[go: up one dir, main page]

JP4582150B2 - Surface acoustic wave device and module device or oscillation circuit using the same - Google Patents

Surface acoustic wave device and module device or oscillation circuit using the same Download PDF

Info

Publication number
JP4582150B2
JP4582150B2 JP2008004113A JP2008004113A JP4582150B2 JP 4582150 B2 JP4582150 B2 JP 4582150B2 JP 2008004113 A JP2008004113 A JP 2008004113A JP 2008004113 A JP2008004113 A JP 2008004113A JP 4582150 B2 JP4582150 B2 JP 4582150B2
Authority
JP
Japan
Prior art keywords
axis
crystal
surface acoustic
acoustic wave
idt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008004113A
Other languages
Japanese (ja)
Other versions
JP2008099339A (en
Inventor
孝夫 森田
卓弥 大脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Epson Toyocom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epson Toyocom Corp filed Critical Epson Toyocom Corp
Priority to JP2008004113A priority Critical patent/JP4582150B2/en
Publication of JP2008099339A publication Critical patent/JP2008099339A/en
Application granted granted Critical
Publication of JP4582150B2 publication Critical patent/JP4582150B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

本発明は、水晶基板を用いた弾性表面波デバイスにおいて、容量比を小さくし、周波数
制御性を高めた弾性表面波デバイスに関する。
The present invention relates to a surface acoustic wave device using a quartz substrate and having a reduced capacitance ratio and improved frequency controllability.

近年、弾性表面波(Surface Acoustic Wave:以下、SAW)デバイスは移動体通信用
端末や車載用機器等の部品として幅広く利用され、小型であること、Q値が高いこと、周
波数温度特性が優れていること等が強く要求されている。
In recent years, surface acoustic wave (SAW) devices have been widely used as components for mobile communication terminals and in-vehicle devices, and are small in size, high in Q value, and excellent in frequency temperature characteristics. There is a strong demand for it.

これらの要求を実現するSAWデバイスとして、STカット水晶基板を用いたSAWデ
バイスがある。STカット水晶基板は結晶X軸を回転軸としてXZ面を結晶Z軸より反時
計方向に42.75°回転した面(XZ'面)を持つ水晶板のカット名であり、結晶X軸
方向に伝搬するレイリー波と呼ばれる(P+SV)波であるSAW(以下、STカット水
晶SAWと称す)を利用する。STカット水晶SAWデバイスの用途は、発振素子として
用いられるSAW共振子や、移動体通信端末のRF段とIC間に配置されるIF用フィル
タなど幅広く存在する。
As a SAW device that realizes these requirements, there is a SAW device using an ST cut quartz substrate. The ST cut quartz substrate is a cut name of a quartz plate having a plane (XZ ′ plane) obtained by rotating the XZ plane by 42.75 ° counterclockwise from the crystal Z axis with the crystal X axis as the rotation axis. A SAW which is a (P + SV) wave called a propagating Rayleigh wave (hereinafter referred to as ST cut quartz SAW) is used. ST-cut quartz SAW devices have a wide range of applications, such as SAW resonators used as oscillation elements and IF filters arranged between the RF stage and the IC of mobile communication terminals.

STカット水晶SAWデバイスが小型でQ値の高いデバイスを実現できる理由として、
SAWの反射を効率良く利用できる点が挙げられる。以下、図11に示すSTカット水晶
SAW共振子を例に説明する。該STカット水晶SAW共振子は、STカット水晶基板1
01上にそれぞれ互いに間挿し合う複数本の電極指を有するくし形電極(以下、IDTと
称す)102を配置し、該IDT102の両側にSAWを反射する為のグレーティング反
射器103a、103bを配置した構造である。STカット水晶SAWは圧電基板の表面
に沿って伝搬する波であるので、グレーティング反射器103a、103bにより効率良
く反射され、SAWのエネルギーをIDT102内に十分閉じ込めることができるので、
小型で且つQ値の高いデバイスが得られる。
The reason why ST-cut quartz SAW devices can realize small devices with high Q values is as follows:
The point which can utilize the reflection of SAW efficiently is mentioned. Hereinafter, the ST cut quartz SAW resonator shown in FIG. 11 will be described as an example. The ST-cut quartz SAW resonator is formed of an ST-cut quartz substrate 1
A comb-shaped electrode (hereinafter referred to as IDT) 102 having a plurality of electrode fingers that are interleaved with each other is disposed on 01, and grating reflectors 103a and 103b for reflecting SAW are disposed on both sides of IDT 102. It is a structure. Since the ST cut quartz SAW is a wave propagating along the surface of the piezoelectric substrate, it is efficiently reflected by the grating reflectors 103a and 103b, and the SAW energy can be sufficiently confined in the IDT 102.
A small device with a high Q value can be obtained.

更に、SAWデバイスを使用する上で重要な要素に周波数温度特性がある。上述のST
カット水晶SAWにおいては、周波数温度特性の1次温度係数が零であり、その特性は2
次曲線で表され、頂点温度を使用温度範囲の中心に位置するように調整すると周波数変動
量が格段に小さくなるので周波数安定性に優れていることが一般的に知られている。
Further, an important factor in using the SAW device is a frequency temperature characteristic. ST above
In the cut crystal SAW, the first-order temperature coefficient of the frequency temperature characteristic is zero, and the characteristic is 2
It is generally known that it is excellent in frequency stability because it is represented by the following curve and the amount of frequency fluctuation is remarkably reduced when the apex temperature is adjusted to be located at the center of the operating temperature range.

しかしながら、前記STカット水晶SAWデバイスは、1次温度係数は零であるが、2
次温度係数は−0.034(ppm/℃2)と比較的大きいので、使用温度範囲を拡大す
ると周波数変動量が極端に大きくなってしまうという問題があった。
However, the ST cut quartz SAW device has zero primary temperature coefficient, but 2
Since the next temperature coefficient is relatively large as −0.034 (ppm / ° C. 2 ), there is a problem that the amount of frequency fluctuation becomes extremely large when the operating temperature range is expanded.

前記問題を解決する手法として、非特許文献1及び特許文献1に開示されたSAWデバ
イスがある。このSAWデバイスは、図12に示すように回転Yカット水晶基板のカット
角θを結晶Z軸より反時計方向に−50°回転した付近に設定し、且つ、SAWの伝搬方
向を結晶X軸に対して垂直方向(Z'軸方向)にしたことが特徴である。なお、前述のカ
ット角をオイラー角で表示する場合は(0°,θ+90°,90°)=(0°,40°,
90°)となる。このSAWデバイスは、圧電基板の表面直下を伝搬するSH波をIDT
によって励起し、その振動エネルギーを電極直下に閉じ込めることを特徴としていて、周
波数温度特性が3次曲線となり、使用温度範囲における周波数変動量が極めて少なくなる
ので良好な周波数温度特性が得られる。
As a technique for solving the problem, there are SAW devices disclosed in Non-Patent Document 1 and Patent Document 1. In this SAW device, as shown in FIG. 12, the cut angle θ of the rotated Y-cut quartz substrate is set in the vicinity of −50 ° rotated counterclockwise from the crystal Z axis, and the SAW propagation direction is set to the crystal X axis. In contrast, the vertical direction (Z′-axis direction) is characteristic. When the above cut angle is displayed in Euler angle, (0 °, θ + 90 °, 90 °) = (0 °, 40 °,
90 °). This SAW device uses an IDT to transmit SH waves that propagate just below the surface of a piezoelectric substrate.
The frequency temperature characteristic becomes a cubic curve, and the amount of frequency fluctuation in the operating temperature range is extremely small, so that a favorable frequency temperature characteristic can be obtained.

しかしながら、前記SH波は基本的に基板内部に潜って進んでいく波である為、圧電基
板表面に沿って伝搬するSTカット水晶SAWと比較してグレーティング反射器によるS
AWの反射効率が悪い。従って、小型で高QなSAWデバイスを実現し難いという問題が
ある。また、前述の先行文献においてもSAWの反射を利用しない遅延線としての応用に
ついては開示されているものの、SAWの反射を利用したデバイスへの応用は提案されて
おらず、発振素子やフィルタ素子としての実用化は困難であると言われていた。
However, since the SH wave is basically a wave that travels in the substrate, it is compared with the ST cut quartz SAW that propagates along the surface of the piezoelectric substrate.
The reflection efficiency of AW is bad. Therefore, there is a problem that it is difficult to realize a small and high Q SAW device. Further, although the above-mentioned prior art document discloses the application as a delay line that does not use the SAW reflection, the application to the device using the SAW reflection has not been proposed. It was said that the practical use of was difficult.

この問題を解決すべく、特許文献2では、図13に示すように回転Yカット水晶基板の
カット角θを−50°付近に設定し、SAWの伝搬方向を結晶X軸に対し垂直方向(Z'
軸方向)にした圧電基板111上に800±200対もの多対のIDT112を形成する
ことにより、グレーティング反射器を利用せずIDT112自体の反射だけでSAWエネ
ルギーを閉じ込め高Q化を図った所謂多対IDT型SAW共振子が開示されている。
In order to solve this problem, in Patent Document 2, as shown in FIG. 13, the cut angle θ of the rotated Y-cut quartz crystal substrate is set to around −50 °, and the SAW propagation direction is perpendicular to the crystal X axis (Z '
A so-called multiple QT is obtained by confining the SAW energy only by the reflection of the IDT 112 itself without using a grating reflector, by forming 800 ± 200 pairs of IDTs 112 on the piezoelectric substrate 111 in the axial direction). An anti-IDT SAW resonator is disclosed.

しかしながら、前記多対IDT型SAW共振子はグレーティング反射器を設けたSAW
共振子と比較して効率的なエネルギー閉じ込め効果が得られず、高いQ値を得るのに必要
なIDT対数が800±200対と非常に多くなってしまうので、STカット水晶SAW
共振子よりもデバイスサイズが大きくなってしまい、近年の小型化の要求に応えることが
できないという問題があった。
However, the multi-pair IDT SAW resonator is a SAW provided with a grating reflector.
Since an efficient energy confinement effect cannot be obtained as compared with the resonator, and the IDT logarithm necessary to obtain a high Q value becomes very large as 800 ± 200 pairs, the ST-cut quartz SAW
There is a problem that the device size becomes larger than that of the resonator, and the recent demand for miniaturization cannot be met.

また、特許文献2に開示されているSAW共振子においては、IDTにて励振されたS
AWの波長をλとした時、電極膜厚を2%λ以上、好ましくは4%λ以下にすることによ
りQ値を高めることができるとされており、共振周波数200MHzの場合、4%λ付近
でQ値が飽和に達するが、その時のQ値は20000程度しか得られずSTカット水晶S
AW共振子と比較してもほぼ同等のQ値しか得られない。この原因として、膜厚が2%λ
以上4%λ以下の範囲ではSAWが圧電基板表面に十分集まっていないので反射が効率良
く利用できないことが考えられる。
In the SAW resonator disclosed in Patent Document 2, S excited by IDT is used.
When the wavelength of AW is λ, the Q value can be increased by setting the electrode film thickness to 2% λ or more, preferably 4% λ or less. The Q value reaches saturation, but the Q value at that time is only about 20000, and the ST cut crystal S
Even when compared with an AW resonator, only a substantially equivalent Q value can be obtained. This is because the film thickness is 2% λ.
In the range of 4% λ or less, SAW is not sufficiently collected on the surface of the piezoelectric substrate, so that reflection cannot be used efficiently.

そこで、本発明者は特許文献3にて、回転Yカット水晶基板のカット角θを結晶Z軸よ
り反時計方向に−64.0°<θ<−49.3°、好ましくは−61.4°<θ<−51
.1°の範囲に設定し、且つ、弾性表面波の伝搬方向を結晶X軸に対し90°±5°とし
た水晶平板上に、Al又はAlを主成分とする合金からなるIDTを形成し、該IDTの
SAWの波長で基準化した電極膜厚H/λを0.04<H/λ<0.12、好ましくは0
.05<H/λ<0.10としたSAWデバイスを発明した。当該発明によれば、本来、
圧電基板内部に潜って進んでいく波を基板表面に集中させてグレーティング反射器等によ
りSAWの反射を効率良く利用することができるので、従来のSTカット水晶SAWデバ
イスと比較して小型でQ値が高く、且つ周波数温度特性に優れたSAWデバイスが実現で
きる。
Therefore, the present inventor disclosed in Patent Document 3 that the cut angle θ of the rotated Y-cut quartz substrate is −64.0 ° <θ <−49.3 °, preferably −61.4, counterclockwise from the crystal Z axis. ° <θ <-51
. An IDT made of Al or an alloy containing Al as a main component is formed on a quartz plate set in a range of 1 ° and having a surface acoustic wave propagation direction of 90 ° ± 5 ° with respect to the crystal X axis, The electrode film thickness H / λ normalized by the SAW wavelength of the IDT is 0.04 <H / λ <0.12, preferably 0.
. A SAW device with 05 <H / λ <0.10 was invented. According to the invention,
Since the wave traveling under the piezoelectric substrate can be concentrated on the surface of the substrate and SAW reflection can be efficiently used by a grating reflector or the like, the Q-value is smaller than that of a conventional ST-cut quartz SAW device. And a SAW device with excellent frequency temperature characteristics can be realized.

特公昭62−016050号公報Japanese Examined Patent Publication No. 62-016050 特公平01−034411号公報Japanese Patent Publication No. 01-034411 国際公開第WO2005/099089A1号パンフレットInternational Publication No. WO2005 / 099089A1 Pamphlet Meirion Lewis,“Surface Skimming Bulk Wave,SSBW”, IEEE Ultrasonics Symp. Proc.,pp.744〜752 (1977)Meirion Lewis, “Surface Skimming Bulk Wave, SSBW”, IEEE Ultrasonics Symp. Proc., Pp. 744–752 (1977)

ところで、SAW共振子やSAWフィルタ等のSAWデバイスにおいて、特性を決定す
る重要なパラメータとして容量比γがある。図14はSAW共振子の等価回路を示してお
り、容量比γはγ=C0/C1で表すことができる。この容量比γが小さいほどSAW共
振子を用いた発振回路においては発振が容易になり発振周波数の可変幅を大きくとれ、S
AWフィルタにおいては実現可能な帯域幅を広げることができる等の利点がある。
Incidentally, in SAW devices such as SAW resonators and SAW filters, there is a capacitance ratio γ as an important parameter for determining characteristics. FIG. 14 shows an equivalent circuit of the SAW resonator, and the capacity ratio γ can be expressed by γ = C0 / C1. The smaller the capacitance ratio γ, the easier the oscillation in the oscillation circuit using the SAW resonator, and the greater the variable range of the oscillation frequency.
The AW filter has an advantage that a realizable bandwidth can be widened.

前記容量比γは、IDTの電極ピッチ(電極指幅L+電極指間スペースS)に対する電
極指幅Lの占める割合(以下、ライン占有率mrと称す)により大きく変動する場合があ
る。従って、IDTのライン占有率mrを適切に選択しないと容量比γが大きくなってし
まい所望の特性が得られない虞がある。ところが、特許文献3では容量比γについては言
及されておらず、容量比γとライン占有率mrの関係について詳細に検討する必要があっ
た。
The capacity ratio γ may vary greatly depending on the ratio of the electrode finger width L to the electrode pitch (electrode finger width L + electrode finger space S) of the IDT (hereinafter referred to as the line occupation ratio mr). Therefore, if the IDT line occupancy ratio mr is not properly selected, the capacity ratio γ increases and the desired characteristics may not be obtained. However, in Patent Document 3, the capacity ratio γ is not mentioned, and it is necessary to examine in detail the relationship between the capacity ratio γ and the line occupation ratio mr.

また、SAWデバイスの製造工程において、ライン占有率mrは正確に制御するのが難
しく、電極形成の際の製造誤差や測定誤差によりばらつきが生じてしまう。ライン占有率
mrがばらついてしまうと、周波数変動が生じ製造歩留まりが劣化する原因となる。従っ
て、周波数制御性に優れたライン占有率mrを適切に選択する必要があるが、特許文献3
には周波数制御性についても言及されておらず、ライン占有率mrと周波数制御性の関係
についても詳細に検討する必要があった。
Further, in the SAW device manufacturing process, it is difficult to accurately control the line occupancy ratio mr, and variations occur due to manufacturing errors and measurement errors during electrode formation. If the line occupancy ratio mr varies, frequency fluctuations occur and the manufacturing yield deteriorates. Therefore, it is necessary to appropriately select the line occupation ratio mr excellent in frequency controllability.
Does not mention frequency controllability, and the relationship between the line occupancy ratio mr and frequency controllability needs to be examined in detail.

本発明は上記問題点を解決するためになされたものであって、圧電基板に水晶基板を用
いSH波を利用したSAWデバイスにおいて、小型化、高Q化、及び優れた周波数温度特
性を実現すると共に、容量比γを小さくし、周波数制御性を高めたSAWデバイスを提供
することを目的とする。
The present invention has been made to solve the above-described problems, and achieves downsizing, high Q, and excellent frequency temperature characteristics in a SAW device using a quartz substrate as a piezoelectric substrate and utilizing SH waves. At the same time, it is an object to provide a SAW device in which the capacity ratio γ is reduced and the frequency controllability is improved.

上記課題を解決するために本発明に係るSAWデバイスの適用例1の発明は、圧電基板と、該圧電基板上に形成されAl又はAlを主成分とする合金からなるIDTとを備え、励振波をSH波とした弾性表面波デバイスであって、前記圧電基板は、回転Yカット水晶基板のカット角θを結晶Z軸より反時計方向に−61.4°<θ<−51.1°の範囲に設定し、且つ、弾性表面波の伝搬方向を結晶X軸に対し90°±5°とした水晶平板であり、励振する弾性表面波の波長をλとした時、前記IDTの波長で基準化した電極膜厚H/λを0.04<H/λ<0.12とし、前記IDTを構成する電極指のライン占有率mrを電極指幅/(電極指幅+電極指間スペース)とした時に、前記ライン占有率mrを0.53≦mr≦0.65としたことを特徴とする。
また、前記圧電基板は、そのカット角θを結晶X軸を回転軸とした結晶Z軸の回転角度とし、結晶+Z軸から結晶+Y軸側へ回転させる方向を前記カット角θが負となる回転方向として、−61.4°<θ<−51.1°の範囲に設定し、且つ、弾性表面波の伝搬方向を結晶X軸に対し90°±5°とした水晶平板からなる回転Yカット水晶基板であっても良い。
また、ある形態によれば、適用例1において、−8.04489×10 -5 ×θ 3 −1.40981×10 -2 ×θ 2 −0.825038×θ−16.0737<H/λ×mr<−6.15517×10 -5 ×θ 3 −1.03943×10 -2 ×θ 2 −0.586564×θ−11.0052を満たす範囲と、−8.67632×10 -5 ×θ 3 −1.50414×10 -2 ×θ 2 −0.870514×θ−16.7678<H/λ×mr<−5.92554×10 -5 ×θ 3 −1.02183×10 -2 ×θ 2 −0.588704×θ−11.2768を満たす範囲と、が除かれる。
適用例1によれば、回転Yカット水晶基板のカット角θを結晶Z軸より反時計方向に−61.4°<θ<−51.1°の範囲に設定し、且つ、弾性表面波の伝搬方向を結晶X軸に対し90°±5°とした水晶平板上に、Al又はAlを主成分とする合金からなるIDTを形成し、該IDTのSAWの波長で基準化した電極膜厚H/λを0.04<H/λ<0.12としたSAWデバイスにおいて、前記IDTのライン占有率mrを0.53≦mr≦0.65とすることにより容量比γを小さくすることが可能である。その結果、小型化、高Q化、及び優れた周波数温度特性を実現できると共に、SAWフィルタでは実現可能な帯域幅を広げることができ、SAW共振子を用いた発振回路では発振が容易になり発振周波数の可変幅を大きくとれる等の効果を奏する。また、カット角θを−61.4<θ<−51.1の範囲に設定したので、頂点温度Tp(℃)を実用的な温度範囲内に設定することができる。
In order to solve the above problems, the invention of the application example 1 of the SAW device according to the present invention includes a piezoelectric substrate and an IDT formed on the piezoelectric substrate and made of Al or an alloy containing Al as a main component. Is a surface acoustic wave device having a SH wave, and the piezoelectric substrate has a cut angle θ of the rotated Y-cut quartz substrate of −61.4 ° <θ <−51.1 ° counterclockwise from the crystal Z axis. This is a quartz plate that is set to a range and the propagation direction of the surface acoustic wave is 90 ° ± 5 ° with respect to the crystal X axis, and the wavelength of the exciting surface acoustic wave is λ, and the reference is the wavelength of the IDT. The electrode thickness H / λ is 0.04 <H / λ <0.12, and the line occupation ratio mr of the electrode fingers constituting the IDT is electrode finger width / (electrode finger width + electrode finger space). When the line occupancy rate mr is 0.53 ≦ mr ≦ 0.65, And butterflies.
Further, the piezoelectric substrate is rotated such that the cut angle θ is a rotation angle of the crystal Z axis with the crystal X axis as the rotation axis, and the cut angle θ is negative in the direction of rotation from the crystal + Z axis to the crystal + Y axis side. Rotational Y-cut consisting of a quartz plate with a direction set in the range of −61.4 ° <θ <−51.1 ° and the propagation direction of the surface acoustic wave being 90 ° ± 5 ° with respect to the crystal X axis It may be a quartz substrate.
According to a certain form, in application example 1, −8.04489 × 10 −5 × θ 3 −1.40981 × 10 −2 × θ 2 −0.825038 × θ−16.0737 <H / λ × mr <−6.15517 × 10 −5 × θ 3 −1.03943 × 10 −2 × θ 2 −0.586564 × θ-11.0052, and −8.66762 × 10 −5 × θ 3 −1.504014 × 10 −2 × θ 2 −0.870514 × θ−16.7678 <H / λ × mr <−5.992554 × 10 −5 × θ 3 −1.02183 × 10 −2 × θ 2 The range satisfying −0.588704 × θ−11.2768 is excluded.
According to Application Example 1, the cut angle θ of the rotated Y-cut quartz substrate is set in the range of −61.4 ° <θ <−51.1 ° counterclockwise from the crystal Z axis, and the surface acoustic wave An IDT made of Al or an alloy containing Al as a main component is formed on a quartz plate whose propagation direction is 90 ° ± 5 ° with respect to the crystal X axis, and the electrode thickness H is normalized by the SAW wavelength of the IDT. In a SAW device in which / λ is 0.04 <H / λ <0.12, the capacitance ratio γ can be reduced by setting the line occupation ratio mr of the IDT to 0.53 ≦ mr ≦ 0.65. It is. As a result, downsizing, high Q, and excellent frequency temperature characteristics can be realized, and the bandwidth that can be realized with a SAW filter can be widened, and an oscillation circuit using a SAW resonator can easily oscillate. There are effects such as a large variable frequency range. Further, since the cut angle θ is set in the range of −61.4 <θ <−51.1, the vertex temperature Tp (° C.) can be set in a practical temperature range.

適用例2の発明は、圧電基板と、該圧電基板上に形成されAl又はAlを主成分とする合金からなるIDTとを備え、励振波をSH波とした弾性表面波デバイスであって、前記圧電基板は、回転Yカット水晶基板のカット角θを結晶Z軸より反時計方向に−61.4°<θ<−51.1°の範囲に設定し、且つ、弾性表面波の伝搬方向を結晶X軸に対し90°±5°とした水晶平板であり、励振する弾性表面波の波長をλとした時、前記IDTの波長で基準化した電極膜厚H/λを0.04<H/λ<0.12とし、前記IDTを構成する電極指のライン占有率mrを電極指幅/(電極指幅+電極指間スペース)とした時に、前記ライン占有率mrを0.55≦mr≦0.68としたことを特徴とする。
また、前記圧電基板は、そのカット角θを結晶X軸を回転軸とした結晶Z軸の回転角度とし、結晶+Z軸から結晶+Y軸側へ回転させる方向を前記カット角θが負となる回転方向として、−61.4°<θ<−51.1°の範囲に設定し、且つ、弾性表面波の伝搬方向を結晶X軸に対し90°±5°とした水晶平板からなる回転Yカット水晶基板であっても良い。
また、ある形態によれば、適用例2において、−8.04489×10 -5 ×θ 3 −1.40981×10 -2 ×θ 2 −0.825038×θ−16.0737<H/λ×mr<−6.15517×10 -5 ×θ 3 −1.03943×10 -2 ×θ 2 −0.586564×θ−11.0052を満たす範囲と、−8.67632×10 -5 ×θ 3 −1.50414×10 -2 ×θ 2 −0.870514×θ−16.7678<H/λ×mr<−5.92554×10 -5 ×θ 3 −1.02183×10 -2 ×θ 2 −0.588704×θ−11.2768を満たす範囲と、が除かれる。
適用例2によれば、回転Yカット水晶基板のカット角θを結晶Z軸より反時計方向に−61.4°<θ<−51.1°の範囲に設定し、且つ、弾性表面波の伝搬方向を結晶X軸に対し90°±5°とした水晶平板上に、Al又はAlを主成分とする合金からなるIDTを形成し、該IDTのSAWの波長で基準化した電極膜厚H/λを0.04<H/λ<0.12としたSAWデバイスにおいて、前記IDTのライン占有率mrを0.55≦mr≦0.68としたので周波数制御性を高めることができる。その結果、SAWデバイスの製造時にライン占有率mrがばらついたとしても周波数変動量を抑圧できるので、SAWデバイスの製造難度及び製造コストを低減できる等の効果を奏する。また、カット角θを−61.4<θ<−51.1の範囲に設定したので、頂点温度Tp(℃)を実用的な温度範囲内に設定することができる。
The invention of Application Example 2 is a surface acoustic wave device including a piezoelectric substrate and an IDT formed on the piezoelectric substrate and made of Al or an alloy containing Al as a main component, and an excitation wave is an SH wave. In the piezoelectric substrate, the cut angle θ of the rotated Y-cut quartz substrate is set in the range of −61.4 ° <θ <−51.1 ° counterclockwise from the crystal Z axis, and the propagation direction of the surface acoustic wave is set A crystal flat plate with 90 ° ± 5 ° with respect to the crystal X axis, where the wavelength of the surface acoustic wave to be excited is λ, the electrode film thickness H / λ normalized by the wavelength of the IDT is 0.04 <H /Λ<0.12 and when line occupancy ratio mr of electrode fingers constituting the IDT is electrode finger width / (electrode finger width + inter-electrode finger space), the line occupancy ratio mr is 0.55 ≦ mr. It is characterized in that ≦ 0.68.
Further, the piezoelectric substrate is rotated such that the cut angle θ is a rotation angle of the crystal Z axis with the crystal X axis as the rotation axis, and the cut angle θ is negative in the direction of rotation from the crystal + Z axis to the crystal + Y axis side. Rotational Y-cut consisting of a quartz plate with a direction set in the range of −61.4 ° <θ <−51.1 ° and the propagation direction of the surface acoustic wave being 90 ° ± 5 ° with respect to the crystal X axis It may be a quartz substrate.
According to a certain form, in application example 2, −8.04489 × 10 −5 × θ 3 −1.40981 × 10 −2 × θ 2 −0.825038 × θ−16.0737 <H / λ × mr <−6.15517 × 10 −5 × θ 3 −1.03943 × 10 −2 × θ 2 −0.586564 × θ-11.0052, and −8.66762 × 10 −5 × θ 3 −1.504014 × 10 −2 × θ 2 −0.870514 × θ−16.7678 <H / λ × mr <−5.992554 × 10 −5 × θ 3 −1.02183 × 10 −2 × θ 2 The range satisfying −0.588704 × θ−11.2768 is excluded.
According to Application Example 2, the cut angle θ of the rotated Y-cut quartz substrate is set in the range of −61.4 ° <θ <−51.1 ° counterclockwise from the crystal Z axis, and the surface acoustic wave An IDT made of Al or an alloy containing Al as a main component is formed on a quartz plate whose propagation direction is 90 ° ± 5 ° with respect to the crystal X axis, and the electrode thickness H is normalized by the SAW wavelength of the IDT. In the SAW device in which / λ is 0.04 <H / λ <0.12, the line occupancy ratio mr of the IDT is 0.55 ≦ mr ≦ 0.68, so that the frequency controllability can be improved. As a result, even if the line occupancy ratio mr varies during the manufacture of the SAW device, the frequency fluctuation amount can be suppressed, so that it is possible to reduce the manufacturing difficulty and the manufacturing cost of the SAW device. Further, since the cut angle θ is set in the range of −61.4 <θ <−51.1, the vertex temperature Tp (° C.) can be set in a practical temperature range.

適用例3の発明は、圧電基板と、該圧電基板上に形成されAl又はAlを主成分とする合金からなるIDTとを備え、励振波をSH波とした弾性表面波デバイスであって、前記圧電基板は、回転Yカット水晶基板のカット角θを結晶Z軸より反時計方向に−61.4°<θ<−51.1°の範囲に設定し、且つ、弾性表面波の伝搬方向を結晶X軸に対し90°±5°とした水晶平板であり、励振する弾性表面波の波長をλとした時、前記IDTの波長で基準化した電極膜厚H/λを0.04<H/λ<0.12とし、前記IDTを構成する電極指のライン占有率mrを電極指幅/(電極指幅+電極指間スペース)とした時に、前記ライン占有率mrを0.55≦mr≦0.65としたことを特徴とする。
また、前記圧電基板は、そのカット角θを結晶X軸を回転軸とした結晶Z軸の回転角度とし、結晶+Z軸から結晶+Y軸側へ回転させる方向を前記カット角θが負となる回転方向として、−61.4°<θ<−51.1°の範囲に設定し、且つ、弾性表面波の伝搬方向を結晶X軸に対し90°±5°とした水晶平板からなる回転Yカット水晶基板であっても良い。
また、ある形態によれば、適用例3において、−8.04489×10 -5 ×θ 3 −1.40981×10 -2 ×θ 2 −0.825038×θ−16.0737<H/λ×mr<−6.15517×10 -5 ×θ 3 −1.03943×10 -2 ×θ 2 −0.586564×θ−11.0052を満たす範囲と、−8.67632×10 -5 ×θ 3 −1.50414×10 -2 ×θ 2 −0.870514×θ−16.7678<H/λ×mr<−5.92554×10 -5 ×θ 3 −1.02183×10 -2 ×θ 2 −0.588704×θ−11.2768を満たす範囲と、が除かれる。
適用例3によれば、回転Yカット水晶基板のカット角θを結晶Z軸より反時計方向に−61.4°<θ<−51.1°の範囲に設定し、且つ、弾性表面波の伝搬方向を結晶X軸に対し90°±5°とした水晶平板上に、Al又はAlを主成分とする合金からなるIDTを形成し、該IDTのSAWの波長で基準化した電極膜厚H/λを0.04<H/λ<0.12としたSAWデバイスにおいて、前記IDTのライン占有率mrを0.55≦H/λ≦0.65としたので、最適な容量比γと周波数制御性の両方を兼ね備えたSAWデバイスを提供することできる。また、カット角θを−61.4<θ<−51.1の範囲に設定したので、頂点温度Tp(℃)を実用的な温度範囲内に設定することができる。
The invention of application example 3 is a surface acoustic wave device including a piezoelectric substrate and an IDT formed on the piezoelectric substrate and made of Al or an alloy containing Al as a main component, and an excitation wave is an SH wave. In the piezoelectric substrate, the cut angle θ of the rotated Y-cut quartz substrate is set in the range of −61.4 ° <θ <−51.1 ° counterclockwise from the crystal Z axis, and the propagation direction of the surface acoustic wave is set A crystal flat plate with 90 ° ± 5 ° with respect to the crystal X axis, where the wavelength of the surface acoustic wave to be excited is λ, the electrode film thickness H / λ normalized by the wavelength of the IDT is 0.04 <H /Λ<0.12 and when line occupancy ratio mr of electrode fingers constituting the IDT is electrode finger width / (electrode finger width + inter-electrode finger space), the line occupancy ratio mr is 0.55 ≦ mr. It is characterized by being ≦ 0.65.
Further, the piezoelectric substrate is rotated such that the cut angle θ is a rotation angle of the crystal Z axis with the crystal X axis as the rotation axis, and the cut angle θ is negative in the direction of rotation from the crystal + Z axis to the crystal + Y axis side. Rotational Y-cut consisting of a quartz plate with a direction set in the range of −61.4 ° <θ <−51.1 ° and the propagation direction of the surface acoustic wave being 90 ° ± 5 ° with respect to the crystal X axis It may be a quartz substrate.
According to a certain form, in application example 3, −8.04489 × 10 −5 × θ 3 −1.40981 × 10 −2 × θ 2 −0.825038 × θ−16.0737 <H / λ × mr <−6.15517 × 10 −5 × θ 3 −1.03943 × 10 −2 × θ 2 −0.586564 × θ-11.0052, and −8.66762 × 10 −5 × θ 3 −1.504014 × 10 −2 × θ 2 −0.870514 × θ−16.7678 <H / λ × mr <−5.992554 × 10 −5 × θ 3 −1.02183 × 10 −2 × θ 2 The range satisfying −0.588704 × θ−11.2768 is excluded.
According to Application Example 3, the cut angle θ of the rotated Y-cut quartz substrate is set in the range of −61.4 ° <θ <−51.1 ° counterclockwise from the crystal Z axis, and the surface acoustic wave An IDT made of Al or an alloy containing Al as a main component is formed on a quartz plate whose propagation direction is 90 ° ± 5 ° with respect to the crystal X axis, and the electrode thickness H is normalized by the SAW wavelength of the IDT. In the SAW device in which / λ is 0.04 <H / λ <0.12, the line occupation ratio mr of the IDT is 0.55 ≦ H / λ ≦ 0.65, so that the optimum capacity ratio γ and frequency It is possible to provide a SAW device having both controllability. Further, since the cut angle θ is set in the range of −61.4 <θ <−51.1, the vertex temperature Tp (° C.) can be set in a practical temperature range.

適用例4の発明は、前記電極膜厚H/λが0.04<H/λ≦0.08の範囲に設定さ
れていることを特徴とした請求項1乃至3のいずれか一項に記載の弾性表面波デバイスで
あることを特徴とする。適用例4によれば、電極膜厚H/λを0.04<H/λ≦0.0
8とすることによりQ値をより高めることが可能である。
The invention of Application Example 4 is characterized in that the electrode film thickness H / λ is set in a range of 0.04 <H / λ ≦ 0.08. It is characterized by being a surface acoustic wave device. According to Application Example 4, the electrode film thickness H / λ is 0.04 <H / λ ≦ 0.0.
By setting the value to 8, the Q value can be further increased.

適用例5の発明は、圧電基板と、該圧電基板上に形成されAl又はAlを主成分とする合金からなるIDTとを備え、励振波をSH波とした弾性表面波デバイスであって、前記圧電基板は、回転Yカット水晶基板のカット角θを結晶Z軸より反時計方向に−64.0°<θ<−49.3°の範囲に設定し、且つ、弾性表面波の伝搬方向を結晶X軸に対し90°±5°とした水晶平板であり、励振する弾性表面波の波長をλとした時、前記IDTの波長で基準化した電極膜厚H/λを0.05<H/λ<0.10とし、前記IDTを構成する電極指のライン占有率mrを電極指幅/(電極指幅+電極指間スペース)とした時に、前記ライン占有率mrを0.53≦mr≦0.65としたことを特徴とする。
また、前記圧電基板は、そのカット角θを結晶X軸を回転軸とした結晶Z軸の回転角度とし、結晶+Z軸から結晶+Y軸側へ回転させる方向を前記カット角θが負となる回転方向として、−64.0°<θ<−49.3°の範囲に設定し、且つ、弾性表面波の伝搬方向を結晶X軸に対し90°±5°とした水晶平板からなる回転Yカット水晶基板であっても良い。
また、ある形態によれば、適用例5において、−8.04489×10 -5 ×θ 3 −1.40981×10 -2 ×θ 2 −0.825038×θ−16.0737<H/λ×mr<−6.15517×10 -5 ×θ 3 −1.03943×10 -2 ×θ 2 −0.586564×θ−11.0052を満たす範囲と、−8.67632×10 -5 ×θ 3 −1.50414×10 -2 ×θ 2 −0.870514×θ−16.7678<H/λ×mr<−5.92554×10 -5 ×θ 3 −1.02183×10 -2 ×θ 2 −0.588704×θ−11.2768を満たす範囲と、が除かれる。
適用例5によれば、回転Yカット水晶基板のカット角θを結晶Z軸より反時計方向に−64.0°<θ<−49.3°の範囲に設定し、且つ、弾性表面波の伝搬方向を結晶X軸に対し90°±5°とした水晶平板上に、Al又はAlを主成分とする合金からなるIDTを形成し、該IDTのSAWの波長で基準化した電極膜厚H/λを0.05<H/λ<0.10としたSAWデバイスにおいて、前記IDTのライン占有率mrを0.53≦mr≦0.65としたので容量比γを小さくすることができる。その結果、小型化、高Q化、及び優れた周波数温度特性を実現できると共に、SAWフィルタでは実現可能な帯域幅を広げることができ、SAW共振子を用いた発振回路では発振が容易になり発振周波数の可変幅を大きくとれる等の効果を奏する。また、電極膜厚H/λを0.05<H/λ<0.10とすることによりQ値をより高めることができる。
The invention of application example 5 is a surface acoustic wave device including a piezoelectric substrate and an IDT formed on the piezoelectric substrate and made of Al or an alloy containing Al as a main component, and an excitation wave is an SH wave. In the piezoelectric substrate, the cut angle θ of the rotated Y-cut quartz substrate is set in the range of −64.0 ° <θ <−49.3 ° counterclockwise from the crystal Z axis, and the propagation direction of the surface acoustic wave is set. It is a quartz plate with 90 ° ± 5 ° with respect to the crystal X axis, and when the wavelength of the surface acoustic wave to be excited is λ, the electrode film thickness H / λ normalized by the wavelength of the IDT is 0.05 <H /Λ<0.10, and when the line occupancy ratio mr of the electrode fingers constituting the IDT is electrode finger width / (electrode finger width + inter-electrode finger space), the line occupancy ratio mr is 0.53 ≦ mr. It is characterized by being ≦ 0.65.
Further, the piezoelectric substrate is rotated such that the cut angle θ is a rotation angle of the crystal Z axis with the crystal X axis as the rotation axis, and the cut angle θ is negative in the direction of rotation from the crystal + Z axis to the crystal + Y axis side. Rotation Y cut made of a quartz plate with a direction set in the range of −64.0 ° <θ <−49.3 ° and the propagation direction of the surface acoustic wave being 90 ° ± 5 ° with respect to the crystal X axis It may be a quartz substrate.
According to a certain form, in application example 5, −8.04487 × 10 −5 × θ 3 −1.40981 × 10 −2 × θ 2 −0.825038 × θ−16.0737 <H / λ × mr <−6.15517 × 10 −5 × θ 3 −1.03943 × 10 −2 × θ 2 −0.586564 × θ-11.0052, and −8.66762 × 10 −5 × θ 3 −1.504014 × 10 −2 × θ 2 −0.870514 × θ−16.7678 <H / λ × mr <−5.992554 × 10 −5 × θ 3 −1.02183 × 10 −2 × θ 2 The range satisfying −0.588704 × θ−11.2768 is excluded.
According to Application Example 5, the cut angle θ of the rotated Y-cut quartz substrate is set in the range of −64.0 ° <θ <−49.3 ° counterclockwise from the crystal Z axis, and the surface acoustic wave An IDT made of Al or an alloy containing Al as a main component is formed on a quartz plate whose propagation direction is 90 ° ± 5 ° with respect to the crystal X axis, and the electrode thickness H is normalized by the SAW wavelength of the IDT. In the SAW device where / λ is 0.05 <H / λ <0.10, the capacity ratio γ can be reduced because the line occupation ratio mr of the IDT is 0.53 ≦ mr ≦ 0.65. As a result, downsizing, high Q, and excellent frequency temperature characteristics can be realized, and the bandwidth that can be realized with a SAW filter can be widened, and an oscillation circuit using a SAW resonator can easily oscillate. There are effects such as a large variable frequency range. Further, the Q value can be further increased by setting the electrode film thickness H / λ to 0.05 <H / λ <0.10.

適用例6の発明は、圧電基板と、該圧電基板上に形成されAl又はAlを主成分とする合金からなるIDTとを備え、励振波をSH波とした弾性表面波デバイスであって、前記圧電基板は、回転Yカット水晶基板のカット角θを結晶Z軸より反時計方向に−64.0°<θ<−49.3°の範囲に設定し、且つ、弾性表面波の伝搬方向を結晶X軸に対し90°±5°とした水晶平板であり、励振する弾性表面波の波長をλとした時、前記IDTの波長で基準化した電極膜厚H/λを0.05<H/λ<0.10とし、前記IDTを構成する電極指のライン占有率mrを電極指幅/(電極指幅+電極指間スペース)とした時に、前記ライン占有率mrを0.55≦mr≦0.68としたことを特徴とする。
また、前記圧電基板は、そのカット角θを結晶X軸を回転軸とした結晶Z軸の回転角度とし、結晶+Z軸から結晶+Y軸側へ回転させる方向を前記カット角θが負となる回転方向として、−64.0°<θ<−49.3°の範囲に設定し、且つ、弾性表面波の伝搬方向を結晶X軸に対し90°±5°とした水晶平板からなる回転Yカット水晶基板であっても良い。
また、ある形態によれば、適用例6において、−8.04489×10 -5 ×θ 3 −1.40981×10 -2 ×θ 2 −0.825038×θ−16.0737<H/λ×mr<−6.15517×10 -5 ×θ 3 −1.03943×10 -2 ×θ 2 −0.586564×θ−11.0052を満たす範囲と、−8.67632×10 -5 ×θ 3 −1.50414×10 -2 ×θ 2 −0.870514×θ−16.7678<H/λ×mr<−5.92554×10 -5 ×θ 3 −1.02183×10 -2 ×θ 2 −0.588704×θ−11.2768を満たす範囲と、が除かれる。
適用例6によれば、回転Yカット水晶基板のカット角θを結晶Z軸より反時計方向に−64.0°<θ<−49.3°の範囲に設定し、且つ、弾性表面波の伝搬方向を結晶X軸に対し90°±5°とした水晶平板上に、Al又はAlを主成分とする合金からなるIDTを形成し、該IDTのSAWの波長で基準化した電極膜厚H/λを0.05<H/λ<0.10としたSAWデバイスにおいて、前記IDTのライン占有率mrを0.55≦mr≦0.68としたので周波数制御性を高めることができる。その結果、SAWデバイスの製造時にライン占有率mrがばらついたとしても周波数変動量を抑圧できるので、SAWデバイスの製造難度及び製造コストを低減できる等の効果を奏する。また、電極膜厚H/λを0.05<H/λ<0.10とすることによりQ値をより高めることができる。
The invention of application example 6 is a surface acoustic wave device including a piezoelectric substrate and an IDT formed on the piezoelectric substrate and made of Al or an alloy containing Al as a main component, and an excitation wave is an SH wave. In the piezoelectric substrate, the cut angle θ of the rotated Y-cut quartz substrate is set in the range of −64.0 ° <θ <−49.3 ° counterclockwise from the crystal Z axis, and the propagation direction of the surface acoustic wave is set. It is a quartz plate with 90 ° ± 5 ° with respect to the crystal X axis, and when the wavelength of the surface acoustic wave to be excited is λ, the electrode film thickness H / λ normalized by the wavelength of the IDT is 0.05 <H /Λ<0.10, and when the line occupancy ratio mr of electrode fingers constituting the IDT is electrode finger width / (electrode finger width + inter-electrode finger space), the line occupancy ratio mr is 0.55 ≦ mr. It is characterized in that ≦ 0.68.
Further, the piezoelectric substrate is rotated such that the cut angle θ is a rotation angle of the crystal Z axis with the crystal X axis as the rotation axis, and the cut angle θ is negative in the direction of rotation from the crystal + Z axis to the crystal + Y axis side. Rotation Y cut made of a quartz plate with a direction set in the range of −64.0 ° <θ <−49.3 ° and the propagation direction of the surface acoustic wave being 90 ° ± 5 ° with respect to the crystal X axis It may be a quartz substrate.
According to a certain form, in application example 6, −8.04489 × 10 −5 × θ 3 −1.40981 × 10 −2 × θ 2 −0.825038 × θ−16.0737 <H / λ × mr <−6.15517 × 10 −5 × θ 3 −1.03943 × 10 −2 × θ 2 −0.586564 × θ-11.0052, and −8.66762 × 10 −5 × θ 3 −1.504014 × 10 −2 × θ 2 −0.870514 × θ−16.7678 <H / λ × mr <−5.992554 × 10 −5 × θ 3 −1.02183 × 10 −2 × θ 2 The range satisfying −0.588704 × θ−11.2768 is excluded.
According to Application Example 6, the cut angle θ of the rotated Y-cut quartz substrate is set in the range of −64.0 ° <θ <−49.3 ° counterclockwise from the crystal Z axis, and the surface acoustic wave An IDT made of Al or an alloy containing Al as a main component is formed on a quartz plate whose propagation direction is 90 ° ± 5 ° with respect to the crystal X axis, and the electrode thickness H is normalized by the SAW wavelength of the IDT. In the SAW device in which / λ is 0.05 <H / λ <0.10, the line occupancy ratio mr of the IDT is 0.55 ≦ mr ≦ 0.68, so that the frequency controllability can be improved. As a result, even if the line occupancy ratio mr varies during the manufacture of the SAW device, the frequency fluctuation amount can be suppressed, so that it is possible to reduce the manufacturing difficulty and the manufacturing cost of the SAW device. Further, the Q value can be further increased by setting the electrode film thickness H / λ to 0.05 <H / λ <0.10.

適用例7の発明は、圧電基板と、該圧電基板上に形成されAl又はAlを主成分とする合金からなるIDTとを備え、励振波をSH波とした弾性表面波デバイスであって、前記圧電基板は、回転Yカット水晶基板のカット角θを結晶Z軸より反時計方向に−64.0°<θ<−49.3°の範囲に設定し、且つ、弾性表面波の伝搬方向を結晶X軸に対し90°±5°とした水晶平板であり、励振する弾性表面波の波長をλとした時、前記IDTの波長で基準化した電極膜厚H/λを0.05<H/λ<0.10とし、前記IDTを構成する電極指のライン占有率mrを電極指幅/(電極指幅+電極指間スペース)とした時に、前記ライン占有率mrを0.55≦mr≦0.65としたことを特徴とする。
また、前記圧電基板は、そのカット角θを結晶X軸を回転軸とした結晶Z軸の回転角度とし、結晶+Z軸から結晶+Y軸側へ回転させる方向を前記カット角θが負となる回転方向として、−64.0°<θ<−49.3°の範囲に設定し、且つ、弾性表面波の伝搬方向を結晶X軸に対し90°±5°とした水晶平板からなる回転Yカット水晶基板であっても良い。
また、ある形態によれば、適用例7において、−8.04489×10 -5 ×θ 3 −1.40981×10 -2 ×θ 2 −0.825038×θ−16.0737<H/λ×mr<−6.15517×10 -5 ×θ 3 −1.03943×10 -2 ×θ 2 −0.586564×θ−11.0052を満たす範囲と、−8.67632×10 -5 ×θ 3 −1.50414×10 -2 ×θ 2 −0.870514×θ−16.7678<H/λ×mr<−5.92554×10 -5 ×θ 3 −1.02183×10 -2 ×θ 2 −0.588704×θ−11.2768を満たす範囲と、が除かれる。
適用例7によれば、回転Yカット水晶基板のカット角θを結晶Z軸より反時計方向に−64.0°<θ<−49.3°の範囲に設定し、且つ、弾性表面波の伝搬方向を結晶X軸に対し90°±5°とした水晶平板上に、Al又はAlを主成分とする合金からなるIDTを形成し、該IDTのSAWの波長で基準化した電極膜厚H/λを0.05<H/λ<0.10としたSAWデバイスにおいて、前記IDTのライン占有率mrを0.55≦H/λ≦0.65としたので、最適な容量比γと周波数制御性の両方を兼ね備えたSAWデバイスを提供することできる。また、電極膜厚H/λを0.05<H/λ<0.10とすることによりQ値をより高めることができる。
The invention of application example 7 is a surface acoustic wave device including a piezoelectric substrate and an IDT formed on the piezoelectric substrate and made of Al or an alloy containing Al as a main component, and an excitation wave is an SH wave. In the piezoelectric substrate, the cut angle θ of the rotated Y-cut quartz substrate is set in the range of −64.0 ° <θ <−49.3 ° counterclockwise from the crystal Z axis, and the propagation direction of the surface acoustic wave is set. It is a quartz plate with 90 ° ± 5 ° with respect to the crystal X axis, and when the wavelength of the surface acoustic wave to be excited is λ, the electrode film thickness H / λ normalized by the wavelength of the IDT is 0.05 <H /Λ<0.10, and when the line occupancy ratio mr of electrode fingers constituting the IDT is electrode finger width / (electrode finger width + inter-electrode finger space), the line occupancy ratio mr is 0.55 ≦ mr. It is characterized by being ≦ 0.65.
Further, the piezoelectric substrate is rotated such that the cut angle θ is a rotation angle of the crystal Z axis with the crystal X axis as the rotation axis, and the cut angle θ is negative in the direction of rotation from the crystal + Z axis to the crystal + Y axis side. Rotation Y cut made of a quartz plate with a direction set in the range of −64.0 ° <θ <−49.3 ° and the propagation direction of the surface acoustic wave being 90 ° ± 5 ° with respect to the crystal X axis It may be a quartz substrate.
According to a certain form, in application example 7, −8.04489 × 10 −5 × θ 3 −1.40981 × 10 −2 × θ 2 −0.825038 × θ−16.0737 <H / λ × mr <−6.15517 × 10 −5 × θ 3 −1.03943 × 10 −2 × θ 2 −0.586564 × θ-11.0052, and −8.66762 × 10 −5 × θ 3 −1.504014 × 10 −2 × θ 2 −0.870514 × θ−16.7678 <H / λ × mr <−5.992554 × 10 −5 × θ 3 −1.02183 × 10 −2 × θ 2 The range satisfying −0.588704 × θ−11.2768 is excluded.
According to Application Example 7, the cut angle θ of the rotated Y-cut quartz substrate is set in the range of −64.0 ° <θ <−49.3 ° counterclockwise from the crystal Z axis, and the surface acoustic wave An IDT made of Al or an alloy containing Al as a main component is formed on a quartz plate whose propagation direction is 90 ° ± 5 ° with respect to the crystal X axis, and the electrode thickness H is normalized by the SAW wavelength of the IDT. In the SAW device in which / λ is 0.05 <H / λ <0.10, since the line occupation ratio mr of the IDT is 0.55 ≦ H / λ ≦ 0.65, the optimum capacitance ratio γ and frequency It is possible to provide a SAW device having both controllability. Further, the Q value can be further increased by setting the electrode film thickness H / λ to 0.05 <H / λ <0.10.

適用例8の発明は、前記電極膜厚H/λが0.05<H/λ≦0.08の範囲に設定さ
れていることを特徴とした請求項5乃至7のいずれか一項に記載の弾性表面波デバイスで
あることを特徴とする。適用例8によれば、電極膜厚H/λを0.05<H/λ≦0.0
8とすることによりQ値をより高めることができる。
The invention of application example 8 is characterized in that the electrode film thickness H / λ is set in a range of 0.05 <H / λ ≦ 0.08. It is characterized by being a surface acoustic wave device. According to Application Example 8, the electrode film thickness H / λ is 0.05 <H / λ ≦ 0.0.
By setting the value to 8, the Q value can be further increased.

適用例9、10の発明は、請求項1乃至8のいずれか一項に記載の弾性表面波デバイス
を用いることを特徴としたモジュール装置、又は発振回路である。
適用例9,10によれば、前記SAWデバイスをモジュール装置、又は発振回路に用い
たので、小型で高性能なモジュール装置、又は発振回路を提供することができる。
Inventions 9 and 10 are module devices or oscillation circuits characterized by using the surface acoustic wave device according to any one of claims 1 to 8.
According to Application Examples 9 and 10, since the SAW device is used for a module device or an oscillation circuit, a small and high-performance module device or an oscillation circuit can be provided.

以下、本発明を図面に図示した実施の形態例に基づいて詳細に説明する。図1(a)は
、本発明に係るSAW共振子の平面図を示しており、圧電基板1上に正電極指と負電極指
とがそれぞれ互いに間挿し合うIDT2と、該IDT2の両側にSAWを反射する為のグ
レーティング反射器3a、3bとを配置する。そして、前記IDT2の入出力パッド4a
、4bとパッケージ6の入出力用端子とを金属ワイヤ5a、5bにより電気的に導通し、
パッケージ6の開口部を蓋(リッド)で気密封止する。圧電基板1は、回転Yカット水晶
基板のカット角θを結晶Z軸より反時計方向に−50°回転した付近に設定し、SAWの
伝搬方向を結晶X軸に対しほぼ垂直方向(90°±5°)にした水晶平板であって、励振
するSAWはSH波である。なお、IDT2及びグレーティング反射器3a、3bの電極
材料はAl又はAlを主成分とする合金である。また、図1(b)はIDT2の断面図を
示しており、以下に示す実施例においてはIDT2上を励振するSAWの波長をλとした
時に電極膜厚を波長で基準化した値H/λで表し、ライン占有率mrを電極指幅L/(電
極指幅L+電極指間スペースS)で表す。
Hereinafter, the present invention will be described in detail based on the embodiments shown in the drawings. FIG. 1A is a plan view of a SAW resonator according to the present invention. An IDT 2 in which a positive electrode finger and a negative electrode finger are inserted on a piezoelectric substrate 1 and a SAW on both sides of the IDT 2 are shown. The grating reflectors 3a and 3b for reflecting the light are disposed. And the input / output pad 4a of the IDT 2
4b and the input / output terminals of the package 6 are electrically connected by metal wires 5a and 5b,
The opening of the package 6 is hermetically sealed with a lid. In the piezoelectric substrate 1, the cut angle θ of the rotated Y-cut quartz substrate is set in the vicinity of −50 ° rotated counterclockwise from the crystal Z axis, and the SAW propagation direction is substantially perpendicular to the crystal X axis (90 ° ± The SAW to be excited is a SH wave. Note that the electrode materials of the IDT 2 and the grating reflectors 3a and 3b are Al or an alloy containing Al as a main component. FIG. 1B shows a cross-sectional view of the IDT 2. In the embodiment shown below, when the wavelength of the SAW excited on the IDT 2 is λ, the electrode thickness is normalized by the wavelength H / λ. The line occupancy ratio mr is represented by electrode finger width L / (electrode finger width L + electrode finger space S).

本発明においては、従来の欠点を鑑みて電極膜厚H/λを従来より大きく設定すること
で、SAWを圧電基板表面に集中させて、グレーティング反射器によりSAWの反射を効
率良く利用できるようにし、少ないIDT対数やグレーティング反射器本数でもSAWエ
ネルギーをIDT内に閉じ込めるようにしてデバイスサイズの小型化を図った。
In the present invention, the electrode film thickness H / λ is set larger than in the past in view of the conventional drawbacks, so that the SAW can be concentrated on the surface of the piezoelectric substrate and the reflection of the SAW can be efficiently utilized by the grating reflector. The device size was reduced by confining the SAW energy in the IDT even with a small number of IDT logarithms and the number of grating reflectors.

一般的にSAW共振子における最適設計とは、周波数温度特性が優れており、Qが高く
且つ容量比γの小さいもの、即ちfigure of merit(Q/γ)が大きいことが重要である
。ここで、本発明のSAW共振子の諸特性について調べた。図2は、図1に示すSAW共
振子において、圧電基板1に−51°回転Yカット90°X伝搬水晶基板(オイラー角表
示では(0°,39°,90°))を用い、共振周波数を315MHz、電極膜厚H/λを
0.06、IDT2の対数を100対、グレーティング反射器3a、3bの本数を各々1
00本とした場合の共振子の諸特性を表している。また、(a)にQ値、figure of meri
t、2次温度係数を、(b)に周波数温度特性を実際の試作結果に基づき示している。な
お、比較の為に圧電基板のサイズを同じにしたSTカット水晶SAW共振子の諸特性を従
来品として併記している。
In general, the optimum design of a SAW resonator is important in that it has excellent frequency temperature characteristics, a high Q and a small capacitance ratio γ, that is, a large figure of merit (Q / γ). Here, various characteristics of the SAW resonator of the present invention were examined. FIG. 2 shows a resonance frequency of the SAW resonator shown in FIG. 1 using a -51 ° rotated Y-cut 90 ° X propagation quartz substrate (Eulerian angle display (0 °, 39 °, 90 °)) as the piezoelectric substrate 1. Is 315 MHz, the electrode thickness H / λ is 0.06, the logarithm of IDT2 is 100 pairs, and the number of grating reflectors 3a and 3b is 1 each.
The characteristics of the resonator in the case of 00 are shown. (A) shows the Q value, figure of meri
t The secondary temperature coefficient is shown in (b), and the frequency temperature characteristic is shown on the basis of the actual prototype results. For comparison, various characteristics of an ST cut quartz SAW resonator having the same piezoelectric substrate size are also shown as conventional products.

図2より本発明のSAW共振子と従来のSTカット水晶SAW共振子とを比較すると、
Q値が1.8倍強、figure of meritが約2倍と大きい値が得られている。また、周波数
温度特性については、頂点温度Tpは常温である約+25℃が得られ、2次温度係数は従
来の約0.6倍程度に小さくなるという非常に優れた効果が確認された。
FIG. 2 shows a comparison between the SAW resonator of the present invention and the conventional ST-cut quartz crystal SAW resonator.
The Q value is a little over 1.8 times and the figure of merit is about twice as large. As for the frequency temperature characteristics, it was confirmed that the apex temperature Tp was about + 25 ° C., which is a normal temperature, and the secondary temperature coefficient was reduced to about 0.6 times the conventional temperature coefficient.

更に、本発明のSAW共振子は従来のSTカット水晶SAW共振子よりも良好なQ値を
保ちながら圧電基板のサイズを小型化できる。これは、本発明のSAW共振子の電極膜厚
H/λの増加に対するIDT又はグレーティング反射器でのSAWの反射量の増加分が、
STカット水晶SAW共振子と比較して著しく大きいことに起因する。即ち、本発明のS
AW共振子は電極膜厚H/λを大きくすることで、STカット水晶SAW共振子よりも少
ないIDT対数又はグレーティング反射器本数で高いQ値を実現可能である。
Furthermore, the SAW resonator of the present invention can reduce the size of the piezoelectric substrate while maintaining a better Q value than the conventional ST cut quartz SAW resonator. This is because the increase in SAW reflection amount at the IDT or grating reflector with respect to the increase in the electrode film thickness H / λ of the SAW resonator of the present invention is
This is because it is significantly larger than the ST cut quartz SAW resonator. That is, S of the present invention
By increasing the electrode film thickness H / λ, the AW resonator can realize a high Q value with a smaller number of IDT pairs or grating reflectors than the ST-cut quartz SAW resonator.

図3(a)は本発明のSAW共振子における電極膜厚H/λとQ値の関係を示したもの
であり、共振子設計条件は前述と同等である。同図より、0.04<H/λ<0.12の
範囲においてSTカット水晶SAW共振子のQ値(=15000)を上回る値が得られる
ことが分かる。更に、0.05<H/λ<0.10の範囲に設定することにより2000
0以上もの高いQ値が得られる。
FIG. 3 (a) shows the relationship between the electrode film thickness H / λ and the Q value in the SAW resonator of the present invention, and the resonator design conditions are the same as described above. From the figure, it can be seen that a value exceeding the Q value (= 15000) of the ST cut quartz SAW resonator can be obtained in the range of 0.04 <H / λ <0.12. Furthermore, 2000 is set by setting 0.05 <H / λ <0.10.
A high Q value of 0 or more can be obtained.

また、特許文献2にある多対IDT型SAW共振子と本発明のSAW共振子のQ値を比
較すると、特許文献2で得られているQ値は共振周波数が207.561(MHz)にお
ける値であり、これを本実施例で適用している共振周波数315(MHz)に換算すると
Q値は15000程度となるから、STカット水晶SAW共振子とほぼ同等である。また
、共振子のサイズを比較すると、特許文献2の多対IDT型SAW共振子は800±20
0対もの対数が必要なのに対し、本発明ではIDTとグレーティング反射器の両方で20
0対分の大きさで十分であるので格段に小型化できる。従って、電極膜厚を0.04<H
/λ<0.12、好ましくは0.05<H/λ<0.10の範囲に設定し、グレーティン
グ反射器を設けて効率良くSAWを反射することで、特許文献2に開示されている多対I
DT型SAW共振子よりも小型で且つQ値が高いSAWデバイスを実現できる。
Further, when comparing the Q values of the many-pair IDT SAW resonator in Patent Document 2 and the SAW resonator of the present invention, the Q value obtained in Patent Document 2 is a value at a resonance frequency of 207.561 (MHz). When this is converted to the resonance frequency 315 (MHz) applied in the present embodiment, the Q value is about 15000, which is almost equivalent to the ST-cut quartz SAW resonator. Further, when comparing the sizes of the resonators, the many-to-one IDT SAW resonator disclosed in Patent Document 2 is 800 ± 20.
The logarithm of 0 pairs is required, whereas in the present invention, both IDT and grating reflectors are 20
Since the size of 0 pairs is sufficient, the size can be significantly reduced. Therefore, the electrode film thickness is 0.04 <H.
/Λ<0.12, preferably 0.05 <H / λ <0.10, and a grating reflector is provided to efficiently reflect SAW, so that the Vs. I
A SAW device that is smaller and has a higher Q value than a DT type SAW resonator can be realized.

また、図3(b)は本発明のSAW共振子における電極膜厚H/λと2次温度係数の関
係を示しており、共振子設計条件は前述と同等である。同図より、高いQ値が得られる0
.04<H/λ<0.12の範囲においてSTカット水晶SAW共振子の2次温度係数−
0.034(ppm/℃2)よりも良好な値が得られることが分かる。
FIG. 3B shows the relationship between the electrode film thickness H / λ and the secondary temperature coefficient in the SAW resonator of the present invention, and the resonator design conditions are the same as described above. From the figure, it is possible to obtain a high Q value.
. The secondary temperature coefficient of ST cut quartz SAW resonator in the range of 04 <H / λ <0.12−
It can be seen that a value better than 0.034 (ppm / ° C. 2 ) can be obtained.

以上より、電極膜厚H/λを0.04<H/λ<0.12の範囲に設定することで、S
Tカット水晶SAWデバイス及び特許文献2に開示されているSAWデバイスよりも小型
でQ値が高く、且つ周波数安定性に優れたSAWデバイスを提供できることが確認された
From the above, by setting the electrode film thickness H / λ in the range of 0.04 <H / λ <0.12, S
It was confirmed that a SAW device having a smaller size, a higher Q value, and excellent frequency stability than the T-cut quartz SAW device and the SAW device disclosed in Patent Document 2 can be provided.

また、これまでカット角θを−51°とした場合についてのみ示してきたが、本発明の
SAW共振子においてはカット角θを変えても膜厚依存性は大きく変化せず、−51°か
ら数度ずれたカット角においても電極膜厚を0.04<H/λ<0.12、好ましくは0
.05<H/λ<0.10の範囲に設定することで、良好なQ値と2次温度係数が得られ
ることを確認した。
Although only the case where the cut angle θ is set to −51 ° has been shown so far, in the SAW resonator of the present invention, the film thickness dependency does not change greatly even when the cut angle θ is changed, and from −51 °. The electrode film thickness is 0.04 <H / λ <0.12, preferably 0 even at a cut angle shifted by several degrees.
. It was confirmed that a good Q value and a secondary temperature coefficient were obtained by setting in the range of 05 <H / λ <0.10.

ところで、SAW共振子の周波数温度特性の頂点温度Tpは電極膜厚H/λや圧電基板
のカット角θによって変化する。従って、いくら周波数温度特性が優れていても頂点温度
Tpが使用温度範囲外となってしまうと周波数安定性は著しく劣化してしまうので、実用
的な使用温度範囲において優れた周波数安定性を実現するには、2次温度係数だけでなく
頂点温度Tpについても詳細に検討する必要がある。
By the way, the apex temperature Tp of the frequency temperature characteristic of the SAW resonator varies depending on the electrode film thickness H / λ and the cut angle θ of the piezoelectric substrate. Therefore, even if the frequency temperature characteristic is excellent, if the apex temperature Tp is out of the operating temperature range, the frequency stability is significantly deteriorated, so that excellent frequency stability is realized in a practical operating temperature range. Therefore, it is necessary to examine not only the secondary temperature coefficient but also the apex temperature Tp in detail.

図4は、上述した種々の試作実験結果に基づき、前記SAW共振子において頂点温度T
p(℃)がTp=−50,0,+70,+125である時の水晶基板のカット角θと電極
膜厚H/λの関係を算出したシミュレーション結果を示すものであり、各Tp特性の近似
式は以下の通りである。
Tp=−50(℃):H/λ≒−1.02586×10-4×θ3−1.73238×10-2×θ2−0.977607×
θ−18.3420
Tp=0(℃):H/λ≒−9.87591×10-5×θ3−1.70304×10-2×θ2−0.981173×θ
−18.7946
Tp=+70(℃):H/λ≒−1.44605×10-4×θ3−2.50690×10-2×θ2−1.45086×
θ−27.9464
Tp=+125(℃):H/λ≒−1.34082×10-4×θ3−2.34969×10-2×θ2−1.3750
6×θ−26.7895
FIG. 4 shows the top temperature T in the SAW resonator based on the results of various prototype experiments described above.
FIG. 6 shows simulation results for calculating the relationship between the crystal substrate cut angle θ and the electrode film thickness H / λ when p (° C.) is Tp = −50, 0, +70, +125, and approximates each Tp characteristic. The formula is as follows.
Tp = −50 (° C.): H / λ≈−1.02586 × 10 −4 × θ 3 −1.73238 × 10 −2 × θ 2 −0.977607 ×
θ-18.3420
Tp = 0 (° C.): H / λ≈−9.87591 × 10 −5 × θ 3 −1.70304 × 10 −2 × θ 2 −0.981173 × θ
−18.7946
Tp = + 70 (° C.): H / λ≈−1.44605 × 10 −4 × θ 3 −2.50690 × 10 −2 × θ 2 −1.45086 ×
θ-27.9464
Tp = + 125 (° C.): H / λ≈−1.34082 × 10 −4 × θ 3 −2.34969 × 10 −2 × θ 2 −1.3750
6 × θ−26.7895

図4から、頂点温度Tp(℃)を実用的な範囲である−50≦Tp≦+125に設定す
るには、Tp=−50℃及びTp=+125℃の曲線に囲まれた領域、即ち、−1.34082
×10-4×θ3−2.34969×10-2×θ2−1.37506×θ−26.7895<H/λ<−1.02586×10-4×
θ3−1.73238×10-2×θ2−0.977607×θ−18.3420となるようにカット角θ及び電極膜厚
H/λを設定すれば良いことが分かる。なお、この時の電極膜厚H/λの範囲は、従来の
STカット水晶デバイスより優れた特性が得られる0.04<H/λ<0.12とし、カ
ット角θの範囲は図4の点Aから点Bに示す範囲の−64.0°<θ<−49.3°とす
ることを前提としている。
From FIG. 4, in order to set the apex temperature Tp (° C.) to a practical range of −50 ≦ Tp ≦ + 125, the region surrounded by the curves of Tp = −50 ° C. and Tp = + 125 ° C., that is, − 1.34082
× 10 -4 × θ 3 −2.34969 × 10 −2 × θ 2 −1.37506 × θ−26.7895 <H / λ <−1.02586 × 10 -4 ×
It can be seen that the cut angle θ and the electrode film thickness H / λ may be set so that θ 3 −1.73238 × 10 −2 × θ 2 −0.977607 × θ−18.3420. Note that the range of the electrode film thickness H / λ at this time is 0.04 <H / λ <0.12 in which characteristics superior to those of the conventional ST-cut quartz crystal device can be obtained, and the range of the cut angle θ is as shown in FIG. It is assumed that -64.0 ° <θ <−49.3 ° in the range shown from point A to point B.

更に、より最適な条件について検討すると、頂点温度Tp(℃)はより実用的な使用温
度範囲である0≦Tp≦+70に設定するのが望ましい。Tp(℃)を前述の範囲に設定
するには、図4に示すTp=0℃及びTp=+70℃の曲線に囲まれた領域、即ち、−1.
44605×10-4×θ3−2.50690×10-2×θ2−1.45086×θ−27.9464<H/λ<−9.87591×1
0-5×θ3−1.70304×10-2×θ2−0.981173×θ−18.7946となるようにカット角θ及び電
極膜厚H/λを設定すれば良い。また、電極膜厚H/λはQ値が20000以上得られる
0.05<H/λ<0.10の範囲にするのが望ましく、電極膜厚を前述の範囲とし、頂
点温度Tp(℃)を0≦Tp≦+70の範囲内に設定するには、カット角θを図4の点C
から点Dに示す範囲の−61.4°<θ<−51.1°に設定すれば良い。
Further, considering more optimal conditions, it is desirable to set the vertex temperature Tp (° C.) to 0 ≦ Tp ≦ + 70, which is a more practical use temperature range. In order to set Tp (° C.) within the aforementioned range, the region surrounded by the curves of Tp = 0 ° C. and Tp = + 70 ° C. shown in FIG.
44605 × 10 −4 × θ 3 −2.50690 × 10 −2 × θ 2 −1.45086 × θ−27.9464 <H / λ <−9.87591 × 1
The cut angle θ and the electrode film thickness H / λ may be set so that 0 −5 × θ 3 −1.70304 × 10 −2 × θ 2 −0.981173 × θ−18.7946. The electrode film thickness H / λ is preferably in the range of 0.05 <H / λ <0.10 where a Q value of 20000 or more can be obtained. The electrode film thickness is in the above range, and the apex temperature Tp (° C.). Is set within the range of 0 ≦ Tp ≦ + 70, the cut angle θ is set to the point C in FIG.
To −61.4 ° <θ <−51.1 ° in the range indicated by point D.

以上、詳細に検討した結果、カット角θが−64.0°<θ<−49.3°、好ましく
は−61.4°<θ<−51.1°の範囲にある回転Yカット水晶基板を用い、SAWの
伝搬方向がX軸に対してほぼ垂直方向として励振されるSH波を用い、IDTやグレーテ
ィング反射器の電極材料をAlまたはAlを主とした合金にて構成し、その電極膜厚H/
λを0.04<H/λ<0.12、好ましくは0.05<H/λ<0.10とすることで
、STカット水晶SAWデバイスよりQ値が大きく優れた温度特性が得られると共に、頂
点温度Tpを実用的な使用温度範囲内に設定できることが確認された。
As a result of detailed examination, the rotated Y-cut quartz substrate having a cut angle θ in the range of −64.0 ° <θ <−49.3 °, preferably −61.4 ° <θ <−51.1 °. The electrode material of the IDT and the grating reflector is made of Al or an alloy mainly composed of Al, using the SH wave excited with the SAW propagation direction substantially perpendicular to the X axis, and the electrode film Thickness H /
By setting λ to 0.04 <H / λ <0.12, preferably 0.05 <H / λ <0.10, temperature characteristics with a larger Q value than ST-cut quartz SAW devices can be obtained. It has been confirmed that the apex temperature Tp can be set within a practical use temperature range.

次に、前記SAW共振子のライン占有率mrと容量比γの関係について検討した。前述
のように、容量比γは小さいほどデバイスの高性能化が可能となるが、この容量比γはI
DTのライン占有率mrの値により変動する。従って、最適な容量比γが得られるように
IDTのライン占有率mrを選択する必要がある。
Next, the relationship between the line occupation ratio mr of the SAW resonator and the capacity ratio γ was examined. As described above, the smaller the capacity ratio γ, the higher the performance of the device becomes possible.
It varies depending on the value of the line occupation ratio mr of DT. Therefore, it is necessary to select the line occupation rate mr of the IDT so that the optimum capacity ratio γ can be obtained.

図5(a)は前記SAW共振子のライン占有率mrと容量比γとの関係を示している。
同図は実験値であり、実験では水晶基板のカット角θを−52.0°とし、電極膜厚H/
λを0.04から0.08まで0.01刻みで変化させ、IDTのライン占有率mrを0
.4から0.8まで0.1刻みで変化させた。なお、この時のグレーティング反射器のラ
イン占有率はIDTと同様に変化させている。同図より容量比γはライン占有率mrに対
して下に凸の2次曲線的な傾向を示すことが分かる。
FIG. 5A shows the relationship between the line occupancy mr of the SAW resonator and the capacitance ratio γ.
This figure shows experimental values. In the experiment, the cut angle θ of the quartz substrate was set to −52.0 °, and the electrode thickness H /
λ is changed in increments of 0.01 from 0.04 to 0.08, and the line occupation ratio mr of the IDT is 0.
. It was changed in increments of 0.1 from 4 to 0.8. Note that the line occupancy of the grating reflector at this time is changed in the same manner as in the IDT. From the figure, it can be seen that the capacity ratio γ shows a downwardly convex quadratic curve tendency with respect to the line occupation ratio mr.

また、図5(b)は各電極膜厚H/λの条件において容量比γが最小となるライン占有
率mrの値を示しており、電極膜厚H/λを0.04≦H/λ≦0.08とした時に、ラ
イン占有率mrを0.58≦mr≦0.60に設定することにより容量比γがほぼ最小値
となることが確認された。なお、図5(a)の曲線から実際にはライン占有率mrを0.
53≦mr≦0.65の範囲に設定すれば充分に容量比γを小さくすることが可能である
FIG. 5B shows the value of the line occupancy ratio mr at which the capacity ratio γ is minimized under the conditions of each electrode film thickness H / λ, and the electrode film thickness H / λ is 0.04 ≦ H / λ. When ≦ 0.08, it was confirmed that the capacity ratio γ becomes almost the minimum value by setting the line occupation ratio mr to 0.58 ≦ mr ≦ 0.60. It should be noted that the line occupation ratio mr is actually set to 0. 0 from the curve of FIG.
By setting the range 53 ≦ mr ≦ 0.65, the capacity ratio γ can be sufficiently reduced.

以上より、本発明のSAWデバイスにおいてIDTのライン占有率mrを0.53≦m
r≦0.65とすることにより、小型で高いQ値と優れた周波数温度特性を実現できると
共に、容量比γを小さくできることが確認された。
As described above, in the SAW device of the present invention, the line occupation rate mr of the IDT is 0.53 ≦ m
It was confirmed that, by setting r ≦ 0.65, a small and high Q value and an excellent frequency temperature characteristic can be realized, and the capacitance ratio γ can be reduced.

ところで、ライン占有率mrは製造誤差等が生じるので正確に制御するのが難しい。ラ
イン占有率mrがばらつくと周波数変動が生じるので、製造歩留まりが劣化してしまう問
題がある。従って、ライン占有率mrがばらついても周波数変動量の少ない、即ち周波数
制御性に優れたライン占有率mrを選択することが望ましい。以下、ライン占有率mrと
周波数制御性について検討した。
By the way, the line occupation ratio mr is difficult to control accurately because of manufacturing errors and the like. If the line occupancy ratio mr varies, there is a problem that the manufacturing yield deteriorates because the frequency fluctuates. Therefore, it is desirable to select a line occupancy mr that has a small amount of frequency fluctuation even if the line occupancy mr varies, that is, excellent in frequency controllability. Hereinafter, the line occupation ratio mr and frequency controllability were examined.

図6(a)は前記SAW共振子のライン占有率mrと共振周波数fの関係を示している
。同図は実験値であり、水晶基板のカット角θを−52.0°とし、電極膜厚H/λを0
.04から0.08まで0.01刻みで変化させ、IDTのライン占有率mrを0.4か
ら0.8まで0.1刻みで変化させている。なお、この時のグレーティング反射器のライ
ン占有率はIDTと同様に変化させている。図6(a)より、共振周波数fはライン占有
率mrに対して下に凸の2次曲線的な傾向を示すことが分かる。
FIG. 6A shows the relationship between the line occupation ratio mr of the SAW resonator and the resonance frequency f. This figure shows experimental values, the cut angle θ of the quartz substrate is −52.0 °, and the electrode film thickness H / λ is 0.
. The IDT line occupancy mr is changed from 0.4 to 0.08 in increments of 0.01, and is changed from 0.4 to 0.8 in increments of 0.1. Note that the line occupancy of the grating reflector at this time is changed in the same manner as in the IDT. From FIG. 6A, it can be seen that the resonance frequency f exhibits a downwardly convex quadratic curve tendency with respect to the line occupation ratio mr.

また、図6(b)は各電極膜厚H/λの条件において共振周波数fの極小値をとるライ
ン占有率mrの値を示しており、電極膜厚H/λを0.04≦H/λ≦0.08とした時
に、0.60≦mr≦0.63のライン占有率mrの範囲において共振周波数fの極小値
が存在することが確認された。なお、図6(a)の曲線から実際にはライン占有率mrを
0.55≦mr≦0.68の範囲内に設定すれば周波数変動量を抑圧でき、ライン占有率
mrがばらついても共振周波数fは然程変動しないので周波数制御性に優れたSAWデバ
イスを提供することができる。
FIG. 6B shows the value of the line occupancy ratio mr that takes the minimum value of the resonance frequency f under the condition of each electrode film thickness H / λ, and the electrode film thickness H / λ is 0.04 ≦ H / λ. When λ ≦ 0.08, it was confirmed that there was a minimum value of the resonance frequency f in the range of the line occupation ratio mr of 0.60 ≦ mr ≦ 0.63. It should be noted that if the line occupancy ratio mr is actually set within the range of 0.55 ≦ mr ≦ 0.68 from the curve of FIG. 6A, the amount of frequency fluctuation can be suppressed, and resonance occurs even if the line occupancy ratio mr varies. Since the frequency f does not vary so much, a SAW device having excellent frequency controllability can be provided.

以上から、回転Yカット水晶基板のカット角θを結晶Z軸より反時計方向に−64.0
°<θ<−49.3°、好ましくは−61.4°<θ<−51.1°とした水晶基板を用
いて、SAWの伝搬方向をX軸に対して垂直方向とし、励振されるSAWは基板表面付近
を伝搬するSH波であるSAWデバイスを構成し、そのIDTはAlまたはAlを主とす
る合金からなり、SAWの波長で基準化した電極膜厚H/λを0.04<H/λ<0.1
2、好ましくは0.05<H/λ<0.10、又は0.04≦H/λ≦0.08とするこ
とにより高いQ値と良好な周波数温度特性が得られ、更に、ライン占有率mrを0.53
≦mr≦0.65の範囲に設定することにより容量比γを小さくでき、ライン占有率mr
を0.55≦mr≦0.68の範囲に設定することにより優れた周波数制御性が得られる
ことが確認された。
From the above, the cut angle θ of the rotated Y-cut quartz substrate is −64.0 counterclockwise from the crystal Z axis.
Using a quartz substrate with an angle <θ <−49.3 °, preferably −61.4 ° <θ <−51.1 °, the SAW is propagated in a direction perpendicular to the X axis. SAW constitutes a SAW device which is an SH wave propagating near the substrate surface, and its IDT is made of Al or an alloy mainly containing Al, and the electrode film thickness H / λ normalized by the SAW wavelength is 0.04 < H / λ <0.1
2, preferably 0.05 <H / λ <0.10, or 0.04 ≦ H / λ ≦ 0.08, so that a high Q value and good frequency temperature characteristics can be obtained. mr is 0.53
By setting in the range of ≦ mr ≦ 0.65, the capacity ratio γ can be reduced, and the line occupation ratio mr
It was confirmed that excellent frequency controllability can be obtained by setting the value in the range of 0.55 ≦ mr ≦ 0.68.

また、容量比γを小さくできるライン占有率mrの範囲0.53≦mr≦0.65と、
優れた周波数制御性が得られるライン占有率mrの範囲0.55≦mr≦0.68とが重
複する範囲、0.55≦mr≦0.65にライン占有率mrを設定すれば、最適な容量比
γと優れた周波数制御性を両方兼ね備えたSAWデバイスを実現できる。
Further, the range of line occupancy mr that can reduce the capacity ratio γ is 0.53 ≦ mr ≦ 0.65,
If the line occupancy ratio mr is set to 0.55 ≦ mr ≦ 0.65, a range where the line occupancy ratio mr range 0.55 ≦ mr ≦ 0.68, which provides excellent frequency controllability, is optimal. A SAW device having both the capacity ratio γ and excellent frequency controllability can be realized.

なお、SAWデバイスを実際に製造する上でライン占有率mrは正確に一致させること
が困難であり、製造誤差や測定誤差を考慮すると±0.05程度のばらつきが生じてしま
うことが考えられるが、本発明のSAWデバイスにおいてはこの程度のばらつきであれば
上述と同等の効果が得られる。
Note that it is difficult to accurately match the line occupancy ratio mr in actually manufacturing a SAW device, and it is considered that a variation of about ± 0.05 may occur when manufacturing errors and measurement errors are taken into consideration. In the SAW device of the present invention, an effect equivalent to that described above can be obtained with such a variation.

これまで、図1に示すような1ポートのSAW共振子についてのみ言及してきたが、そ
れ以外のSAWデバイスにおいても本発明を適用できる。以下、種々のSAWデバイスの
構造について説明する。
So far, only the one-port SAW resonator as shown in FIG. 1 has been mentioned, but the present invention can be applied to other SAW devices. Hereinafter, the structures of various SAW devices will be described.

図7は圧電基板31上にSAWの伝搬方向に沿ってIDT32、33を配置し、その両
側にグレーティング反射器34a、34bを配置した2ポートSAW共振子を示しており
、1ポートSAW共振子と同じく高いQ値を実現できる。
FIG. 7 shows a 2-port SAW resonator in which IDTs 32 and 33 are arranged on the piezoelectric substrate 31 along the SAW propagation direction, and grating reflectors 34a and 34b are arranged on both sides thereof. Similarly, a high Q value can be realized.

図8は、共振子フィルタの1つの方式としてSAW共振子の音響結合を利用した2重モ
ードSAW(DMS)フィルタを示しており、(a)は圧電基板41上にSAW共振子4
2を伝搬方向に対して平行に近接配置した横結合型DMSフィルタ、(b)は圧電基板5
1上にIDT52からなるSAW共振子をSAWの伝搬方向に沿って配置した2ポートの
縦結合型DMSフィルタである。前記横結合型DMSフィルタは伝搬方向に対し垂直方向
の音響結合を利用し、前記縦結合型DMSフィルタは伝搬方向に対し水平方向の音響結合
を利用している。これらDMSフィルタは平坦な通過帯域と良好な帯域外抑圧度が得られ
る特徴がある。なお、前記縦結合型DMSフィルタは、通過域近傍を高減衰にするために
SAW共振子を接続する場合がある。また、更に高次のモードを利用した多重モードSA
Wフィルタや、伝搬方向に対し垂直方向と水平方向の双方で音響結合させた多重モードS
AWフィルタにも応用できる。
FIG. 8 shows a dual mode SAW (DMS) filter using acoustic coupling of a SAW resonator as one method of the resonator filter. FIG. 8A shows a SAW resonator 4 on a piezoelectric substrate 41.
2 is a laterally coupled DMS filter that is arranged close to and parallel to the propagation direction, and FIG.
This is a 2-port vertically coupled DMS filter in which a SAW resonator made of IDT 52 is arranged on 1 along the SAW propagation direction. The laterally coupled DMS filter uses acoustic coupling in a direction perpendicular to the propagation direction, and the longitudinally coupled DMS filter uses acoustic coupling in the horizontal direction with respect to the propagation direction. These DMS filters are characterized by a flat passband and a good out-of-band suppression. The longitudinally coupled DMS filter may be connected to a SAW resonator in order to make the vicinity of the pass band highly attenuated. In addition, multi-mode SA using higher-order modes
W filter or multiple mode S acoustically coupled both vertically and horizontally to the propagation direction
It can also be applied to AW filters.

図9は、共振子フィルタの別の方式として、圧電基板61上に複数の1ポートSAW共
振子62を直列、並列、直列と梯子(ラダー)状に配置してフィルタを構成したラダー型
SAWフィルタを示している。ラダー型SAWフィルタは前記DMSフィルタと比較して
通過域近傍の減衰傾度が急峻なフィルタ特性が得られる。
FIG. 9 shows another type of resonator filter, a ladder-type SAW filter in which a plurality of 1-port SAW resonators 62 are arranged in series, in parallel, in series and in a ladder form on a piezoelectric substrate 61. Is shown. The ladder-type SAW filter has a filter characteristic having a steep attenuation gradient in the vicinity of the pass band as compared with the DMS filter.

図10は、トランスバーサルSAWフィルタを示しており、(a)は圧電基板71上に
SAWの伝搬方向に沿って入力用IDT72と出力用IDT73を所定の間隙をあけて配
置したトランスバーサルSAWフィルタである。なお、前記IDT72、73は双方向に
SAWを伝搬させる。また、入出力端子間の直達波の影響を防ぐためにシールド電極74
を設けたり、基板端面からの不要な反射波を抑圧するために圧電基板71の両端に吸音材
75を塗布する場合がある。トランスバーサルSAWフィルタは、振幅特性と位相特性を
別々に設計可能であり、帯域外抑圧度が高いためIF用フィルタとして多用されている。
FIG. 10 shows a transversal SAW filter. FIG. 10A shows a transversal SAW filter in which an input IDT 72 and an output IDT 73 are arranged on the piezoelectric substrate 71 along a SAW propagation direction with a predetermined gap. is there. The IDTs 72 and 73 propagate SAW in both directions. In addition, the shield electrode 74 is used to prevent the influence of direct waves between the input and output terminals.
In some cases, a sound absorbing material 75 is applied to both ends of the piezoelectric substrate 71 in order to suppress unnecessary reflected waves from the substrate end surface. The transversal SAW filter can be designed separately for amplitude characteristics and phase characteristics, and is frequently used as an IF filter because of its high out-of-band suppression.

前記トランスバーサルSAWフィルタにおいて、SAWは伝搬方向に沿って左右に等し
く伝搬するためフィルタの挿入損失が大きくなってしまうという問題がある。この問題を
解決する手法として、図10(b)に示すように電極指配列や電極指幅を変化させること
によりSAWの励振及び反射に重み付けを施してSAWの励振を一方向性にした所謂単相
一方向性電極(Single Phase Uni-Directional Transducer:SPUDT)82、83を
配置したトランスバーサルSAWフィルタがある。SAWの励振が一方向性となるので低
損失なフィルタ特性が得られる。また、他の構造として、IDTの励振電極間にグレーテ
ィング反射器を配置した所謂反射バンク型トランスバーサルSAWフィルタ等がある。
In the transversal SAW filter, since the SAW propagates equally to the left and right along the propagation direction, there is a problem that the insertion loss of the filter increases. As a technique for solving this problem, as shown in FIG. 10B, the so-called single direction in which SAW excitation is made unidirectional by weighting SAW excitation and reflection by changing the electrode finger arrangement and electrode finger width. There is a transversal SAW filter in which single phase unidirectional electrodes (SPUD) 82 and 83 are arranged. Since SAW excitation is unidirectional, low-loss filter characteristics can be obtained. As another structure, there is a so-called reflection bank type transversal SAW filter in which a grating reflector is disposed between the excitation electrodes of the IDT.

以上の種々のSAWデバイスにおいて、回転Yカット水晶基板のカット角θを結晶Z軸
より反時計方向に−64.0°<θ<−49.3°、好ましくは−61.4°<θ<−5
1.1°とした水晶基板を用いて、SAWの伝搬方向をX軸に対して垂直方向とし、励振
されるSAWは基板表面付近を伝搬するSH波であるSAWデバイスを構成し、そのID
TはAlまたはAlを主とする合金からなり、SAWの波長で基準化した電極膜厚H/λ
を0.04<H/λ<0.12、好ましくは0.05<H/λ<0.10とすることによ
り高いQ値と良好な周波数温度特性が得られ、更に、IDTのライン占有率mrを0.5
3≦mr≦0.65の範囲に設定することにより容量比γを小さくでき、ライン占有率m
rを0.55≦mr≦0.68の範囲に設定することにより優れた周波数制御性が得られ
ることは明らかである。
In the various SAW devices described above, the cut angle θ of the rotated Y-cut quartz substrate is −64.0 ° <θ <−49.3 °, preferably −61.4 ° <θ <, counterclockwise from the crystal Z axis. -5
Using a quartz substrate of 1.1 °, the SAW propagation direction is perpendicular to the X axis, and the excited SAW constitutes a SAW device that is an SH wave propagating near the substrate surface.
T is made of Al or an alloy mainly containing Al, and the electrode film thickness H / λ normalized by the SAW wavelength.
0.04 <H / λ <0.12, preferably 0.05 <H / λ <0.10, a high Q value and good frequency temperature characteristics can be obtained. mr = 0.5
By setting in the range of 3 ≦ mr ≦ 0.65, the capacity ratio γ can be reduced, and the line occupation ratio m
It is clear that excellent frequency controllability can be obtained by setting r in the range of 0.55 ≦ mr ≦ 0.68.

また、上述のSAWデバイスにおいて、IDTやグレーティング反射器上にSiO2
の保護膜やAlを陽極酸化した保護膜等を形成したり、Al電極の上部あるいは下部に密
着層あるいは耐電力向上等の目的で別の金属薄膜を形成した場合においても、本発明と同
様の効果を得られることは明らかである。また、センサ装置やモジュール装置、発振回路
等に本発明のSAWデバイスが適用できることは言うまでもない。また、電圧制御SAW
発振器(VCSO)等に本発明のSAWデバイスを用いれば、容量比γを小さくできるの
で周波数可変幅を大きくとれる。
Further, in the above-described SAW device, a protective film such as SiO 2 or anodized Al is formed on the IDT or the grating reflector, an adhesion layer or an improvement in power resistance is provided above or below the Al electrode. Even when another metal thin film is formed for the purpose, it is obvious that the same effect as the present invention can be obtained. Needless to say, the SAW device of the present invention can be applied to a sensor device, a module device, an oscillation circuit, and the like. Voltage control SAW
If the SAW device of the present invention is used for an oscillator (VCSO) or the like, the capacitance ratio γ can be reduced, so that the frequency variable width can be increased.

また、本発明のSAWデバイスは、図1に示すようなSAWチップとパッケージをワイ
ヤボンディングした構造以外でも良く、SAWチップの電極パッドとパッケージの端子と
を金属バンプで接続したフリップチップボンディング(FCB)構造や、配線基板上にS
AWチップをフリップチップボンディングしSAWチップの周囲を樹脂封止したCSP(
Chip Size Package)構造、或いは、SAWチップ上に金属膜や樹脂層を形成することに
よりパッケージや配線基板を不要としたWLCSP(Wafer Level Chip Size Package)
構造等にしても良い。更には、水晶デバイスを水晶又はガラス基板で挟んで積層封止した
AQP(All Quartz Package)構造としても良い。前記AQP構造は、水晶又はガラス基
板で挟んだだけの構造であるのでパッケージが不要で薄型化が可能であり、低融点ガラス
封止や直接接合とすれば接着剤によるアウトガスが少なくなりエージング特性に優れた効
果を奏する。
Further, the SAW device of the present invention may have a structure other than the structure in which the SAW chip and the package are wire bonded as shown in FIG. 1, and flip chip bonding (FCB) in which the electrode pad of the SAW chip and the terminal of the package are connected by metal bumps. Structure and S on the wiring board
CSP with flip-chip bonding of AW chip and resin sealing around SAW chip (
Chip Size Package (WCSP) (Wafer Level Chip Size Package) that eliminates the need for a package or wiring board by forming a metal film or resin layer on a SAW chip
It may be a structure or the like. Furthermore, an AQP (All Quartz Package) structure in which a quartz crystal device is sandwiched between quartz or glass substrates and sealed. Since the AQP structure is simply sandwiched between crystal or glass substrates, a package is not required and the thickness can be reduced. If it is sealed with a low melting point glass or directly joined, outgas due to the adhesive is reduced and aging characteristics are achieved. Excellent effect.

本発明に係るSAW共振子を説明する図であり、(a)は平面図、(b)はIDTの断面図である。It is a figure explaining the SAW resonator which concerns on this invention, (a) is a top view, (b) is sectional drawing of IDT. 本発明に係るSAW共振子と従来品の比較を示したものであり、(a)はQ値及びFigure of merit及び2次温度係数の比較、(b)は周波数温度特性の比較である。The comparison between the SAW resonator according to the present invention and the conventional product is shown, in which (a) is a comparison of the Q value and the figure of merit and the secondary temperature coefficient, and (b) is a comparison of the frequency temperature characteristics. 本発明に係るSAW共振子の電極膜厚H/λとQ値との関係を(a)に、電極膜厚H/λと2次温度係数の関係を(b)に示す。The relationship between the electrode film thickness H / λ and the Q value of the SAW resonator according to the present invention is shown in (a), and the relationship between the electrode film thickness H / λ and the secondary temperature coefficient is shown in (b). 本発明に係るSAW共振子の頂点温度Tp(℃)がTp=−50,0,+70,+125である時のカット角θと電極膜厚H/λの関係を示す。The relationship between the cut angle θ and the electrode film thickness H / λ when the apex temperature Tp (° C.) of the SAW resonator according to the present invention is Tp = −50, 0, +70, +125 is shown. 本発明に係るSAW共振子の電極膜厚H/λを変化させた時のライン占有率mrと容量比γの関係を(a)に、各電極膜厚H/λの条件において容量比γが最小となるライン占有率mrの値を(b)に示す。The relationship between the line occupation ratio mr and the capacity ratio γ when the electrode film thickness H / λ of the SAW resonator according to the present invention is changed is shown in FIG. The minimum value of the line occupation ratio mr is shown in (b). 本発明に係るSAW共振子の電極膜厚H/λを変化させた時のライン占有率mrと共振周波数fの関係を(a)に、各電極膜厚H/λの条件において共振周波数fの極小値をとるライン占有率mrの値を(b)に示す。The relationship between the line occupancy ratio mr and the resonance frequency f when the electrode film thickness H / λ of the SAW resonator according to the present invention is changed is shown in FIG. The value of the line occupancy ratio mr taking the minimum value is shown in (b). 本発明に係る2ポートSAW共振子を説明する図である。It is a figure explaining the 2 port SAW resonator which concerns on this invention. 本発明に係るDMSフィルタを説明する図であり、(a)に横結合型DMSフィルタ、(b)に縦結合型DMSフィルタを示す。It is a figure explaining the DMS filter which concerns on this invention, (a) shows a lateral coupling type DMS filter, (b) shows a vertical coupling type DMS filter. 本発明に係るラダー型SAWフィルタを説明する図である。It is a figure explaining the ladder type SAW filter concerning the present invention. 本発明に係るトランスバーサルSAWフィルタを説明する図であり、(a)に双方向にSAWを励振させるIDTを配置したトランスバーサルSAWフィルタ、(b)に一方向にSAWを励振させるIDTを配置したトランスバーサルSAWフィルタを示す。It is a figure explaining the transversal SAW filter which concerns on this invention, (a) arrange | positioned transversal SAW filter which arrange | positioned SAW bi-directionally, and (b) arranged IDT which excites SAW in one direction 2 shows a transversal SAW filter. 従来のSTカット水晶SAW共振子を説明する図である。It is a figure explaining the conventional ST cut quartz crystal SAW resonator. −50°回転Yカット90°X伝搬水晶基板を説明する図である。It is a figure explaining a -50 degree rotation Y cut 90 degree X propagation quartz substrate. 従来の多対IDT型SAW共振子を説明する図である。It is a figure explaining the conventional many-pair IDT type SAW resonator. SAW共振子の等価回路図を示す。The equivalent circuit diagram of a SAW resonator is shown.

符号の説明Explanation of symbols

1…圧電基板、2…IDT、3a、3b…グレーティング反射器、4a、4b…入出力
用パッド、5a、5b…金属ワイヤ、6…パッケージ、31…圧電基板32、33…ID
T、34a、34bグレーティング反射器、41…圧電基板、42…SAW共振子、51
…圧電基板、52…IDT、61…圧電基板、62…1ポートSAW共振子、71…圧電
基板、72…入力用IDT、73…出力用IDT、74…シールド電極、75…吸音材、
82、83…一方向性電極。
DESCRIPTION OF SYMBOLS 1 ... Piezoelectric substrate, 2 ... IDT, 3a, 3b ... Grating reflector, 4a, 4b ... Input / output pad, 5a, 5b ... Metal wire, 6 ... Package, 31 ... Piezoelectric substrate 32, 33 ... ID
T, 34a, 34b grating reflector, 41... Piezoelectric substrate, 42... SAW resonator, 51
... Piezoelectric substrate, 52 ... IDT, 61 ... Piezoelectric substrate, 62 ... 1-port SAW resonator, 71 ... Piezoelectric substrate, 72 ... Input IDT, 73 ... Output IDT, 74 ... Shield electrode, 75 ... Sound absorbing material,
82, 83 ... Unidirectional electrodes.

Claims (10)

圧電基板と、該圧電基板上に形成されAl又はAlを主成分とする合金からなるIDTとを備え、励振波をSH波とした弾性表面波デバイスであって、
前記圧電基板は、そのカット角θを結晶X軸を回転軸とした結晶Z軸の回転角度とし、結晶+Z軸から結晶+Y軸側へ回転させる方向を前記カット角θが負となる回転方向として、−61.4°<θ<−51.1°の範囲に設定し、且つ、弾性表面波の伝搬方向を結晶X軸に対し90°±5°とした水晶平板からなる回転Yカット水晶基板であり、
励振する弾性表面波の波長をλとした時、前記IDTの波長で基準化した電極膜厚H/λを0.04<H/λ<0.12とし、
前記IDTを構成する電極指のライン占有率mrを電極指幅/(電極指幅+電極指間スペース)とした時に、前記ライン占有率mrを0.53≦mr≦0.65とすることを特徴とした弾性表面波デバイス(但し、−8.04489×10 -5 ×θ 3 −1.40981×10 -2 ×θ 2 −0.825038×θ−16.0737<H/λ×mr<−6.15517×10 -5 ×θ 3 −1.03943×10 -2 ×θ 2 −0.586564×θ−11.0052を満たす範囲と、−8.67632×10 -5 ×θ 3 −1.50414×10 -2 ×θ 2 −0.870514×θ−16.7678<H/λ×mr<−5.92554×10 -5 ×θ 3 −1.02183×10 -2 ×θ 2 −0.588704×θ−11.2768を満たす範囲と、を除く)
A surface acoustic wave device comprising a piezoelectric substrate and an IDT formed on the piezoelectric substrate and made of Al or an alloy containing Al as a main component, wherein the excitation wave is an SH wave,
In the piezoelectric substrate, the cut angle θ is the rotation angle of the crystal Z axis with the crystal X axis as the rotation axis, and the direction of rotation from the crystal + Z axis to the crystal + Y axis side is the rotation direction in which the cut angle θ is negative. , -61.4 ° <set in the range of -51.1 °, and the rotation Y cut quartz substrate composed of quartz flat plate where the surface acoustic wave propagation direction and 90 ° ± 5 ° with respect to the crystal X-axis And
When the wavelength of the surface acoustic wave to be excited is λ, the electrode film thickness H / λ normalized by the wavelength of the IDT is 0.04 <H / λ <0.12,
When the line occupancy ratio mr of electrode fingers constituting the IDT is defined as electrode finger width / (electrode finger width + inter-electrode finger space), the line occupancy ratio mr is set to 0.53 ≦ mr ≦ 0.65. Characteristic surface acoustic wave device (provided that −8.04489 × 10 −5 × θ 3 −1.40981 × 10 −2 × θ 2 −0.825038 × θ−16.0737 <H / λ × mr <− 6.155517 × 10 −5 × θ 3 −1.03943 × 10 −2 × θ 2 −0.586564 × θ-11.0052, and −8.66762 × 10 −5 × θ 3 −1. 50414 × 10 −2 × θ 2 −0.870514 × θ−16.7678 <H / λ × mr <−5.992554 × 10 −5 × θ 3 −1.02183 × 10 −2 × θ 2 −0. And a range satisfying 588704 × θ-11.768) .
圧電基板と、該圧電基板上に形成されAl又はAlを主成分とする合金からなるIDTとを備え、励振波をSH波とした弾性表面波デバイスであって、
前記圧電基板は、そのカット角θを結晶X軸を回転軸とした結晶Z軸の回転角度とし、結晶+Z軸から結晶+Y軸側へ回転させる方向を前記カット角θが負となる回転方向として、−61.4°<θ<−51.1°の範囲に設定し、且つ、弾性表面波の伝搬方向を結晶X軸に対し90°±5°とした水晶平板からなる回転Yカット水晶基板であり、
励振する弾性表面波の波長をλとした時、前記IDTの波長で基準化した電極膜厚H/λを0.04<H/λ<0.12とし、
前記IDTを構成する電極指のライン占有率mrを電極指幅/(電極指幅+電極指間スペース)とした時に、前記ライン占有率mrを0.55≦mr≦0.68とすることを特徴とした弾性表面波デバイス(但し、−8.04489×10 -5 ×θ 3 −1.40981×10 -2 ×θ 2 −0.825038×θ−16.0737<H/λ×mr<−6.15517×10 -5 ×θ 3 −1.03943×10 -2 ×θ 2 −0.586564×θ−11.0052を満たす範囲と、−8.67632×10 -5 ×θ 3 −1.50414×10 -2 ×θ 2 −0.870514×θ−16.7678<H/λ×mr<−5.92554×10 -5 ×θ 3 −1.02183×10 -2 ×θ 2 −0.588704×θ−11.2768を満たす範囲と、を除く)
A surface acoustic wave device comprising a piezoelectric substrate and an IDT formed on the piezoelectric substrate and made of Al or an alloy containing Al as a main component, wherein the excitation wave is an SH wave,
In the piezoelectric substrate, the cut angle θ is the rotation angle of the crystal Z axis with the crystal X axis as the rotation axis, and the direction of rotation from the crystal + Z axis to the crystal + Y axis side is the rotation direction in which the cut angle θ is negative. , -61.4 ° <set in the range of -51.1 °, and the rotation Y cut quartz substrate composed of quartz flat plate where the surface acoustic wave propagation direction and 90 ° ± 5 ° with respect to the crystal X-axis And
When the wavelength of the surface acoustic wave to be excited is λ, the electrode film thickness H / λ normalized by the wavelength of the IDT is 0.04 <H / λ <0.12,
When the line occupancy ratio mr of electrode fingers constituting the IDT is defined as electrode finger width / (electrode finger width + inter-electrode finger space), the line occupancy ratio mr is set to 0.55 ≦ mr ≦ 0.68. Characteristic surface acoustic wave device (provided that −8.04489 × 10 −5 × θ 3 −1.40981 × 10 −2 × θ 2 −0.825038 × θ−16.0737 <H / λ × mr <− 6.155517 × 10 −5 × θ 3 −1.03943 × 10 −2 × θ 2 −0.586564 × θ-11.0052, and −8.66762 × 10 −5 × θ 3 −1. 50414 × 10 −2 × θ 2 −0.870514 × θ−16.7678 <H / λ × mr <−5.992554 × 10 −5 × θ 3 −1.02183 × 10 −2 × θ 2 −0. And a range satisfying 588704 × θ-11.768) .
圧電基板と、該圧電基板上に形成されAl又はAlを主成分とする合金からなるIDTとを備え、励振波をSH波とした弾性表面波デバイスであって、
前記圧電基板は、そのカット角θを結晶X軸を回転軸とした結晶Z軸の回転角度とし、結晶+Z軸から結晶+Y軸側へ回転させる方向を前記カット角θが負となる回転方向として、−61.4°<θ<−51.1°の範囲に設定し、且つ、弾性表面波の伝搬方向を結晶X軸に対し90°±5°とした水晶平板からなる回転Yカット水晶基板であり、
励振する弾性表面波の波長をλとした時、前記IDTの波長で基準化した電極膜厚H/λを0.04<H/λ<0.12とし、
前記IDTを構成する電極指のライン占有率mrを電極指幅/(電極指幅+電極指間スペース)とした時に、前記ライン占有率mrを0.55≦mr≦0.65とすることを特徴とした弾性表面波デバイス(但し、−8.04489×10 -5 ×θ 3 −1.40981×10 -2 ×θ 2 −0.825038×θ−16.0737<H/λ×mr<−6.15517×10 -5 ×θ 3 −1.03943×10 -2 ×θ 2 −0.586564×θ−11.0052を満たす範囲と、−8.67632×10 -5 ×θ 3 −1.50414×10 -2 ×θ 2 −0.870514×θ−16.7678<H/λ×mr<−5.92554×10 -5 ×θ 3 −1.02183×10 -2 ×θ 2 −0.588704×θ−11.2768を満たす範囲と、を除く)
A surface acoustic wave device comprising a piezoelectric substrate and an IDT formed on the piezoelectric substrate and made of Al or an alloy containing Al as a main component, wherein the excitation wave is an SH wave,
In the piezoelectric substrate, the cut angle θ is the rotation angle of the crystal Z axis with the crystal X axis as the rotation axis, and the direction of rotation from the crystal + Z axis to the crystal + Y axis side is the rotation direction in which the cut angle θ is negative. , -61.4 ° <set in the range of -51.1 °, and the rotation Y cut quartz substrate composed of quartz flat plate where the surface acoustic wave propagation direction and 90 ° ± 5 ° with respect to the crystal X-axis And
When the wavelength of the surface acoustic wave to be excited is λ, the electrode film thickness H / λ normalized by the wavelength of the IDT is 0.04 <H / λ <0.12,
When the line occupation ratio mr of the electrode fingers constituting the IDT is defined as electrode finger width / (electrode finger width + inter-electrode finger space), the line occupation ratio mr is set to 0.55 ≦ mr ≦ 0.65. Characteristic surface acoustic wave device (provided that −8.04489 × 10 −5 × θ 3 −1.40981 × 10 −2 × θ 2 −0.825038 × θ−16.0737 <H / λ × mr <− 6.155517 × 10 −5 × θ 3 −1.03943 × 10 −2 × θ 2 −0.586564 × θ-11.0052, and −8.66762 × 10 −5 × θ 3 −1. 50414 × 10 −2 × θ 2 −0.870514 × θ−16.7678 <H / λ × mr <−5.992554 × 10 −5 × θ 3 −1.02183 × 10 −2 × θ 2 −0. And a range satisfying 588704 × θ-11.768) .
前記電極膜厚H/λが0.04<H/λ≦0.08の範囲に設定されていることを特徴とした請求項1乃至3のいずれか一項に記載の弾性表面波デバイス。   4. The surface acoustic wave device according to claim 1, wherein the electrode film thickness H / λ is set in a range of 0.04 <H / λ ≦ 0.08. 5. 圧電基板と、該圧電基板上に形成されAl又はAlを主成分とする合金からなるIDTとを備え、励振波をSH波とした弾性表面波デバイスであって、
前記圧電基板は、そのカット角θを結晶X軸を回転軸とした結晶Z軸の回転角度とし、結晶+Z軸から結晶+Y軸側へ回転させる方向を前記カット角θが負となる回転方向として、−64.0°<θ<−49.3°の範囲に設定し、且つ、弾性表面波の伝搬方向を結晶X軸に対し90°±5°とした水晶平板からなる回転Yカット水晶基板であり、
励振する弾性表面波の波長をλとした時、前記IDTの波長で基準化した電極膜厚H/λを0.05<H/λ<0.10とし、
前記IDTを構成する電極指のライン占有率mrを電極指幅/(電極指幅+電極指間スペース)とした時に、前記ライン占有率mrを0.53≦mr≦0.65とすることを特徴とした弾性表面波デバイス(但し、−8.04489×10 -5 ×θ 3 −1.40981×10 -2 ×θ 2 −0.825038×θ−16.0737<H/λ×mr<−6.15517×10 -5 ×θ 3 −1.03943×10 -2 ×θ 2 −0.586564×θ−11.0052を満たす範囲と、−8.67632×10 -5 ×θ 3 −1.50414×10 -2 ×θ 2 −0.870514×θ−16.7678<H/λ×mr<−5.92554×10 -5 ×θ 3 −1.02183×10 -2 ×θ 2 −0.588704×θ−11.2768を満たす範囲と、を除く)
A surface acoustic wave device comprising a piezoelectric substrate and an IDT formed on the piezoelectric substrate and made of Al or an alloy containing Al as a main component, wherein the excitation wave is an SH wave,
In the piezoelectric substrate, the cut angle θ is the rotation angle of the crystal Z axis with the crystal X axis as the rotation axis, and the direction of rotation from the crystal + Z axis to the crystal + Y axis side is the rotation direction in which the cut angle θ is negative. , -64.0 ° <set in the range of -49.3 °, and the rotation Y cut quartz substrate composed of quartz flat plate where the surface acoustic wave propagation direction and 90 ° ± 5 ° with respect to the crystal X-axis And
When the wavelength of the surface acoustic wave to be excited is λ, the electrode film thickness H / λ normalized by the wavelength of the IDT is 0.05 <H / λ <0.10,
When the line occupancy ratio mr of electrode fingers constituting the IDT is defined as electrode finger width / (electrode finger width + inter-electrode finger space), the line occupancy ratio mr is set to 0.53 ≦ mr ≦ 0.65. Characteristic surface acoustic wave device (provided that −8.04489 × 10 −5 × θ 3 −1.40981 × 10 −2 × θ 2 −0.825038 × θ−16.0737 <H / λ × mr <− 6.155517 × 10 −5 × θ 3 −1.03943 × 10 −2 × θ 2 −0.586564 × θ-11.0052, and −8.66762 × 10 −5 × θ 3 −1. 50414 × 10 −2 × θ 2 −0.870514 × θ−16.7678 <H / λ × mr <−5.992554 × 10 −5 × θ 3 −1.02183 × 10 −2 × θ 2 −0. And a range satisfying 588704 × θ-11.768) .
圧電基板と、該圧電基板上に形成されAl又はAlを主成分とする合金からなるIDTとを備え、励振波をSH波とした弾性表面波デバイスであって、
前記圧電基板は、そのカット角θを結晶X軸を回転軸とした結晶Z軸の回転角度とし、結晶+Z軸から結晶+Y軸側へ回転させる方向を前記カット角θが負となる回転方向として、−64.0°<θ<−49.3°の範囲に設定し、且つ、弾性表面波の伝搬方向を結晶X軸に対し90°±5°とした水晶平板からなる回転Yカット水晶基板であり、
励振する弾性表面波の波長をλとした時、前記IDTの波長で基準化した電極膜厚H/λを0.05<H/λ<0.10とし、
前記IDTを構成する電極指のライン占有率mrを電極指幅/(電極指幅+電極指間スペース)とした時に、前記ライン占有率mrを0.55≦mr≦0.68とすることを特徴とした弾性表面波デバイス(但し、−8.04489×10 -5 ×θ 3 −1.40981×10 -2 ×θ 2 −0.825038×θ−16.0737<H/λ×mr<−6.15517×10 -5 ×θ 3 −1.03943×10 -2 ×θ 2 −0.586564×θ−11.0052を満たす範囲と、−8.67632×10 -5 ×θ 3 −1.50414×10 -2 ×θ 2 −0.870514×θ−16.7678<H/λ×mr<−5.92554×10 -5 ×θ 3 −1.02183×10 -2 ×θ 2 −0.588704×θ−11.2768を満たす範囲と、を除く)
A surface acoustic wave device comprising a piezoelectric substrate and an IDT formed on the piezoelectric substrate and made of Al or an alloy containing Al as a main component, wherein the excitation wave is an SH wave,
In the piezoelectric substrate, the cut angle θ is the rotation angle of the crystal Z axis with the crystal X axis as the rotation axis, and the direction of rotation from the crystal + Z axis to the crystal + Y axis side is the rotation direction in which the cut angle θ is negative. , -64.0 ° <set in the range of -49.3 °, and the rotation Y cut quartz substrate composed of quartz flat plate where the surface acoustic wave propagation direction and 90 ° ± 5 ° with respect to the crystal X-axis And
When the wavelength of the surface acoustic wave to be excited is λ, the electrode film thickness H / λ normalized by the wavelength of the IDT is 0.05 <H / λ <0.10,
When the line occupancy ratio mr of electrode fingers constituting the IDT is defined as electrode finger width / (electrode finger width + inter-electrode finger space), the line occupancy ratio mr is set to 0.55 ≦ mr ≦ 0.68. Characteristic surface acoustic wave device (provided that −8.04489 × 10 −5 × θ 3 −1.40981 × 10 −2 × θ 2 −0.825038 × θ−16.0737 <H / λ × mr <− 6.155517 × 10 −5 × θ 3 −1.03943 × 10 −2 × θ 2 −0.586564 × θ-11.0052, and −8.66762 × 10 −5 × θ 3 −1. 50414 × 10 −2 × θ 2 −0.870514 × θ−16.7678 <H / λ × mr <−5.992554 × 10 −5 × θ 3 −1.02183 × 10 −2 × θ 2 −0. And a range satisfying 588704 × θ-11.768) .
圧電基板と、該圧電基板上に形成されAl又はAlを主成分とする合金からなるIDTとを備え、励振波をSH波とした弾性表面波デバイスであって、
前記圧電基板は、そのカット角θを結晶X軸を回転軸とした結晶Z軸の回転角度とし、結晶+Z軸から結晶+Y軸側へ回転させる方向を前記カット角θが負となる回転方向として、−64.0°<θ<−49.3°の範囲に設定し、且つ、弾性表面波の伝搬方向を結晶X軸に対し90°±5°とした水晶平板からなる回転Yカット水晶基板であり、
励振する弾性表面波の波長をλとした時、前記IDTの波長で基準化した電極膜厚H/λを0.05<H/λ<0.10とし、
前記IDTを構成する電極指のライン占有率mrを電極指幅/(電極指幅+電極指間スペース)とした時に、前記ライン占有率mrを0.55≦mr≦0.65とすることを特徴とした弾性表面波デバイス(但し、−8.04489×10 -5 ×θ 3 −1.40981×10 -2 ×θ 2 −0.825038×θ−16.0737<H/λ×mr<−6.15517×10 -5 ×θ 3 −1.03943×10 -2 ×θ 2 −0.586564×θ−11.0052を満たす範囲と、−8.67632×10 -5 ×θ 3 −1.50414×10 -2 ×θ 2 −0.870514×θ−16.7678<H/λ×mr<−5.92554×10 -5 ×θ 3 −1.02183×10 -2 ×θ 2 −0.588704×θ−11.2768を満たす範囲と、を除く)
A surface acoustic wave device comprising a piezoelectric substrate and an IDT formed on the piezoelectric substrate and made of Al or an alloy containing Al as a main component, wherein the excitation wave is an SH wave,
In the piezoelectric substrate, the cut angle θ is the rotation angle of the crystal Z axis with the crystal X axis as the rotation axis, and the direction of rotation from the crystal + Z axis to the crystal + Y axis side is the rotation direction in which the cut angle θ is negative. , -64.0 ° <set in the range of -49.3 °, and the rotation Y cut quartz substrate composed of quartz flat plate where the surface acoustic wave propagation direction and 90 ° ± 5 ° with respect to the crystal X-axis And
When the wavelength of the surface acoustic wave to be excited is λ, the electrode film thickness H / λ normalized by the wavelength of the IDT is 0.05 <H / λ <0.10,
When the line occupation ratio mr of the electrode fingers constituting the IDT is defined as electrode finger width / (electrode finger width + inter-electrode finger space), the line occupation ratio mr is set to 0.55 ≦ mr ≦ 0.65. Characteristic surface acoustic wave device (provided that −8.04489 × 10 −5 × θ 3 −1.40981 × 10 −2 × θ 2 −0.825038 × θ−16.0737 <H / λ × mr <− 6.155517 × 10 −5 × θ 3 −1.03943 × 10 −2 × θ 2 −0.586564 × θ-11.0052, and −8.66762 × 10 −5 × θ 3 −1. 50414 × 10 −2 × θ 2 −0.870514 × θ−16.7678 <H / λ × mr <−5.992554 × 10 −5 × θ 3 −1.02183 × 10 −2 × θ 2 −0. And a range satisfying 588704 × θ-11.768) .
前記電極膜厚H/λが0.05<H/λ≦0.08の範囲に設定されていることを特徴とした請求項5乃至7のいずれか一項に記載の弾性表面波デバイス。   8. The surface acoustic wave device according to claim 5, wherein the electrode film thickness H / λ is set in a range of 0.05 <H / λ ≦ 0.08. 9. 請求項1乃至8のいずれか一項に記載の弾性表面波デバイスを用いることを特徴としたモジュール装置。   A module apparatus using the surface acoustic wave device according to claim 1. 請求項1乃至8のいずれか一項に記載の弾性表面波デバイスを用いることを特徴とした発振回路。   An oscillation circuit comprising the surface acoustic wave device according to claim 1.
JP2008004113A 2008-01-11 2008-01-11 Surface acoustic wave device and module device or oscillation circuit using the same Expired - Fee Related JP4582150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008004113A JP4582150B2 (en) 2008-01-11 2008-01-11 Surface acoustic wave device and module device or oscillation circuit using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008004113A JP4582150B2 (en) 2008-01-11 2008-01-11 Surface acoustic wave device and module device or oscillation circuit using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004351012A Division JP4148216B2 (en) 2004-12-03 2004-12-03 Surface acoustic wave device and module device or oscillation circuit using the same

Publications (2)

Publication Number Publication Date
JP2008099339A JP2008099339A (en) 2008-04-24
JP4582150B2 true JP4582150B2 (en) 2010-11-17

Family

ID=39381600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008004113A Expired - Fee Related JP4582150B2 (en) 2008-01-11 2008-01-11 Surface acoustic wave device and module device or oscillation circuit using the same

Country Status (1)

Country Link
JP (1) JP4582150B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013102418A (en) * 2011-10-18 2013-05-23 Nippon Dempa Kogyo Co Ltd Surface acoustic wave element and electronic component
JP6613482B2 (en) * 2015-09-03 2019-12-04 日本電波工業株式会社 Crystal oscillator
CN112653417A (en) * 2020-12-18 2021-04-13 广东广纳芯科技有限公司 Surface acoustic wave resonator and method for manufacturing the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833309A (en) * 1981-08-21 1983-02-26 Toyo Commun Equip Co Ltd Slip wave resonator
JP3255502B2 (en) * 1993-07-26 2002-02-12 東洋通信機株式会社 Highly stable surface acoustic wave device
JPH1188100A (en) * 1997-09-03 1999-03-30 Toyo Commun Equip Co Ltd Surface acoustic wave device
JP3301399B2 (en) * 1998-02-16 2002-07-15 株式会社村田製作所 Surface acoustic wave device
JP2000151355A (en) * 1998-11-05 2000-05-30 Toyo Commun Equip Co Ltd Ladder-type saw filter
JP3353742B2 (en) * 1999-05-07 2002-12-03 株式会社村田製作所 Surface wave resonator, surface wave device, communication device
JP3897229B2 (en) * 2001-04-27 2007-03-22 株式会社村田製作所 Surface wave filter
JP2004328387A (en) * 2003-04-24 2004-11-18 Murata Mfg Co Ltd Elastic surface wave apparatus
JP2004007846A (en) * 2003-09-08 2004-01-08 Murata Mfg Co Ltd Surface wave resonator
EP1732216B1 (en) * 2004-04-01 2014-01-08 Seiko Epson Corporation Surface acoustic device
JP4356773B2 (en) * 2004-04-01 2009-11-04 エプソントヨコム株式会社 Surface acoustic wave device and module device or oscillation circuit using the same
JP4148216B2 (en) * 2004-12-03 2008-09-10 エプソントヨコム株式会社 Surface acoustic wave device and module device or oscillation circuit using the same

Also Published As

Publication number Publication date
JP2008099339A (en) 2008-04-24

Similar Documents

Publication Publication Date Title
JP4148294B2 (en) Surface acoustic wave device and module device or oscillation circuit using the same
US7382217B2 (en) Surface acoustic wave device
JP5163746B2 (en) Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module device
US20140285063A1 (en) Surface acoustic wave device, electronic apparatus, and sensor apparatus
JPWO2006137464A1 (en) Surface acoustic wave device, module, and oscillator
US8476984B2 (en) Vibration device, oscillator, and electronic apparatus
JP4049195B2 (en) Manufacturing method of surface acoustic wave device
JP2006203408A (en) Surface acoustic wave device
JP4645957B2 (en) Surface acoustic wave element and surface acoustic wave device
JP7080671B2 (en) Surface acoustic wave device
CN100539411C (en) surface acoustic wave device
JP4356773B2 (en) Surface acoustic wave device and module device or oscillation circuit using the same
JP4582150B2 (en) Surface acoustic wave device and module device or oscillation circuit using the same
JP2007288812A (en) Surface acoustic wave device, module apparatus, oscillation circuit, and surface acoustic wave device manufacturing method
JP2006295311A (en) Surface acoustic wave element and surface acoustic wave device
JPWO2007004661A1 (en) Surface acoustic wave device
JP4148216B2 (en) Surface acoustic wave device and module device or oscillation circuit using the same
JP2010103720A (en) Surface acoustic wave device
JP4148220B2 (en) Surface acoustic wave device, composite device, oscillation circuit and module
JP5158104B2 (en) Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module device
JP5488680B2 (en) Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module device
JP2007019975A (en) Surface acoustic wave device, module device, oscillation circuit
JP2007019976A (en) Vertically coupled multimode SAW filter, module device
JP2007088952A (en) Surface acoustic wave device
JP2007013682A (en) Surface acoustic wave device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20091117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100622

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

R150 Certificate of patent or registration of utility model

Ref document number: 4582150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees