[go: up one dir, main page]

JP4582689B2 - Polymer electrolyte fuel cell - Google Patents

Polymer electrolyte fuel cell Download PDF

Info

Publication number
JP4582689B2
JP4582689B2 JP2004075012A JP2004075012A JP4582689B2 JP 4582689 B2 JP4582689 B2 JP 4582689B2 JP 2004075012 A JP2004075012 A JP 2004075012A JP 2004075012 A JP2004075012 A JP 2004075012A JP 4582689 B2 JP4582689 B2 JP 4582689B2
Authority
JP
Japan
Prior art keywords
electrolyte membrane
fuel cell
decomposition catalyst
peroxide
seal member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004075012A
Other languages
Japanese (ja)
Other versions
JP2005267904A (en
Inventor
房美 三浦
友 森本
雅史 小林
学 加藤
仙光 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2004075012A priority Critical patent/JP4582689B2/en
Publication of JP2005267904A publication Critical patent/JP2005267904A/en
Application granted granted Critical
Publication of JP4582689B2 publication Critical patent/JP4582689B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、固体高分子型燃料電池に関し、特に、電解質膜とセパレータとの間をシールするシール部材や、電解質膜等の劣化が抑制された固体高分子型燃料電池に関する。   The present invention relates to a polymer electrolyte fuel cell, and more particularly to a seal member that seals between an electrolyte membrane and a separator, and a polymer electrolyte fuel cell in which deterioration of the electrolyte membrane or the like is suppressed.

ガスの電気化学反応により電気を発生させる燃料電池は、発電効率が高く、排出されるガスがクリーンで環境に対する影響が極めて少ない。そのため、近年、発電用、低公害の自動車用電源等、種々の用途が期待されている。   A fuel cell that generates electricity by an electrochemical reaction of gas has high power generation efficiency, clean gas discharged, and extremely little influence on the environment. Therefore, in recent years, various uses such as power generation and low-pollution automobile power supplies are expected.

なかでも、固体高分子型燃料電池は、80℃程度の低温で作動させることができ、大きな出力密度を有する。固体高分子型燃料電池は、通常、プロトン導電性のある高分子膜を電解質とする。電解質となる高分子膜(電解質膜)の両側に、燃料極、酸素極となる一対の電極がそれぞれ配置され、電解質膜電極接合体(MEA)が構成される。この電解質膜電極接合体をセパレータで挟持した単セルが発電単位となる。そして、水素や炭化水素等の燃料ガスを燃料極に、酸素や空気等の酸化剤ガスを酸素極にそれぞれ供給し、ガスと電解質と電極との三相界面における電気化学反応により発電を行う。   Among them, the polymer electrolyte fuel cell can be operated at a low temperature of about 80 ° C. and has a large output density. In general, a polymer electrolyte fuel cell uses a polymer film having proton conductivity as an electrolyte. A pair of electrodes serving as a fuel electrode and an oxygen electrode are respectively disposed on both sides of a polymer film (electrolyte film) serving as an electrolyte, thereby forming an electrolyte membrane electrode assembly (MEA). A single cell in which the electrolyte membrane electrode assembly is sandwiched between separators serves as a power generation unit. Then, a fuel gas such as hydrogen or hydrocarbon is supplied to the fuel electrode, and an oxidant gas such as oxygen or air is supplied to the oxygen electrode, and power is generated by an electrochemical reaction at the three-phase interface between the gas, the electrolyte, and the electrode.

ここで、セパレータは、隣接する単セルを隔て、各々の電極に供給される反応ガスの通路を形成する機能と、各々の電極からの集電機能とを果たす。例えば、各々の電極に供給される反応ガスが混合すると、発電効率が低下する等の問題が生じる。このため、反応ガスの混合を防止する必要がある。一方、電解質膜は、水を含んだ状態でプロトン導電性を有する。このため、電池の運転時には、電解質膜を湿潤状態に保つ必要がある。このように、反応ガスの混合を防止し、セル内を湿潤状態に保持するためには、電解質膜とセパレータとの間のシール性を確保することが重要となる。電解質膜とセパレータとの間をシールする方法には、例えば、電解質膜とセパレータとを接着剤で接着する方法や、電解質膜とセパレータとの間に樹脂製のフィルムを介装する方法等が知られている。(例えば、特許文献1、2参照。)。
特開2002−117871号公報 特開2002−352845号公報
Here, the separator performs a function of forming a passage of a reaction gas supplied to each electrode across an adjacent single cell and a function of collecting current from each electrode. For example, when the reaction gas supplied to each electrode is mixed, problems such as reduction in power generation efficiency occur. For this reason, it is necessary to prevent mixing of the reaction gas. On the other hand, the electrolyte membrane has proton conductivity in a state containing water. For this reason, it is necessary to keep the electrolyte membrane in a wet state during battery operation. As described above, in order to prevent the reaction gas from being mixed and to keep the inside of the cell in a wet state, it is important to ensure a sealing property between the electrolyte membrane and the separator. Known methods for sealing between the electrolyte membrane and the separator include, for example, a method in which the electrolyte membrane and the separator are bonded with an adhesive, and a method in which a resin film is interposed between the electrolyte membrane and the separator. It has been. (For example, refer to Patent Documents 1 and 2.)
Japanese Patent Laid-Open No. 2002-117871 JP 2002-352845 A

従来より、固体高分子型燃料電池は、長期間の運転により電池性能が低下してしまうという問題を有する。電池性能の低下の原因としては、例えば、電解質膜や電極の劣化が挙げられる。本発明者がこれらの劣化について検討した結果、電極では、中央部に比べて端部の劣化が顕著であることがわかった。特に、電極と電解質膜との界面では、劣化が顕著であった。これは、電解質膜とセパレータとの間のガスシールが充分ではないために、電極の端部近傍で両極からのクロスオーバガスが直接燃焼し、その温度上昇により熱劣化するためと考えられる。   Conventionally, the polymer electrolyte fuel cell has a problem that the battery performance is deteriorated by a long-term operation. As a cause of the decrease in battery performance, for example, deterioration of an electrolyte membrane or an electrode can be mentioned. As a result of studying these deteriorations by the present inventor, it has been found that the deterioration of the end portion of the electrode is more remarkable than that of the central portion. In particular, the deterioration was significant at the interface between the electrode and the electrolyte membrane. This is presumably because the gas seal between the electrolyte membrane and the separator is not sufficient, so that the crossover gas from both electrodes is directly combusted in the vicinity of the end of the electrode and is thermally deteriorated due to the temperature rise.

固体高分子型燃料電池の運転時には、酸素極において、水素と酸素とから水が生成される。一方、運転条件によっては、酸素極における酸素の還元が2電子反応で止まってしまい、過酸化水素(H22)が生成されることがある。生成した過酸化水素は生成水に溶解する。生成水は電極端部近傍に滞留し易い。電極端部近傍に滞留した生成水は、運転時に蒸発していくが、過酸化水素は水より沸点が高いため残留し易い。過酸化水素は、例えば、金属イオン等の存在下でラジカル分解する。この過酸化水素ラジカルが、電解質膜とセパレータとの間のシール部材を攻撃する。これにより、シール部材は損傷を受けて劣化し、シール性は低下する。また、過酸化水素ラジカルは、電解質膜や電極をも攻撃する。これにより、電解質膜や電極も損傷を受けて劣化する。 During operation of the polymer electrolyte fuel cell, water is generated from hydrogen and oxygen at the oxygen electrode. On the other hand, depending on the operating conditions, the reduction of oxygen at the oxygen electrode may be stopped by a two-electron reaction, and hydrogen peroxide (H 2 O 2 ) may be generated. The produced hydrogen peroxide is dissolved in the produced water. The generated water tends to stay near the end of the electrode. The produced water staying in the vicinity of the end of the electrode evaporates during operation, but hydrogen peroxide has a higher boiling point than water and is likely to remain. Hydrogen peroxide undergoes radical decomposition in the presence of metal ions, for example. This hydrogen peroxide radical attacks the seal member between the electrolyte membrane and the separator. As a result, the seal member is damaged and deteriorates, and the sealing performance is lowered. Hydrogen peroxide radicals also attack electrolyte membranes and electrodes. Thereby, the electrolyte membrane and the electrode are also damaged and deteriorated.

電解質膜とセパレータとの間のシール部材には、通常、フッ素系樹脂、シリコン系樹脂等が使用される。また、電解質膜の多くは、炭化水素系材料あるいはフッ素系材料からなる高分子膜である。従来、フッ素系材料は、過酸化水素等の過酸化物によりほとんど損傷を受けないと考えられてきた。しかし、種々の検討を重ねた結果、フッ素系材料であっても、過酸化物により損傷を受ける場合があるということがわかった。この場合、過酸化物によりC−F結合が分解されるため、フッ化物イオンが溶出し、フッ酸等が生じる問題もある。   For the seal member between the electrolyte membrane and the separator, a fluorine resin, a silicon resin, or the like is usually used. Many of the electrolyte membranes are polymer membranes made of a hydrocarbon material or a fluorine material. Conventionally, it has been considered that fluorine-based materials are hardly damaged by peroxides such as hydrogen peroxide. However, as a result of various studies, it has been found that even fluorine-based materials may be damaged by peroxides. In this case, since the C—F bond is decomposed by the peroxide, there is a problem that fluoride ions are eluted and hydrofluoric acid is generated.

本発明はこのような実状に鑑みてなされたものであり、電解質膜とセパレータとの間をシールするシール部材や、電解質膜等の劣化を抑制し、耐久性に優れた固体高分子型燃料電池を提供することを課題とする。   The present invention has been made in view of such a situation, and a solid polymer fuel cell excellent in durability by suppressing deterioration of a sealing member for sealing between an electrolyte membrane and a separator, an electrolyte membrane, and the like. It is an issue to provide.

本発明の固体高分子型燃料電池は、イオン導電性を有する電解質膜と、該電解質膜の両側に配置された一対の電極と、からなる電解質膜電極接合体と、該電解質膜電極接合体を両側から挟持するセパレータと、を備え、該電解質膜と該セパレータとの間をシールするシール部材には、過酸化物を分解する過酸化物分解触媒が配置されており、該過酸化物分解触媒は、Co、Fe、Ti、Al、Ce等を中心原子とするポルフィリン、フタロシアニン、又はこれらの誘導体からなる大環状金属錯体、MnO ,PbO 、RuO 、Sb 、Nb 、Ta 、Nb 、WO 、SnO 、Cr 、CeO 、La 、ZrO 、Y 、又はHfO からなる難溶性金属酸化物、AlPO 、TiPO 、FePO 、CrPO 、CePO 、Zr (PO 、又はLa PO からなる難溶性リン酸塩、AlF 、FeF 、CrF 、CeF 、ZrF 、又はLaF からなる難溶性フッ化物、及びFeWO 、MnWO 、(Fe、Mn)WO 、CaWO 、CuWO 、Cu WO (OH) Al (WO SrWO 、BaWO 、Ag WO 、ZnWO 、SnWO 、又はCe (WO からなる難溶性タングス酸塩の群から選ばれる一種以上であることを特徴とする。 The polymer electrolyte fuel cell of the present invention comprises an electrolyte membrane having ionic conductivity, a pair of electrodes disposed on both sides of the electrolyte membrane, an electrolyte membrane electrode assembly, and the electrolyte membrane electrode assembly. A separator sandwiched from both sides, and a peroxide decomposition catalyst for decomposing peroxide is disposed on a seal member that seals between the electrolyte membrane and the separator, and the peroxide decomposition catalyst Is a macrocyclic metal complex composed of porphyrin, phthalocyanine or derivatives thereof having Co, Fe, Ti, Al, Ce or the like as a central atom, MnO 2 , PbO 2 , RuO 2 , Sb 2 O 3 , Nb 2 O 3 , Ta 2 O 5 , Nb 2 O 5 , WO 3 , SnO 2 , Cr 2 O 3 , CeO 2 , La 2 O 3 , ZrO 2 , Y 2 O 3 , or HfO 2 , a sparingly soluble metal oxide, Al A poorly soluble phosphate composed of PO 4 , TiPO 4 , FePO 4 , CrPO 4 , CePO 4 , Zr 3 (PO 4 ) 4 , or La 4 PO 4 , AlF 3 , FeF 3 , CrF 3 , CeF 3 , ZrF 4 Or a sparingly soluble fluoride composed of LaF 3 , and FeWO 4 , MnWO 4 , (Fe, Mn) WO 4 , CaWO 4 , CuWO 4 , Cu 2 WO 4 (OH) 2 , Al 2 (WO 4 ) 3 , SrWO 4, BaWO 4, Ag 2 WO 4, ZnWO 4, SnWO 4, or characterized by der Rukoto least one selected from the group consisting of Ce 2 (WO 4) consists of 3 sparingly soluble tungsten salt.

シール部材は、電極端部近傍に生じる電解質膜とセパレータとの隙間をシールする。過酸化物分解触媒は、シール部材に配置される。よって、電極端部近傍に滞留した生成水に過酸化水素が含まれていても、過酸化水素は、シール部材の過酸化物分解触媒により分解される。具体的には、式(1)に示すように、過酸化物分解触媒の表面では、2分子の過酸化水素が衝突して水と酸素とに分解する、いわゆる接触分解反応が進行する。
2H22 → 2H2 + O2 ・・・(1)
このように、運転中に生成された過酸化水素は、ラジカル化する前に過酸化物分解触媒により分解されるため、過酸化水素ラジカルによるフッ素系材料等の分解や低分子量化は抑制される。つまり、シール部材の劣化は抑制される。これより、電解質膜とセパレータとの間のガスシールは確保され、反応ガスの混合による問題も解消される。また、電解質膜や電極の劣化も抑制される。したがって、本発明の固体高分子型燃料電池は、耐久性に優れる。
The seal member seals a gap between the electrolyte membrane and the separator that occurs in the vicinity of the electrode end. The peroxide decomposition catalyst is disposed on the seal member. Therefore, even if hydrogen peroxide is contained in the generated water staying in the vicinity of the end of the electrode, the hydrogen peroxide is decomposed by the peroxide decomposition catalyst of the seal member. Specifically, as shown in Formula (1), on the surface of the peroxide decomposition catalyst, a so-called catalytic decomposition reaction in which two molecules of hydrogen peroxide collide and decompose into water and oxygen proceeds.
2H 2 O 2 → 2H 2 O + O 2 (1)
Thus, since hydrogen peroxide generated during operation is decomposed by the peroxide decomposition catalyst before radicalization, decomposition of the fluorine-based material and the like and reduction in molecular weight by the hydrogen peroxide radical are suppressed. . That is, the deterioration of the seal member is suppressed. As a result, a gas seal between the electrolyte membrane and the separator is ensured, and problems due to mixing of reaction gases are also eliminated. Moreover, deterioration of the electrolyte membrane and the electrode is also suppressed. Therefore, the polymer electrolyte fuel cell of the present invention is excellent in durability.

本発明の固体高分子型燃料電池では、電解質膜とセパレータとの間をシールするシール部材に、過酸化物分解触媒が配置される。このため、運転中に過酸化水素が生成しても、過酸化水素は、電極端部近傍にて速やかに分解され無害化される。したがって、本発明の固体高分子型燃料電池では、シール部材、電解質膜、および電極の劣化が少なく、長期間運転しても電池性能の低下は少ない。   In the polymer electrolyte fuel cell of the present invention, a peroxide decomposition catalyst is disposed on a seal member that seals between the electrolyte membrane and the separator. For this reason, even if hydrogen peroxide is generated during operation, the hydrogen peroxide is quickly decomposed and rendered harmless in the vicinity of the electrode end. Therefore, in the polymer electrolyte fuel cell of the present invention, the seal member, the electrolyte membrane, and the electrode are hardly deteriorated, and the battery performance is hardly deteriorated even when operated for a long time.

以下に、本発明の固体高分子型燃料電池の実施形態を説明する。なお、本発明の固体高分子型燃料電池は、下記の実施形態に限定されるものではない。本発明の固体高分子型燃料電池は、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   Hereinafter, embodiments of the polymer electrolyte fuel cell of the present invention will be described. The polymer electrolyte fuel cell of the present invention is not limited to the following embodiment. The polymer electrolyte fuel cell of the present invention can be implemented in various forms that have been modified or improved by those skilled in the art without departing from the scope of the present invention.

上述したように、本発明の固体高分子型燃料電池は、イオン導電性を有する電解質膜と、該電解質膜の両側に配置された一対の電極と、からなる電解質膜電極接合体と、該電解質膜電極接合体を両側から挟持するセパレータと、を備え、該電解質膜と該セパレータとの間をシールするシール部材には、過酸化物を分解する過酸化物分解触媒が配置される。   As described above, the polymer electrolyte fuel cell of the present invention includes an electrolyte membrane electrode assembly comprising an electrolyte membrane having ionic conductivity, and a pair of electrodes disposed on both sides of the electrolyte membrane, and the electrolyte. And a separator that sandwiches the membrane electrode assembly from both sides, and a peroxide decomposition catalyst that decomposes peroxide is disposed on a seal member that seals between the electrolyte membrane and the separator.

本発明の固体高分子型燃料電池は、電解質膜電極接合体(以下、適宜「MEA」と称す。)とセパレータとを備える点で、既に公知の固体高分子型燃料電池の構成に従えばよい。以下、MEA、セパレータについて順に説明する。   The polymer electrolyte fuel cell of the present invention may follow the configuration of a known polymer electrolyte fuel cell in that it comprises an electrolyte membrane electrode assembly (hereinafter referred to as “MEA” as appropriate) and a separator. . Hereinafter, the MEA and the separator will be described in order.

MEAは、電解質膜と、その両側に配置された一対の電極とから構成される。一対の電極、つまり、燃料極および酸素極は、それぞれ触媒層と拡散層とから構成すればよい。触媒層は、電気化学反応の反応場であり、カーボンに担持された白金等の電極触媒と高分子電解質とを含む。拡散層は、触媒層への反応ガスの供給と、触媒層との間で電子の授受を行う役割を果たし、カーボンクロス等の多孔質材料からなる。この場合、後述する電解質膜の両表面に、それぞれ各電極の触媒層を形成し、各々の触媒層の表面に、拡散層を積層させて、MEAとすればよい。   The MEA is composed of an electrolyte membrane and a pair of electrodes disposed on both sides thereof. The pair of electrodes, that is, the fuel electrode and the oxygen electrode may be constituted of a catalyst layer and a diffusion layer, respectively. The catalyst layer is a reaction field for an electrochemical reaction, and includes an electrode catalyst such as platinum supported on carbon and a polymer electrolyte. The diffusion layer serves to supply a reaction gas to the catalyst layer and exchange electrons with the catalyst layer, and is made of a porous material such as carbon cloth. In this case, a catalyst layer for each electrode may be formed on both surfaces of the electrolyte membrane described later, and a diffusion layer may be laminated on the surface of each catalyst layer to form an MEA.

電解質膜の種類は、特に限定されるものではない。例えば、全フッ素系スルホン酸膜、全フッ素系ホスホン酸膜、全フッ素系カルボン酸膜、含フッ素炭化水素系グラフト膜、全炭化水素系グラフト膜、全芳香族膜等を用いることができる。また、ポリテトラフルオロエチレン(PTFE)、ポリイミド等の補強材を含む、機械的特性を強化した複合高分子膜を用いてもよい。特に、耐久性等を考慮した場合には、全フッ素系の高分子膜を用いることが望ましい。なかでも、電解質としての性能が高いという理由から、全フッ素系スルホン酸膜を用いることが望ましい。全フッ素系スルホン酸膜の一例として、「ナフィオン」(登録商標、デュポン社製)、「アシプレックス」(登録商標、旭化成株式会社製)、「フレミオン」(登録商標、旭硝子株式会社製)等が挙げられる。   The type of the electrolyte membrane is not particularly limited. For example, a perfluorinated sulfonic acid film, a perfluorinated phosphonic acid film, a perfluorinated carboxylic acid film, a fluorinated hydrocarbon-based graft film, a perhydrocarbon-based graft film, a wholly aromatic film, or the like can be used. Moreover, you may use the composite polymer film which reinforce | strengthened the mechanical characteristic containing reinforcement materials, such as a polytetrafluoroethylene (PTFE) and a polyimide. In particular, in consideration of durability and the like, it is desirable to use a perfluorinated polymer film. Among these, it is desirable to use a perfluorinated sulfonic acid membrane because of its high performance as an electrolyte. Examples of perfluorinated sulfonic acid membranes include “Nafion” (registered trademark, manufactured by DuPont), “Aciplex” (registered trademark, manufactured by Asahi Kasei Corporation), “Flemion” (registered trademark, manufactured by Asahi Glass Co., Ltd.), etc. Can be mentioned.

セパレータは、上記MEAの両側に配置される。セパレータには、集電性能が高く、酸化水蒸気雰囲気下でも比較的安定な焼成カーボン、成形カーボンや、ステンレス材料の表面に貴金属や炭素材料を被覆したもの等を用いればよい。   The separator is disposed on both sides of the MEA. As the separator, a fired carbon, molded carbon, or a stainless steel material whose surface is coated with a noble metal or a carbon material, which has high current collecting performance and is relatively stable even in an oxidizing water vapor atmosphere, may be used.

このように、MEAとセパレータとから固体高分子型燃料電池を構成した場合、電解質膜とセパレータとの間には隙間が生じる。この隙間は、シール部材によりシールされる。シール部材の材質は、特に限定されるものではない。例えば、ガス透過係数はやや大きいが電池の作動温度下で弾性を失わず、化学的に安定なフッ素系樹脂、化学的安定性はフッ素系樹脂より若干劣るがガス透過係数の小さいエポキシ系樹脂やシリコーン系樹脂、シール性および接着性の良好な付加重合型イソブチレン樹脂、ガス透過係数の小さいポリエチレンナフタレート(PEN)樹脂やポリイミド樹脂、耐熱性の良好なフェノール樹脂等が挙げられる。これらの樹脂を、適宜、接着剤として、あるいはフィルム状等に成形して使用すればよい。   As described above, when a polymer electrolyte fuel cell is constituted by the MEA and the separator, a gap is generated between the electrolyte membrane and the separator. This gap is sealed by a sealing member. The material of the seal member is not particularly limited. For example, although the gas permeability coefficient is slightly large, it does not lose elasticity at the operating temperature of the battery, it is a chemically stable fluororesin, and the chemical stability is slightly inferior to that of the fluororesin, but epoxy resin with a small gas permeability coefficient Examples thereof include silicone resins, addition polymerization type isobutylene resins having good sealing properties and adhesiveness, polyethylene naphthalate (PEN) resins and polyimide resins having a small gas permeability coefficient, and phenol resins having good heat resistance. These resins may be appropriately used as an adhesive or in the form of a film.

本発明の固体高分子型燃料電池では、上記シール部材に過酸化物分解触媒が配置される。過酸化物分解触媒は、過酸化物を分解する触媒作用を有するものであれば、特に限定されるものではない。例えば大環状金属錯体、難溶性金属酸化物、難溶性リン酸塩、難溶性フッ化物、難溶性タングス酸塩等から選ばれる一種を単独で、あるいは二種以上を混合して用いる。大環状金属錯体としては、Co、Fe、Ti、Al、Ce等を中心原子とするポルフィリン、フタロシアニン、これらの誘導体が挙げられる。難溶性金属酸化物としては、電気導電性の高いMnO、PbO、RuO等、電気導電性の低いSb 、Nb、Ta、Nb、SnO、Cr、CeO、La等が挙げられる。また、難溶性金属酸化物としては、Sb 、ZrO 、Y 、又はHfO でもよい。難溶性リン酸塩としては、AlPO、TiPO、FePO、CrPO、CePO、Zr(PO、LaPO等が挙げられる。難溶性フッ化物としては、AlF、FeF、CrF、CeF、ZrF、LaF等が挙げられる。難溶性タングス酸塩としては、FeWO、MnWO、(Fe,Mn)WO、CaWO、CuWO、CuWO(OH)、Al(WO、SrWO、BaWO、AgWO、ZnWO、SnWO、Ce(WO等が挙げられる。 In the polymer electrolyte fuel cell of the present invention, a peroxide decomposition catalyst is disposed on the seal member. The peroxide decomposition catalyst is not particularly limited as long as it has a catalytic action for decomposing peroxide. For example, macrocyclic metal complex, poorly soluble metal oxides, insoluble phosphates, insoluble fluoride, alone one selected from sparingly soluble tungsten salt and the like, or Ru used as a mixture of two or more. Examples of the macrocyclic metal complex include porphyrin, phthalocyanine, and derivatives thereof having Co, Fe, Ti, Al, Ce and the like as a central atom. Examples of the hardly soluble metal oxide include MbO 2 , PbO 2 , and RuO 2 having high electrical conductivity, such as Sb 2 O 3 , Nb 2 O 3 , Ta 2 O 5 , Nb 2 O 5 , and W 2 O 2 having low electrical conductivity. 3, SnO 2, Cr 2 O 3, CeO 2, La 2 O 3 and the like. In addition, the hardly soluble metal oxide may be Sb 2 O 3 , ZrO 2 , Y 2 O 3 , or HfO 2 . Examples of the hardly soluble phosphate include AlPO 4 , TiPO 4 , FePO 4 , CrPO 4 , CePO 4 , Zr 3 (PO 4 ) 4 , LaPO 4 and the like. Examples of the hardly soluble fluoride include AlF 3 , FeF 3 , CrF 3 , CeF 3 , ZrF 4 , LaF 3 and the like. Examples of the slightly soluble tongue salts include FeWO 4 , MnWO 4 , (Fe, Mn) WO 4 , CaWO 4 , CuWO 4 , Cu 2 WO 4 (OH) 2 , Al 2 (WO 4 ) 3 , SrWO 4 , BaWO 4. , Ag 2 WO 4 , ZnWO 4 , SnWO 4 , Ce 2 (WO 4 ) 3 and the like.

なかでも、電気導電性の低い難溶性金属酸化物、大環状金属錯体、難溶性リン酸塩、難溶性フッ化物、難溶性タングス酸塩は、電気導電性が低いため、大量に用いた場合でも、あるいは偏析した場合でも、電極間の絶縁性を阻害しない。このため、貴金属、電気導電性の高い難溶性金属酸化物よりも好適である。特に、CeO、CePO、CeF、RuOは、過酸化物の分解性能が高く好適である。 Especially, poorly conductive metal oxides, macrocyclic metal complexes, sparingly soluble phosphates, sparingly soluble fluorides and sparingly soluble tungsates with low electrical conductivity are low in electrical conductivity. Even when segregated, the insulation between the electrodes is not hindered. For this reason, it is more suitable than noble metals and poorly soluble metal oxides with high electrical conductivity. In particular , CeO 2 , CePO 4 , CeF 3 , and RuO 2 are suitable because of their high peroxide decomposition performance.

過酸化物分解触媒は、シール部材の表面に付着していてもよく、シール部材に含有されていてもよい。また、これらの両方であってもよい。過酸化物分解触媒の配置形態に応じて、例えば、以下の(1)〜(4)の方法により、過酸化物分解触媒をシール部材に配置することができる。
(1)シール部材の原料となる所定の樹脂に、粉末状、ゾル状等の過酸化物分解触媒を混合する。
(2)過酸化物分解触媒を水等の溶媒に分散させた過酸化物分解触媒液を、シール部材の表面にスプレー塗布する。あるいは、シール部材を過酸化物分解触媒液に浸漬する。
(3)蒸着、スパッタリング、レーザアブレーション等により、シール部材の表面に過酸化物分解触媒を付着させる。
(4)シール部材の弾性向上のため、シール部材にSiO2、ZrO2等の樹脂ビーズを含有させる場合には、その樹脂ビーズを過酸化物分解触媒により作製する。また、従来の樹脂ビーズの表面に過酸化物分解触媒を付着させる。
The peroxide decomposition catalyst may adhere to the surface of the sealing member or may be contained in the sealing member. Moreover, both of these may be sufficient. Depending on the arrangement form of the peroxide decomposition catalyst, the peroxide decomposition catalyst can be arranged on the seal member by the following methods (1) to (4), for example.
(1) A peroxide decomposition catalyst such as powder or sol is mixed with a predetermined resin as a raw material of the seal member.
(2) A peroxide decomposition catalyst solution in which a peroxide decomposition catalyst is dispersed in a solvent such as water is spray-coated on the surface of the seal member. Alternatively, the seal member is immersed in the peroxide decomposition catalyst solution.
(3) A peroxide decomposition catalyst is adhered to the surface of the seal member by vapor deposition, sputtering, laser ablation, or the like.
(4) In order to improve the elasticity of the sealing member, when the sealing member contains resin beads such as SiO 2 and ZrO 2 , the resin beads are prepared with a peroxide decomposition catalyst. Further, a peroxide decomposition catalyst is attached to the surface of the conventional resin beads.

配置する過酸化物分解触媒の量は、シール部材の重量を100wt%とした場合の0.1wt%以上とすることが望ましい。0.1wt%未満の場合には、過酸化物を分解する効果が小さいからである。0.2wt%以上とするとより好適である。一方、過酸化物分解触媒の量は、1wt%以下とすることが望ましい。1wt%を超えると、伸びの低下、弾性率の過度の上昇等、シール部材の機械的性質に影響を与えるおそれがある。また、過度な添加は非経済的である。0.5wt%以下とするとより好適である。   The amount of the peroxide decomposition catalyst to be arranged is preferably 0.1 wt% or more when the weight of the seal member is 100 wt%. This is because when the amount is less than 0.1 wt%, the effect of decomposing peroxide is small. It is more suitable when it is 0.2 wt% or more. On the other hand, the amount of peroxide decomposition catalyst is desirably 1 wt% or less. If it exceeds 1 wt%, the mechanical properties of the seal member may be affected, such as a decrease in elongation and an excessive increase in elastic modulus. Excessive addition is also uneconomical. More preferably, it is 0.5 wt% or less.

また、上記(1)〜(3)の方法を採用する場合、配置する過酸化物分解触媒の平均粒子径を、10μm以下とすることが望ましい。10μmを超えると、電解質膜、セパレータとシール部材との密着性が低下し、シール部材の機械的性質に影響を与えるおそれがある。過酸化物分解触媒の平均粒子径を1μm以下とするとより好適である。   Moreover, when employ | adopting the method of said (1)-(3), it is desirable that the average particle diameter of the peroxide decomposition catalyst to arrange | position shall be 10 micrometers or less. When it exceeds 10 μm, the adhesion between the electrolyte membrane, the separator and the seal member is lowered, which may affect the mechanical properties of the seal member. The average particle diameter of the peroxide decomposition catalyst is more preferably 1 μm or less.

ここで、上記(2)、(3)の方法を採用する場合、過酸化物分解触媒は、シール部材の表面にほぼ均一な膜状で付着していてもよく、分散して島状に付着していてもよい。また、過酸化物の分解効果を充分に発揮させるためには、付着した過酸化物分解触媒の厚さを、0.01μm以上とするとよい。例えば、島状に付着している場合には、それをシール部材の表面全体に付着させたと仮定した場合に、0.01μm以上の厚さとなればよい。   Here, when employing the above methods (2) and (3), the peroxide decomposition catalyst may be adhered to the surface of the seal member in a substantially uniform film shape, or dispersed and adhered in an island shape. You may do it. Moreover, in order to fully exhibit the decomposition effect of peroxide, it is preferable that the thickness of the attached peroxide decomposition catalyst is 0.01 μm or more. For example, when it is attached in an island shape, the thickness may be 0.01 μm or more on the assumption that it is attached to the entire surface of the seal member.

また、上記(2)〜(4)の方法を採用する場合、過酸化物分解触媒を電極端部近傍に高濃度に配置することが望ましい。電極端部近傍では、過酸化水素が生成し易く、また、生成水に溶解した状態で滞留し易い。よって、過酸化物分解触媒を電極端部近傍に高濃度に配置することで、効果的に過酸化物を分解することができる。   Moreover, when employ | adopting the method of said (2)-(4), it is desirable to arrange | position a peroxide decomposition catalyst by high concentration in the electrode edge part vicinity. In the vicinity of the end of the electrode, hydrogen peroxide is easily generated, and is liable to stay in a state dissolved in the generated water. Therefore, the peroxide can be effectively decomposed by arranging the peroxide decomposition catalyst at a high concentration in the vicinity of the end portion of the electrode.

以下、本発明の固体高分子型燃料電池の二つの実施形態を図を用いて説明する。まず、第一実施形態を説明する。図1に、本発明の第一実施形態の固体高分子型燃料電池の一部断面図を示す。図1に示すように、固体高分子型燃料電池1は、電解質膜2と、燃料極3と、酸素極4と、セパレータ5と、シール部材6とを備える。   Hereinafter, two embodiments of the polymer electrolyte fuel cell of the present invention will be described with reference to the drawings. First, the first embodiment will be described. FIG. 1 shows a partial cross-sectional view of the polymer electrolyte fuel cell according to the first embodiment of the present invention. As shown in FIG. 1, the polymer electrolyte fuel cell 1 includes an electrolyte membrane 2, a fuel electrode 3, an oxygen electrode 4, a separator 5, and a seal member 6.

電解質膜2は、ナフィオン112(商品名、デュポン社製)からなる。電解質膜2の膜厚は50μmである。   The electrolyte membrane 2 is made of Nafion 112 (trade name, manufactured by DuPont). The thickness of the electrolyte membrane 2 is 50 μm.

燃料極3は、電解質膜2の一方の表面側に配置される。燃料極3は、燃料極側触媒層と燃料極側拡散層とからなる(図略)。燃料極側触媒層は、電解質膜2の表面に形成される。燃料極側触媒層は、カーボンに担持された白金触媒(以下、「Pt/C触媒」と称す。)を持つ。燃料極側触媒層の単位面積あたりの白金量は、0.2mg/cm2である。燃料極側拡散層は、カーボンクロスからなる。燃料極側拡散層は燃料極側触媒層に積層して形成される。 The fuel electrode 3 is disposed on one surface side of the electrolyte membrane 2. The fuel electrode 3 includes a fuel electrode side catalyst layer and a fuel electrode side diffusion layer (not shown). The fuel electrode side catalyst layer is formed on the surface of the electrolyte membrane 2. The fuel electrode side catalyst layer has a platinum catalyst (hereinafter referred to as “Pt / C catalyst”) supported on carbon. The amount of platinum per unit area of the fuel electrode side catalyst layer is 0.2 mg / cm 2 . The fuel electrode side diffusion layer is made of carbon cloth. The fuel electrode side diffusion layer is formed by being laminated on the fuel electrode side catalyst layer.

酸素極4は、電解質膜2の他方の表面側、つまり、電解質膜2を挟んで燃料極3と反対側に配置される。酸素極4も、燃料極3と同様、酸素極側触媒層と酸素極側拡散層とからなる(図略)。酸素極側触媒層は、電解質膜2の表面に形成される。酸素極側触媒層は、Pt/C触媒とCePO4とを持つ。CePO4は過酸化物分解触媒であり、Ptに対して1wt%の割合で含まれる。酸素極側触媒層の単位面積あたりの白金量は、0.5mg/cm2である。酸素極側拡散層は、カーボンクロスからなる。酸素極側拡散層は酸素極側触媒層に積層して形成される。燃料極3および酸素極4は、本発明を構成する一対の電極に相当する。また、電解質膜2と燃料極3と酸素極4とから、MEAが構成される。 The oxygen electrode 4 is disposed on the other surface side of the electrolyte membrane 2, that is, on the side opposite to the fuel electrode 3 with the electrolyte membrane 2 interposed therebetween. Similarly to the fuel electrode 3, the oxygen electrode 4 includes an oxygen electrode side catalyst layer and an oxygen electrode side diffusion layer (not shown). The oxygen electrode side catalyst layer is formed on the surface of the electrolyte membrane 2. The oxygen electrode side catalyst layer has a Pt / C catalyst and CePO 4 . CePO 4 is a peroxide decomposition catalyst and is contained at a ratio of 1 wt% with respect to Pt. The amount of platinum per unit area of the oxygen electrode side catalyst layer is 0.5 mg / cm 2 . The oxygen electrode side diffusion layer is made of carbon cloth. The oxygen electrode side diffusion layer is formed by being laminated on the oxygen electrode side catalyst layer. The fuel electrode 3 and the oxygen electrode 4 correspond to a pair of electrodes constituting the present invention. The MEA is composed of the electrolyte membrane 2, the fuel electrode 3, and the oxygen electrode 4.

セパレータ5は、MEAの両側にそれぞれ配置される。セパレータ5は、MEAを両側から挟持する。セパレータ5は、成形カーボン製である。セパレータ5には、燃料極3に供給される燃料ガス流路51、酸素極4に供給される酸化剤ガス流路52が、それぞれ形成される。   The separators 5 are disposed on both sides of the MEA. The separator 5 clamps the MEA from both sides. The separator 5 is made of molded carbon. In the separator 5, a fuel gas channel 51 supplied to the fuel electrode 3 and an oxidant gas channel 52 supplied to the oxygen electrode 4 are formed.

シール部材6は、電解質膜2とセパレータ5との間、および対向するセパレータ5どうしの間に配置される。シール部材6は、過酸化物分解触媒として、平均粒子径0.01μmのCeO2を含有したエポキシ樹脂からなる。CeO2は、エポキシ樹脂の重量に対して0.5wt%の割合で含まれる。 The seal member 6 is disposed between the electrolyte membrane 2 and the separator 5 and between the opposing separators 5. The seal member 6 is made of an epoxy resin containing CeO 2 having an average particle diameter of 0.01 μm as a peroxide decomposition catalyst. CeO 2 is contained at a ratio of 0.5 wt% with respect to the weight of the epoxy resin.

固体高分子型燃料電池1の運転時には、燃料ガスが燃料ガス流路51を通じて供給される。また、酸化剤ガスが酸化剤ガス流路52を通じて供給される。そして、電池反応により水が生成する。また、過酸化水素も副生する。副生した過酸化水素は生成水に溶解する。生成水は、電極端部7の近傍に滞留する。しかし、シール部材6には、過酸化物分解触媒が含まれるため、生成水中の過酸化水素は速やかに分解される。よって、シール部材6、電解質膜2、燃料極3、酸素極4の劣化は抑制される。   During operation of the polymer electrolyte fuel cell 1, fuel gas is supplied through the fuel gas passage 51. An oxidant gas is supplied through the oxidant gas flow path 52. And water produces | generates by a battery reaction. Hydrogen peroxide is also produced as a by-product. By-produced hydrogen peroxide dissolves in the produced water. The generated water stays in the vicinity of the electrode end 7. However, since the seal member 6 contains a peroxide decomposition catalyst, hydrogen peroxide in the generated water is rapidly decomposed. Therefore, deterioration of the seal member 6, the electrolyte membrane 2, the fuel electrode 3, and the oxygen electrode 4 is suppressed.

次に、第二実施形態を説明する。第二実施形態と第一実施形態とでは、シール部材のみが異なる。したがって、ここでは相違点についてのみ説明する。図2に、本発明の第二実施形態の固体高分子型燃料電池の一部断面図を示す。なお、図1と対応する部位については、同じ符号で示す。図2に示すように、シール部材8は、電解質膜2とセパレータ5との間に配置される。シール部材8は、表面に膜厚0.01μmのCeO2層が形成されたPEN樹脂フィルムである。本実施形態の固体高分子型燃料電池1は、第一実施形態の固体高分子型燃料電池と同様の作用効果を奏する。 Next, a second embodiment will be described. Only the seal member is different between the second embodiment and the first embodiment. Therefore, only the differences will be described here. FIG. 2 is a partial cross-sectional view of the polymer electrolyte fuel cell according to the second embodiment of the present invention. In addition, about the site | part corresponding to FIG. 1, it shows with the same code | symbol. As shown in FIG. 2, the seal member 8 is disposed between the electrolyte membrane 2 and the separator 5. The sealing member 8 is a PEN resin film having a CeO 2 layer having a thickness of 0.01 μm formed on the surface. The polymer electrolyte fuel cell 1 of this embodiment has the same effects as the polymer electrolyte fuel cell of the first embodiment.

過酸化物分解触媒を含むシール部材を三種類作製し、それらの耐久性を評価した。また、種々の過酸化物分解触媒について、過酸化物の分解能を調査した。以下、順に説明する。   Three types of seal members containing a peroxide decomposition catalyst were produced and their durability was evaluated. Moreover, the resolution | decomposability of the peroxide was investigated about various peroxide decomposition | disassembly catalysts. Hereinafter, it demonstrates in order.

〈シール部材の耐久性評価〉
(1)シール部材の作製
過酸化物分解触媒には、粉末状のCeO2(平均粒子径1μm)を使用した。また、シール部材の材料には、(a)SBR(スチレンブタジエンゴム);セメダイン株式会社製「CA−141」、(b)シリコーン;株式会社スリーボンド製「スリーボンド 1211」、(c)エポキシ樹脂;コニシ株式会社製「ボンドクイック5」、の三種類を使用した。まず、CeO2と上記三種類の材料とを、それぞれテフロン(登録商標、デュポン社製)製のシート上で混合し、2×2cm、厚さ0.2mmの薄片状に成形した。次に、80℃の温度下で2時間保持して硬化させた後、シートから剥離して、そのまま室温で一昼夜放置した。さらに、80℃の温度下で2時間真空加熱した後、徐冷して、シール部材を得た。この時の各シール部材の重量W1を測定した。
<Durability evaluation of seal member>
(1) Preparation of seal member Powdered CeO 2 (average particle diameter 1 μm) was used as the peroxide decomposition catalyst. In addition, the material of the sealing member includes (a) SBR (styrene butadiene rubber); “CA-141” manufactured by Cemedine Co., Ltd., (b) silicone; “three bond 1211” manufactured by ThreeBond Co., Ltd., (c) epoxy resin; Konishi Three types of “Bond Quick 5” manufactured by Co., Ltd. were used. First, CeO 2 and the above three kinds of materials were mixed on a sheet made of Teflon (registered trademark, manufactured by DuPont), respectively, and formed into a thin piece of 2 × 2 cm and a thickness of 0.2 mm. Next, after being held at 80 ° C. for 2 hours to be cured, it was peeled off from the sheet and allowed to stand at room temperature for a whole day and night. Furthermore, after heating in vacuum at a temperature of 80 ° C. for 2 hours, it was gradually cooled to obtain a seal member. The weight W1 of each sealing member at this time was measured.

(2)耐久性評価
まず、PTFE内筒のSUS316製圧力容器中に、1wt%の過酸化水素水溶液を200ml準備した。この過酸化水素水溶液に、OHラジカル発生触媒となる鉄イオン(Fe2+)を10ppm加え(試薬FeCl2・6H2Oを使用)、鉄イオンを含む過酸化水素水溶液を調製した。次に、上記作製した三種類のシール部材を、調製した過酸化水素水溶液に浸漬し、100℃に加熱して8時間保持した。その後、シール部材を取り出し、流水で洗浄した。そして、80℃の温度下で2時間真空加熱し、徐冷した後、各シール部材の重量W2を測定した。過酸化水素水溶液へ浸漬する前後の重量変化率ΔW(%)を、次式[ΔW=(W1−W2)/W1×100]より求めた。表1に、各シール部材の重量変化率ΔW(%)を示す。なお、表1には、比較のため、過酸化物分解触媒を混合せずに作製したシール部材についての結果をも併せて示す。
(2) Durability Evaluation First, 200 ml of a 1 wt% aqueous hydrogen peroxide solution was prepared in a pressure vessel made of SUS316 having a PTFE inner cylinder. To this aqueous hydrogen peroxide solution, 10 ppm of iron ions (Fe 2+ ) serving as an OH radical generating catalyst was added (using the reagent FeCl 2 .6H 2 O) to prepare an aqueous hydrogen peroxide solution containing iron ions. Next, the three types of sealing members produced above were immersed in the prepared aqueous hydrogen peroxide solution, heated to 100 ° C. and held for 8 hours. Thereafter, the seal member was taken out and washed with running water. And after heating in vacuum at 80 degreeC temperature for 2 hours and cooling gradually, the weight W2 of each sealing member was measured. The weight change rate ΔW (%) before and after being immersed in the aqueous hydrogen peroxide solution was determined from the following formula [ΔW = (W1−W2) / W1 × 100]. Table 1 shows the weight change rate ΔW (%) of each seal member. For comparison, Table 1 also shows the results of the sealing member produced without mixing the peroxide decomposition catalyst.

Figure 0004582689
表1に示すように、いずれのシール部材においても、過酸化物分解触媒を混合すると、重量変化が少なかった。これより、過酸化物分解触媒を混合することで、過酸化水素のラジカル化を抑制し、シール部材の分解等を抑制できることが確認された。
Figure 0004582689
As shown in Table 1, in any sealing member, when the peroxide decomposition catalyst was mixed, the weight change was small. From this, it was confirmed that by mixing the peroxide decomposition catalyst, radicalization of hydrogen peroxide can be suppressed and decomposition of the seal member and the like can be suppressed.

〈過酸化物の分解能調査〉
下記表2に示す種々の過酸化物分解触媒について、過酸化物の分解能を調査した。過酸化物の分解能は、以下の試験により評価した。まず、PTFE内筒のSUS316製圧力容器に、1wt%の過酸化水素水溶液を30ml準備した。次いで、この過酸化水素水溶液に、各々の過酸化物分解触媒を0.1g添加した。そして、100℃の温度下で1時間保持した後、水溶液の過酸化水素濃度E2を求めた。過酸化水素濃度は、濃度0.1mol/Lの硫酸中の1.2V vs SHEでの定電位酸化電流(10分後)が、過酸化水素濃度に比例することを利用して、過酸化水素濃度−電流値の検量線を用いて求めた(定電位電気化学的酸化法)。
<Resolution investigation of peroxide>
For various peroxide decomposition catalysts shown in Table 2 below, the resolution of the peroxide was investigated. Peroxide resolution was evaluated by the following test. First, 30 ml of a 1 wt% aqueous hydrogen peroxide solution was prepared in a pressure vessel made of SUS316 having a PTFE inner cylinder. Next, 0.1 g of each peroxide decomposition catalyst was added to the aqueous hydrogen peroxide solution. And after hold | maintaining at the temperature of 100 degreeC for 1 hour, the hydrogen peroxide concentration E2 of aqueous solution was calculated | required. The hydrogen peroxide concentration is determined by utilizing the fact that the constant potential oxidation current (after 10 minutes) at 1.2 V vs. SHE in sulfuric acid at a concentration of 0.1 mol / L is proportional to the hydrogen peroxide concentration. It was determined using a calibration curve of concentration-current value (constant potential electrochemical oxidation method).

過酸化水素水溶液の過酸化水素濃度の変化から、過酸化水素の分解率ΔEを、次式[ΔE=(1−E2)×100]より求めた。表2に、各過酸化物分解触媒の平均粒子径、過酸化水素分解率ΔE(%)を示す。   From the change in the hydrogen peroxide concentration of the aqueous hydrogen peroxide solution, the decomposition rate ΔE of hydrogen peroxide was determined from the following equation [ΔE = (1−E2) × 100]. Table 2 shows the average particle diameter and hydrogen peroxide decomposition rate ΔE (%) of each peroxide decomposition catalyst.

Figure 0004582689
表2に示すように、試験したすべての過酸化物分解触媒が過酸化水素を分解した。これより、過酸化物分解触媒によれば、過酸化水素は速やかに分解されることが確認された。
Figure 0004582689
As shown in Table 2, all tested peroxide decomposition catalysts decomposed hydrogen peroxide. From this, it was confirmed that according to the peroxide decomposition catalyst, hydrogen peroxide was rapidly decomposed.

本発明の第一実施形態である固体高分子型燃料電池の一部断面図を示す。1 is a partial cross-sectional view of a polymer electrolyte fuel cell according to a first embodiment of the present invention. 本発明の第二実施形態である固体高分子型燃料電池の一部断面図を示す。The partial cross section figure of the polymer electrolyte fuel cell which is 2nd embodiment of this invention is shown.

符号の説明Explanation of symbols

1:固体高分子型燃料電池 2:電解質膜 3:燃料極 4:酸素極 5:セパレータ
6、8:シール部材 7:電極端部
1: Polymer electrolyte fuel cell 2: Electrolyte membrane 3: Fuel electrode 4: Oxygen electrode 5: Separator 6, 8: Seal member 7: End of electrode

Claims (3)

イオン導電性を有する電解質膜と、該電解質膜の両側に配置された一対の電極と、からなる電解質膜電極接合体と、
該電解質膜電極接合体を両側から挟持するセパレータと、
を備え、
該電解質膜と該セパレータとの間をシールするシール部材には、過酸化物を分解する過酸化物分解触媒が配置されており、
該過酸化物分解触媒は、Co、Fe、Ti、Al、Ce等を中心原子とするポルフィリン、フタロシアニン、又はこれらの誘導体からなる大環状金属錯体、MnO ,PbO 、RuO 、Sb 、Nb 、Ta 、Nb 、WO 、SnO 、Cr 、CeO 、La 、ZrO 、Y 、又はHfO からなる難溶性金属酸化物、AlPO 、TiPO 、FePO 、CrPO 、CePO 、Zr (PO 、又はLa PO からなる難溶性リン酸塩、AlF 、FeF 、CrF 、CeF 、ZrF 、又はLaF からなる難溶性フッ化物、及びFeWO 、MnWO 、(Fe、Mn)WO 、CaWO 、CuWO 、Cu WO (OH) Al (WO SrWO 、BaWO 、Ag WO 、ZnWO 、SnWO 、又はCe (WO からなる難溶性タングス酸塩の群から選ばれる一種以上であることを特徴とする固体高分子型燃料電池。
An electrolyte membrane electrode assembly comprising an electrolyte membrane having ionic conductivity and a pair of electrodes disposed on both sides of the electrolyte membrane;
A separator for sandwiching the electrolyte membrane electrode assembly from both sides;
With
The seal member that seals between the electrolyte membrane and the separator is provided with a peroxide decomposition catalyst that decomposes peroxide .
The peroxide decomposition catalyst is a macrocyclic metal complex composed of porphyrin, phthalocyanine, or a derivative thereof having Co, Fe, Ti, Al, Ce or the like as a central atom, MnO 2 , PbO 2 , RuO 2 , Sb 2 O. 3, Nb 2 O 3, Ta 2 O 5, Nb 2 O 5, WO 3, SnO 2, Cr 2 O 3, CeO 2, La 2 O 3, ZrO 2, Y 2 O 3, or poorly consisting HfO 2 A sparingly soluble phosphate composed of a soluble metal oxide, AlPO 4 , TiPO 4 , FePO 4 , CrPO 4 , CePO 4 , Zr 3 (PO 4 ) 4 , or La 4 PO 4 , AlF 3 , FeF 3 , CrF 3 , A sparingly soluble fluoride composed of CeF 3 , ZrF 4 , or LaF 3 , and FeWO 4 , MnWO 4 , (Fe, Mn) WO 4 , CaWO 4 , CuWO 4 , Cu A group of poorly soluble tongues consisting of 2 WO 4 (OH) 2 , Al 2 (WO 4 ) 3 , SrWO 4 , BaWO 4 , Ag 2 WO 4 , ZnWO 4 , SnWO 4 , or Ce 2 (WO 4 ) 3 polymer electrolyte fuel cell, characterized in der Rukoto least one selected from the.
前記過酸化物分解触媒の量は、前記シール部材の重量を100wt%とした場合の0.1wt%以上1wt%以下である請求項1に記載の固体高分子型燃料電池。   2. The polymer electrolyte fuel cell according to claim 1, wherein the amount of the peroxide decomposition catalyst is 0.1 wt% or more and 1 wt% or less when the weight of the seal member is 100 wt%. 前記過酸化物分解触媒の平均粒子径は10μm以下である請求項1又は2に記載の固体高分子型燃料電池。 3. The polymer electrolyte fuel cell according to claim 1, wherein the peroxide decomposition catalyst has an average particle size of 10 μm or less.
JP2004075012A 2004-03-16 2004-03-16 Polymer electrolyte fuel cell Expired - Fee Related JP4582689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004075012A JP4582689B2 (en) 2004-03-16 2004-03-16 Polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004075012A JP4582689B2 (en) 2004-03-16 2004-03-16 Polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2005267904A JP2005267904A (en) 2005-09-29
JP4582689B2 true JP4582689B2 (en) 2010-11-17

Family

ID=35092245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004075012A Expired - Fee Related JP4582689B2 (en) 2004-03-16 2004-03-16 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4582689B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5166690B2 (en) * 2005-06-02 2013-03-21 三菱重工業株式会社 Solid polymer electrolyte fuel cell
EP2061110B8 (en) * 2006-08-28 2013-09-25 Toyota Jidosha Kabushiki Kaisha Reinforced electrolyte membrane for fuel cell, method for production thereof, membrane-electrode assembly for fuel cell, and solid polymer-type fuel cell having the assembly
JP2008130242A (en) * 2006-11-16 2008-06-05 Toyota Motor Corp Resin composition for fuel cell and resin member for fuel cell
JP2008288193A (en) 2007-04-19 2008-11-27 Toyota Motor Corp Reinforcing electrolyte membrane for fuel cell, membrane-electrode assembly for fuel cell, and polymer electrolyte fuel cell including the same
GB0718620D0 (en) * 2007-09-25 2007-10-31 Johnson Matthey Plc Membrane electrode assembly
JP5245369B2 (en) * 2007-11-16 2013-07-24 トヨタ自動車株式会社 Membrane electrode assembly and method for producing membrane electrode assembly
US8802314B2 (en) 2008-10-17 2014-08-12 Toyota Jidosha Kabushiki Kaisha Reinforced electrolyte membrane for fuel cell, membrane-electrode assembly for fuel cell, and polymer electrolyte fuel cell comprising the same
JP2011216380A (en) * 2010-04-01 2011-10-27 Hitachi Ltd Solid polymer electrolyte fuel cell
JP5023197B2 (en) * 2010-07-09 2012-09-12 株式会社豊田中央研究所 Polymer electrolyte fuel cell
WO2012039699A1 (en) 2010-09-20 2012-03-29 Utc Power Corporation Protective edge seal for membrane ion exchange
US8999595B2 (en) 2010-11-30 2015-04-07 GM Global Technology Operations LLC Fuel cells having improved durability
JP5703186B2 (en) * 2011-10-06 2015-04-15 本田技研工業株式会社 Electrolyte membrane / electrode structure with resin frame for fuel cell and production method thereof
JP5568111B2 (en) * 2012-06-22 2014-08-06 株式会社豊田中央研究所 Polymer electrolyte fuel cell
JP7599797B2 (en) * 2021-04-23 2024-12-16 株式会社豊田中央研究所 Membrane electrode assembly and method for producing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106203A (en) * 1998-09-30 2000-04-11 Aisin Seiki Co Ltd Solid polymer electrolyte membrane, fuel cell electrode, and solid polymer electrolyte fuel cell
JP2002352845A (en) * 2001-05-22 2002-12-06 Toyota Motor Corp Fuel cell and method of manufacturing the same
JP3786185B2 (en) * 2001-06-22 2006-06-14 信越化学工業株式会社 Rubber composition for sealing polymer electrolyte fuel cell separator, sealing material using the same, and polymer electrolyte fuel cell separator
DE10130828A1 (en) * 2001-06-27 2003-01-16 Basf Ag fuel cell
JP2003257458A (en) * 2002-02-28 2003-09-12 Ebara Corp Power generation system having natural energy power generation device and fuel cell, operation method for power generation system, and operation plan preparation device for power generation system

Also Published As

Publication number Publication date
JP2005267904A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
JP4582689B2 (en) Polymer electrolyte fuel cell
JP4451154B2 (en) Electrolyte membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP5151074B2 (en) Solid polymer electrolyte membrane, membrane electrode assembly, and fuel cell using the same
CN101809792B (en) Through the solid macromolecule electrolyte composite membrane of reinforcement, use in solid polymer fuel cell membrane electrode assembly and polymer electrolyte fuel cell
JP5095089B2 (en) Solid polymer electrolyte, solid polymer fuel cell, and manufacturing method thereof
JP4326271B2 (en) Solid polymer electrolytes containing transition metal oxides
JP4708757B2 (en) Polymer electrolyte fuel cell
JP4276035B2 (en) Electrolyte membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP4969025B2 (en) Membrane electrode for fuel cell and fuel cell
WO2007083616A1 (en) Fuel cell system and fuel cell system operation method
JP5968994B2 (en) Layer design to mitigate fuel cell electrode corrosion due to non-ideal operation
JP4574149B2 (en) Electrolyte membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP2005056776A (en) Solid polymer electrolyte, fuel cell electrode, and solid polymer fuel cell
JP4821147B2 (en) Fuel cell and fuel cell system
JP4839211B2 (en) Fuel cell and fuel cell manufacturing method
JP2007109599A (en) Membrane electrode assembly for polymer electrolyte fuel cells
JP4845077B2 (en) Electrolyte membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP5194448B2 (en) Polymer electrolyte fuel cell
JP5023197B2 (en) Polymer electrolyte fuel cell
JP4530635B2 (en) Electrocatalyst layer for fuel cells
JP2005011697A (en) Proton exchange material and fuel cell electrode using proton exchange material
JP7732433B2 (en) membrane electrode assembly
JP2014234445A (en) Polymer electrolyte composition, as well as polymer electrolyte membrane, electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell using the same
JP5339262B2 (en) Fuel cell
JP6957430B2 (en) Membrane electrode assembly, electrochemical cell, stack, fuel cell, vehicle and projectile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100827

R150 Certificate of patent or registration of utility model

Ref document number: 4582689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees