[go: up one dir, main page]

JP4545425B2 - Automatic ice machine - Google Patents

Automatic ice machine Download PDF

Info

Publication number
JP4545425B2
JP4545425B2 JP2003413834A JP2003413834A JP4545425B2 JP 4545425 B2 JP4545425 B2 JP 4545425B2 JP 2003413834 A JP2003413834 A JP 2003413834A JP 2003413834 A JP2003413834 A JP 2003413834A JP 4545425 B2 JP4545425 B2 JP 4545425B2
Authority
JP
Japan
Prior art keywords
ice making
ice
heaters
automatic
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003413834A
Other languages
Japanese (ja)
Other versions
JP2005172358A (en
Inventor
和弘 森
明彦 平野
誓 葵
教良 柏原
千美 鳥谷
智之 西尾
義則 田中
祐 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2003413834A priority Critical patent/JP4545425B2/en
Publication of JP2005172358A publication Critical patent/JP2005172358A/en
Application granted granted Critical
Publication of JP4545425B2 publication Critical patent/JP4545425B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Description

この発明は、製氷部に生成された氷塊を、通電発熱される加熱手段により製氷部から離脱させる自動製氷機に関するものである。   The present invention relates to an automatic ice making machine that causes ice blocks generated in an ice making unit to be separated from the ice making unit by heating means that generates heat.

多量の氷塊を自動的に製造する自動製氷機は、圧縮機や凝縮器等を備える冷凍系から導出した蒸発管を製氷部に配設し、この蒸発管に循環供給される冷媒により冷却される前記製氷部に製氷水を供給して氷塊を生成し、得られた氷塊を剥離して落下放出させるよう構成されている。この自動製氷機は、製氷水を所要量貯留するための製氷水タンクを備え、製氷運転に際してタンク中の製氷水を循環ポンプで圧送して製氷部に供給し、氷結するに至らなかった製氷水は前記タンク中に回収した後に、再び製氷部に向けて送り出すよう構成される。そして、製氷運転が継続して製氷水タンク中の水位が予め設定された所定の下位水位まで減少したことを検出装置が検出すると、製氷部での製氷が完了したものと判断して製氷運転から除氷運転に移行し、冷凍系の弁切換えにより圧縮機から吐出されるホットガスを前記蒸発管に供給すると共に、外部水道源からの水を製氷部に除氷水として散布供給して、氷塊と氷結面との融解を促進させるようになっている(例えば、特許文献1参照)。   An automatic ice maker that automatically manufactures a large amount of ice blocks is provided with an evaporation pipe derived from a refrigeration system including a compressor, a condenser, and the like in an ice making unit, and is cooled by a refrigerant that is circulated and supplied to the evaporation pipe. Ice making water is supplied to the ice making unit to generate ice blocks, and the obtained ice blocks are peeled off and released. This automatic ice maker is equipped with an ice making water tank for storing the required amount of ice making water. During ice making operation, the ice making water in the tank is pumped by a circulation pump and supplied to the ice making unit, and the ice making water that did not freeze. Is collected in the tank and then sent out again toward the ice making section. When the detection device detects that the ice making operation has continued and the water level in the ice making water tank has decreased to a predetermined lower water level set in advance, it is determined that ice making in the ice making unit has been completed and the ice making operation is started. Transition to deicing operation, supplying hot gas discharged from the compressor by switching the valve of the refrigeration system to the evaporation pipe, and spraying and supplying water from an external water source to the ice making unit as deicing water, It is designed to promote melting with the icing surface (see, for example, Patent Document 1).

前述したように、除氷運転に際してホットガスと除氷水とを併用している自動製氷機では、除氷運転が長くなり、単位時間の製氷能力には限界があった。また除氷水を用いるために消費水量が多くなり、ランニングコストが嵩む難点が指摘される。   As described above, in an automatic ice maker using both hot gas and deicing water during the deicing operation, the deicing operation becomes longer and the ice making capacity per unit time is limited. Moreover, since deicing water is used, the amount of water consumption increases and the running cost increases.

そこで、特許文献2に開示の技術を利用して、除氷運転に要する時間を短くする試みがなされている。すなわち、製氷板に電熱ヒータを配設し、除氷運転に際して該ヒータに通電して加熱することで、製氷板と氷塊との氷結面を融解することで該氷塊を製氷板から離脱させて除氷するものであり、この構成によれば除氷運転を短縮し得ると共に除氷水を不要とし得る。
実公平3−17187号公報 米国特許出願公開第2003−0155467号明細書
Thus, attempts have been made to shorten the time required for the deicing operation using the technique disclosed in Patent Document 2. That is, an electric heater is provided on the ice making plate, and the heater is energized and heated during the deicing operation to melt the ice formation surface between the ice making plate and the ice piece so that the ice piece is detached from the ice making plate and removed. With this configuration, the deicing operation can be shortened and deicing water can be dispensed with.
Japanese Utility Model Publication No. 3-17187 US Patent Application Publication No. 2003-0155467

ところで、前記自動製氷機では一度に多数の氷塊を製造するため、前記特許文献2に開示の技術を利用する場合、製氷板に生成した全ての氷塊を一度に除氷するには、極め大きな熱量が必要となる。このため、それに耐用し得るヒータや電線等の部品を採用する必要が生じ、自動製氷機の製造コストが増大してしまい、現実的でなくなる。   By the way, since the automatic ice maker produces a large number of ice blocks at once, when using the technique disclosed in Patent Document 2, an extremely large amount of heat is required to deice all the ice blocks generated on the ice making plate at once. Is required. For this reason, it is necessary to employ components such as heaters and electric wires that can be used for this, and the manufacturing cost of the automatic ice making machine increases, which is not practical.

すなわち本発明は、前述した従来の技術に内在している前記課題に鑑み、これを好適に解決するべく提案されたものであって、除氷に必要な熱量を抑え、短時間で効率的に除氷をなし得る自動製氷機を提供することを目的とする。   That is, the present invention has been proposed to solve this problem in view of the above-mentioned problems inherent in the prior art described above, and it is possible to efficiently reduce the amount of heat necessary for deicing and efficiently in a short time. An object is to provide an automatic ice making machine capable of deicing.

前記課題を克服し、所期の目的を好適に達成するため、本発明に係る自動製氷機は、
製氷部に蒸発器と電気的な加熱手段とを備え、製氷運転時には前記蒸発器に冷媒を循環供給して前記製氷部を冷却すると共に、該製氷部に製氷水を供給して氷塊を生成し、除氷運転時には前記加熱手段を通電発熱させて前記製氷部から氷塊を融解離脱させるよう構成した自動製氷機において、
前記製氷部は、金属板、絶縁層および前記加熱手段として金属シートのヒータを層状に重ね合わせた製氷部材として構成されると共に、
前記製氷部材は、前記金属板、絶縁層およびヒータの順となるように前記蒸発管に固定されて、前記ヒータが製氷面を形成していることを特徴とする。
In order to overcome the above-mentioned problems and achieve the desired purpose suitably, the automatic ice making machine according to the present invention is:
The ice making unit is provided with an evaporator and electric heating means, and during ice making operation, a refrigerant is circulated and supplied to the evaporator to cool the ice making unit, and ice making water is supplied to the ice making unit to generate ice blocks. In the automatic ice maker configured to melt and detach the ice block from the ice making unit by energizing the heating means during deicing operation,
The ice making unit is configured as an ice making member in which a metal plate, an insulating layer, and a heater of a metal sheet as a heating unit are layered,
The ice making member is fixed to the evaporation tube so that the metal plate, the insulating layer, and the heater are in this order, and the heater forms an ice making surface .

本発明に係る自動製氷機によれば、製氷部に複数の製氷領域を設けると共に、加熱手段を各製氷領域に独立して設けたことで、製氷部の製氷領域毎に氷塊を離脱させることができる。そして、前記各加熱手段毎に通電および通電停止を繰り返すことで、各製氷領域毎に順次氷塊を離脱させ、製氷部に生成した氷塊の一部を順次離脱させることができる。従って、除氷に要する熱量を抑制でき、高価なヒータや電線等の部品を採用する必要がなくなると共に、各部品が損傷するのも防止し得る。   According to the automatic ice making machine of the present invention, the ice making unit is provided with a plurality of ice making regions and the heating means is provided independently in each ice making region, so that the ice blocks can be separated for each ice making region of the ice making unit. it can. Then, by repeating energization and deenergization for each heating means, the ice blocks can be sequentially detached for each ice making region, and a part of the ice blocks generated in the ice making unit can be sequentially detached. Therefore, the amount of heat required for deicing can be suppressed, and it is not necessary to employ expensive parts such as heaters and electric wires, and damage to each part can be prevented.

次に、本発明に係る自動製氷機につき、好適な実施例を挙げて、添付図面を参照しながら以下説明する。   Next, an automatic ice making machine according to the present invention will be described below with reference to the accompanying drawings by way of preferred embodiments.

図1は、実施例に係る自動製氷機としての流下式自動製氷機の概略構成を示すものであって、製氷室内に略垂直に配設した製氷板(製氷部)10の裏面に、冷凍系13から導出して横方向に蛇行する蒸発管(蒸発器)14が密着固定され、製氷運転時に冷媒を循環させて製氷板10を強制冷却するよう構成される。この製氷板10の直下には、除氷運転により該製氷板10から融解離脱する氷塊Mを、斜め下方に配設したストッカ16に案内する案内板18が傾斜姿勢で配設されている。なお、この案内板18には多数の通孔(図示せず)が穿設されており、製氷運転に際し前記製氷板10の製氷面(前面)に供給された製氷水が、該案内板18の通孔を介して下方に位置する製氷水タンク20に回収貯留されるようになっている。   FIG. 1 shows a schematic configuration of a flow-down type automatic ice maker as an automatic ice maker according to an embodiment, and a refrigeration system is provided on the back surface of an ice making plate (ice making part) 10 arranged substantially vertically in an ice making chamber. An evaporating pipe (evaporator) 14, which is derived from 13 and meanders in the lateral direction, is closely fixed, and is configured to forcibly cool the ice making plate 10 by circulating a refrigerant during ice making operation. Immediately below the ice making plate 10, a guide plate 18 is provided in an inclined posture for guiding the ice mass M that is melted and separated from the ice making plate 10 by the deicing operation to the stocker 16 arranged obliquely below. The guide plate 18 has a number of through holes (not shown), and ice making water supplied to the ice making surface (front surface) of the ice making plate 10 during the ice making operation is provided on the guide plate 18. It is collected and stored in the ice making water tank 20 located below through the through hole.

前記製氷水タンク20から循環ポンプPMを介して導出した製氷水供給管22は、前記製氷板10の上方に設けた製氷水散布器24に接続している。この製氷水散布器24には多数の散水孔が穿設され、製氷運転時にタンク20からポンプ圧送される製氷水を、前記散水孔から前記製氷板10の氷結温度にまで冷却されている製氷面に散布流下させ、該製氷面に所要形状の氷塊Mを生成するようになっている。なお、図1に示すように前記製氷水タンク20の上方には、外部水源に接続された給水管26が臨んでおり、製氷運転に際して減少する製氷水タンク20内の水量に応じて給水管26のバルブWVを適宜開放し、当該製氷水タンク20に所定量の製氷水を貯留するよう構成される。   An ice making water supply pipe 22 led out from the ice making water tank 20 through a circulation pump PM is connected to an ice making water spreader 24 provided above the ice making plate 10. The ice making water spreader 24 has a large number of water sprinkling holes, and ice making water pumped from the tank 20 during ice making operation is cooled from the water sprinkling holes to the freezing temperature of the ice making plate 10. The ice mass M having a required shape is generated on the ice making surface. As shown in FIG. 1, a water supply pipe 26 connected to an external water source faces above the ice making water tank 20, and the water supply pipe 26 corresponds to the amount of water in the ice making water tank 20 that decreases during the ice making operation. The valve WV is appropriately opened and a predetermined amount of ice making water is stored in the ice making water tank 20.

図1に示す如く、前記冷凍系13において、圧縮機CMで圧縮された気化冷媒は、吐出管30を経て凝縮器32で凝縮液化し、膨張弁34で減圧され、前記蒸発管14に流入してここで一挙に膨張して蒸発し、前記製氷板10と熱交換を行なって、該製氷板10を氷点下にまで冷却させる。この蒸発管14で蒸発した気化冷媒は、吸入管36を経て圧縮機CMに帰還するサイクルを反復する。なお、図中の符号FMは、凝縮器32用の冷却ファンFMを示す。   As shown in FIG. 1, in the refrigeration system 13, the vaporized refrigerant compressed by the compressor CM is condensed and liquefied by the condenser 32 through the discharge pipe 30, depressurized by the expansion valve 34, and flows into the evaporation pipe 14. The ice making plate 10 expands and evaporates all at once, and heat exchange is performed with the ice making plate 10 to cool the ice making plate 10 to below the freezing point. The vaporized refrigerant evaporated in the evaporation pipe 14 repeats a cycle of returning to the compressor CM via the suction pipe 36. In addition, the code | symbol FM in a figure shows the cooling fan FM for the condenser 32. FIG.

前記製氷板10は、N個の製氷部材11を左右方向に隣接するよう配置されて構成されている(但し、「N」は2以上の整数)。各製氷部材11は、図2または図3に示す如く、上下方向に所定長さで延在して前記蒸発管14に固定される板状本体11aと、該板状本体11aの幅方向の両側において前方(蒸発管14から離間する方向)に折曲形成された一対の側板11b,11bとから横断面において略コ字状に形成されている。すなわち、前記板状本体11aと側板11b,11bとにより、氷塊Mを生成する製氷領域Aが画成される。ここで、前記各製氷部材11は、下方から上方に向かうにつれて前方に所定角度で傾斜するようになっている。また、前記両側板11b,11bは、互いに離間する方向に所定角度だけ傾斜するよう折り曲げられて、各製氷部材11が前記板状本体11aから各側板11bの前端部に向かうにつれて拡開している。更に、板状本体11aと各側板11bとの折曲部位は、所要半径で丸みを帯びた形状に形成されている。   The ice making plate 10 is configured by arranging N ice making members 11 adjacent to each other in the left-right direction (where “N” is an integer of 2 or more). As shown in FIG. 2 or FIG. 3, each ice making member 11 has a plate-like main body 11a extending in a vertical direction and fixed to the evaporation pipe 14, and both sides of the plate-like main body 11a in the width direction. , A pair of side plates 11b, 11b bent forward (in a direction away from the evaporation pipe 14) are formed in a substantially U shape in cross section. That is, the plate-shaped main body 11a and the side plates 11b and 11b define an ice making region A in which the ice block M is generated. Here, each of the ice making members 11 is inclined forward at a predetermined angle from the bottom to the top. Further, the side plates 11b, 11b are bent so as to be inclined at a predetermined angle in a direction away from each other, and each ice making member 11 expands from the plate-like main body 11a toward the front end portion of each side plate 11b. . Furthermore, the bent part of the plate-like main body 11a and each side plate 11b is formed in a rounded shape with a required radius.

また、前記各製氷部材11は、金属板12a、絶縁層12bおよび金属シートからなる第1〜第Nヒータ(加熱手段)H1〜HNを層状に重ね合わせて構成され、該ヒータH1〜HNが製氷面を形成しており、各ヒータH1〜HNを通電発熱させることで、氷塊Mの氷結面を融解させて自重により落下させるよう構成されている。すなわち、前記製氷板10には、複数のヒータH1〜HNが設けられている。なお、実施例では、前記金属板12aとしては、厚さ300μmのステンレス材(SUS304)を採用すると共に、前記絶縁層12bとしては、厚さ25μmの熱融着性のポリイミドフィルムを採用し、前記第1〜第NヒータH1〜HNとしては、厚さ38μmのステンレス材(SUS304)を採用している。また、前記各製氷部材11は、高温高圧条件下(例えば、4MPa、350℃)で、前記金属板12aと絶縁層12b、および絶縁層12bとヒータH1〜HNを夫々熱圧着して積層体に形成される。そして、図2または図3に示すように、前記蒸発管14に対して前記金属板12a、絶縁層12bおよびヒータH1〜HNの順となるよう該蒸発管14に各製氷部材11が固定されている。すなわち、製氷運転時には、前記各ヒータH1〜HNの表面(製氷面)に氷塊Mが生成されるようになっている。なお、ヒータH1〜HNは、氷塊Mが生成される必要最低限の単位に形成されていればよい。   Each of the ice making members 11 is configured by laminating first to Nth heaters (heating means) H1 to HN made of a metal plate 12a, an insulating layer 12b, and a metal sheet, and the heaters H1 to HN are made of ice. A surface is formed, and the heaters H1 to HN are energized to generate heat, thereby melting the icing surface of the ice block M and dropping it by its own weight. That is, the ice making plate 10 is provided with a plurality of heaters H1 to HN. In the embodiment, a stainless steel (SUS304) having a thickness of 300 μm is used as the metal plate 12a, and a heat-fusible polyimide film having a thickness of 25 μm is used as the insulating layer 12b. As the first to Nth heaters H1 to HN, a stainless material (SUS304) having a thickness of 38 μm is adopted. Each of the ice making members 11 is formed into a laminate by thermocompression bonding the metal plate 12a and the insulating layer 12b, and the insulating layer 12b and the heaters H1 to HN under high temperature and high pressure conditions (for example, 4 MPa, 350 ° C.). It is formed. Then, as shown in FIG. 2 or FIG. 3, each ice making member 11 is fixed to the evaporation pipe 14 so that the metal plate 12a, the insulating layer 12b, and the heaters H1 to HN are arranged in this order with respect to the evaporation pipe 14. Yes. That is, during the ice making operation, ice blocks M are generated on the surfaces (ice making surfaces) of the heaters H1 to HN. The heaters H <b> 1 to HN may be formed in the minimum necessary unit for generating the ice block M.

図4は、実施例に係る流下式自動製氷機のヒータH1〜HNの制御回路を示すものであって、電源から供給される交流電流をトランスTRで必要電圧に変換し、更にダイオードブリッジDBにより直流電流に変換するよう構成される。ダイオードブリッジDBには、スイッチSW、抵抗Rおよび充電用コンタクタCCが直列に接続されると共に、スイッチSWと充電用コンタクタCCとの間にキャパシタCAPが介挿されている。またスイッチSWと充電用コンタクタCCとの間には、第1放電用コンタクタDC1と直列接続される第1ヒータH1、第2放電用コンタクタDC2と直列接続される第2ヒータH2・・・第N放電用コンタクタDCNと直列接続される第NヒータHNが、夫々キャパシタCAPに対して並列の関係で接続されている。すなわち、前記第1〜第N放電用コンタクタDC1〜DCNを閉成することで、対応の第1〜第NヒータH1〜HNに通電して発熱させるようになっている。なお、スイッチSWとしては、ロータリースイッチや半導体スイッチ等の従来公知の各種スイッチを採用し得る。   FIG. 4 shows a control circuit for the heaters H1 to HN of the flow-down type automatic ice maker according to the embodiment. The AC current supplied from the power source is converted into a necessary voltage by the transformer TR, and further, by the diode bridge DB. It is configured to convert to direct current. A switch SW, a resistor R, and a charging contactor CC are connected in series to the diode bridge DB, and a capacitor CAP is interposed between the switch SW and the charging contactor CC. Further, between the switch SW and the charging contactor CC, a first heater H1 connected in series with the first discharging contactor DC1, a second heater H2 connected in series with the second discharging contactor DC2,... N An Nth heater HN connected in series with the discharge contactor DCN is connected in parallel with the capacitor CAP. That is, by closing the first to Nth discharge contactors DC1 to DCN, the corresponding first to Nth heaters H1 to HN are energized to generate heat. In addition, as switch SW, various conventionally well-known switches, such as a rotary switch and a semiconductor switch, can be employ | adopted.

ここで、前記第1〜第NヒータH1〜HNの夫々は、前述したN個の製氷部材11の夫々に独立して配設されており、各ヒータH1〜HNに通電することで、対応する製氷部材11のみを加熱し得るようになっている。なお、前記各製氷部材11は、前記金属板12aと各ヒータH1〜HNとの間に絶縁層12bを設けてあるから、所定のヒータH1〜HNに通電した際に、金属板12aや他のヒータH1〜HNに通電されることはない。   Here, each of the first to N-th heaters H1 to HN is independently provided for each of the N ice making members 11 described above, and responds by energizing each heater H1 to HN. Only the ice making member 11 can be heated. Since each ice making member 11 is provided with an insulating layer 12b between the metal plate 12a and the heaters H1 to HN, when the predetermined heaters H1 to HN are energized, the metal plate 12a and other The heaters H1 to HN are not energized.

すなわち、第1〜第N放電用コンタクタDC1〜DCNを開放した状態で、前記スイッチSWをONすると共に充電用コンタクタCCを閉成することで、キャパシタCAPに充電する。そして、充電用コンタクタCCを開放した状態で、第1〜第N放電用コンタクタDC1〜DCNの何れか1つのみを閉成することでキャパシタCAPが放電して対応する第1〜第NヒータH1〜HNに通電され、該ヒータH1〜HNを発熱させるよう構成されている。従って、キャパシタCAPに充電する毎に、選択する1つの放電用コンタクタDC1〜DCNを閉成して対応するヒータH1〜HNに通電することを順次繰り返すことで、製氷板10に設けた製氷部材11(製氷領域A)単位毎に除氷が行なわれる。   That is, the capacitor CAP is charged by turning on the switch SW and closing the charging contactor CC while the first to Nth discharging contactors DC1 to DCN are opened. Then, with the charging contactor CC open, only one of the first to Nth discharge contactors DC1 to DCN is closed to discharge the capacitor CAP, and the corresponding first to Nth heaters H1. -HN is energized to heat the heaters H1-HN. Accordingly, each time the capacitor CAP is charged, the selected one of the discharge contactors DC1 to DCN is closed and the corresponding heaters H1 to HN are sequentially energized, whereby the ice making member 11 provided on the ice making plate 10 is sequentially repeated. (Ice Making Area A) Deicing is performed for each unit.

〔実施例の作用〕
次に、前述した実施例に係る自動製氷機の作用について説明する。
(Effects of Example)
Next, the operation of the automatic ice maker according to the above-described embodiment will be described.

実施例に係る流下式自動製氷機の製氷運転を開始すると、前記各製氷部材11(製氷板10)は蒸発管14内を循環する冷媒と熱交換を行なって強制冷却され、前記製氷水タンク20から循環ポンプPMを介して製氷部材11の板状本体11a(ヒータH1〜HN)に供給される製氷水は徐々に氷結を始める。ここで、前記製氷水は、前記各製氷部材11の第1〜第NヒータH1〜HNの表面(製氷面)を流下するから、各ヒータH1〜HNの表面で製氷水が氷結して氷塊Mが生成される。なお、氷結することなく製氷面から落下する製氷水は、前記案内板18の通孔を介して製氷水タンク20に回収され、再び製氷板10に供給される。   When the ice making operation of the flow-down type automatic ice making machine according to the embodiment is started, each ice making member 11 (ice making plate 10) is forcibly cooled by exchanging heat with the refrigerant circulating in the evaporation pipe 14, and the ice making water tank 20 The ice making water supplied to the plate-like main body 11a (heaters H1 to HN) of the ice making member 11 through the circulation pump PM gradually starts to freeze. Here, since the ice making water flows down the surfaces (ice making surfaces) of the first to Nth heaters H1 to HN of the ice making members 11, the ice making water freezes on the surfaces of the heaters H1 to HN and ice blocks M are formed. Is generated. The ice making water falling from the ice making surface without freezing is collected in the ice making water tank 20 through the through hole of the guide plate 18 and supplied to the ice making plate 10 again.

図示しない製氷完了検知手段により製氷完了が検知されると、製氷運転を停止して除氷運転を開始する。除氷運転に移行すると、前記制御回路においてスイッチSWが閉成すると共に充電用コンタクタCCが閉成され、前記キャパシタCAPに充電される。そして、所定電圧まで充電されると、前記充電用コンタクタCCが開放される。次に、第1放電用コンタクタDC1が閉成し、キャパシタCAPに充電された電気が第1ヒータH1に通電されて、該第1ヒータH1が発熱する。ここで、前記第1放電用コンタクタDC1を閉成した際には、前記第1ヒータH1にキャパシタCAPに充電した電流が一気に通電し、該ヒータH1は瞬間的に発熱することになる。これにより、第1ヒータH1の表面に氷結している氷塊Mの界面が融解し、該氷塊Mが自重により離脱してストッカ16に貯留される。ここで、実施例では前記製氷部材11を金属板12a、絶縁層12bおよびヒータH1〜HNの3層構造体としてあるから、前記第1放電用コンタクタDC1を介して第1ヒータH1に通電した際に、金属板12aや他のヒータH2〜HNに通電されることはない。従って、第1ヒータH1に通電した際には、該第1ヒータH1に対応する製氷領域A(製氷部材11)に氷結した氷塊Mのみを融解離脱させ、他の製氷領域Aに氷結した氷塊Mが融解離脱することはない。 When completion of ice making is detected by an ice making completion detection means (not shown), the ice making operation is stopped and the deicing operation is started. When the deicing operation is started, the switch SW is closed in the control circuit, the charging contactor CC is closed, and the capacitor CAP is charged. Then, when charged to a predetermined voltage, the charging contactor CC is opened. Next, the first discharge contactor DC 1 is closed, and the electricity charged in the capacitor CAP is energized to the first heater H1, and the first heater H1 generates heat. Here, when the first discharge contactor DC1 is closed, the current charged in the capacitor CAP is supplied to the first heater H1 at once, and the heater H1 generates heat instantaneously. As a result, the interface of the ice block M frozen on the surface of the first heater H1 is melted, and the ice block M is detached by its own weight and stored in the stocker 16. Here, in the embodiment, since the ice making member 11 has a three-layer structure of the metal plate 12a, the insulating layer 12b, and the heaters H1 to HN, when the first heater H1 is energized through the first discharge contactor DC1. In addition, the metal plate 12a and the other heaters H2 to HN are not energized. Therefore, when the first heater H1 is energized, only the ice mass M frozen in the ice making area A (ice making member 11) corresponding to the first heater H1 is melted and separated, and the ice mass M frozen in another ice making area A is obtained. Does not melt away.

そして、前記第1ヒータH1に対応する製氷領域Aの製氷部材11から完全に氷塊Mが落下したことを、図示しない除氷完了検知手段が検知すると、前記第1放電用コンタクタDC1が開放される。なお、製氷部材11と氷塊Mとの氷結面の温度が0℃以上となれば氷塊Mが離脱するから、除氷完了検知手段として製氷面の温度を検知する手段を採用すれば、安定した除氷制御が可能となる。次いで前記充電用コンタクタCCが閉成されてキャパシタCAPに再び充電されて、前述と同様に所定電圧まで充電されると該充電用コンタクタCCが開放されて充電が完了する。次に、第2放電用コンタクタDC2が閉成し、キャパシタCAPに充電された電気を第2ヒータH2に流し、該第2ヒータH2を加熱して対応の製氷領域Aから氷塊Mを融解離脱させてストッカ16に貯留する。このように、キャパシタCAPに充電した電気を、第NヒータHNまで順に通電および通電停止して、対応する製氷領域Aから氷塊Mが離脱したのを除氷完了検知手段が検知すると、除氷運転を終了して製氷運転に移行させる。   When the deicing completion detection means (not shown) detects that the ice block M has completely dropped from the ice making member 11 in the ice making region A corresponding to the first heater H1, the first discharge contactor DC1 is opened. . In addition, since the ice mass M is detached when the temperature of the icing surface between the ice making member 11 and the ice mass M becomes 0 ° C. or higher, if the means for detecting the temperature of the ice making surface is adopted as the deicing completion detection means, stable removal is possible. Ice control is possible. Next, the charging contactor CC is closed and the capacitor CAP is charged again. When the charging contactor CC is charged to a predetermined voltage as described above, the charging contactor CC is opened and charging is completed. Next, the second discharge contactor DC2 is closed, the electricity charged in the capacitor CAP is supplied to the second heater H2, and the second heater H2 is heated to melt and separate the ice block M from the corresponding ice making region A. And stored in the stocker 16. In this way, when the de-icing completion detecting means detects that the ice mass M is detached from the corresponding ice making region A by sequentially energizing and stopping the electricity charged in the capacitor CAP up to the Nth heater HN, the deicing operation is performed. To finish the ice making operation.

このように、前記製氷板10を独立した複数の製氷部材11から構成し、夫々の製氷部材11に製氷領域Aを画成すると共に、製氷領域A(製氷部材11)毎に独立して第1〜第NヒータH1〜HNを設けたことで、製氷運転により、全ての製氷部材11に一度に氷塊Mを生成した場合でも、特定の製氷領域A(製氷部材11)に氷結した氷塊Mだけを融解離脱させることが可能となる。すなわち、所定製氷領域Aに対応するヒータH1〜HNのみに通電して発熱させて氷塊Mを離脱させ、その後に順次別の製氷領域Aに対応するヒータH1〜HNに通電するようにしたことで、1つの製氷領域Aから氷塊Mを融解離脱させるのに要する熱量を抑制し得る。このため、ヒータH1〜HNや配線、放電用コンタクタDC1〜DCN等の部品に特別な耐熱性が要求されることはなく、製氷機のコストを低減し得る。更に、各ヒータH1〜HNに通電して発熱させて氷塊Mを融解離脱させることで、除氷運転を短縮し得ると共に除氷水が不要となるから、ランニングコストを低減し得ると共に、単位時間当たりの氷塊Mの製造量を増大させることができ、製氷機の製氷能力を向上させ得る利点がある。また、前記ヒータH1〜HN上に直接氷塊Mを生成させるようにしたことで、該ヒータH1〜HNを通電発熱させた際に氷塊Mを短時間で融解離脱することが可能となる。   In this way, the ice making plate 10 is composed of a plurality of independent ice making members 11, and the ice making regions A are defined in the respective ice making members 11, and the first ice making region A (ice making member 11) is independently provided for each first ice making region A. -By providing the Nth heaters H1 to HN, even when ice blocks M are generated on all the ice making members 11 at once by the ice making operation, only ice blocks M frozen in a specific ice making region A (ice making member 11) are provided. It can be melted and separated. In other words, only the heaters H1 to HN corresponding to the predetermined ice making region A are energized to generate heat and the ice block M is detached, and then the heaters H1 to HN corresponding to the other ice making regions A are sequentially energized. The amount of heat required to melt and separate the ice block M from one ice making region A can be suppressed. For this reason, special heat resistance is not requested | required of components, such as heaters H1-HN, wiring, and discharge contactors DC1-DCN, and the cost of an ice making machine can be reduced. Furthermore, since the ice blocks M can be melted and separated by energizing the heaters H1 to HN to generate heat, the deicing operation can be shortened and no deicing water is required, so that the running cost can be reduced and the per unit time. The production amount of the ice block M can be increased, and the ice making capacity of the ice making machine can be improved. In addition, since the ice blocks M are generated directly on the heaters H1 to HN, the ice blocks M can be melted and detached in a short time when the heaters H1 to HN are energized and heated.

また、除氷運転時には、前記各ヒータH1〜HNを瞬間的に発熱させて、氷塊Mにおける各ヒータH1〜HNとの界面のみを融解するようにしたから、除氷時において氷塊Mの内部温度を低いまま製氷領域Aから短時間で離脱し得る。従って、氷塊Mを低温のままストッカ16に貯氷することが可能である。ちなみに、除氷時間が長時間掛かると、氷塊MにおけるヒータH1〜HNとの界面以外の部位も融解し、ストッカ16内で再氷結して変形した氷塊Mが形成される畏れもあるが、実施例の流下式自動製氷機では氷塊Mの界面のみが融解するから、このような不具合が生ずるのは防止される。   In addition, during the deicing operation, the heaters H1 to HN are instantaneously heated to melt only the interfaces of the ice blocks M with the heaters H1 to HN. Can be removed from the ice making area A in a short time. Therefore, the ice block M can be stored in the stocker 16 at a low temperature. By the way, if the deicing time takes a long time, the part of the ice block M other than the interface with the heaters H1 to HN is melted, and the ice block M may be deformed by re-freezing in the stocker 16. In the flow-down type automatic ice maker of the example, since only the interface of the ice block M melts, such a problem is prevented from occurring.

ところで、前述のように、氷塊Mの内部温度が低いまま製氷領域Aから離脱した場合には、製氷部材11(ヒータH1〜HN)の表面から一旦離脱した氷塊Mが、その落下途中で製氷部材11(ヒータH1〜HN)の表面に再氷結する可能性がある。そこで、実施例の流下式自動製氷機では、各製氷部材11を下方から上方に向かうにつれて前方に向けて傾斜するよう配置してあるから、製氷部材11(ヒータH1〜HN)の表面から一旦離脱した氷塊Mは、落下するにつれて製氷部材11から離間することになり、再び製氷部材11(ヒータH1〜HN)の表面に氷結するのは防止される。また、前記各製氷部材11における前記両側板11b,11bを、前方に向かうにつれて離間するよう構成してあるから、氷塊Mは、落下するにつれて各側板11b,11bからも離間し、該氷塊Mが側板11b,11bに氷結するのも防止し得る。更に、側板11b,11bの板状本体11aとの折曲部位を、丸みを帯びた形状に形成したことで、氷塊Mの界面が融解した際に、該氷塊Mを製氷部材11(ヒータH1〜HN)の表面から速やかに離脱させることができる。   By the way, as described above, when the ice block M leaves the ice making region A while the internal temperature of the ice block M is low, the ice block M once detached from the surface of the ice making member 11 (heaters H1 to HN) 11 (heaters H1 to HN) may refreeze. Therefore, in the flow-down type automatic ice maker according to the embodiment, each ice making member 11 is arranged so as to incline forward as it goes from below to above, so that it temporarily leaves the surface of the ice making member 11 (heaters H1 to HN). The ice block M is separated from the ice making member 11 as it falls and is prevented from freezing on the surface of the ice making member 11 (heaters H1 to HN) again. Further, since the both side plates 11b and 11b in each ice making member 11 are configured to be separated from each other toward the front, the ice mass M is also separated from the side plates 11b and 11b as it falls, and the ice mass M is It is possible to prevent the side plates 11b and 11b from freezing. Further, by forming the bent portions of the side plates 11b and 11b with the plate-like main body 11a in a rounded shape, when the interface of the ice block M is melted, the ice block M is formed into the ice making member 11 (heaters H1 to H1). HN) can be quickly detached from the surface.

〔実施例の変更例〕
なお、本発明に係る自動製氷機としては、前述した実施例のものに限られるものではなく、種々の変更が可能である。例えば、実施例では、1つの製氷部材から氷塊を離脱させた後に、次の製氷部材から氷塊を離脱させるよう構成したが、複数の製氷部材を1つの製氷領域の単位として、この単位毎に氷塊を離脱させるようにすることも可能である。また、実施例では、製氷領域毎に配設した加熱手段を個別に通電および通電停止を制御するようにしたが、該加熱手段を所要のグループ単位毎に通電および通電停止の制御を行なうことで、その通電制御のなされた加熱手段に対応する製氷領域の氷塊を融解離脱させることもできる。そして、実施例では製氷部として複数の製氷部材から構成し、各製氷部材に製氷領域を画成するようにしたが、図5(a)に示すように、単一の板部材からなる製氷部10を複数回折り曲げ形成することで複数の製氷領域Aを設けるようにしたり、図5(b)に示すように、板部材からなる製氷部10に複数の壁部材38を幅方向に離間して平行に立設することで複数の製氷領域Aを設けて、各製氷領域Aに独立して加熱手段H1〜HNを設けるようにしてもよい。
[Modification of Example]
The automatic ice making machine according to the present invention is not limited to the above-described embodiment, and various modifications can be made. For example, in the embodiment, the ice block is separated from one ice making member and then the next ice making member is separated from the next ice making member. It is also possible to cause the to leave. In the embodiment, the heating means arranged for each ice making region is individually controlled to be energized and stopped. However, the heating means is controlled to be energized and deenergized for each required group unit. The ice blocks in the ice making region corresponding to the heating means for which the energization is controlled can be melted and separated. In the embodiment, the ice making unit is composed of a plurality of ice making members and each ice making member defines an ice making region. However, as shown in FIG. 5 (a), the ice making unit made of a single plate member is used. A plurality of ice making regions A can be provided by bending and bending a plurality of walls 10, or, as shown in FIG. 5 (b), a plurality of wall members 38 are spaced apart in the width direction in the ice making portion 10 made of a plate member. A plurality of ice making regions A may be provided by standing in parallel, and heating means H1 to HN may be provided independently for each ice making region A.

また、実施例では、除氷運転に際して、1つの製氷領域から氷塊を離脱させ、次いでその他の製氷領域から氷塊を離脱させて、全ての製氷領域から氷塊を離脱させた後に製氷運転に切り替わるようにしたが、除氷の終わった製氷領域から順に氷塊を生成させるようにしてもよい。更に、製氷室を外部から視認し得るよう構成するようにしてもよく、この場合には、製氷室を観察している観察者に対して、製氷運転と除氷運転という相反する工程を一度に行なうことへの不思議さを与えると共に、所定順序に氷塊が離脱することへ歓心が得られるという、ディスプレイ効果が得られる利点がある。このとき、通電する加熱手段をランダムに制御した場合には、ランダムに製氷領域から氷塊が離脱するから、観察者に対しては、次に離脱する氷塊に対する関心が呼び起こされる利点がある。   Further, in the embodiment, at the time of the deicing operation, the ice blocks are separated from one ice making region, then the ice blocks are separated from the other ice making regions, and after the ice blocks are separated from all the ice making regions, the ice making operation is switched. However, ice blocks may be generated in order from the ice making region where the deicing has been completed. Furthermore, the ice making chamber may be configured to be visible from the outside. In this case, the contradictory steps of the ice making operation and the deicing operation are performed at a time for an observer observing the ice making chamber. There is an advantage that a display effect can be obtained that gives a wonder to what to do and also gives joy to detaching the ice blocks in a predetermined order. At this time, if the heating means to be energized is controlled at random, the ice mass randomly leaves the ice making region, and thus there is an advantage that the observer is interested in the next ice mass to be detached.

なお、実施例の製氷機では、製氷部を所定角度だけ前方に傾斜するよう構成したが、垂着となるよう製氷部を配設することも可能である。この場合には、加熱手段に通電する時間を長く設定して、一旦製氷部から離脱した氷塊が落下途中で製氷部に再び氷結しないようにすればよい。また、同様の理由により、製氷部における板状本体と側板とが前端部に向かうにつれて拡開する構成、および板状本体と側板との折曲部位を所要半径で丸みを帯びた形状に形成する構成に限られるものではない。なお、本発明を実施する自動製氷機として、流下式自動製氷機を挙げたが、これに限られるものではなく、製氷部に画成した製氷小室に製氷水を供給して氷塊を形成するタイプのものであってもよく、製氷部に複数の製氷領域を設けると共に、加熱手段を各製氷領域に独立して設けるよう構成すれば、従来公知の各種自動製氷機であってもよい。   In the ice making machine of the embodiment, the ice making part is inclined forward by a predetermined angle. However, the ice making part can be arranged so as to be drooped. In this case, it is only necessary to set a long time for energizing the heating means so that the ice lump once detached from the ice making unit does not freeze again on the ice making unit during the fall. For the same reason, the plate-like main body and the side plate in the ice making part are widened toward the front end, and the bent portion of the plate-like main body and the side plate is formed in a rounded shape with a required radius. It is not limited to the configuration. As the automatic ice maker for carrying out the present invention, a flow-down type automatic ice maker was mentioned, but the present invention is not limited to this, and a type that forms ice blocks by supplying ice making water to an ice making chamber defined in an ice making unit. If the ice making unit is provided with a plurality of ice making regions and the heating means is provided independently in each ice making region, various types of conventionally known automatic ice making machines may be used.

本発明の実施例に係る流下式自動製氷機の概略構成図である。1 is a schematic configuration diagram of a flow-down type automatic ice making machine according to an embodiment of the present invention. 実施例に係る流下式自動製氷機の製氷部を示す縦断側面図である。It is a vertical side view which shows the ice making part of the flow-down type automatic ice making machine which concerns on an Example. 実施例に係る流下式自動製氷機の製氷部を示す横断平面図である。It is a cross-sectional top view which shows the ice making part of the flow-down type automatic ice making machine which concerns on an Example. 実施例に係る流下式自動製氷機のヒータの制御回路を示す概略回路図である。It is a schematic circuit diagram which shows the control circuit of the heater of the flow-down type automatic ice maker which concerns on an Example. 変更例に係る流下式自動製氷機の製氷部を示す横断平面図であって、(a)は単一の板部材からなる製氷部を複数回折り曲げ形成して複数の製氷領域を画成したものを示し、(b)は板部材に壁部材を立設して複数の製氷領域を画成したものを示す。It is a cross-sectional plan view showing an ice making part of a flow-down type automatic ice making machine according to a modified example, and (a) shows a plurality of ice making regions formed by bending a plurality of ice making parts made of a single plate member. (B) shows a structure in which a wall member is erected on a plate member to define a plurality of ice making regions.

符号の説明Explanation of symbols

10 製氷板(製氷部),11 製氷部材,14 蒸発管(蒸発器)
A 製氷領域,H1〜HN ヒータ(加熱手段),M 氷塊
10 ice making plate (ice making part), 11 ice making member, 14 evaporation pipe (evaporator)
A ice making area, H1-HN heater (heating means), M ice block

Claims (4)

製氷部(10)に蒸発器(14)と電気的な加熱手段(H1〜HN)とを備え、製氷運転時には前記蒸発器(14)に冷媒を循環供給して前記製氷部(10)を冷却すると共に、該製氷部(10)に製氷水を供給して氷塊(M)を生成し、除氷運転時には前記加熱手段(H1〜HN)を通電発熱させて前記製氷部(10)から氷塊(M)を融解離脱させるよう構成した自動製氷機において、
前記製氷部(10)は、金属板(12a)、絶縁層(12b)および前記加熱手段として金属シートのヒータ(H1〜HN)を層状に重ね合わせた製氷部材(11)として構成されると共に、
前記製氷部材(11)は、前記金属板(12a)、絶縁層(12b)およびヒータ(H1〜HN)の順となるように前記蒸発管(14)に固定されて、前記ヒータ(H1〜HN)が製氷面を形成している
ことを特徴とする自動製氷機。
The ice making unit (10) is provided with an evaporator (14) and electric heating means (H1 to HN), and during ice making operation, a refrigerant is circulated and supplied to the evaporator (14) to cool the ice making unit (10). In addition, ice making water is supplied to the ice making section (10) to generate ice blocks (M), and during the deicing operation, the heating means (H1 to HN) are energized to generate heat and ice blocks (10) from the ice making section (10) ( In an automatic ice maker configured to melt and detach M),
The ice making section (10) is configured as an ice making member (11) in which metal plates (12a), an insulating layer (12b) and metal sheet heaters (H1 to HN) are stacked in layers as the heating means,
The ice making member (11) is fixed to the evaporation pipe (14) in the order of the metal plate (12a), the insulating layer (12b) and the heater (H1 to HN), and the heater (H1 to HN). ) Forms an ice making surface . An automatic ice making machine.
前記製氷部(10)に複数の製氷領域(A)を設けると共に、前記夫々の製氷領域(A)に対応して前記ヒータ(H1〜HN)を独立して設けたThe ice making unit (10) is provided with a plurality of ice making regions (A), and the heaters (H1 to HN) are provided independently corresponding to the respective ice making regions (A).
ことを特徴とする請求項1記載の自動製氷機。The automatic ice maker according to claim 1, wherein:
前記製氷部(10)は、上下方向に延在すると共に、左右方向に複数列隣接するよう配置された複数の製氷部材(11)からなり、各製氷部材(11)毎に前記製氷領域(A)が形成されると共に、各製氷部材(11)に前記ヒータ(H1〜HN)が独立して設けられ、製氷運転時には前記ヒータ(H1〜HN)上に前記氷塊(M)が生成するよう構成されている請求項1記載の自動製氷機。 The ice making part (10) includes a plurality of ice making members (11) that extend in the vertical direction and are arranged adjacent to each other in a plurality of rows in the left-right direction, and each ice making member (11) has the ice making region (A ) And the heaters (H1 to HN) are provided independently on each ice making member (11), and the ice blocks (M) are generated on the heaters (H1 to HN) during ice making operation. The automatic ice maker according to claim 1. 記製氷部(10)に複数の前記ヒータ(H1〜HN)を設け、
前記夫々のヒータ(H1〜HN)を、個別または所要のグループ単位毎に通電および通電停止の制御を行なうようにした
ことを特徴とする請求項1記載の自動製氷機。
A plurality of said heaters (H1 to HN) before Symbol ice making unit (10),
2. The automatic ice making machine according to claim 1, wherein the heaters (H1 to HN) are controlled to be energized and de-energized individually or for each required group unit.
JP2003413834A 2003-12-11 2003-12-11 Automatic ice machine Expired - Fee Related JP4545425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003413834A JP4545425B2 (en) 2003-12-11 2003-12-11 Automatic ice machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003413834A JP4545425B2 (en) 2003-12-11 2003-12-11 Automatic ice machine

Publications (2)

Publication Number Publication Date
JP2005172358A JP2005172358A (en) 2005-06-30
JP4545425B2 true JP4545425B2 (en) 2010-09-15

Family

ID=34733853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003413834A Expired - Fee Related JP4545425B2 (en) 2003-12-11 2003-12-11 Automatic ice machine

Country Status (1)

Country Link
JP (1) JP4545425B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102676672B1 (en) 2018-11-19 2024-06-20 엘지전자 주식회사 Ice maker and refrigerator

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS437489Y1 (en) * 1966-11-21 1968-04-03
JPS5694459U (en) * 1979-12-20 1981-07-27
JPS6241566A (en) * 1985-08-13 1987-02-23 ホシザキ電機株式会社 Water pan structure of automatic ice machine and conduction control system thereof
JPH0317187Y2 (en) * 1985-09-04 1991-04-11
JPH0229575A (en) * 1989-06-05 1990-01-31 Fuji Electric Co Ltd running water ice maker
JPH0827115B2 (en) * 1990-07-30 1996-03-21 株式会社大林組 Blocking Prevention Method for Downflow Ice Machine
JPH07104088B2 (en) * 1991-03-01 1995-11-13 株式会社荏原製作所 Ice storage device for ice heat storage
JPH11201601A (en) * 1998-01-07 1999-07-30 Hitachi Ltd Thermal storage system
JPH11248317A (en) * 1998-03-03 1999-09-14 Hoshizaki Electric Co Ltd Operation control method for ice maker
JP3708746B2 (en) * 1999-04-15 2005-10-19 株式会社 日立インダストリイズ Ice making device for ice heat storage
JP2002022190A (en) * 2000-07-10 2002-01-23 Sekisui Chem Co Ltd Heated floor and control method thereof
US6541310B1 (en) * 2000-07-24 2003-04-01 Siliconware Precision Industries Co., Ltd. Method of fabricating a thin and fine ball-grid array package with embedded heat spreader

Also Published As

Publication number Publication date
JP2005172358A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
US7444829B2 (en) Automatic ice making machine
JP5008675B2 (en) Automatic ice maker and its operating method
US7540161B2 (en) Ice making machine, method and evaporator assemblies
US4366679A (en) Evaporator plate for ice cube making apparatus
JPWO2008026292A1 (en) Flowing ice machine
US20080216490A1 (en) Operation method for automatic ice maker
JP2005201545A (en) Multiple ice-making determining method of automatic ice maker, and operation method
JP2005180823A (en) Automatic ice making machine
JPH024185A (en) Promotion of ice making in automatic ice making machine
JP2005180824A (en) Automatic ice making machine
JP2006010181A (en) Deicing operation method of automatic ice making machine
JP4545425B2 (en) Automatic ice machine
JP5052201B2 (en) Automatic ice maker and operation method of automatic ice maker
WO2011004702A1 (en) Ice making machine
JP2008057862A (en) Ice making machine
JP2006090691A (en) Operating method for flow down type ice maker
JP2006052879A (en) Method of operating automatic ice making machine
JP4644513B2 (en) Automatic ice machine
JP4644520B2 (en) Automatic ice machine
JP2001004255A (en) Automatic ice maker and operating method thereof
JP3412677B2 (en) How to operate an automatic ice maker
JP7161946B2 (en) automatic ice machine
JPH11248321A (en) Operation control method for automatic ice maker
JP2003194444A (en) Automatic ice making machine
JPH07293949A (en) Cooler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees