[go: up one dir, main page]

JP4423412B2 - Alkaline secondary battery negative electrode and alkaline secondary battery - Google Patents

Alkaline secondary battery negative electrode and alkaline secondary battery Download PDF

Info

Publication number
JP4423412B2
JP4423412B2 JP12286998A JP12286998A JP4423412B2 JP 4423412 B2 JP4423412 B2 JP 4423412B2 JP 12286998 A JP12286998 A JP 12286998A JP 12286998 A JP12286998 A JP 12286998A JP 4423412 B2 JP4423412 B2 JP 4423412B2
Authority
JP
Japan
Prior art keywords
negative electrode
powder
secondary battery
alkaline secondary
tife
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12286998A
Other languages
Japanese (ja)
Other versions
JPH11307088A (en
Inventor
哲男 境
博之 竹下
斎 上原
郁也 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP12286998A priority Critical patent/JP4423412B2/en
Publication of JPH11307088A publication Critical patent/JPH11307088A/en
Application granted granted Critical
Publication of JP4423412B2 publication Critical patent/JP4423412B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はアルカリ二次電池負極、特に負極材料として水素吸蔵合金を用いた負極およびアルカリ二次電池に関する。
【0002】
【従来の技術】
従来、ノート型パソコン、携帯電話等における小型アルカリ二次電池として、また電気自動車における大型アルカリ二次電池として、ニッケル−水素化物電池が知られている。
【0003】
【発明が解決しようとする課題】
しかしながら前記ニッケル−水素化物電池においては、その負極材料としてLaNi5 系水素吸蔵合金を使用しているので、その合金が高価であることから電極コスト、延いては電池コストが嵩む、という問題があった。
【0004】
【課題を解決するための手段】
本発明は、負極材料として比較的安価な水素吸蔵合金を使用することにより、低コスト化を実現した前記アルカリ二次電池負極を提供することを目的とする。
【0005】
前記目的を達成するため本発明によれば、TiFe系水素吸蔵合金粉末および導電性粉末よりなる混合粉末と、その混合粉末を保持する集電体とを有し、前記TiFe系水素吸蔵合金粉末は、化学式TiFe1-x Pdx (ただし、xは原子数比)で表わされると共にその原子数比xが0.05≦x≦0.3であり、また前記導電性粉末はNi粉末、Cu粉末およびC粉末の少なくとも一種であるアルカリ二次電池負極が提供される。
【0006】
TiFe系水素吸蔵合金は比較的安価であるが、アルカリ電解液中では電気化学的に不活性であって電極機能を発現しない。
【0007】
ところが、前記のようにTiFe系水素吸蔵合金におけるFeの一部を微量のPdにより置換すると、その合金はアルカリ電解液中で電気化学的に活性となって電極機能を発現する。
【0008】
したがって、このようなTiFe系水素吸蔵合金を負極材料として使用することにより、低コスト化を実現されたアルカリ二次電池負極を提供することができる。
【0009】
ただし、前記原子数比xがx<0.05ではPd添加の意義が無く、一方、x>0.3では水素吸蔵能を持たないTiPd金属間化合物の特性が支配的となるので水素吸蔵量が激減する。原子数比xは、好ましくは0.1≦x≦0.2である。
【0010】
Pdを含有するTiFe系水素吸蔵合金粉末としては、Feの一部を、合金元素AEであるV、Cr、Mn、Co、Ni、Cu、Nb、Mo、AlおよびSiの少なくとも一種により置換したものも使用される。この場合、化学式TiFe1-(x+y) Pdx AEy (ただし、x,yは原子数比)において、原子数比xは前記同様に0.05≦x≦0.3、好ましくは0.1≦x≦0.2であり、また原子数比yは0.1≦y≦0.2である。y<0.1ではAE添加の意義が無く、一方、y>0.2では、TiFe系合金成分の格子定数が水素吸蔵に適した範囲から外れると共に水素吸蔵能を持たない第2相の出現により水素吸蔵量が激減する。
【0011】
さらにPdを含有するTiFe系水素吸蔵合金粉末としては、その表面にNiメッキ層およびCuメッキ層の少なくとも一方を有するものも使用される。この場合には、前記導電性粉末は不要である。
【0012】
本発明は、大放電容量を持ち、また比較的安価であり、その上、優れた耐久性を有するアルカリ二次電池を提供することを目的とする。
【0013】
前記目的を達成するため本発明によれば、負極と正極とを備え、その負極は、TiFe系水素吸蔵合金粉末と、その粉末を保持する集電体とを有し、前記TiFe系水素吸蔵合金粉末は、化学式TiFe1-x Pdx (ただし、xは原子数比)で表わされると共にその原子数比xが0.05≦x≦0.3であり、且つ表面にNiメッキ層およびCuメッキ層の少なくとも一方を有し、前記正極はNi極、Mn極および空気極の一種であるアルカリ二次電池が提供される。
【0014】
前記のようなTiFe系水素吸蔵合金を負極材料として使用することにより所期の目的を達成することができる。原子数比xの限定理由は前記と同じである。
【0015】
【発明の実施の形態】
それぞれの純度が99.9%であるTi、電解Fe、Pd、Niおよび電解Mnを用意し、それらを、所定の組成を有する水素吸蔵合金が得られるように秤量した。次いで、各秤量物をアルゴンアーク溶解炉を用いて溶解し、その後鋳込み作業を行って、各種組成のボタン状水素吸蔵合金を得た。各ボタン状水素吸蔵合金に、真空中、1000℃、8時間の条件で熱処理を施し、次いで各ボタン状水素吸蔵合金をタングステンカーバイドの内張りを有する乳鉢を用いて粉砕し、145メッシュ以下の各種水素吸蔵合金粉末を得た。
【0016】
表1は、水素吸蔵合金粉末の例1〜12に関する組成を原子数比と原子%で表わしたものである。
【0017】
【表1】

Figure 0004423412
【0018】
A.放電容量について
(1)負極(金属水素化物電極)の製造
▲1▼ 0.6gの例1と1.8gのCu粉末とを5分間以上混合して、混合粉末(混合比1:3)を得た。
【0019】
▲2▼ 混合粉末を1g秤量し、その秤量物を用いて、加圧力10t、加圧時間1分間の条件で圧縮成形を行い、図1に示すように、直径13mmのペレット1を成形した。
【0020】
▲3▼ 図2,3に示すように、集電体2としての150メッシュのNi網を二つ折りにして、両折れ片間にペレット1を挟み、次いで、ペレット1周囲の両折れ片間をスポット溶接して負極3の例1を得た。図中、4はスポット溶接によるナゲットを示す。
【0021】
例2〜12を用い、前記▲1▼〜▲3▼の作業を行って、負極3の例2〜12を得た。
【0022】
(2)図4に示すように、前記負極3、一対の焼結式Ni正極[Ni(OH)2 /NiOOH]5およびHg−HgO参照極6をパイレックスガラス槽Cに組付け、またアルカリ電解液7として6M KOH水溶液を用いて開放型試験セル8を製作した。図中、9はNi端子、10は端子保護用ガラス管、11は水を貯留したガス抜き器である。
【0023】
(3)各開放型試験セル8について、合金1g当り100mAの電流で5時間充電を行い、次いで合金1g当り40mAの電流で、放電下限電圧−0.65Vまで放電試験を行い、その後各負極3の性能を評価した。
【0024】
表2は放電試験結果を示す。
【0025】
【表2】
Figure 0004423412
【0026】
図5は表2に基づくもので、負極材料である合金を種別に分けたときの開放型試験セル8の放電曲線を示す。図5から明らかなように、負極3の例9におけるTiFe系水素吸蔵合金はアルカリ電解液7中では電気化学的に不活性であって電極機能を発現しない。また電極3の例10〜12のごとく、Feの一部をMnまたはNiで置換した場合も略同様である。
【0027】
ところが、負極3の例4のごとく、TiFe系水素吸蔵合金におけるFeの一部を微量のPdにより置換すると、その合金はアルカリ電解液7中で電気化学的に活性となって電極機能を発現する。この効果は、負極3の例7,8のごとく、Feの一部を微量のPdおよびMnにより置換すると一層増進される。
【0028】
図6は表2に基づくもので、TiFePd系合金におけるPd含有量を変化させたときの開放型試験セル8の放電曲線を示す。図6から明らかなように、Pd含有量を、原子数比xで0.05≦x≦0.3に設定すると、負極3の例2〜6のごとく、電極機能の発現が見られる。ただし、例2においては反応速度の低下に伴い電圧降下が生じている。Pd含有量は、好ましくは、負極3の例3〜5のごとく0.1≦x≦0.2である。
【0029】
B.耐久性について
(1)負極(金属水素化物電極)の製造
▲1▼ 表1の水素吸蔵合金粉末の例5に無電解Cuメッキを施して、その表面にCuメッキ層を形成した。
【0030】
▲2▼ Cuメッキ層を有する例5と、0.05wt%のPTFE粉末(バインダ)とを十分に混練し、次いでその混練物を集電体としての150メッシュのNi網で包み、その後、その包みにプレス加工を施して板状負極3の例1を得た。
【0031】
Cuメッキ層を持たない水素吸蔵合金粉末の例5、20wt%のCu粉末および0.05wt%のPTFE粉末を用い、前記▲2▼の作業を行って負極3の例2を得た。
【0032】
(2)図7,8に示すように、前記負極3と、その負極3の両側に存する一対のセパレータ12と、それらセパレータ12の両側に存する一対の焼結式Ni正極[Ni(OH)2 /NiOOH]5と、それらNi正極5の両側に存する一対のPTFE板13とを重ね合せて、その重ね合せ物を一対のU字形クリップ14により挟み付けた。そして、重ね合せ物をビニル袋15に入れ、またそのビニル袋15にアルカリ電解液7として6M KOH水溶液を注入して開放型アルカリ二次電池16を製作した。前記同様に負極3および両Ni正極5にはNi端子9が取付けられている。
【0033】
(3)各開放型電池16について、100mA/g合金の電流で2.4時間の充電、充電休止時間30分間および20mA/g合金の電流で、放電下限電圧−0.80Vまで放電、を1サイクルとしてこれを10サイクル繰返す耐久試験を行い、各負極3の性能を評価した。
【0034】
表3は耐久試験結果を示す。
【0035】
【表3】
Figure 0004423412
【0036】
図9は、表3に基づいて、サイクル数と放電容量との関係をグラフ化したものである。図9から明らかなように、負極3の例1は例2に比較して優れた耐久性を有することが判る。
【0037】
これは次のような理由によるものと考えられる。即ち、TiFe系水素吸蔵合金は、充電過程、つまり水素を吸蔵する過程で、その体積が20%前後膨脹し、一方、放電過程、つまり水素を放出する過程ではもとの体積まで収縮する。
【0038】
負極3の例2においては、前記膨脹によって、水素吸蔵合金を囲むCu導電体が押し広げられ、一方、前記収縮によって、Cu導電体は押し広げられた状態に放置される。その結果、水素吸蔵合金粉末とCu導電体との間に微小間隙が生じるため、両者間の導電性が損なわれることになる。
【0039】
一方、負極3の例1においては、水素吸蔵合金粉末の表面にCuメッキ層が存在し、そのCuメッキ層が水素吸蔵合金粉末の前記膨脹および収縮に追従すると共に相隣る両Cuメッキ層相互間の電気的接続が常時維持される。
【0040】
なお、正極としては、前記Ni極の外にMn極および空気極の一種を使用することができる。
【0041】
【発明の効果】
本発明によれば、負極材料として、前記のように特定された比較的安価な水素吸蔵合金を使用することにより、低コスト化を実現したアルカリ二次電池負極を提供することができる。
【0042】
本発明によれば、前記のように構成することによって、大放電容量を持ち、また比較的安価であり、その上、優れた耐久性を有するアルカリ二次電池を提供することができる。
【図面の簡単な説明】
【図1】ペレットの斜視図である。
【図2】負極の斜視図である。
【図3】図2の3−3線断面図である。
【図4】開放型試験セルの断面図である。
【図5】放電容量と電圧との関係の一例を示すグラフである。
【図6】放電容量と電圧との関係の他例を示すグラフである。
【図7】開放型アルカリ二次電池の概略図である。
【図8】図7の8−8線断面図に相当する分解図である。
【図9】サイクル数と放電容量との関係を示すグラフである。
【符号の説明】
1………混合粉末よりなるペレット
2………集電体
3………負極
5………Ni正極
6………Hg−HgO参照極
7………アルカリ電解液
8………開放型試験セル
9………Ni端子
10……端子保護用ガラス管
11……水を貯留したガス抜き器
C………パイレックスガラス槽[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alkaline secondary battery negative electrode, and particularly to a negative electrode and an alkaline secondary battery using a hydrogen storage alloy as a negative electrode material.
[0002]
[Prior art]
Conventionally, nickel-hydride batteries are known as small alkaline secondary batteries in notebook computers, mobile phones and the like, and large alkaline secondary batteries in electric vehicles.
[0003]
[Problems to be solved by the invention]
However, since the nickel-hydride battery uses a LaNi 5 type hydrogen storage alloy as the negative electrode material, the alloy is expensive, so that there is a problem that the electrode cost and the battery cost increase accordingly. It was.
[0004]
[Means for Solving the Problems]
An object of the present invention is to provide the alkaline secondary battery negative electrode which realizes cost reduction by using a relatively inexpensive hydrogen storage alloy as a negative electrode material.
[0005]
In order to achieve the above object, according to the present invention, the TiFe-based hydrogen storage alloy powder includes a mixed powder composed of a TiFe-based hydrogen storage alloy powder and a conductive powder, and a current collector that holds the mixed powder. , formula TiFe 1-x Pd x (here, x is an atomic ratio) and x ≦ 0.3 the atomic ratio x is 0.05 ≦ with represented by and said conductive powder is Ni powder, Cu powder And an alkaline secondary battery negative electrode which is at least one of C powder.
[0006]
A TiFe-based hydrogen storage alloy is relatively inexpensive, but is electrochemically inactive in an alkaline electrolyte and does not exhibit an electrode function.
[0007]
However, as described above, when a part of Fe in the TiFe-based hydrogen storage alloy is replaced with a small amount of Pd, the alloy becomes electrochemically active in an alkaline electrolyte and exhibits an electrode function.
[0008]
Therefore, by using such a TiFe-based hydrogen storage alloy as a negative electrode material, it is possible to provide an alkaline secondary battery negative electrode that realizes cost reduction.
[0009]
However, when the atomic ratio x is x <0.05, there is no significance of adding Pd. On the other hand, when x> 0.3, the characteristics of the TiPd intermetallic compound having no hydrogen storage ability are dominant, so the hydrogen storage amount Is drastically reduced. The atomic ratio x is preferably 0.1 ≦ x ≦ 0.2.
[0010]
TiFe-based hydrogen storage alloy powder containing Pd is obtained by replacing part of Fe with at least one of V, Cr, Mn, Co, Ni, Cu, Nb, Mo, Al, and Si which are alloy elements AE Also used. In this case, in the chemical formula TiFe 1- (x + y) Pd x AE y (where x and y are atomic ratios), the atomic ratio x is 0.05 ≦ x ≦ 0.3, preferably 0 as described above. 0.1 ≦ x ≦ 0.2, and the atomic ratio y is 0.1 ≦ y ≦ 0.2. When y <0.1, the addition of AE is not significant. On the other hand, when y> 0.2, the lattice constant of the TiFe-based alloy component deviates from the range suitable for hydrogen storage, and the appearance of a second phase having no hydrogen storage ability appears. This drastically reduces the amount of hydrogen stored.
[0011]
Further, as the TiFe-based hydrogen storage alloy powder containing Pd, a powder having at least one of a Ni plating layer and a Cu plating layer on its surface is also used. In this case, the conductive powder is not necessary.
[0012]
An object of the present invention is to provide an alkaline secondary battery which has a large discharge capacity, is relatively inexpensive, and has excellent durability.
[0013]
In order to achieve the above object, according to the present invention, a negative electrode and a positive electrode are provided, and the negative electrode has a TiFe-based hydrogen storage alloy powder and a current collector that holds the powder, and the TiFe-based hydrogen storage alloy. The powder is represented by the chemical formula TiFe 1-x Pd x (where x is an atomic ratio), and the atomic ratio x is 0.05 ≦ x ≦ 0.3, and the surface is plated with Ni and Cu. There is provided an alkaline secondary battery having at least one of layers, wherein the positive electrode is a kind of Ni electrode, Mn electrode and air electrode.
[0014]
The intended purpose can be achieved by using the TiFe-based hydrogen storage alloy as described above as a negative electrode material. The reason for limiting the atomic ratio x is the same as described above.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Ti, electrolytic Fe, Pd, Ni, and electrolytic Mn each having a purity of 99.9% were prepared and weighed so that a hydrogen storage alloy having a predetermined composition was obtained. Next, each weighed material was melted using an argon arc melting furnace, and then a casting operation was performed to obtain button-shaped hydrogen storage alloys having various compositions. Each button-shaped hydrogen storage alloy was heat-treated at 1000 ° C. for 8 hours in a vacuum, and then each button-shaped hydrogen storage alloy was pulverized using a mortar having a tungsten carbide lining, and various hydrogens of 145 mesh or less. An occlusion alloy powder was obtained.
[0016]
Table 1 shows the compositions of Examples 1 to 12 of the hydrogen storage alloy powder in terms of atomic ratio and atomic%.
[0017]
[Table 1]
Figure 0004423412
[0018]
A. Discharge capacity (1) Production of negative electrode (metal hydride electrode) (1) 0.6 g of Example 1 and 1.8 g of Cu powder were mixed for 5 minutes or more to obtain a mixed powder (mixing ratio 1: 3). Obtained.
[0019]
{Circle around (2)} 1 g of the mixed powder was weighed, and using the weighed product, compression molding was carried out under the conditions of a pressing force of 10 t and a pressurization time of 1 minute. As shown in FIG.
[0020]
(3) As shown in FIGS. 2 and 3, the Ni mesh of 150 mesh as the current collector 2 is folded in half, the pellet 1 is sandwiched between the two folded pieces, and then between the two folded pieces around the pellet 1. Example 1 of the negative electrode 3 was obtained by spot welding. In the figure, 4 indicates a nugget by spot welding.
[0021]
Using Examples 2 to 12, the above operations (1) to (3) were performed, and Examples 2 to 12 of the negative electrode 3 were obtained.
[0022]
(2) As shown in FIG. 4, the negative electrode 3, a pair of sintered Ni positive electrodes [Ni (OH) 2 / NiOOH] 5 and a Hg—HgO reference electrode 6 are assembled in a Pyrex glass tank C, and alkaline electrolysis An open type test cell 8 was manufactured using a 6 M KOH aqueous solution as the liquid 7. In the figure, 9 is a Ni terminal, 10 is a glass tube for terminal protection, and 11 is a degasser storing water.
[0023]
(3) Each open-type test cell 8 was charged with a current of 100 mA per gram of alloy for 5 hours, then subjected to a discharge test at a current of 40 mA per gram of alloy to a discharge lower limit voltage of −0.65 V, and thereafter each negative electrode 3 The performance of was evaluated.
[0024]
Table 2 shows the discharge test results.
[0025]
[Table 2]
Figure 0004423412
[0026]
FIG. 5 is based on Table 2 and shows the discharge curve of the open type test cell 8 when the alloys as the negative electrode material are classified. As is clear from FIG. 5, the TiFe-based hydrogen storage alloy in Example 9 of the negative electrode 3 is electrochemically inactive in the alkaline electrolyte 7 and does not exhibit an electrode function. Further, as in Examples 10 to 12 of the electrode 3, the same is true when a part of Fe is replaced with Mn or Ni.
[0027]
However, as in Example 4 of the negative electrode 3, when a part of Fe in the TiFe-based hydrogen storage alloy is replaced with a small amount of Pd, the alloy becomes electrochemically active in the alkaline electrolyte 7 and exhibits an electrode function. . This effect is further enhanced by replacing a part of Fe with a small amount of Pd and Mn as in Examples 7 and 8 of the negative electrode 3.
[0028]
FIG. 6 is based on Table 2 and shows a discharge curve of the open type test cell 8 when the Pd content in the TiFePd alloy is changed. As apparent from FIG. 6, when the Pd content is set to 0.05 ≦ x ≦ 0.3 in terms of the atomic ratio x, the electrode function is exhibited as in Examples 2 to 6 of the negative electrode 3. However, in Example 2, a voltage drop occurs with a decrease in the reaction rate. The Pd content is preferably 0.1 ≦ x ≦ 0.2 as in Examples 3 to 5 of the negative electrode 3.
[0029]
B. Durability (1) Production of negative electrode (metal hydride electrode) (1) Electroless Cu plating was applied to Example 5 of the hydrogen storage alloy powder in Table 1 to form a Cu plating layer on the surface thereof.
[0030]
(2) Example 5 having a Cu plating layer and 0.05 wt% PTFE powder (binder) were sufficiently kneaded, and then the kneaded product was wrapped in a 150 mesh Ni net as a current collector, and then The package was pressed to obtain Example 1 of the plate-shaped negative electrode 3.
[0031]
Example 5 of the hydrogen storage alloy powder having no Cu plating layer, Example 2 of the negative electrode 3 was obtained by performing the above operation (2) using 20 wt% Cu powder and 0.05 wt% PTFE powder.
[0032]
(2) As shown in FIGS. 7 and 8, the negative electrode 3, a pair of separators 12 on both sides of the negative electrode 3, and a pair of sintered Ni positive electrodes [Ni (OH) 2 on both sides of the separator 12. / NiOOH] 5 and a pair of PTFE plates 13 existing on both sides of the Ni positive electrode 5 were overlapped, and the overlapped product was sandwiched between a pair of U-shaped clips 14. Then, the superposed product was put in a vinyl bag 15 and a 6M KOH aqueous solution was injected into the vinyl bag 15 as the alkaline electrolyte 7 to produce an open-type alkaline secondary battery 16. Similarly to the above, Ni terminals 9 are attached to the negative electrode 3 and both Ni positive electrodes 5.
[0033]
(3) For each open-type battery 16, charging was performed at a current of 100 mA / g alloy for 2.4 hours, a charging suspension time of 30 minutes, and a discharge current of 20 mA / g alloy to a discharge lower limit voltage of −0.80 V. The durability test which repeats this 10 cycles as a cycle was done, and the performance of each negative electrode 3 was evaluated.
[0034]
Table 3 shows the endurance test results.
[0035]
[Table 3]
Figure 0004423412
[0036]
FIG. 9 is a graph showing the relationship between the number of cycles and the discharge capacity based on Table 3. As is clear from FIG. 9, it can be seen that Example 1 of the negative electrode 3 has superior durability compared to Example 2.
[0037]
This is thought to be due to the following reasons. That is, the TiFe-based hydrogen storage alloy expands by about 20% in the charging process, that is, the process of storing hydrogen, and contracts to the original volume in the discharging process, that is, in the process of releasing hydrogen.
[0038]
In Example 2 of the negative electrode 3, the Cu conductor surrounding the hydrogen storage alloy is expanded by the expansion, while the Cu conductor is left in an expanded state by the contraction. As a result, since a minute gap is generated between the hydrogen storage alloy powder and the Cu conductor, the conductivity between the two is impaired.
[0039]
On the other hand, in Example 1 of the negative electrode 3, there is a Cu plating layer on the surface of the hydrogen storage alloy powder, and the Cu plating layer follows the expansion and contraction of the hydrogen storage alloy powder, and the adjacent Cu plating layers are mutually adjacent. The electrical connection between them is always maintained.
[0040]
In addition, as a positive electrode, in addition to the Ni electrode, one of a Mn electrode and an air electrode can be used.
[0041]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the alkaline secondary battery negative electrode which implement | achieved cost reduction can be provided by using the comparatively cheap hydrogen storage alloy specified as mentioned above as negative electrode material.
[0042]
According to the present invention, it is possible to provide an alkaline secondary battery that has a large discharge capacity, is relatively inexpensive, and has excellent durability.
[Brief description of the drawings]
FIG. 1 is a perspective view of a pellet.
FIG. 2 is a perspective view of a negative electrode.
3 is a cross-sectional view taken along line 3-3 of FIG.
FIG. 4 is a cross-sectional view of an open type test cell.
FIG. 5 is a graph showing an example of the relationship between discharge capacity and voltage.
FIG. 6 is a graph showing another example of the relationship between discharge capacity and voltage.
FIG. 7 is a schematic view of an open-type alkaline secondary battery.
8 is an exploded view corresponding to a cross-sectional view taken along line 8-8 of FIG.
FIG. 9 is a graph showing the relationship between the number of cycles and the discharge capacity.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ......... Pellets which consist of mixed powders ......... Current collector 3 ......... Negative electrode 5 ......... Ni positive electrode 6 ...... Hg-HgO reference electrode 7 ......... Alkaline electrolyte 8 ......... Open type test Cell 9 ... Ni terminal 10 ... Glass tube 11 for terminal protection ... Degasser C that stores water ... Pyrex glass tank

Claims (4)

TiFe系水素吸蔵合金粉末および導電性粉末よりなる混合粉末と、その混合粉末を保持する集電体とを有し、前記TiFe系水素吸蔵合金粉末は、化学式TiFe1−xPd(ただし、xは原子数比)で表わされると共にその原子数比xが0.05≦x≦0.3であり、また前記導電性粉末はNi粉末、Cu粉末およびC粉末の少なくとも一種であることを特徴とするアルカリ二次電池負極。Has a TiFe system hydrogen absorbing alloy powder and mixed powder of conductive powder, and a collector for holding the mixed powder, the TiFe system hydrogen absorbing alloy powder has the formula TiFe 1-x Pd x (here, x The atomic number ratio x is 0.05 ≦ x ≦ 0.3, and the conductive powder is at least one of Ni powder, Cu powder, and C powder. An alkaline secondary battery negative electrode. 前記原子数比xが0.1≦x≦0.2である、請求項1記載のアルカリ二次電池負極。The alkaline secondary battery negative electrode according to claim 1, wherein the atomic ratio x is 0.1 ≦ x ≦ 0.2. TiFe系水素吸蔵合金粉末と、その粉末を保持する集電体とを有し、前記TiFe系水素吸蔵合金粉末は、化学式TiFe1−xPd(ただし、xは原子数比)で表わされると共にその原子数比xが0.05≦x≦0.3であり、且つ表面にNiメッキ層およびCuメッキ層の少なくとも一方を有することを特徴とするアルカリ二次電池負極。A TiFe-based hydrogen storage alloy powder and a current collector that holds the powder, and the TiFe-based hydrogen storage alloy powder is represented by the chemical formula TiFe 1-x Pd x (where x is an atomic ratio) An alkaline secondary battery negative electrode, wherein the atomic ratio x is 0.05 ≦ x ≦ 0.3, and the surface thereof has at least one of a Ni plating layer and a Cu plating layer. 前記原子数比xが0.1≦x≦0.2である、請求項記載のアルカリ二次電池負極。The alkaline secondary battery negative electrode according to claim 3 , wherein the atomic ratio x is 0.1 ≦ x ≦ 0.2.
JP12286998A 1998-04-16 1998-04-16 Alkaline secondary battery negative electrode and alkaline secondary battery Expired - Lifetime JP4423412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12286998A JP4423412B2 (en) 1998-04-16 1998-04-16 Alkaline secondary battery negative electrode and alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12286998A JP4423412B2 (en) 1998-04-16 1998-04-16 Alkaline secondary battery negative electrode and alkaline secondary battery

Publications (2)

Publication Number Publication Date
JPH11307088A JPH11307088A (en) 1999-11-05
JP4423412B2 true JP4423412B2 (en) 2010-03-03

Family

ID=14846655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12286998A Expired - Lifetime JP4423412B2 (en) 1998-04-16 1998-04-16 Alkaline secondary battery negative electrode and alkaline secondary battery

Country Status (1)

Country Link
JP (1) JP4423412B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7887944B2 (en) 2005-12-21 2011-02-15 General Electric Company Integrated membrane electrode assembly and method related thereto
JP6222163B2 (en) * 2015-04-22 2017-11-01 トヨタ自動車株式会社 Alkaline battery control device
JP7741507B2 (en) * 2021-09-01 2025-09-18 清水建設株式会社 Hydrogen storage alloy, hydrogen storage method, hydrogen release method, and power generation system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0750050A4 (en) * 1993-12-22 1997-09-24 Toshiba Kk Hydrogen-absorbing alloy and alkaline secondary cell using the same
JPH08287908A (en) * 1995-04-18 1996-11-01 Tohoku Electric Power Co Inc Hydrogen storage alloy electrode

Also Published As

Publication number Publication date
JPH11307088A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
JP2680669B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
EP0506084B1 (en) A hydrogen storage alloy and an electrode using the same
US5690799A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
JP4423412B2 (en) Alkaline secondary battery negative electrode and alkaline secondary battery
JP2595967B2 (en) Hydrogen storage electrode
JPH07286225A (en) Hydrogen storage alloy and nickel-hydrogen storage battery using the same
KR19980085375A (en) Micro Metals and Nickel-Based Hydrogen Storage Alloys for Ni / MH Secondary Batteries
JP2579072B2 (en) Hydrogen storage alloy electrode
JPS5944748B2 (en) Chikudenchi
JP2563638B2 (en) Hydrogen storage alloy electrode
JPH0650634B2 (en) Hydrogen storage electrode
JP2828680B2 (en) Hydrogen storage alloy electrode
JP3410308B2 (en) Hydrogen storage alloy and nickel-hydrogen battery electrode using the same
JPH10251782A (en) Hydrogen storage alloy and alkaline secondary battery
JP2999785B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPH04187733A (en) Hydrogen storage alloy electrode
JP3500858B2 (en) Negative electrode for alkaline storage battery and battery using the same
JP2958786B2 (en) Hydrogen storage electrode
JPH06145849A (en) Hydrogen storage alloy electrode
JP2000265228A (en) Hydrogen storage alloy and secondary battery
JP2553780B2 (en) Hydrogen storage alloy electrode
JP2929716B2 (en) Hydrogen storage alloy electrode
JP3352479B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3729913B2 (en) Hydrogen storage alloy electrode
JPH0794176A (en) Hydrogen storage electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050315

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term