…冷凍用室内ユニット、140…建物、200…コントローラ(制御装置)。
DESCRIPTION OF SYMBOLS 1 ... Air-conditioning compressor, 2 ... Air-conditioning compressor, 3 ... Refrigeration air-conditioning heat exchanger, 3a ... Air-conditioning heat transfer tube, 3b ... Refrigeration heat-transfer tube, 3c ... Heat-transfer fin, 4 ... Liquid receiver, 5 ... oil separator, 6 ... accumulator, 7 ... silencer, 8 ... subcooler for air conditioning, 9 ... check valve, 10 ... check valve, 11 ... oil return circuit, 12 ... four-way valve, 13 ... outdoor expansion valve, 14 ... blocking Valves 15, blocking valves 16, pressure sensors for air conditioning, 17 pressure sensors for air conditioning, 21 compressors for refrigeration, 22 check valves, 23, condensing pressure adjusting valve (condensing pressure adjusting device), 24, receiving Liquid unit, 25 ... Subcooler for freezing, 26 ... Accumulator, 27 ... Stop valve, 28 ... Dryer, 29 ... Sight glass, 30 ... Stop valve, 31 ... Liquid bypass circuit, 32 ... Pressure sensor for freezing, 33 ... Pressure for freezing Sensor, 40 ... Blower, 51 ... Heat for indoor air conditioning Exchanger, 52 ... indoor air conditioning expansion valve, 53 ... indoor air conditioning blower, 61 ... indoor refrigeration heat exchanger, 62 ... indoor refrigeration expansion valve, 63 ... indoor refrigeration blower, 100 ... refrigeration air conditioner, 101 ... Refrigeration circuit for air conditioning, 102 ... Refrigeration refrigerant circuit, 110 ... Outdoor unit, 120 ... Indoor unit for air conditioning, 130 ... Indoor unit for refrigeration, 140 ... Building, 200 ... Controller (control device).

Claims (7)

冷房運転時に凝縮器となり暖房運転時に蒸発器となる空調用伝熱管を有する空調用冷媒回路で空調用冷凍サイクルを構成し、
凝縮器となる冷凍用伝熱管を有する冷凍用冷媒回路で冷凍用冷凍サイクルを構成し、
前記空調用伝熱管と前記冷凍用伝熱管とを伝熱フインを介して一体的に形成して冷凍空調熱交換器を構成し、
前記冷凍空調熱交換器に通風する送風機を備える冷凍空調装置において、
前記空調用伝熱管が凝縮器として冷房運転される際に、前記空調用冷媒回路と前記冷凍用冷媒回路の何れか高い方の凝縮圧力に基づいて、前記送風機の回転数を制御する制御装置を備え
前記制御装置は、前記空調用冷媒回路に使用される冷媒と前記冷凍用冷媒回路に使用される冷媒とが異なる種類である場合に、前記空調用伝熱管が凝縮器として冷房運転される際に前記空調用冷媒回路に使用される冷媒の凝縮圧力を同じ飽和温度に相当する前記冷凍用冷媒回路に使用される冷媒の物性値に基づいて空調用冷媒の凝縮圧力と対応できるように補正換算した凝縮圧力を求め、その補正換算した凝縮圧力と前記冷凍用冷媒回路の凝縮圧力とを仕較して何れか高い方の凝縮圧力に基づいて前記送風機の回転数を制御することを特徴とする冷凍空調装置。
An air-conditioning refrigerant circuit having an air-conditioning heat transfer tube that becomes a condenser during cooling operation and an evaporator during heating operation constitutes an air-conditioning refrigeration cycle,
Construct a refrigeration cycle for refrigeration with a refrigeration refrigerant circuit having a heat transfer tube for refrigeration that serves as a condenser,
The air conditioning heat transfer tube and the refrigeration heat transfer tube are integrally formed through a heat transfer fin to constitute a refrigeration air conditioning heat exchanger,
In a refrigeration air conditioner comprising a blower that ventilates the refrigeration air conditioning heat exchanger,
A controller that controls the rotational speed of the blower based on the higher condensing pressure of the air conditioning refrigerant circuit or the refrigeration refrigerant circuit when the air conditioning heat transfer tube is cooled as a condenser; Prepared ,
When the refrigerant used for the air conditioning refrigerant circuit and the refrigerant used for the refrigeration refrigerant circuit are of different types, the control device is configured to perform cooling operation of the air conditioning heat transfer tube as a condenser. The refrigerant condensing pressure used in the air conditioning refrigerant circuit was corrected and converted to correspond to the air conditioning refrigerant condensing pressure based on the physical property value of the refrigerant used in the refrigeration refrigerant circuit corresponding to the same saturation temperature. The refrigeration is characterized in that a condensation pressure is obtained, the corrected condensation pressure is compared with the condensation pressure of the refrigeration refrigerant circuit, and the rotational speed of the blower is controlled based on the higher condensation pressure. Air conditioner.
冷房運転時に凝縮器となり暖房運転時に蒸発器となる空調用伝熱管を有する空調用冷媒回路で空調用冷凍サイクルを構成し、
凝縮器となる冷凍用伝熱管を有する冷凍用冷媒回路で冷凍用冷凍サイクルを構成し、
前記空調用伝熱管と前記冷凍用伝熱管とを伝熱フインを介して一体的に形成して冷凍空調熱交換器を構成し、
前記冷凍空調熱交換器に通風する送風機を備える冷凍空調装置において、
前記空調用伝熱管が凝縮器として冷房運転される際に、前記空調用冷媒回路と前記冷凍用冷媒回路の何れか高い方の凝縮圧力に基づいて、前記送風機の回転数を制御する制御装置を備え、
前記制御装置は、前記空調用伝熱管が蒸発器として暖房運転される際に、前記空調用冷媒回路の蒸発圧力に基づいて、前記送風機の回転数を制御することを特徴とする冷凍空調装置。
An air-conditioning refrigerant circuit having an air-conditioning heat transfer tube that becomes a condenser during cooling operation and an evaporator during heating operation constitutes an air-conditioning refrigeration cycle,
Construct a refrigeration cycle for refrigeration with a refrigeration refrigerant circuit having a heat transfer tube for refrigeration that serves as a condenser,
The air conditioning heat transfer tube and the refrigeration heat transfer tube are integrally formed through a heat transfer fin to constitute a refrigeration air conditioning heat exchanger,
In a refrigeration air conditioner comprising a blower that ventilates the refrigeration air conditioning heat exchanger,
A controller that controls the rotational speed of the blower based on the higher condensing pressure of the air conditioning refrigerant circuit or the refrigeration refrigerant circuit when the air conditioning heat transfer tube is cooled as a condenser; Prepared,
The said control apparatus controls the rotation speed of the said air blower based on the evaporation pressure of the said refrigerant circuit for an air conditioning, when the said heat exchanger tube for air conditioning is heating-operated as an evaporator, The refrigerating air conditioner characterized by the above-mentioned.
請求項に記載された冷凍空調装置において、前記空調用伝熱管が蒸発器として暖房運転される際に前記冷凍用冷媒回路の凝縮圧力を調整する凝縮圧力調整装置を備えることを特徴とする冷凍空調装置。 The refrigerating and air-conditioning apparatus according to claim 2 , further comprising a condensing pressure adjusting device that adjusts a condensing pressure of the refrigerating refrigerant circuit when the air-conditioning heat transfer tube is heated as an evaporator. Air conditioner. 請求項3に記載された冷凍空調装置において、前記凝縮圧力調整装置は凝縮圧力調整弁で構成され、前記凝縮圧力調整弁は、前記冷凍用冷媒回路に設けられ、前記空調用伝熱管が蒸発器として暖房運転される際に前記冷凍用冷媒回路の凝縮圧力が所定圧力以上となるように絞り動作することを特徴とする冷凍空調装置。 4. The refrigeration air conditioner according to claim 3, wherein the condensing pressure adjusting device comprises a condensing pressure adjusting valve, the condensing pressure adjusting valve is provided in the refrigeration refrigerant circuit, and the air conditioning heat transfer tube is an evaporator. A refrigerating and air-conditioning apparatus that performs a throttling operation so that the condensing pressure of the refrigerant circuit for refrigeration becomes equal to or higher than a predetermined pressure when heating operation is performed . 請求項2から4の何れかに記載された冷凍空調装置において、前記冷凍空調熱交換器は、前記送風機の駆動によって流入する空気の流れ方向に対して、伝熱管が複数の列を構成するように配置されており、冷凍用冷媒回路に属する伝熱管が空気の流れに対して上流側となる列に位置するように構成されていることを特徹とする冷凍空調装置。 The refrigerating and air conditioning apparatus according to any one of claims 2 to 4 , wherein the refrigerating and air conditioning heat exchanger has a plurality of rows of heat transfer tubes with respect to a flow direction of air flowing in by driving of the blower. The refrigerating and air-conditioning apparatus is characterized by being arranged so that the heat transfer tubes belonging to the refrigerant circuit for refrigeration are positioned in a row upstream of the air flow . 冷房運転時に凝縮器となり暖房運転時に蒸発器となる空調用伝熱管を有する空調用冷媒回路で空調用冷凍サイクルを構成し、
凝縮器となる冷凍用伝熱管を有する冷凍用冷媒回路で冷凍用冷凍サイクルを構成し、
前記空調用伝熱管と前記冷凍用伝熱管とを伝熱フインを介して一体的に形成して冷凍空調熱交換器を構成し、
前記冷凍空調熱交換器に通風する送風機を備える冷凍空調装置において、
前記空調用伝熱管が蒸発器として暖房運転される際に、前記空調用冷媒回路の蒸発圧力に基づいて、前記送風機の回転数を制御する制御装置を備え、
前記空調用伝熱管が蒸発器として暖房運転される際に前記冷凍用冷媒回路の凝縮圧力を調整する凝縮圧力調整装置を備える
ことを特徴とする冷凍空調装置。
An air conditioning refrigerant circuit having an air conditioning heat transfer tube that becomes a condenser during cooling operation and an evaporator during heating operation constitutes an air conditioning refrigeration cycle,
Constructing a refrigeration cycle for refrigeration with a refrigeration refrigerant circuit having a refrigeration heat transfer tube as a condenser,
The air conditioning heat transfer tube and the refrigeration heat transfer tube are integrally formed through a heat transfer fin to constitute a refrigeration air conditioning heat exchanger,
In a refrigeration air conditioner comprising a blower that ventilates the refrigeration air conditioning heat exchanger,
When the air-conditioning heat transfer tube is heated as an evaporator, a control device is provided that controls the rotational speed of the blower based on the evaporation pressure of the air-conditioning refrigerant circuit,
A refrigerating and air-conditioning apparatus comprising: a condensing pressure adjusting device that adjusts a condensing pressure of the refrigerating refrigerant circuit when the air-conditioning heat transfer tube is heated as an evaporator .
請求項6に記載された冷凍空調装置において、前記冷凍空調熱交換器は、前記送風機の駆動によって流入する空気の流れ方向に対して、伝熱管が複数の列を構成するように配置されており、冷凍用冷媒回路に属する伝熱管が空気の流れに対して上流側となる列に位置するように構成されていることを特徴とする冷凍空調装置。 The refrigerating and air conditioning apparatus according to claim 6, wherein the refrigerating and air conditioning heat exchanger is arranged such that heat transfer tubes form a plurality of rows with respect to a flow direction of air flowing in by driving of the blower. A refrigerating and air-conditioning apparatus, wherein the heat transfer tubes belonging to the refrigerant circuit for refrigeration are arranged in a row upstream of the air flow .
JP2004219631A 2004-07-28 2004-07-28 Refrigeration air conditioner Expired - Fee Related JP4420393B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004219631A JP4420393B2 (en) 2004-07-28 2004-07-28 Refrigeration air conditioner
CNB200510087926XA CN100523657C (en) 2004-07-28 2005-07-27 Freezing air-conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004219631A JP4420393B2 (en) 2004-07-28 2004-07-28 Refrigeration air conditioner

Publications (2)

Publication Number Publication Date
JP2006038352A JP2006038352A (en) 2006-02-09
JP4420393B2 true JP4420393B2 (en) 2010-02-24

Family

ID=35903523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004219631A Expired - Fee Related JP4420393B2 (en) 2004-07-28 2004-07-28 Refrigeration air conditioner

Country Status (2)

Country Link
JP (1) JP4420393B2 (en)
CN (1) CN100523657C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4898546B2 (en) * 2007-05-10 2012-03-14 日立アプライアンス株式会社 Refrigeration equipment
CN105747590A (en) * 2016-04-20 2016-07-13 青岛有屋家居集成有限公司 Split cupboard connection system

Also Published As

Publication number Publication date
CN100523657C (en) 2009-08-05
CN1734215A (en) 2006-02-15
JP2006038352A (en) 2006-02-09

Similar Documents

Publication Publication Date Title
US7984621B2 (en) Air conditioning system for communication equipment and controlling method thereof
US20140083122A1 (en) Integral air conditioning system for heating and cooling
JP3925545B2 (en) Refrigeration equipment
US20110154834A1 (en) Air conditioner and method for controlling the same
US8667810B2 (en) Air conditioning system for communication equipment
JP4779791B2 (en) Air conditioner
CN112437856B (en) Air conditioner
CN105899884A (en) Heat source side unit and air conditioner
KR102082881B1 (en) Multi-air conditioner for heating and cooling operations at the same time
WO2021014520A1 (en) Air-conditioning device
JP5523296B2 (en) Air conditioner
US7578137B2 (en) Air-conditioning system with multiple indoor and outdoor units and control system therefor
JP2007232265A (en) Refrigeration equipment
JP4258363B2 (en) Refrigeration air conditioner, operation method of refrigeration air conditioner
JP2013002749A (en) Air conditioning device
JP2008175430A (en) Air conditioner
JP2009243842A (en) Operation method of multiple-type air conditioner and outdoor unit
JP2002228187A (en) Air-cooled heat pump type outside air treatment air conditioner
JP4418936B2 (en) Air conditioner
JP7438342B2 (en) air conditioner
JP4179783B2 (en) Air conditioner
JP5404231B2 (en) Air conditioner
JP2000205672A (en) Refrigeration equipment
JP4420393B2 (en) Refrigeration air conditioner
JP2018071864A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070124

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070124

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4420393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees