[go: up one dir, main page]

JP4532482B2 - Double liquid crystal aberration correction element and manufacturing method thereof - Google Patents

Double liquid crystal aberration correction element and manufacturing method thereof Download PDF

Info

Publication number
JP4532482B2
JP4532482B2 JP2006512022A JP2006512022A JP4532482B2 JP 4532482 B2 JP4532482 B2 JP 4532482B2 JP 2006512022 A JP2006512022 A JP 2006512022A JP 2006512022 A JP2006512022 A JP 2006512022A JP 4532482 B2 JP4532482 B2 JP 4532482B2
Authority
JP
Japan
Prior art keywords
liquid crystal
aberration correction
crystal aberration
correction element
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006512022A
Other languages
Japanese (ja)
Other versions
JPWO2005098479A1 (en
Inventor
信義 中川
直子 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BINIT CORPORATION
Original Assignee
BINIT CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BINIT CORPORATION filed Critical BINIT CORPORATION
Publication of JPWO2005098479A1 publication Critical patent/JPWO2005098479A1/en
Application granted granted Critical
Publication of JP4532482B2 publication Critical patent/JP4532482B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • G11B7/1369Active plates, e.g. liquid crystal panels or electrostrictive elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/42Arrangements for providing conduction through an insulating substrate

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Head (AREA)

Description

本発明は、光ディスク装置において、光ピックアップでの記録・再生時に生ずる収差を補正するために用いる液晶収差補正素子に関する。特に、青紫色半導体レーザを光源として用い、複数の記録層を有する大容量の次世代光ディスク(Blu-ray disc;BD)等に好適に用いられ、往路・復路における収差補正を行うための二重液晶収差補正素子、及びその製造方法の技術分野に属する。   The present invention relates to a liquid crystal aberration correction element used for correcting an aberration occurring in recording / reproduction with an optical pickup in an optical disc apparatus. In particular, a blue-violet semiconductor laser is used as a light source, and it is preferably used for a large-capacity next-generation optical disc (BD) having a plurality of recording layers. The present invention belongs to a technical field of a liquid crystal aberration correcting element and a manufacturing method thereof.

従来、情報記録媒体としてCD、DVD等の各種光ディスクが知られている。これらの光ディスクは、回転することによる厚さずれや反り等によって収差(集光スポットの歪)を生ずるため、この収差を補正して記録・再生の精度を上げることが求められる。   Conventionally, various optical discs such as CD and DVD are known as information recording media. Since these optical discs generate aberrations (distortion of the condensing spot) due to thickness deviation or warping caused by rotation, it is required to correct the aberrations and improve recording / reproducing accuracy.

上記収差を補正する技術として、コリメータレンズをアクチュエータで駆動させる方式と、液晶収差補正素子を利用する方式が知られている。
前者の方式は、アクチュエータが必要となるため光ピックアップが複雑になり、また高精度な補正には対応し切れないという問題があった。
これに対し、液晶収差補正素子は、液晶パネルの電極を例えば同心円のリング状に形成し、これにより光束の中央部と外縁部とで異なる位相制御を行うものである。この液晶収差補正素子は、光ピックアップにおいて対物レンズとともに同一光軸上に配置されるため、良好な駆動が得られるように小型化・軽量化することが望まれていた。
As a technique for correcting the aberration, a method of driving a collimator lens with an actuator and a method of using a liquid crystal aberration correction element are known.
In the former method, an actuator is required, so that the optical pickup becomes complicated, and there is a problem that it cannot cope with high-precision correction.
On the other hand, in the liquid crystal aberration correction element, the electrodes of the liquid crystal panel are formed in, for example, a concentric ring shape, thereby performing different phase control between the central portion and the outer edge portion of the light beam. Since this liquid crystal aberration correcting element is disposed on the same optical axis as the objective lens in the optical pickup, it has been desired to reduce the size and weight so that good driving can be obtained.

ところで近年では、光源波長の短波長化や対物レンズの高NA化により、Blu-ray disc(BD)等の大容量の光ディスクが開発されている。このBDは、将来的には厚さ方向に複数の記録層を有するため、異なる深度にレーザの焦点位置を合わせる必要があり、また光源波長が短いために、カバー層厚のばらつきやディスクの傾きに対する許容量が小さく、発生する波面収差が大きくなる傾向があった。この問題に対処するため、上述の素子を2枚組み合わせ、往路と復路における収差補正を行うことで検出精度を向上させた二重液晶収差補正素子が提案されている。   In recent years, large-capacity optical discs such as Blu-ray discs (BD) have been developed as the light source wavelength is shortened and the objective lens has a high NA. Since this BD will have multiple recording layers in the thickness direction in the future, it will be necessary to adjust the focal position of the laser to different depths, and since the light source wavelength is short, variations in cover layer thickness and disc tilt There is a tendency that the amount of wavefront aberration that occurs is small and the wavefront aberration that occurs is large. In order to cope with this problem, a double liquid crystal aberration correcting element has been proposed in which two of the above-described elements are combined and aberration correction in the forward path and the backward path is performed to improve detection accuracy.

