[go: up one dir, main page]

JP4429841B2 - Roller bearing - Google Patents

Roller bearing Download PDF

Info

Publication number
JP4429841B2
JP4429841B2 JP2004234775A JP2004234775A JP4429841B2 JP 4429841 B2 JP4429841 B2 JP 4429841B2 JP 2004234775 A JP2004234775 A JP 2004234775A JP 2004234775 A JP2004234775 A JP 2004234775A JP 4429841 B2 JP4429841 B2 JP 4429841B2
Authority
JP
Japan
Prior art keywords
crowning
negative
positive
contact portion
origin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004234775A
Other languages
Japanese (ja)
Other versions
JP2006052789A (en
Inventor
宏樹 藤原
達夫 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2004234775A priority Critical patent/JP4429841B2/en
Publication of JP2006052789A publication Critical patent/JP2006052789A/en
Application granted granted Critical
Publication of JP4429841B2 publication Critical patent/JP4429841B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/088Ball or roller bearings self-adjusting by means of crowning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/50Crowning, e.g. crowning height or crowning radius

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a roller bearing optimum for use in an misalignment condition. <P>SOLUTION: In this roller bearing forming crowning on a raceway surface of a bearing bearing ring or a rolling face of a roller, a profile line of negative side crowning 13b formed toward a negative side in the direction of generating line is a curve expressed by an expression (I), and a profile line of positive side crowning formed toward a positive side in the direction of generating line is a curve expressed by an expression (II). When optimizing design parameters K1n, K2n, zmn and K1p, K2p, zmp in the expressions (I) and (II) by taking misalignment into account, at least one of K1n&ne;K1p, K2nan&ne;K2pap, and zmn&ne;zmp is satisfied. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

本発明は、内輪軌道面、外輪軌道面又はころ転動面の少なくともひとつにクラウニングを形成したころ軸受に関するものである。   The present invention relates to a roller bearing in which a crowning is formed on at least one of an inner ring raceway surface, an outer ring raceway surface and a roller rolling surface.

円筒ころ軸受や円すいころ軸受のように、内輪及び外輪からなる一対の軸受軌道輪の軌道面相互間に複数のころを介在させたころ軸受においては、軸受軌道輪の軌道面に対してころの転動面が線接触する。軸受軌道輪の軌道面ところの転動面が単純な円筒面や円すい面であると、エッジロードが発生してころ軸受の疲労寿命が低下する。したがって、ころ軸受は、疲労寿命延長のために、接触面圧の分布が略均一になるように、軸受軌道輪ところの接触状態を設定することが要求される。   In a roller bearing in which a plurality of rollers are interposed between the raceway surfaces of a pair of bearing raceways consisting of an inner ring and an outer ring, such as a cylindrical roller bearing and a tapered roller bearing, The rolling contact is in line contact. If the rolling contact surface of the bearing race is a simple cylindrical surface or conical surface, an edge load occurs and the fatigue life of the roller bearing decreases. Therefore, in order to extend the fatigue life, the roller bearing is required to set the contact state of the bearing raceway so that the distribution of the contact surface pressure becomes substantially uniform.

このため、従来は、内輪軌道面、外輪軌道面、ころ転動面の少なくともいずれかひとつにクラウニングを形成して、接触面圧の分布が略均一になるように設定している(例えば特許文献1参照)。クラウニングとは、内輪軌道面、外輪軌道面又はころ転動面に僅かな曲率をもたせることをいう。クラウニングには、内輪軌道面、外輪軌道面又はころ転動面の母線方向全域に亘って形成されるフルクラウニングや、母線方向片端部又は両端部に部分的に形成されるカットクラウニングがある。   For this reason, conventionally, at least one of the inner ring raceway surface, the outer ring raceway surface, and the roller rolling surface is formed with a crowning so that the contact surface pressure distribution is substantially uniform (for example, Patent Documents). 1). Crowning means that the inner ring raceway surface, the outer ring raceway surface or the roller rolling surface has a slight curvature. Crowning includes full crowning formed over the entire region of the inner ring raceway surface, outer ring raceway surface or roller rolling surface in the generatrix direction, and cut crowning partially formed at one end portion or both end portions in the generatrix direction.

ころ軸受の軸方向断面におけるクラウニングの輪郭線形状としては、Johns, P.M. and Gohar, R.が"Roller bearings under radial and eccentric loads" (TRIBOLOGY international June 1981 pp.131〜136)において、下記の式(1)で表される最適転動体曲線(以下、Johns-Gohar曲線という。)を提唱している。   As the contour shape of the crowning in the axial section of the roller bearing, Johns, PM and Gohar, R. described in the following formula (TRIBOLOGY international June 1981 pp.131-136) in "Roller bearings under radial and eccentric loads" (TRIBOLOGY international June 1981 pp.131-136) The optimal rolling element curve expressed in 1) (hereinafter referred to as the Johns-Gohar curve) is proposed.

Figure 0004429841
Figure 0004429841

式(1)のJohns-Gohar曲線は、図8に示すように、ころの母線をy軸とし、軸受軌道輪ところの有効接触部の中央部に原点Oをとったy−z座標系において、原点Oを通り、y=±L/2(1−0.3033b/a)-1/2を漸近線とするz軸対称の曲線を表すものである。有効接触部とは、軸受軌道輪ところの二次元接触を仮定したときの接触領域で、ころの周方向にほぼ均一な幅をもつ。z(y)はころの母線方向位置yにおけるクラウニングのドロップ量(ころの母線からころの転動面までの母線直交方向の変位)である。また、Qは荷重、E’は等価弾性係数、Lは軸受軌道輪ところの有効接触部の長さ、bはヘルツの接触半幅(有効接触部の周方向の半幅)、aは原点Oから有効接触部の端部までの母線方向長さ(通常は、a=L/2である。)である。なお、ヘルツの接触半幅bは、下記の式(2)で求められる。 As shown in FIG. 8, the Johns-Gohar curve of the equation (1) is a yz coordinate system in which the roller generatrix is the y-axis and the origin O is at the center of the effective contact portion of the bearing raceway. This represents a z-axis symmetric curve that passes through the origin O and has an asymptotic line of y = ± L / 2 (1−0.3033b / a) −1/2 . The effective contact portion is a contact region when assuming a two-dimensional contact at the bearing race and has a substantially uniform width in the circumferential direction of the roller. z (y) is a crowning drop amount (displacement in the direction perpendicular to the bus line from the roller bus bar to the rolling surface of the roller) at the position y in the roller bus bar direction. Q is the load, E 'is the equivalent elastic modulus, L is the length of the effective contact portion of the bearing race, b is the Hertz contact half width (the half width in the circumferential direction of the effective contact portion), and a is effective from the origin O. This is the length in the bus direction to the end of the contact portion (usually, a = L / 2). In addition, the contact half width b of Hertz is calculated | required by following formula (2).

Figure 0004429841
Figure 0004429841

式(2)において、Rは等価半径で、有効接触部における軸受軌道輪の半径(内輪の外径又は外輪の内径)をR1とし、有効接触部におけるころの半径をR2とすると、下記の式(3)で求められる。 In the formula (2), R is an equivalent radius, and the radius of the bearing race (inner ring outer diameter or outer ring inner diameter) in the effective contact portion is R 1, and the roller radius in the effective contact portion is R 2. (3).

Figure 0004429841
Figure 0004429841

また、軸受軌道輪及びころの弾性係数をE1,E2とし、軸受軌道輪及びころのポアソン比をν1,ν2とすると、等価弾性係数E’は下記の式(4)で求められる。 Further, assuming that the elastic modulus of the bearing race and the roller is E 1 and E 2 and the Poisson's ratio of the bearing race and the roller is ν 1 and ν 2 , the equivalent elastic modulus E ′ is obtained by the following equation (4). .

Figure 0004429841
Figure 0004429841

ところで、本発明者らが、式(1)のJohns-Gohar曲線で表されるクラウニングについて接触面圧の解析を行なった結果、クラウニングの端部で接触面圧がやや高くなることが確認された。このことは、特許文献2においても指摘されている。特許文献2では、有効接触部の母線方向に相当応力の最大値が分布しないように式(1)のJohns-Gohar曲線を改良したクラウニング曲線が提案されている(下記の式(5)参照)。   By the way, as a result of analyzing the contact surface pressure of the crowning represented by the Johns-Gohar curve in the formula (1), the present inventors have confirmed that the contact surface pressure is slightly increased at the end of the crowning. . This is also pointed out in Patent Document 2. Patent Document 2 proposes a crowning curve obtained by improving the Johns-Gohar curve of Formula (1) so that the maximum value of equivalent stress is not distributed in the generatrix direction of the effective contact portion (see Formula (5) below). .

Figure 0004429841
Figure 0004429841

式(5)において、Kは安全係数で0.8〜5の範囲で定められる。また、係数k1,k2は有効接触部長さL及びヘルツの接触半幅bによって下記の式(6)及び式(7)のように定められる。 In Expression (5), K is a safety factor and is determined in the range of 0.8 to 5. The coefficients k 1 and k 2 are determined as shown in the following formulas (6) and (7) by the effective contact length L and the contact half width b of Hertz.

Figure 0004429841
Figure 0004429841

Figure 0004429841
Figure 0004429841

実用新案登録第2554882号公報Utility Model Registration No. 2554882 特開2000−346078号公報(式(16)及び式(19)参照)JP 2000-346078 A (see formula (16) and formula (19))

式(5)のクラウニング曲線は、式(1)のJohns-Gohar曲線と同様に、有効接触部の中央部に原点Oをとったy−z座標系において、原点Oを頂点として、z軸に関して正負線対称のフルクラウニングの輪郭線を表すものである。しかし、軸受軌道輪の軌道面ところの転動面とが相対的に傾斜するミスアライメント状態では、有効接触部の両端部で接触面圧に差が生じ、有効接触部の片端部にエッジロードが発生しやすくなる。このようなミスアライメント状態で使用されるころ軸受に対し、式(5)を用いてクラウニング形状を設定すると、有効接触部の中央部から母線方向一方側の領域に最適なクラウニングを形成することはできても、母線方向他方側の領域には過大又は過小なクラウニングが形成される。   Similar to the Johns-Gohar curve of Equation (1), the crowning curve of Equation (5) is related to the z-axis with the origin O serving as the apex in the yz coordinate system having the origin O at the center of the effective contact portion. It represents the contour of a full crowning that is symmetrical with positive and negative lines. However, in a misalignment state where the rolling contact surface of the bearing race is relatively inclined, there is a difference in contact surface pressure at both ends of the effective contact portion, and an edge load is generated at one end of the effective contact portion. It tends to occur. For the roller bearings used in such a misaligned state, when the crowning shape is set using the formula (5), it is possible to form the optimum crowning in the region on the one side in the busbar direction from the center of the effective contact portion. Even if possible, an excessive or excessive crowning is formed in the region on the other side in the busbar direction.

すなわち、ミスアライメント状態で使用されるころ軸受は、有効接触部の両端部で接触面圧に差が生じることから、正負非線対称のクラウニングを形成する必要がある。しかし、式(5)は、クラウニングの頂点を有効接触部の中央部にとった正負線対称のフルクラウニングを表すものであり、クラウニングの頂点を有効接触部の中央部からずらした正負非線対称のフルクラウニングや、正負非線対称のカットクラウニングを表すものではない。このため、上記の式(5)で表されるクラウニング曲線は、ミスアライメント状態で使用されるころ軸受に対して最適な形状にならない。   That is, a roller bearing used in a misaligned state has a difference in contact surface pressure at both end portions of the effective contact portion, and thus it is necessary to form a positive / negative non-symmetrical crowning. However, Expression (5) represents a positive / negative line-symmetric full crowning in which the vertex of the crowning is in the center of the effective contact portion, and is positive / negative non-linear symmetry in which the crowning vertex is shifted from the center of the effective contact portion. It does not represent the full crowning or the cut crowning with positive and negative asymmetrical symmetry. For this reason, the crowning curve represented by the above formula (5) does not have an optimum shape for the roller bearing used in a misaligned state.

なお、ミスアライメントは、円すいころ軸受のように、軸受軌道輪の軌道面及び円すいころの転動面が軸受軸線方向に対して傾斜しているという軸受自体の構造的特性から発生する場合もあれば、両端が2つのころ軸受で支持された軸系において、両端のころ軸受の中心が相対的に軸心に対して直角方向にずれて取付けられるなど軸系への取付け上の不具合から発生する場合もある。後者の場合は、円すいころ軸受に限らず、円筒ころ軸受など他のころ軸受でもミスアライメントが発生する。   Misalignment may occur due to the structural characteristics of the bearing itself, such as the tapered roller bearing, in which the raceway surface of the bearing race and the rolling surface of the tapered roller are inclined with respect to the bearing axial direction. For example, in a shaft system in which both ends are supported by two roller bearings, the center of the roller bearings at both ends is mounted so as to be displaced in a direction perpendicular to the shaft center. In some cases. In the latter case, misalignment occurs not only in the tapered roller bearing but also in other roller bearings such as a cylindrical roller bearing.

本発明は斯かる事情に鑑み創案されたものであって、その目的は、ミスアライメント状態での使用に最適なころ軸受を提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is to provide a roller bearing that is optimal for use in a misaligned state.

本発明に係るころ軸受は、上記問題を解決するため、内輪軌道面、外輪軌道面又はころ転動面のうち少なくともひとつにクラウニングを形成したころ軸受において、内輪軌道面、外輪軌道面又はころ転動面の母線上に原点をとり、母線方向負側に向かって形成される負側クラウニングの軸線方向断面における輪郭線形状を式(8)で表される曲線とすると共に、母線方向正側に向かって形成される正側クラウニングの軸線方向断面における輪郭線形状を式(9)で表される曲線とし、K1n≠K1p,K2nn≠K2pp,zmn≠zmpのうち少なくともひとつを満たすように、式(8)における設計パラメータK1n,K2n,zmnと、式(9)における設計パラメータK1p,K2p,zmpを設定したことを特徴としている。 In order to solve the above problems, a roller bearing according to the present invention is a roller bearing in which a crowning is formed on at least one of an inner ring raceway surface, an outer ring raceway surface, or a roller rolling surface, and the inner ring raceway surface, the outer ring raceway surface, or the roller rolling surface. The contour line shape in the cross section in the axial direction of the negative crowning formed toward the negative side of the generatrix is taken as the curve represented by the formula (8), and the origin is on the generatrix of the moving surface. a contour line shape in axial section of the positive crowning formed towards the curve represented by the formula (9), K 1n ≠ K 1p, K 2n a n ≠ K 2p a p, the z mn ≠ z mp The design parameters K 1n , K 2n , and z mn in the equation (8) and the design parameters K 1p , K 2p , and z mp in the equation (9) are set so as to satisfy at least one of them.

Figure 0004429841
Figure 0004429841

Figure 0004429841
Figure 0004429841

式(8)及び式(9)において、z(y)は、内輪軌道面、外輪軌道面又はころ転動面の母線方向位置yにおけるクラウニングのドロップ量(母線直交方向の変位)、Qは荷重、Lは内輪又は外輪ところの有効接触部の長さ、E’は等価弾性係数、anは原点から有効接触部の負側端部までの母線方向長さ、apは原点から有効接触部の正側端部までの母線方向長さである。 In equations (8) and (9), z (y) is the amount of crowning drop (displacement in the direction perpendicular to the bus) at the y-axis position y of the inner ring raceway surface, outer ring raceway surface or roller rolling surface, and Q is the load. , L is inner or outer ring at the effective contact portions of the length, E 'is the equivalent elastic modulus, a n is the generatrix direction length to the negative end of the effective contact portion from the origin, a p is the effective contact portion from the origin Is the length in the direction of the bus line up to the positive side end.

従来例の式(1)で表されるJohns-Gohar曲線をクラウニングに適用すると、クラウニングの端部で接触面圧がやや高くなることから、本発明者らは、式(1)に係数K1,K2’を導入して定数項をパラメータ化し、下記の式(10)とした。 When the Johns-Gohar curve represented by the formula (1) in the conventional example is applied to the crowning, the contact surface pressure is slightly increased at the end of the crowning. Therefore, the present inventors have added a coefficient K 1 to the formula (1). , K 2 ′ and the constant term is parameterized to obtain the following equation (10).

Figure 0004429841
Figure 0004429841

式(10)は、K1=Kk2,(1−0.3033K2’b/a)=k1 2とすれば、従来例の式(5)と同じ形になる。なお、式(10)における係数K1,K2’は、ヘルツの接触半幅bや有効接触部の長さLに関係なく設定できる点で、式(5)におけるKk2,k1と意味を異にする。 Expression (10) has the same form as Expression (5) in the conventional example, assuming that K 1 = Kk 2 and (1−0.3033K 2 ′ b / a) = k 1 2 . It should be noted that the coefficients K 1 and K 2 ′ in the equation (10) can be set regardless of the Hertz contact half width b and the effective contact portion length L, and have the meanings Kk 2 and k 1 in the equation (5). Make it different.

式(10)で表されるクラウニングは、有効接触部の中央部に原点をとり、原点を頂点とする正負線対称のフルクラウニングを表すものである。ミスアライメント状態で使用されるころ軸受を考慮すると、式(10)を、y<0のときと、y>0のときに分けて各々の場合について係数K1,K2’を設定する必要がある。そこで、y<0のときの係数K1,K2’をK1n,K2n’とし、y>0のときの係数K1,K2’をK1p,K2p’とすると、式(10)は、式(11)及び式(12)のように書き換えられる。 The crowning represented by Expression (10) represents a positive and negative line-symmetrical full crowning with the origin at the center of the effective contact portion and the vertex as the origin. When considering roller bearings used in a misaligned state, it is necessary to set the coefficients K 1 and K 2 ′ in each case by dividing equation (10) when y <0 and y> 0. is there. Therefore, assuming that the coefficients K 1 and K 2 ′ when y <0 are K 1n and K 2n ′, and the coefficients K 1 and K 2 ′ when y> 0 are K 1p and K 2p ′, ) Can be rewritten as shown in equations (11) and (12).

Figure 0004429841
Figure 0004429841

Figure 0004429841
Figure 0004429841

式(11)は原点を始点として母線方向負側に向かって形成される負側クラウニングを表し、式(12)は原点を始点として母線方向正側に向かって形成される正側クラウニングを表している。   Equation (11) represents the negative crowning formed from the origin to the negative in the direction of the bus, and Equation (12) represents the positive crowning formed from the origin to the positive in the direction of the bus. Yes.

一方、正負非線対称のクラウニングには、フルクラウニングのみならず、カットクラウニングもある。フルクラウニングは、負側クラウニングの始点と正側クラウニングの始点が一致しているのに対し、カットクラウニングは、負側クラウニングの始点と正側クラウニングの始点が一致しておらず、各クラウニングの始点間にストレート部が形成されている。そこで、本発明者らは、式(11)及び式(12)で表される曲線を母線方向に平行移動してカットクラウニングを表せるようにするため、負側及び正側クラウニングの始点座標(s1,0),(s2,0)を式(11)及び式(12)に導入することとした。なお、負側クラウニングの始点座標(s1,0)は、原点から有効接触部の負側端部までの母線方向長さをanとし、負側クラウニングの母線方向長さをymnとすると、(s1,0)=(−an+ymn,0)と表すことができる。同様に、正側クラウニングの始点座標(s2,0)は、原点から有効接触部の正側端部までの母線方向長さをapとし、正側クラウニングの母線方向長さをympとすると、(s2,0)=(ap−ymp,0)と表すことができる。これにより式(11)及び式(12)は、下記の式(13)及び式(14)のように表される。 On the other hand, positive and negative axisymmetric crowning includes not only full crowning but also cut crowning. In full crowning, the start point of the negative crowning coincides with the start point of the positive crowning, whereas in the cut crowning, the start point of the negative crowning does not coincide with the start point of the positive crowning. A straight part is formed between them. Therefore, the present inventors have made it possible to express the cut crowning by translating the curves represented by the equations (11) and (12) in the direction of the generatrix, so that the start point coordinates (s 1 , 0) and (s 2 , 0) are introduced into the equations (11) and (12). Incidentally, the start point coordinates (s 1, 0) of the negative crowning, the generatrix direction length to the negative end of the effective contact portion from the origin and a n, a bus length of the negative crowning When y mn , (s 1, 0) = - can be represented as (a n + y mn, 0 ). Similarly, the starting point coordinates (s 2 , 0) of the positive side crowning are defined as a p in the bus direction length from the origin to the positive side end of the effective contact portion, and y mp in the bus direction length of the positive side crowning. Then, it can be expressed as (s 2 , 0) = (a p −y mp , 0). Thereby, Formula (11) and Formula (12) are expressed like the following Formula (13) and Formula (14).

Figure 0004429841
Figure 0004429841

Figure 0004429841
Figure 0004429841

なお、式(13)及び式(14)で表される各クラウニング曲線は、式(11)及び式(12)で表される各クラウニング曲線を平行移動したものである。したがって、式(13)で表されるクラウニング曲線は、母線方向長さymn、および、有効接触部の負側端部におけるドロップ量、即ち負側クラウニングの最大ドロップ量zmnが、式(11)で表されるクラウニング曲線と同じである。同様に、式(14)で表されるクラウニング曲線は、母線方向長さymp、および、正側クラウニングの最大ドロップ量zmpが、式(12)で表されるクラウニング曲線と同じである。したがって、式(13)及び式(14)で表されるクラウニング曲線の母線方向長さymn,ympは、式(11)及び式(12)に基づき、式(15)及び式(16)のように表すことができる。 In addition, each crowning curve represented by Formula (13) and Formula (14) is obtained by translating each Crowning curve represented by Formula (11) and Formula (12). Therefore, the crowning curve represented by Expression (13) has a length in the busbar direction y mn and a drop amount at the negative side end of the effective contact portion, that is, the maximum drop amount z mn of the negative side crowning is expressed by Expression (11). ) Is the same as the crowning curve. Similarly, the crowning curve represented by Expression (14) has the same length y mp in the generatrix direction and the maximum drop amount z mp of the positive side crowning as the crowning curve represented by Expression (12). Accordingly, the lengths y mn and y mp in the generatrix direction of the crowning curves represented by the equations (13) and (14) are based on the equations (11) and (12), and the equations (15) and (16) It can be expressed as

Figure 0004429841
Figure 0004429841

Figure 0004429841
Figure 0004429841

式(15)及び式(16)のように、負側クラウニングの母線方向長さymn及び正側クラウニングの母線方向長さympは、それぞれK1n,K2n’,zmn及びK1p,K2p’,zmpを与えなければ求めることができない。また、式(13)及び式(14)における係数K1n,K1pは、荷重Qに掛けられているので、物理的な意味合いとして荷重Qの倍率と解釈することができ、係数K2n’,K2p’及び母線方向長さymn,ympを定めて係数K1n,K1pを変化させると、各クラウニング曲線の曲率が変化することから、幾何学的には、クラウニング曲線の曲率を定めるパラメータと解釈することができる。他方、式(13)及び式(14)における係数K2n’,K2p’は物理的な意味合いが不明確で、クラウニング曲線を評価検討する際に支障をきたす。このことから、式(13)及び式(14)から係数K2n’,K2p’を消去して物理的意味合いのあるパラメータを導入する必要がある。 As in the equations (15) and (16), the negative-side crowning bus-direction length y mn and the positive-side crowning bus-direction length y mp are respectively K 1n , K 2n ′, z mn and K 1p , It cannot be obtained unless K 2p ', z mp is given. In addition, since the coefficients K 1n and K 1p in the equations (13) and (14) are multiplied by the load Q, they can be interpreted as the magnification of the load Q as a physical meaning, and the coefficients K 2n ′, If the coefficients K 1n and K 1p are changed by determining K 2p ′ and the lengths y mn and y mp in the busbar direction, the curvature of each crowning curve changes, so geometrically, the curvature of the crowning curve is determined. It can be interpreted as a parameter. On the other hand, the coefficients K 2n ′ and K 2p ′ in the equations (13) and (14) have unclear physical meanings, which hinder the evaluation of the crowning curve. For this reason, it is necessary to eliminate the coefficients K 2n ′ and K 2p ′ from the equations (13) and (14) and introduce parameters having physical significance.

そこで、式(15)及び式(16)から得られる係数K2n’,K2p’をそれぞれ式(13)及び式(14)に代入すると、下記の式(17)及び式(18)が得られる。 Therefore, when the coefficients K 2n ′ and K 2p ′ obtained from the equations (15) and (16) are substituted into the equations (13) and (14), respectively, the following equations (17) and (18) are obtained. It is done.

Figure 0004429841
Figure 0004429841

Figure 0004429841
Figure 0004429841

ここで、原点から有効接触部の負側端部までの母線方向長さanに対する負側クラウニングの母線方向長さymnの割合をK2nと定義し(K2n=ymn/an)、ymn=K2nnを式(17)に代入すると、上記の式(8)が得られる。同様に、原点から有効接触部の正側端部までの母線方向長さapに対する正側クラウニングの母線方向長さympの割合をK2pと定義し(K2p=ymp/ap)、ymp=K2ppを式(18)に代入すると、上記の式(9)が得られる。 Here, the proportion of generatrix direction length y mn of negative crowning for generatrix direction length a n to the negative end of the effective contact portion from the origin is defined as K 2n (K 2n = y mn / a n) When the y mn = K 2n a n into equation (17), the above equation (8) is obtained. Similarly, the proportion of generatrix direction length a generatrix direction of the positive crowning for p length y mp up positive end of the effective contact portion from the origin is defined as K 2p (K 2p = y mp / a p) , Y mp = K 2p ap is substituted into equation (18), the above equation (9) is obtained.

式(8)及び式(9)は、それぞれK1n,K2n,zmnと、K1p,K2p,zmpを設計パラメータとして変化させれば、各クラウニング曲線の曲率、母線方向長さ、最大ドロップ量を変えることができる。そして、式(8)における設計パラメータK1n,K2n,zmnと、式(9)における設計パラメータK1p,K2p,zmpの最適化を行なうことで、エッジロードが発生しないようなクラウニングの輪郭線形状を求めることができる。ミスアライメント状態で使用されるころ軸受の場合、式(8)及び式(9)で表されるクラウニング曲線が正負非線対称となることから、負側及び正側クラウニングの曲率K1n,K1p、負側及び正側クラウニングの母線方向長さK2nn,K2pp、負側及び正側クラウニングの最大ドロップ量zmn,zmpの全てが一致することはない。したがって、K1n≠K1p、K2nn≠K2pp、zmn≠zmpのうち少なくともいずれかひとつの関係を満たすことになる。 Equations (8) and (9) are obtained by changing the curvature of each crowning curve, the length in the direction of the bus, if K 1n , K 2n , z mn and K 1p , K 2p , z mp are changed as design parameters, respectively. The maximum drop amount can be changed. Then, by optimizing the design parameters K 1n , K 2n , and z mn in the equation (8) and the design parameters K 1p , K 2p , and z mp in the equation (9), the crowning that does not cause edge loading is performed. The contour line shape can be obtained. In the case of a roller bearing used in a misaligned state, the crowning curves represented by the equations (8) and (9) are positive and negative non-linearly symmetric, so the curvatures K 1n and K 1p of the negative and positive crowning are negative. , the generatrix direction length of the negative and positive side crowned K 2n a n, K 2p a p, the maximum drop amount z mn of the negative side and the positive side crowning, all z mp will never match. Therefore, to meet the K 1n ≠ K 1p, at least any one of the relationship among the K 2n a n ≠ K 2p a p, z mn ≠ z mp.

なお、式(8)における設計パラメータK1n,K2n,zmnと、式(9)における設計パラメータK1p,K2p,zmpの最適化は、数値的な最適化手法によって行なうことができる。数値的な最適化手法には、実行可能方向法やRosenbrock法などに代表される数理的手法、焼き鈍し法や遺伝的アルゴリズムなどの探索的手法がある。最適化の目的関数としては、軸受軌道輪の軌道面又はころ転動面に負荷される最大面圧、若しくは、転動疲労寿命などを使用することができる。 The design parameters K 1n , K 2n , z mn in equation (8) and the design parameters K 1p , K 2p , z mp in equation (9) can be optimized by a numerical optimization method. . Numerical optimization methods include mathematical methods represented by feasible direction method and Rosenbrock method, and exploratory methods such as annealing method and genetic algorithm. As the objective function for optimization, the maximum surface pressure applied to the raceway surface or the roller rolling surface of the bearing race or the rolling fatigue life can be used.

本発明によれば、内輪軌道面、外輪軌道面又はころ転動面の母線上に原点をとり、母線方向負側に向かって形成される負側クラウニングの輪郭線を上記の式(8)で表される曲線とし、かつ、母線方向正側に向かって形成される正側クラウニングの輪郭線を上記の式(9)で表される曲線とし、K1n≠K1p、K2nn≠K2pp、zmn≠zmpのうち少なくともいずれかひとつの関係を満たすように、式(8)における設計パラメータK1n,K2n,zmn及び式(9)における設計パラメータK1p,K2p,zmpを定めることで、ミスアライメント状態での使用に最適なころ軸受を提供することができる。 According to the present invention, the contour line of the negative crowning formed on the generatrix on the inner ring raceway surface, outer ring raceway surface or roller rolling contact surface toward the negative side in the generatrix direction is expressed by the above equation (8). and curve represented, and the contour line of the positive crowning formed toward the generatrix direction positive side and the curve represented by the above formula (9), K 1n ≠ K 1p, K 2n a n ≠ K Design parameters K 1n , K 2n , z mn in equation (8) and design parameters K 1p , K 2p in equation (9) so as to satisfy at least one of the relations of 2p a p , z mn ≠ z mp , Z mp can be provided to provide a roller bearing that is optimal for use in a misaligned state.

以下、添付図面を参照しつつ本発明を実施するための最良の形態について説明する。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.

図1は本発明に係るころ軸受を円筒ころ軸受に適用した場合の一例を示すものである。この円筒ころ軸受は、図1に示すように、内輪11と、外輪12と、内輪軌道面11a及び外輪軌道面12aの相互間に転動自在に介在させる複数の円筒ころ13,13,…と、軸受周方向に所定の間隔を隔てて円筒ころ13,13,…を保持する保持器14とを主要な構成要素としている。この実施形態では、各円筒ころ13,13,…の転動面13a,13a,…に輪郭線が式(19)で表される負側クラウニング13bと、輪郭線が式(20)表される正側クラウニング13cとを設けている。また、内輪11の軌道面11a及び外輪12の軌道面12aはそれぞれ円筒面状に形成してある。   FIG. 1 shows an example in which the roller bearing according to the present invention is applied to a cylindrical roller bearing. As shown in FIG. 1, the cylindrical roller bearing includes an inner ring 11, an outer ring 12, and a plurality of cylindrical rollers 13, 13,... That are rotatably interposed between the inner ring raceway surface 11a and the outer ring raceway surface 12a. The retainer 14 that holds the cylindrical rollers 13, 13,... At a predetermined interval in the circumferential direction of the bearing is a main component. In this embodiment, the negative side crowning 13b whose contour line is expressed by the equation (19) on the rolling surfaces 13a, 13a,... Of each cylindrical roller 13, 13,. A positive-side crowning 13c is provided. The raceway surface 11a of the inner ring 11 and the raceway surface 12a of the outer ring 12 are each formed in a cylindrical surface shape.

Figure 0004429841
Figure 0004429841

Figure 0004429841
Figure 0004429841

図2は、円筒ころ13の母線方向にy軸をとり、円筒ころ13の母線上の任意の位置に原点Oをとると共に、母線直交方向にz軸をとったy−z座標系を用いて、式(19)及び式(20)で表されるクラウニング曲線の一例を示している。なお、図2では、原点Oを有効接触部の中央部Cから負側へオフセットした位置にとっている。有効接触部は、円筒ころ13にクラウニングを形成していない場合の内輪11又は外輪12と円筒ころ13との接触部位である。   FIG. 2 shows a yz coordinate system in which the y-axis is taken in the generatrix direction of the cylindrical roller 13, the origin O is taken at an arbitrary position on the generatrix of the cylindrical roller 13, and the z-axis is taken in the direction perpendicular to the generatrix. The example of a crowning curve represented by Formula (19) and Formula (20) is shown. In FIG. 2, the origin O is set at a position offset from the center C of the effective contact portion to the negative side. The effective contact portion is a contact portion between the inner ring 11 or the outer ring 12 and the cylindrical roller 13 when no crowning is formed on the cylindrical roller 13.

式(19)及び式(20)において、z方向変位z(y)は円筒ころ13の母線方向位置yにおけるクラウニングのドロップ量で、Qは荷重、Lは有効接触部の母線方向長さ、E’は等価弾性係数、anは原点Oから有効接触部の負側端部F1までの母線方向長さ、apは原点Oから有効接触部の正側端部F2までの母線方向長さである。荷重Q、有効接触部の母線方向長さL、および、等価弾性係数E’は設計条件として与えられ、原点Oから有効接触部の端部F1,F2までの母線方向長さan,apは原点Oの位置によって定められる値である。 In the equations (19) and (20), the z-direction displacement z (y) is the amount of crowning drop at the y-axis position y of the cylindrical roller 13, Q is the load, L is the length of the effective contact portion in the generatrix direction, E 'equivalent modulus, a n is the generatrix direction length to the negative end F 1 of the effective contact portion from the origin O, a p is the generatrix direction length to the positive end F 2 of the effective contact portion from the origin O That's it. Load Q, the generatrix direction length of the effective contact portion L, and the equivalent elastic modulus E 'is given as a design condition, the generatrix direction length a n to the end F 1, F 2 of the effective contact portion from the origin O, a p is a value determined by the position of the origin O.

式(19)におけるK1n,K2n,zmnと、式(20)におけるK1p,K2p,zmpは、それぞれ負側クラウニング13b及び正側クラウニング13cの設計パラメータである。式(19)及び式(20)における設計パラメータK1n,K1pは荷重Qの倍率、幾何学的には負側クラウニング13b及び正側クラウニング13cの曲率を意味している。式(19)における設計パラメータK2nは、原点Oから有効接触部の負側端部までの母線方向長さanに対する負側クラウニング13bの母線方向長さymnの割合を意味し(K2n=ymn/an)、式(20)における設計パラメータK2pは、原点Oから有効接触部の正側端部までの母線方向長さapに対する正側クラウニング13cの母線方向長さympの割合を意味している(K2n=ymn/an)。式(19)及び式(20)における設計パラメータzmn,zmpは、有効接触部の端部F1,F2におけるドロップ量、即ち負側クラウニング13bの最大ドロップ量及び正側クラウニング13cの最大ドロップ量を意味している。 K 1n , K 2n , z mn in the equation (19) and K 1p , K 2p , z mp in the equation (20) are design parameters of the negative side crowning 13b and the positive side crowning 13c, respectively. Design parameters K 1n and K 1p in the equations (19) and (20) mean the magnification of the load Q, geometrically, the curvature of the negative crowning 13b and the positive crowning 13c. Design parameters K 2n in equation (19) means the ratio of the generatrix direction length y mn of negative crowning 13b for generating line direction length a n from the origin O to the negative end of the effective contact portions (K 2n = Y mn / a n ), the design parameter K 2p in equation (20) is the bus-direction length y mp of the positive crowning 13c with respect to the bus-direction length a p from the origin O to the positive end of the effective contact portion. (K 2n = y mn / a n ). The design parameters z mn and z mp in the equations (19) and (20) are the drop amounts at the end portions F 1 and F 2 of the effective contact portion, that is, the maximum drop amount of the negative crowning 13b and the maximum of the positive crowning 13c. It means drop amount.

図3は、設計パラメータK2p,zmpを所定の値に定め、設計パラメータK1pを10〜200の範囲内で変化させたときの正側クラウニング13cの曲率変化を示している。図3によると、設計パラメータK1pの値が大きくなると、正側クラウニング13cの曲率半径が大きくなり、設計パラメータK1pの値が小さくなると、正側クラウニング13cの曲率半径が小さくなる。同様に、負側クラウニング13bの曲率半径も、設計パラメータK1nの値によって変化する。 FIG. 3 shows a change in curvature of the positive crowning 13c when the design parameters K 2p and z mp are set to predetermined values and the design parameter K 1p is changed within a range of 10 to 200. According to FIG. 3, when the value of the design parameter K 1p increases, the radius of curvature of the positive side crowning 13c increases, and when the value of the design parameter K 1p decreases, the radius of curvature of the positive side crowning 13c decreases. Similarly, the radius of curvature of the negative side crowning 13b also changes depending on the value of the design parameter K 1n .

一方、設計パラメータK2n,K2pを用いると、負側クラウニング13bの母線方向長さymnは、ymn=K2nnと表され、正側クラウニング13cの母線方向長さympは、ymp=K2ppと表される(図2参照)。負側クラウニング13bの始点O1の座標は、an,K2nを用いて、(−an+K2nn,0)と表され、正側クラウニング13cの始点O2の座標は、ap,K2pを用いて、(ap−K2pp,0)と表される。 On the other hand, design parameters K 2n, the use of K 2p, the generatrix direction length y mn of negative crowning 13b is represented as y mn = K 2n a n, the generatrix direction length y mp of positive crowning 13c is y mp = K 2p ap (see FIG. 2). The coordinates of the starting point O 1 of the negative crowning 13b, using a n, K 2n, (- a n + K 2n a n, 0) and is expressed, in the coordinate origin O 2 of the positive crowning 13c is, a p , K 2p , it is expressed as (a p −K 2p a p , 0).

式(19)における設計パラメータK2nを小さくすると、負側クラウニング13bの始点O1は、母線方向負側へ移動して有効接触部の負側端部に近付く。逆に、設計パラメータK2nを大きくすると、負側クラウニング13bの始点O1は、母線方向正側へ移動する。したがって、式(19)における設計パラメータK2nを変化させると、負側クラウニング13bの母線方向長さymnが変わる。なお、設計パラメータK2nの範囲が0<K2n<1であるとき、負側クラウニング13bの始点O1は、図2に示すように、原点Oよりも負側に位置する。また、K2n=1のときは、負側クラウニング13bの始点O1が原点Oに一致し、1<K2nのときは、負側クラウニング13bの始点O1が原点Oよりも正側に位置する。 When the design parameter K 2n in Equation (19) is reduced, the starting point O 1 of the negative crowning 13b moves toward the negative side in the busbar direction and approaches the negative end of the effective contact portion. Conversely, when the design parameter K 2n is increased, the starting point O 1 of the negative crowning 13b moves to the positive side in the bus direction. Therefore, when the design parameter K 2n in the equation (19) is changed, the length y mn of the negative crowning 13b in the bus direction is changed. When the range of the design parameter K 2n is 0 <K 2n <1, the starting point O 1 of the negative crowning 13b is located on the negative side of the origin O as shown in FIG. When K 2n = 1, the starting point O 1 of the negative crowning 13b coincides with the origin O, and when 1 <K 2n , the starting point O 1 of the negative crowning 13b is positioned on the positive side with respect to the origin O. To do.

同様に、設計パラメータK2pを変化させると、正側クラウニング13cの始点O2が母線方向に変位して正側クラウニング13cの母線方向長さympが変化する。なお、設計パラメータK2pの範囲が0<K2p<1である場合、正側クラウニング13cの始点O2は、図2に示すように、原点Oよりも正側に位置する。また、K2p=1のときは、正側クラウニング13cの始点O2が原点Oに一致し、1<K2pのときは、正側クラウニング13cの始点O2が原点Oよりも負側に位置する。但し、正側クラウニング13cの始点O2は、負側クラウニング13bの始点O1と同位置若しくは始点O1よりも正側の位置にあるものとする。 Similarly, when the design parameter K 2p is changed, the starting point O 2 of the positive-side crowning 13c is displaced in the bus-line direction, and the length y mp of the positive-side crowning 13c is changed. When the range of the design parameter K 2p is 0 <K 2p <1, the starting point O 2 of the positive crowning 13c is located on the positive side with respect to the origin O as shown in FIG. When K 2p = 1, the starting point O 2 of the positive crowning 13c coincides with the origin O, and when 1 <K 2p , the starting point O 2 of the positive crowning 13c is positioned on the negative side with respect to the origin O. To do. However, the starting point O 2 of the positive side crowning 13c is assumed to be at the same position as the starting point O 1 of the negative side crowning 13b or at a positive side position relative to the starting point O 1 .

このように、設計パラメータK2n,K2pを変化させると、負側クラウニング13b及び正側クラウニング13cの始点O1,O2は、有効接触部の中央部Cにとることもできるし、有効接触部の中央部Cから母線方向負側又は正側のいずれか一方側へオフセットした位置にとることもできる。さらに、負側クラウニング13b及び正側クラウニング13cの始点O1,O2は、同じ位置にとることもできるし、異なる位置にとることもできる。K2nn+K2pp=Lを満たすとき、始点O1,O2が一致し、式(19)及び式(20)で表されるクラウニングはフルクラウニングとなる。K2nn+K2pp<Lのときは、始点O1,O2の位置が相違し、式(19)及び式(20)で表されるクラウニングはカットクラウニングとなる。なお、始点O1,O2間の領域{−(an−K2nn)≦y≦(ap−K2pp)}は、クラウニングが形成されていないストレート部を表している。 As described above, when the design parameters K 2n and K 2p are changed, the starting points O 1 and O 2 of the negative side crowning 13b and the positive side crowning 13c can be taken at the central portion C of the effective contact portion, or the effective contact. It can also take the position offset from the center part C of the part to either the busbar direction negative side or the positive side. Furthermore, the starting points O 1 and O 2 of the negative side crowning 13b and the positive side crowning 13c can be at the same position or at different positions. When satisfying K 2n a n + K 2p a p = L, starting O 1, O 2 is consistent, crowning of the formula (19) and (20) becomes full crowning. When the K 2n a n + K 2p a p <L, the position of the starting point O 1, O 2 are different, the crowning of the formula (19) and (20) is cut crowning. The region between the start point O 1, O 2 {- ( a n -K 2n a n) ≦ y ≦ (a p -K 2p a p)} represents a straight portion of the crowning is not formed.

他方、設計パラメータzmn,zmpは、有効接触部の負側端部F1又は正側端部F2におけるドロップ量であるから、これらの値を変化させると、式(19)及び式(20)で表される負側クラウニング13b及び正側クラウニング13cの外側端部が母線直交方向に変位する。 On the other hand, since the design parameters z mn and z mp are drop amounts at the negative side end F 1 or the positive side end F 2 of the effective contact portion, when these values are changed, the equations (19) and ( The outer ends of the negative side crowning 13b and the positive side crowning 13c represented by 20) are displaced in the direction perpendicular to the bus.

以上のことから、式(19)は、Johns-Gohar曲線のような対数曲線からなるクラウニング曲線であって、円筒ころ13の母線上の任意の位置にとった原点Oから母線方向負側に所定距離(an−K2nn)を隔てた位置を始点O1として母線方向負側に向かって形成され、曲率K1n、母線方向長さK2nn、および、最大ドロップ量zmnによって定められる負側クラウニング13bの輪郭線を表し、設計パラメータK1n,K2n,zmnを変化させることで、曲率、母線方向長さ及び最大ドロップ量が異なる種々の負側クラウニング13bの輪郭線を表すことができる。同様に、式(20)は、Johns-Gohar曲線のような対数曲線からなるクラウニング曲線であって、原点Oから母線方向正側に所定距離(ap−K2pp)を隔てた位置を始点O2として母線方向正側に向かって形成され、曲率K1p、母線方向長さK2pp、および、最大ドロップ量zmpによって定められる正側クラウニング13cの輪郭線を表し、設計パラメータK1p,K2p,zmpを変化させることで、曲率、母線方向長さ及び最大ドロップ量が異なる種々の正側クラウニング13cの輪郭線を表すことができる。 From the above, equation (19) is a crowning curve formed of a logarithmic curve such as a Johns-Gohar curve, and is predetermined from the origin O taken at an arbitrary position on the bus bar of the cylindrical roller 13 to the negative side in the bus bar direction. distance (a n -K 2n a n) are formed toward the generatrix direction negative side as a position starting O 1 a that across the curvature K 1n, the generatrix direction length K 2n a n, and the maximum drop amount z mn It represents the contour line of the negative crowning 13b to be determined, and by changing the design parameters K 1n , K 2n , and z mn , the contour lines of various negative crowning 13b having different curvatures, generatrix lengths and maximum drop amounts can be obtained. Can be represented. Similarly, the equation (20) is a crowning curve formed of a logarithmic curve such as a Johns-Gohar curve, and a position separated from the origin O by a predetermined distance (a p −K 2p a p ) on the positive side in the bus line direction. Designed as a starting point O 2 , which represents the contour of the positive crowning 13c formed by the curvature K 1p , the bus direction length K 2p ap , and the maximum drop amount z mp . 1p, K 2p, by changing the z mp, may represent a curvature, the contour line of the generatrix direction length and the maximum drop amount differs various positive crowning 13c.

そして、式(19)における設計パラメータK1n,K2n,zmnと、式(20)における設計パラメータK1p,K2p,zmpの最適化を行なうと、エッジロードが発生しないようなクラウニング形状が得られる。かかる最適化は、数値的な最適化手法によって行なうことができる。数値的な最適化手法には、実行可能方向法やRosenbrock法などに代表される数理的手法、焼き鈍し法や遺伝的アルゴリズムなどの探索的手法がある。最適化の目的関数としては、軸受軌道輪の軌道面又はころ転動面に負荷される最大接触面圧、若しくは、転動疲労寿命などを使用することができる。 When the design parameters K 1n , K 2n , and z mn in the equation (19) and the design parameters K 1p , K 2p , and z mp in the equation (20) are optimized, the crowning shape that does not cause an edge load is generated. Is obtained. Such optimization can be performed by a numerical optimization technique. Numerical optimization methods include mathematical methods represented by feasible direction method and Rosenbrock method, and exploratory methods such as annealing method and genetic algorithm. As the objective function for optimization, the maximum contact surface pressure applied to the raceway surface or roller rolling surface of the bearing race or the rolling fatigue life can be used.

なお、式(19)における設計パラメータK1n,K2n,zmnの最適化と、式(20)における設計パラメータK1p,K2p,zmpの最適化は、それぞれ独立して行なってもよいし、相互に依存する形で同時に行なってもよい。 Note that the optimization of the design parameters K 1n , K 2n , and z mn in Expression (19) and the optimization of the design parameters K 1p , K 2p , and z mp in Expression (20) may be performed independently. However, they may be performed simultaneously in a mutually dependent manner.

ミスアライメント状態で使用される円筒ころ軸受の場合、有効接触部の両端部で接触面圧に差が生じやすくなることから、かかる円筒ころ軸受に形成されるクラウニングは、正負非線対称となる。正負非線対称のクラウニングは、負側クラウニング13b及び正側クラウニング13cの曲率、母線方向長さ及び最大ドロップ量のうち少なくともいずれかひとつが相違する。したがって、ミスアライメント状態で使用される円筒ころ軸受の場合は、式(19)における設計パラメータK1n,K2n,zmnと、式(20)における設計パラメータK1p,K2p,zmpの最適化を行なうと、K1n≠K1p,K2nn≠K2pp,zmn≠zmpのうち少なくともいずれかひとつを満たすことになる。 In the case of a cylindrical roller bearing used in a misaligned state, a difference in contact surface pressure is likely to occur at both ends of the effective contact portion, so that the crowning formed on the cylindrical roller bearing is a positive / negative non-linear symmetry. The positive / negative axisymmetric crowning is different in at least one of the curvature, the length in the busbar direction, and the maximum drop amount of the negative side crowning 13b and the positive side crowning 13c. Therefore, in the case of a cylindrical roller bearing used in a misaligned state, the optimum design parameters K 1n , K 2n , and z mn in equation (19) and the design parameters K 1p , K 2p , and z mp in equation (20) are used. Doing reduction, it will satisfy K 1n ≠ K 1p, K 2n a n ≠ K 2p a p, at least any one of z mn ≠ z mp.

図2では、正負非線対称のクラウニングとして、K1n≠K1p,K2nn≠K2pp,zmn≠zmpの全てを満たすものを示しているが、正負非線対称のクラウニングには、図2に示すもののほか、図4乃至図7に示すものもある。なお、図4乃至図7では、便宜上、原点Oを有効接触部の中央部Cから負側へオフセットした図2と同じy−z座標系を用いて正負非線対称のクラウニングを示している。 In Figure 2, a crowning of the positive and negative non-axisymmetric, K 1n ≠ K 1p, K 2n a n ≠ K 2p a p, while indicating shall meet all z mn ≠ z mp, crowning of positive and negative non-axisymmetric In addition to what is shown in FIG. 2, there are also those shown in FIGS. 4 to 7, for the sake of convenience, positive and negative axisymmetric crowning is shown using the same yz coordinate system as in FIG. 2 in which the origin O is offset from the center C of the effective contact portion to the negative side.

図4は負側クラウニング13bの始点O1及び正側クラウニング13cの始点O2を有効接触部の中央部Cにとった正負非線対称のフルクラウニングを、図5は負側クラウニング13bの始点O1及び正側クラウニング13cの始点O2を有効接触部の中央部Cから負側及び正側へ等距離オフセットした正負非線対称のカットクラウニングを例示している。 4 shows a positive and negative axisymmetric full crowning in which the starting point O 1 of the negative side crowning 13b and the starting point O 2 of the positive side crowning 13c are located at the center C of the effective contact portion, and FIG. 5 shows the starting point O of the negative side crowning 13b. It illustrates 1 and positive crowning 13c negative and cut crowning of positive and negative non-axisymmetric and equidistant offset to the positive side of the start point O 2 from the center C of the effective contact portion of.

図4及び図5の場合、負側クラウニング13bの母線方向長さymnと正側クラウニング13cの母線方向長さympが等しく、K2nn=K2ppを満たすことになる。この場合において、式(19)及び式(20)で表されるクラウニング曲線を正負非線対称にするためには、正負で曲率K1n,K1pを相違させるか、或いは正負で最大ドロップ量zmn,zmpを相違させることになる。すなわち、各図の実線で示す曲線のように、zmn=zmpを満たすときは、K1n≠K1pとすることで正負非線対称のクラウニングとなる。また、各図の破線で示す曲線のように、zmn≠zmpとすることによっても、正負非線対称のクラウニングとなる。各図の破線で示す曲線の場合は、K1n=K1pであってもK1n≠K1pであっても構わない。 In FIG. 4 and FIG. 5, the generatrix direction length y mp generatrix direction length y mn and the positive crowning 13c of negative crowning 13b is equal, it will satisfy the K 2n a n = K 2p a p. In this case, in order to make the crowning curves represented by the equations (19) and (20) positive and negative non-symmetrical, the curvatures K 1n and K 1p are made positive and negative, or the maximum drop amount z is positive and negative. mn and z mp are made different. In other words, when z mn = z mp is satisfied as shown by the solid line in each figure, positive and negative non-symmetrical crowning is obtained by setting K 1n ≠ K 1p . Further, as in the curves shown by broken lines in each figure, by setting z mn ≠ z mp , positive and negative axisymmetric crowning can be obtained. In the case of the curve shown by the broken line in each figure, K 1n = K 1p or K 1n ≠ K 1p may be satisfied.

図6は負側クラウニング13bの始点O1及び正側クラウニング13cの始点O2を有効接触部の中央部Cから母線方向一方側へオフセットした正負非線対称のフルクラウニングを、図7は負側クラウニング13bの始点O1及び正側クラウニング13cの始点O2を有効接触部の中央部Cから母線方向一方側へオフセットした正負非線対称のカットクラウニングを例示している。なお、図6では、始点O1,O2を原点Oにとり、図7では、始点O2を原点Oにとっている。 FIG. 6 shows positive and negative axisymmetric full crowning in which the starting point O 1 of the negative crowning 13b and the starting point O 2 of the positive crowning 13c are offset from the central part C of the effective contact portion to one side in the generatrix direction, and FIG. An example of positive and negative asymmetric cut crowning in which the start point O 1 of the crowning 13 b and the start point O 2 of the positive side crowning 13 c are offset from the central part C of the effective contact portion to one side in the generatrix direction is illustrated. In FIG. 6, the starting points O 1 and O 2 are set at the origin O, and the starting point O 2 is set at the origin O in FIG.

図6及び図7の場合、負側クラウニング13bの母線方向長さymnと正側クラウニング13cの母線方向長さympが相違しているので、K2nn≠K2ppを満たすことになる。したがって、図6及び図7の場合は、K1n≠K1p及び/又はzmn≠zmpを満たしても満たさなくても正負非線対称のクラウニングとなる。なお、図6の場合は、始点O1,O2を原点Oにとっているので、K2n=K2p=1となり、原点Oを有効接触部の中央部Cからオフセットした位置にとっているので、an≠apとなる。 In FIG. 6 and FIG. 7, the generatrix direction length y mp generatrix direction length y mn and the positive crowning 13c of negative crowning 13b is different, to meet the K 2n a n ≠ K 2p a p become. Therefore, in the case of FIG. 6 and FIG. 7, the positive and negative axisymmetric crowning is obtained whether or not K 1n ≠ K 1p and / or z mn ≠ z mp is satisfied. In the case of FIG. 6, since taking the starting point O 1, O 2 to the origin O, K 2n = K 2p = 1 , and the since taken a position offset from the center C of the effective contact portions origin O, a n ≠ a p .

ミスアライメント状態で使用される円筒ころ軸受に対する最適なクラウニング形状は、円筒ころ軸受の設計条件、特にミスアライメントの度合いによって異なる。式(19)及び式(20)によれば、図2及び図4乃至図7に示すように、正負非線対称のクラウニングとして多種類のものを表すことができるから、設計条件に応じた最適なクラウニング形状を求めることができる。したがって、本発明に係るころ軸受は、ミスアライメント状態での使用に最適となる。   The optimum crowning shape for a cylindrical roller bearing used in a misaligned state varies depending on the design conditions of the cylindrical roller bearing, particularly the degree of misalignment. According to the equations (19) and (20), as shown in FIG. 2 and FIGS. 4 to 7, many types can be represented as positive and negative axisymmetric crowning, so that the optimum according to the design conditions Can be obtained. Therefore, the roller bearing according to the present invention is optimal for use in a misaligned state.

以上、本発明の実施形態につき説明したが、本発明は上記実施形態に限定されることなく種々の変形が可能であって、例えば上記実施形態では、円筒ころ13にクラウニングを形成する場合を挙げて説明しているが、本発明は、内輪軌道面11aや外輪軌道面12aにクラウニングを形成する場合にも適用可能である。また、上記実施形態では、円筒ころ軸受を挙げて説明しているが、本発明は、円すいころ軸受などの他のころ軸受にも適用可能である。   As described above, the embodiment of the present invention has been described. However, the present invention is not limited to the above embodiment, and various modifications are possible. For example, in the above embodiment, the case where the crowning is formed on the cylindrical roller 13 is given. However, the present invention is also applicable to the case where the crowning is formed on the inner ring raceway surface 11a and the outer ring raceway surface 12a. In the above embodiment, the cylindrical roller bearing is described. However, the present invention can be applied to other roller bearings such as a tapered roller bearing.

本発明に係るころ軸受を円筒ころ軸受に適用した場合の一例を示す断面図である。It is sectional drawing which shows an example at the time of applying the roller bearing which concerns on this invention to a cylindrical roller bearing. 本発明に係るころ軸受のクラウニング形状の一例を示すy−z座標図である。It is a yz coordinate diagram which shows an example of the crowning shape of the roller bearing which concerns on this invention. 設計パラメータK1pを変化させたときの正側クラウニングの曲率変化の一例を示すy−z座標図である。It is a yz coordinate diagram which shows an example of the curvature change of the positive side crowning when the design parameter K1p is changed. 本発明に係るころ軸受のクラウニング形状の他の例を示すy−z座標図である。It is a yz coordinate diagram which shows the other example of the crowning shape of the roller bearing which concerns on this invention. 本発明に係るころ軸受のクラウニング形状の他の例を示すy−z座標図である。It is a yz coordinate diagram which shows the other example of the crowning shape of the roller bearing which concerns on this invention. 本発明に係るころ軸受のクラウニング形状の他の例を示すy−z座標図である。It is a yz coordinate diagram which shows the other example of the crowning shape of the roller bearing which concerns on this invention. 本発明に係るころ軸受のクラウニング形状の他の例を示すy−z座標図である。It is a yz coordinate diagram which shows the other example of the crowning shape of the roller bearing which concerns on this invention. 従来のクラウニング形状の一例を示すy−z座標図である。It is a yz coordinate diagram which shows an example of the conventional crowning shape.

符号の説明Explanation of symbols

11 内輪
11a 内輪軌道面
12 外輪
12a 外輪軌道面
13 ころ
13a ころ転動面
13b 負側クラウニング
13c 正側クラウニング
14 保持器
11 Inner ring 11a Inner ring raceway surface 12 Outer ring 12a Outer ring raceway surface 13 Roller 13a Roller rolling surface 13b Negative side crowning 13c Positive side crowning 14 Cage

Claims (1)

内輪軌道面、外輪軌道面又はころ転動面のうち少なくともひとつにクラウニングを形成したころ軸受において、内輪軌道面、外輪軌道面又はころ転動面の母線上に原点をとり、母線方向負側に向かって形成される負側クラウニングの軸線方向断面における輪郭線形状を式(I)で表される曲線とすると共に、母線方向正側に向かって形成される正側クラウニングの軸線方向断面における輪郭線形状を式(II)で表される曲線とし、K1n≠K1p,K2nn≠K2pp,zmn≠zmpのうち少なくともひとつを満たすように、式(I)における設計パラメータK1n,K2n,zmnと、式(II)における設計パラメータK1p,K2p,zmpを設定したことを特徴とするころ軸受;
但し、z(y)は、内輪軌道面、外輪軌道面又はころ転動面の母線方向位置yにおけるクラウニングのドロップ量、Qは荷重、Lは内輪又は外輪ところの有効接触部の長さ、E’は等価弾性係数、anは原点から有効接触部の負側端部までの母線方向長さ、apは原点から有効接触部の正側端部までの母線方向長さである。
Figure 0004429841

Figure 0004429841


In roller bearings with a crowning formed on at least one of the inner ring raceway surface, outer ring raceway surface or roller rolling surface, the origin is set on the generatrix of the inner ring raceway surface, outer ring raceway surface or roller rolling surface, and the negative direction in the busbar direction The contour shape in the axial section of the negative crowning formed toward the curve is represented by the formula (I), and the contour line in the axial section of the positive crowning formed toward the positive in the busbar direction the shape and the curve represented by the formula (II), K 1n ≠ K 1p, K 2n a n ≠ K 2p a p, so as to satisfy at least one of z mn ≠ z mp, design parameters in formula (I) Roller bearings characterized by setting K 1n , K 2n , z mn and design parameters K 1p , K 2p , z mp in the formula (II);
Where z (y) is the amount of crowning drop at the position y in the generatrix direction of the inner ring raceway surface, outer ring raceway surface or roller rolling surface, Q is the load, L is the length of the effective contact portion at the inner ring or outer ring, E 'equivalent modulus of elasticity is a n generatrix direction length to the negative end of the effective contact portion from the origin, it is a p a generatrix direction length to the positive end of the effective contact portion from the origin.
Figure 0004429841

Figure 0004429841


JP2004234775A 2004-08-11 2004-08-11 Roller bearing Expired - Lifetime JP4429841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004234775A JP4429841B2 (en) 2004-08-11 2004-08-11 Roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004234775A JP4429841B2 (en) 2004-08-11 2004-08-11 Roller bearing

Publications (2)

Publication Number Publication Date
JP2006052789A JP2006052789A (en) 2006-02-23
JP4429841B2 true JP4429841B2 (en) 2010-03-10

Family

ID=36030408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004234775A Expired - Lifetime JP4429841B2 (en) 2004-08-11 2004-08-11 Roller bearing

Country Status (1)

Country Link
JP (1) JP4429841B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10100875B2 (en) * 2016-07-26 2018-10-16 General Electric Company Roller bearing and systems including such

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327596A (en) * 2006-06-08 2007-12-20 Ntn Corp Roller and thrust roller bearing
JP6747355B2 (en) * 2017-03-30 2020-08-26 株式会社豊田自動織機 Centrifugal compressor
DE102018213951A1 (en) * 2018-08-17 2020-02-20 Thyssenkrupp Ag Rolling elements with asymmetrical roller profiling, rolling bearings, wind turbines and methods for the geometrical dimensioning of rolling elements
CN112747706B (en) * 2020-12-23 2022-09-23 中国航发哈尔滨轴承有限公司 Method for measuring numerical value of cylindrical roller outer diameter intermediate bus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0495318U (en) * 1991-01-14 1992-08-18
JPH08232960A (en) * 1995-02-28 1996-09-10 Ntn Corp Double row roller bearing for railway rolling stock
JP2000074075A (en) * 1998-06-19 2000-03-07 Nippon Seiko Kk Roller bearing
JP3731401B2 (en) * 1999-08-31 2006-01-05 日本精工株式会社 Roller bearing
JP2002327752A (en) * 2001-05-07 2002-11-15 Nsk Ltd Bearing device
JP2004176746A (en) * 2002-11-25 2004-06-24 Ntn Corp Double row tapered roller bearing unit for supporting wheel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10100875B2 (en) * 2016-07-26 2018-10-16 General Electric Company Roller bearing and systems including such

Also Published As

Publication number Publication date
JP2006052789A (en) 2006-02-23

Similar Documents

Publication Publication Date Title
US8858088B2 (en) Tapered roller bearing and method of designing the same
JP4429842B2 (en) Roller bearing
WO2008056563A1 (en) Designing method for roller bearing and crowning
EP1754901B1 (en) Tapered roller bearing with crowned rolling contact surfaces for the support of an automotive pinion shaft
JP6512264B2 (en) Cylindrical roller bearing
US9188160B2 (en) Configuration for a roller of a roller bearing
JP4980031B2 (en) Rolling bearing crowning design method
CN110502765A (en) A kind of modification method of tapered roller bearing and roller bearing
US8596873B2 (en) Ball roller bearing
JP4429841B2 (en) Roller bearing
EP2700834B1 (en) Rolling bearing with dynamic pressure generating grooves formed in a raceway of a bearing ring
CN110494664A (en) Tapered roller bearing
CN107563082B (en) Bearing parameter optimization method based on cylindrical roller bearing contact deformation and load distribution
CN107563081B (en) Parameter optimization method of high-speed hollow cylindrical roller bearing
JP5037094B2 (en) Roller bearing
JP2015059645A (en) Rolling bearing
US8480309B2 (en) Bearing cage durability improvement
JP2007211859A (en) Gear device
JP6539014B2 (en) Roller bearing
WO2024029300A1 (en) Roller bearing
JP2006064037A (en) Roller bearing
CN110043566B (en) Rolling bearing and bearing ring thereof
CN105593540B (en) Roller bearing with coronal/bow contact line
JP2005337420A (en) Tapered roller bearing
JP2001124089A (en) Cylindrical roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4429841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term