従来の二重液晶収差補正素子として、例えば(特許文献1)には、出射光が光源から光磁気記録媒体に向かう往路と光磁気記録媒体から光検出器へ向かう復路とが共有する光路中に、2つの位相補正素子が設置されており、いずれの位相補正素子も、透明電極付の1対の透明基板を備え、1対の透明基板間に液晶層が狭持されるものであり、電圧の印加時に2つの位相補正素子の少なくとも1つに形成された透明電極は出射光の波面収差を補正できるように分割された分割電極となっており、かつ2つの位相補正素子の実質的なリタデーション値が等しく、電圧の非印加時に2つの位相補正素子を構成する液晶層の液晶分子の配向方向が互いに直交している例が記載されている。   As a conventional double liquid crystal aberration correction element, for example, in Patent Document 1, an outgoing path of outgoing light from a light source to a magneto-optical recording medium and a return path from the magneto-optical recording medium to a photodetector are shared. Two phase correction elements are installed. Each phase correction element includes a pair of transparent substrates with transparent electrodes, and a liquid crystal layer is sandwiched between the pair of transparent substrates. The transparent electrode formed on at least one of the two phase correction elements at the time of application is a divided electrode divided so that the wavefront aberration of the emitted light can be corrected, and the substantial retardation of the two phase correction elements An example is described in which the alignment directions of the liquid crystal molecules of the liquid crystal layers constituting the two phase correction elements are orthogonal to each other when the values are equal and no voltage is applied.

上記従来の素子では、(特許文献1)の図2に示すように、素子の片側の基板をより長くしてその部分に電極引出部を形成し、その電極引出部と制御回路とをフレキシブルプリント基板等によって接続させていた。
この場合、ガラス基板上の電極引出部の部分に力が加わるため、ガラス基板を薄くしようとすると割れ・カケ不良を生ずる恐れがあり、それゆえ厚さには強度の点で限界(0.3〜0.5mm程度)があった。したがって、2つの素子を組み合わせたときには全体が厚くなり、十分な軽量化が図れなかった。また、片側の基板を長く形成しているため、その分素子が大きくなり、さらに素子自体の重量バランスが崩れることによって高精度な駆動が難しくなるという問題もあった。
In the above-described conventional element, as shown in FIG. 2 of (Patent Document 1), the substrate on one side of the element is made longer to form an electrode lead part, and the electrode lead part and the control circuit are flexible printed. It was connected by a substrate or the like.
In this case, since force is applied to the electrode lead-out portion on the glass substrate, there is a risk that cracking and chipping may occur if the glass substrate is made thin. Therefore, the thickness is limited in terms of strength (0.3%). About 0.5 mm). Therefore, when the two elements are combined, the whole becomes thick, and a sufficient weight reduction cannot be achieved. In addition, since the substrate on one side is formed long, there is a problem that the device becomes larger by that amount, and further, the weight balance of the device itself is lost, so that it is difficult to drive with high accuracy.

また、液晶収差補正素子は、特に車載用等の用途を考慮した場合、保存温度範囲として−40〜90℃、使用温度範囲として−20〜80℃を達成することが要求されるが、温度が変化すると液晶及び基板が膨張・収縮し、このとき液晶と基板の膨張率が異なるため、上記(特許文献1)のように基板を片側に長く形成してそこに端子を集約させた場合には、全体が不均一に変形し、その結果、得られる補正効果に悪影響を与える恐れがあった。   Further, the liquid crystal aberration correction element is required to achieve a storage temperature range of −40 to 90 ° C. and a use temperature range of −20 to 80 ° C., particularly when considering applications such as in-vehicle use. When the liquid crystal and the substrate change, the expansion and contraction of the liquid crystal and the substrate are different. At this time, the expansion rate of the liquid crystal and the substrate is different. Therefore, when the substrate is formed long on one side as in the above (Patent Document 1) As a result, there is a possibility that the whole is deformed unevenly, and as a result, the obtained correction effect is adversely affected.

さらに、従来の素子を製造する際には、大きさの異なる2枚の基板を対向させ、その基板の側面の隙間から液晶を注入・封止していた。そのため、大きさが数mm程度に加工された小さい基板の組み合わせを逐一作製し、それぞれに対して液晶の注入・封止を行う必要があり、生産効率が悪く、コストも高いという問題があった。また、側方に設けた電極引出部の位置に対して液晶分子の配向方向が相異なる2種類の素子を別々に作製しなければならず、効率が悪かった。
また、上述のように、電極引出部が素子の側方に突出して設けられていたため、製品の検査を最終的に加工された個々の素子ごとに行う必要があり、効率が悪いという問題もあった。
Furthermore, when manufacturing a conventional element, two substrates having different sizes are made to face each other, and liquid crystal is injected and sealed from a gap on the side surface of the substrate. Therefore, it is necessary to fabricate a combination of small substrates processed to a size of several millimeters one by one, and to inject and seal liquid crystal on each of them, resulting in poor production efficiency and high cost. . Further, two types of elements having different alignment directions of the liquid crystal molecules with respect to the positions of the electrode lead portions provided on the side had to be separately manufactured, resulting in poor efficiency.
In addition, as described above, since the electrode lead-out portion is provided so as to protrude to the side of the element, it is necessary to inspect the product for each finally processed element, and there is a problem that the efficiency is low. It was.

また一方、良好な補正を行うためには、発生した収差に対して逆の位相差を加えることが理想的である。しかしながら、例えば(特許文献2)のように電極の領域を同心円状に分割した場合には、得られる位相差が階段状になってしまうという問題があった。
それゆえ、発生する収差に対しリニアな補正を行うことのできる二重液晶収差補正素子の開発が望まれていた。
On the other hand, in order to perform good correction, it is ideal to add an opposite phase difference to the generated aberration. However, for example, when the electrode region is divided concentrically as in (Patent Document 2), there is a problem that the obtained phase difference is stepped.
Therefore, it has been desired to develop a double liquid crystal aberration correction element capable of linearly correcting the generated aberration.

特開2002−319202号公報(請求項1、段落0038、図2)JP 2002-319202 A (Claim 1, paragraph 0038, FIG. 2) 特開2002−237077号公報(請求項1、段落0014)JP 2002-237077 A (Claim 1, paragraph 0014)

そこで本発明は、従来の素子に比べて小型化、軽量化を図ることができる新規な二重液晶収差補正素子を提供することを目的とする。
また、光ディスクの厚さずれ等によって発生する収差をリニアに補正し、それによって記録・再生の精度を高めることができる二重液晶収差補正素子を提供することを目的とする。
Therefore, an object of the present invention is to provide a novel double liquid crystal aberration correcting element that can be reduced in size and weight as compared with a conventional element.
It is another object of the present invention to provide a double liquid crystal aberration correcting element that linearly corrects an aberration caused by a thickness shift of an optical disk and the like, thereby improving recording / reproducing accuracy.

また、温度変化によって不均一な変形を生ずることなく、素子の性能を維持することができる二重液晶収差補正素子を提供することを目的とする。   It is another object of the present invention to provide a double liquid crystal aberration correction element that can maintain the performance of the element without causing non-uniform deformation due to temperature changes.

さらに、生産効率に優れ、低コストであり、素子の検査も効率良く行うことができる二重液晶収差補正素子の製造方法を提供することを目的とする。   It is another object of the present invention to provide a method for manufacturing a double liquid crystal aberration correcting element that is excellent in production efficiency, low in cost, and capable of efficiently inspecting an element.

上記課題を解決するため、本発明では、厚さ方向に積層した2つの液晶収差補正素子から構成され、前記各々の液晶収差補正素子は、一方にコモン電極が、他方にセグメント電極が形成された一対の基板と、前記一対の基板に挟まれた液晶とを備え、前記セグメント電極には、電極材の存在しない複数の非電極部位が前記セグメント電極上の位置によって大きさもしくは配置間隔又はその両方を変化させて形成され、前記非電極部位の内側では電圧印加時に液晶が不均一に配向するように構成され、前記一対の基板の各々には厚さ方向に複数の穴が穿たれるとともに前記穴には前記コモン電極およびセグメント電極のいずれかに接続される端子が設けられ、前記一対の基板の一方には液晶を注入するための注入口が形成され、電圧の非印加時における液晶の配向方向が2つの液晶収差補正素子で直交してなる二重液晶収差補正素子を提供する。 In order to solve the above-mentioned problems, the present invention comprises two liquid crystal aberration correction elements stacked in the thickness direction, and each liquid crystal aberration correction element has a common electrode on one side and a segment electrode on the other side. The segment electrode includes a pair of substrates and a liquid crystal sandwiched between the pair of substrates, and the segment electrode has a plurality of non-electrode portions having a size and / or an arrangement interval depending on a position on the segment electrode. The liquid crystal is configured to be non-uniformly oriented when a voltage is applied inside the non-electrode portion, and a plurality of holes are formed in the thickness direction in each of the pair of substrates. A terminal connected to either the common electrode or the segment electrode is provided in the hole, and an injection port for injecting liquid crystal is formed in one of the pair of substrates, and when no voltage is applied The alignment direction of the definitive liquid crystal to provide a dual liquid crystal aberration correcting element formed by orthogonal two liquid crystal aberration correcting element.

上記構成によれば、上記の作用に加えて、複数形成された非電極部位の中心部では電極に対して垂直方向に弱い電界が形成され、非電極部位の端の部分では電界が傾いた方向に形成されるため、その電界分布に沿って液晶分子が不均一に配向することで、非電極部位の中心から周辺にかけて屈折率が連続的に変化するレンズ効果が得られる。したがって、そのレンズ部分に光束を通過させることで、所定の位相差が与えられ収差が補正される。特に、非電極部位の大きさもしくは配置間隔を変化させることで、それぞれの領域で得られる位相差が変わり、素子全体として収差に応じた最適な補正が行われる。   According to the above configuration, in addition to the above-described operation, a weak electric field is formed in the vertical direction with respect to the electrode at the center of the formed non-electrode part, and the electric field is inclined at the end of the non-electrode part. Since the liquid crystal molecules are non-uniformly aligned along the electric field distribution, a lens effect is obtained in which the refractive index continuously changes from the center to the periphery of the non-electrode part. Therefore, by allowing the light beam to pass through the lens portion, a predetermined phase difference is given and the aberration is corrected. In particular, by changing the size or arrangement interval of the non-electrode portions, the phase difference obtained in each region changes, and the entire element is optimally corrected according to the aberration.

また、本発明は、上記記載の二重液晶収差補正素子において、基板が四角形状に形成され、前記基板の光束が通過する円形領域に沿って液晶がシールされ、前記円形領域以外のコーナー部付近に、液晶の注入口および端子が設けられることを特徴とする。   According to the present invention, in the double liquid crystal aberration correcting element described above, the substrate is formed in a quadrangular shape, the liquid crystal is sealed along a circular region through which the light flux of the substrate passes, and near the corner portion other than the circular region. In addition, a liquid crystal injection port and a terminal are provided.

上記構成によれば、基板のコーナー部付近が、穴を形成するスペースとして有効利用されるとともに、素子の重量バランスが改善される。また、液晶が膨張・収縮する場合に全体が均一に変形する。   According to the above configuration, the vicinity of the corner portion of the substrate is effectively used as a space for forming a hole, and the weight balance of the element is improved. Further, when the liquid crystal expands / contracts, the whole is uniformly deformed.

また、本発明は、上記記載の二重液晶収差補正素子において、積層した各々の液晶収差補正素子のコモン電極に接続される端子同士、一方の液晶収差補正素子のセグメント電極に接続される端子同士、および他方の液晶収差補正素子のセグメント電極に接続される端子同士が厚さ方向に相互に接続され、二重液晶収差補正素子の外側に位置する一の基板に設けられた端子にそれぞれ集約されることを特徴とする。   Further, according to the present invention, in the dual liquid crystal aberration correction element described above, terminals connected to the common electrode of each of the stacked liquid crystal aberration correction elements, terminals connected to the segment electrode of one liquid crystal aberration correction element , And terminals connected to the segment electrodes of the other liquid crystal aberration correction element are connected to each other in the thickness direction, and are integrated into terminals provided on one substrate located outside the double liquid crystal aberration correction element, respectively. It is characterized by that.

また、本発明は、上記記載の二重液晶収差補正素子において、積層した各々の液晶収差補正素子のコモン電極に接続される端子同士、一方の液晶収差補正素子のセグメント電極に接続される端子同士、および他方の液晶収差補正素子のセグメント電極に接続される端子同士が厚さ方向に相互に接続され、二重液晶収差補正素子の外側に位置する一の基板に設けられた端子にそれぞれ集約されることを特徴とする。   Further, according to the present invention, in the dual liquid crystal aberration correction element described above, terminals connected to the common electrode of each of the stacked liquid crystal aberration correction elements, terminals connected to the segment electrode of one liquid crystal aberration correction element , And terminals connected to the segment electrodes of the other liquid crystal aberration correction element are connected to each other in the thickness direction, and are integrated into terminals provided on one substrate located outside the double liquid crystal aberration correction element, respectively. It is characterized by that.

上記構成によれば、素子を駆動させるための各端子が、一の基板上に集約配置される。   According to the said structure, each terminal for driving an element is concentratedly arranged on one board | substrate.

また、本発明は、上記記載の二重液晶収差補正素子において、一方の液晶収差補正素子のセグメント電極に接続される端子と、他方の液晶収差補正素子のセグメント電極に接続される端子とが、四角形状の基板の対角に位置するコーナー部付近に設けられ、コモン電極に接続される端子と液晶の注入口とが残りのコーナー部付近に設けられることを特徴とする。   Further, according to the present invention, in the double liquid crystal aberration correction element described above, a terminal connected to the segment electrode of one liquid crystal aberration correction element and a terminal connected to the segment electrode of the other liquid crystal aberration correction element, It is provided in the vicinity of a corner portion located diagonally of a rectangular substrate, and a terminal connected to the common electrode and a liquid crystal injection port are provided in the vicinity of the remaining corner portion.

上記構成によれば、素子を製造する際の効率を考慮し、各端子の位置が設定される。   According to the above configuration, the position of each terminal is set in consideration of the efficiency in manufacturing the element.

また、本発明は、上記記載の二重液晶収差補正素子の製造方法であって、母材となる基板に対し、多数個の液晶収差補正素子に対応する端子および注入口を設ける工程と、セグメント電極を形成する工程と、前記の端子、注入口、およびセグメント電極を形成した基板に対し、対向する位置に端子を設けるとともにコモン電極を形成した別の基板を組み合わせる工程と、組み合わせた後に注入口から液晶を注入する工程と、前記各工程を経て製造される多数個の液晶収差補正素子が配列した組に対し、同様の各工程を経て得られる別の組を裏返しかつ90度回転させた上で積層させる工程と、個々の二重液晶収差補正素子に切り分ける工程と、を有してなる二重液晶収差補正素子の製造方法である。   The present invention also provides a method for manufacturing a double liquid crystal aberration correction element as described above, comprising a step of providing terminals and injection ports corresponding to a large number of liquid crystal aberration correction elements on a base substrate, and a segment. A step of forming an electrode, a step of providing a terminal at a position opposite to the substrate on which the terminal, the injection port, and the segment electrode are formed and combining another substrate on which a common electrode is formed, and an injection port after the combination The liquid crystal is injected from the above and a group in which a large number of liquid crystal aberration correction elements manufactured through the above steps are arranged, and another set obtained through the same steps is turned over and rotated 90 degrees. And a step of dividing into individual double liquid crystal aberration correcting elements, and a method of manufacturing a double liquid crystal aberration correcting element.

また、本発明は、上記記載の二重液晶収差補正素子の製造方法であって、母材となる基板に対し、多数個の液晶収差補正素子に対応する端子を設ける工程と、セグメント電極を形成する工程と、前記の端子、およびセグメント電極を形成した基板に対し、対向する位置に端子とさらに注入口を設けるとともにコモン電極を形成した別の基板を組み合わせる工程と、組み合わせた後に注入口から液晶を注入する工程と、前記各工程を経て製造される多数個の液晶収差補正素子が配列した組に対し、同様の各工程を経て得られる別の組を裏返しかつ90度回転させた上で積層させる工程と、個々の二重液晶収差補正素子に切り分ける工程と、を有してなる二重液晶収差補正素子の製造方法である。   According to another aspect of the present invention, there is provided a method of manufacturing the double liquid crystal aberration correction element as described above, the step of providing a terminal corresponding to a large number of liquid crystal aberration correction elements on a base substrate, and the formation of segment electrodes. And a step of providing a terminal and a further injection port at opposite positions with respect to the substrate on which the terminal and the segment electrode are formed, and combining another substrate on which the common electrode is formed, and after combining the liquid crystal from the injection port And a set in which a large number of liquid crystal aberration correction elements manufactured through the above steps are arranged, and another set obtained through the same steps is turned over and rotated 90 degrees. And a method of manufacturing a double liquid crystal aberration correction element comprising: a step of separating each of the liquid crystal aberration correction elements into individual double liquid crystal aberration correction elements.

上記手段によれば、二重液晶収差補正素子の製造が、最終工程まで母材となる基板の状態のまま進められる。そして、液晶の配向方向が直交している往路・復路の2つの液晶収差補正素子が、同一の工程によって製造される。   According to the above means, the manufacture of the double liquid crystal aberration correcting element is advanced in the state of the substrate as the base material until the final process. Then, the two liquid crystal aberration correction elements for the forward path and the return path in which the alignment directions of the liquid crystals are orthogonal are manufactured by the same process.

また、本発明は、上記記載の製造方法において、基板の表面には、それぞれの端子に共通して接続される検査用の配線を形成し、多数個の液晶収差補正素子が配列した組に対して別の組を積層させる工程の前、もしくは個々の二重液晶収差補正素子に切り分ける工程の前のいずれか一方又は両方の時点で前記配線を利用して検査を行うことを特徴とする。   Further, according to the present invention, in the manufacturing method described above, an inspection wiring connected to each terminal is formed on the surface of the substrate, and a plurality of liquid crystal aberration correction elements are arranged. Then, the inspection is performed using the wiring at one or both of the time before the step of laminating another set or before the step of dividing into individual double liquid crystal aberration correction elements.

上記手段によれば、個々の素子に分ける前の母材の状態で、素子の動作確認が一度に行われる。   According to the above means, the operation of the element is checked at a time in the state of the base material before being divided into individual elements.

また、本発明は、上記のいずれか記載の製造方法において、多数個の液晶収差補正素子が配列した組に対して別の組を積層させる際に、真空中で、光束が通過する円形領域を囲むように閉じた状態で設けられるシール材を介して積層させることを特徴とする。   In addition, in the manufacturing method according to any one of the above, the present invention provides a circular region through which a light beam passes in a vacuum when another set is stacked on a set in which a large number of liquid crystal aberration correction elements are arranged. It is characterized by laminating through a sealing material provided in a closed state so as to surround.

上記手段によれば、2つの液晶収差補正素子の間が真空状態となり、接着剤が存在しないので、高い光透過率が維持される。   According to the above means, a high light transmittance is maintained because the two liquid crystal aberration correcting elements are in a vacuum state and no adhesive is present.

さらに、本発明は、上記のいずれか記載の製造方法において、多数個の液晶収差補正素子が配列した組に対して別の組を積層させる際に、大気中で、光束が通過する円形領域を囲むように一部開いた状態で設けられるシール材と前記シール材の内側に設けられる接着剤とを介して積層させることを特徴とする。   Furthermore, in the manufacturing method according to any one of the above, the present invention provides a circular region through which a light beam passes in the atmosphere when another set is stacked on a set in which a large number of liquid crystal aberration correction elements are arranged. It is characterized by laminating via a sealing material provided in a partially opened state so as to surround and an adhesive provided inside the sealing material.

上記手段によれば、2つの液晶収差補正素子を積層させる工程が、大気中で効率的に行われる。この場合、接着剤は、屈折率が基板と近いものを選択することが好ましい。   According to the above means, the step of laminating the two liquid crystal aberration correction elements is efficiently performed in the atmosphere. In this case, it is preferable to select an adhesive having a refractive index close to that of the substrate.

本発明の二重液晶収差補正素子は、基板の表面に穴を穿ち、その穴の部分を端子としたため、端子を側方に設けた従来の素子に比べて基板に無理な力が加わることがない。したがって、より薄い基板を採用することができ、結果として素子の軽量化を達成することができる。   Since the double liquid crystal aberration correcting element of the present invention has a hole in the surface of the substrate and the hole is used as a terminal, an excessive force is applied to the substrate as compared with the conventional element in which the terminal is provided on the side. Absent. Therefore, a thinner substrate can be employed, and as a result, the weight of the device can be reduced.

また、基板の表面に端子を配置したことにより、その分だけ素子の小型化を図ることができる。   Further, by arranging the terminals on the surface of the substrate, the device can be reduced in size accordingly.

さらに、セグメント電極に複数の非電極部位を形成した場合には、その非電極部位の位置に形成される不均一な電界分布に沿って液晶分子を配向させることで、レンズ効果を生じさせる。これにより、光ディスクの厚さずれ等によって発生する収差をリニアに補正することができる。   Further, when a plurality of non-electrode portions are formed in the segment electrode, the lens effect is produced by aligning liquid crystal molecules along a non-uniform electric field distribution formed at the positions of the non-electrode portions. As a result, it is possible to linearly correct the aberration caused by the thickness deviation of the optical disk.

また、四角形状の基板の中央部に液晶を円形に挟み込み、その基板のコーナー部に端子等を設けたため、素子の重量バランスに優れ、温度変化によって液晶が膨張・収縮した場合でも不均一な変形が起こらず、素子の性能を維持することができる。   In addition, liquid crystal is sandwiched in the center of a square substrate and terminals are provided at the corners of the substrate, providing excellent weight balance of the device and non-uniform deformation even when the liquid crystal expands or contracts due to temperature changes. Does not occur, and the performance of the device can be maintained.

また、本発明の二重液晶収差補正素子の製造方法によれば、端子を形成する工程や、液晶を注入する工程等が、全て個々の素子に切り分ける前の母材の状態で行われるため、生産効率が向上し、コストを大幅に低減することができる。
また、各素子を検査する際にも、母材の状態で行うことができるため、高い効率を達成することができる。
さらに、積層させる2つの液晶収差補正素子を、全く同一の工程で製造でき、一方を裏返してかつ90度回転させるだけで、液晶の配向方向が直交した二重の素子を容易に作製することができる。したがって、生産性は極めて高く、安定した品質を得ることができる。
Further, according to the method for manufacturing a double liquid crystal aberration correcting element of the present invention, the process of forming the terminal, the process of injecting the liquid crystal, and the like are performed in the state of the base material before all the individual elements are separated. Production efficiency is improved and costs can be significantly reduced.
In addition, when inspecting each element, since it can be performed in the state of the base material, high efficiency can be achieved.
Furthermore, two liquid crystal aberration correction elements to be laminated can be manufactured in exactly the same process, and a double element in which the alignment directions of liquid crystals are orthogonal can be easily manufactured by turning one over and rotating 90 degrees. it can. Therefore, productivity is extremely high and stable quality can be obtained.

本発明に係る二重液晶収差補正素子の一実施形態を示す平面図である。It is a top view which shows one Embodiment of the double liquid-crystal aberration correction element which concerns on this invention. 図1のA−A断面図である。It is AA sectional drawing of FIG. 図1のB−B断面図である。It is BB sectional drawing of FIG. 図1のS部分の拡大図である。It is an enlarged view of S part of FIG. 電圧を印加した際の液晶の配向状態を説明する図である。It is a figure explaining the orientation state of the liquid crystal at the time of applying a voltage. 二重液晶収差補正素子の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of a double liquid-crystal aberration correction element. 二重液晶収差補正素子の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of a double liquid-crystal aberration correction element. P方向におけるS103の状態を示す図である。It is a figure which shows the state of S103 in a P direction. S103の状態を示す端子部分の断面図である。It is sectional drawing of the terminal part which shows the state of S103. P方向におけるS106の状態を示す図である。It is a figure which shows the state of S106 in a P direction. P方向におけるS108の状態を示す図である。It is a figure which shows the state of S108 in a P direction. Q方向におけるS205の状態を示す図である。It is a figure which shows the state of S205 in Q direction. R方向におけるS104の状態を示す図である。It is a figure which shows the state of S104 in a R direction. S501の状態を示す図である。It is a figure which shows the state of S501. S305の状態を示す図である。It is a figure which shows the state of S305. S504の状態を示す図である。It is a figure which shows the state of S504. S305の状態の別の実施形態を示す図である。It is a figure which shows another embodiment of the state of S305.

符号の説明Explanation of symbols

1 二重液晶収差補正素子
1A、1B 液晶収差補正素子
10、11 基板
101 コーナー部
20 コモン電極
21 セグメント電極
211 非電極部位
30A〜30F 穴
31A〜31F 端子
40 液晶
50、51、51A シール材
52 接着剤
60 注入口
61 封止材
70 導通材
80 マスク
90 配線
100、110 母材となる基板
DESCRIPTION OF SYMBOLS 1 Double liquid crystal aberration correction element 1A, 1B Liquid crystal aberration correction element 10, 11 Board | substrate 101 Corner part 20 Common electrode 21 Segment electrode 211 Non-electrode part 30A-30F Hole 31A-31F Terminal 40 Liquid crystal 50, 51, 51A Sealing material 52 Adhesion Agent 60 Inlet 61 Sealing material 70 Conductive material 80 Mask 90 Wiring 100, 110 Substrate serving as a base material

以下、本発明を実施するための最良の形態について詳細に説明する。
図1は、本発明に係る二重液晶収差補正素子の一実施形態における平面図である。また、図2は図1のA−A断面図であり、図3は図1のB−B断面図を表している。図1〜図3に示すように、二重液晶収差補正素子1は、同一の構成からなる2つの液晶収差補正素子1A、1Bを、導通材70及びシール材51を介して厚さ方向に積層させることにより構成されている。そして、液晶収差補正素子1A(1Bも同様)は、コモン電極20が形成された基板10と、セグメント電極21が形成された基板11とで液晶40を挟み込むことにより概略構成されている。なお、コモン電極20と液晶40との間、及びセグメント電極21と液晶40との間に一般的に設けられる液晶配向膜、透明絶縁層や、基板10、11上に設けられる反射防止膜等は図示を省略している。また、液晶40はシール材50によって内側に封入されている。
Hereinafter, the best mode for carrying out the present invention will be described in detail.
FIG. 1 is a plan view of an embodiment of a double liquid crystal aberration correcting element according to the present invention. 2 is a cross-sectional view taken along line AA in FIG. 1, and FIG. 3 is a cross-sectional view taken along line BB in FIG. As shown in FIGS. 1 to 3, the double liquid crystal aberration correction element 1 is formed by laminating two liquid crystal aberration correction elements 1 </ b> A and 1 </ b> B having the same configuration in the thickness direction through a conductive material 70 and a seal material 51. It is comprised by letting. The liquid crystal aberration correcting element 1A (same for 1B) is schematically configured by sandwiching the liquid crystal 40 between the substrate 10 on which the common electrode 20 is formed and the substrate 11 on which the segment electrode 21 is formed. In addition, a liquid crystal alignment film generally provided between the common electrode 20 and the liquid crystal 40 and between the segment electrode 21 and the liquid crystal 40, a transparent insulating layer, an antireflection film provided on the substrates 10 and 11, etc. The illustration is omitted. Further, the liquid crystal 40 is sealed inside by a sealing material 50.

この二重液晶収差補正素子1は、液晶40が設けられた領域内に光束を通過させ、その際にコモン電極20とセグメント電極21との間に電圧を印加することにより、領域内の位置によって異なる液晶40の配向状態、すなわち位相差を与え、これにより光の収差を補正するものである。このとき、液晶収差補正素子1A、1Bは、電圧の非印加時における液晶40の配向方向を直交させているので、往路・復路での収差を良好に補正することができる。   The double liquid crystal aberration correction element 1 allows a light beam to pass through a region where the liquid crystal 40 is provided, and applies a voltage between the common electrode 20 and the segment electrode 21 at that time, thereby changing the position in the region. The alignment state of different liquid crystals 40, that is, a phase difference is given, thereby correcting light aberration. At this time, since the liquid crystal aberration correction elements 1A and 1B have the alignment directions of the liquid crystal 40 orthogonal to each other when no voltage is applied, the aberrations in the forward and return paths can be corrected well.

ここでセグメント電極21の構成について詳細に説明する。
この実施の形態では、図1のS部分拡大図である図4に示すように、セグメント電極21に、電極材の存在しない複数の非電極部位211が穴状に形成されている。そして、複数の非電極部位211は、セグメント電極21上の位置によって大きさ及び配置間隔を連続的に変化させている。なお、非電極部位211の数は、図4では便宜上少なく描いているが、実際には多数の非電極部位211がより微細に形成されている。そして、この実施の形態では、セグメント電極21の半径方向rに沿って、非電極部位211の大きさd1が大きい径から一旦小さい径となり再び大きい径となるように、また、配置間隔d2が広い間隔から一旦狭い間隔となり再び広い間隔となるように連続的なパターンを形成している。
Here, the configuration of the segment electrode 21 will be described in detail.
In this embodiment, as shown in FIG. 4 which is a partially enlarged view of S in FIG. 1, the segment electrode 21 is formed with a plurality of non-electrode portions 211 having no electrode material in a hole shape. The plurality of non-electrode portions 211 are continuously changed in size and arrangement interval depending on the position on the segment electrode 21. Although the number of the non-electrode portions 211 is illustrated as small in FIG. 4 for the sake of convenience, a large number of non-electrode portions 211 are actually formed more finely. In this embodiment, along the radial direction r of the segment electrode 21, the arrangement electrode d2 is wide so that the size d1 of the non-electrode portion 211 is once changed from a large diameter to a small diameter and becomes a large diameter again. A continuous pattern is formed so that the interval once becomes narrower than the interval and then becomes wider again.

コモン電極20とセグメント電極21との間に電圧を印加した場合、非電極部位211の近傍での電界Eの状態は図5に示すようになる。すなわち、コモン電極20とセグメント電極21とが対向している部分aでは、電極に垂直な方向へ強い電界が形成され、非電極部位211の中心部である部分bでは、やはり電極に垂直な方向へ弱い電界が形成される。そして、非電極部位211とセグメント電極21との境界に近い部分cでは、セグメント電極21へ向かって電界が傾いた状態となる。   When a voltage is applied between the common electrode 20 and the segment electrode 21, the state of the electric field E in the vicinity of the non-electrode portion 211 is as shown in FIG. That is, in the portion a where the common electrode 20 and the segment electrode 21 face each other, a strong electric field is formed in the direction perpendicular to the electrode, and in the portion b that is the central portion of the non-electrode portion 211, the direction perpendicular to the electrode is also formed. A weak electric field is formed. Then, in a portion c close to the boundary between the non-electrode portion 211 and the segment electrode 21, the electric field is inclined toward the segment electrode 21.

すると、液晶40の誘電異方性が正である場合には、液晶分子が電界Eに沿って配向するため、部分aでは液晶分子が電極に対して垂直に並び、部分bでは電界が弱いため電極に平行な状態のままとなり、部分cでは斜めに配向することになる。すなわち、非電極部位211の内側において液晶40が不均一な配向状態となる。このとき、素子を通過する光(異常光)に対する屈折率は、非電極部位211の中心から周辺へ向かって連続的に小さくなる分布を形成するため、非電極部位211の部分においては凸レンズの効果を示すことになる。これにより、通過する光に位相差を与えることができる。
したがって、非電極部位211の大きさ及び配置間隔をセグメント電極21上の位置によって連続的に変化させた場合、それぞれの位置で得られる位相差は異なるため、発生する収差に応じて非電極部位211の配置パターンを適宜設計することで、素子全体として収差をリニアに補正することができる。
Then, when the dielectric anisotropy of the liquid crystal 40 is positive, since the liquid crystal molecules are aligned along the electric field E, the liquid crystal molecules are aligned perpendicular to the electrodes in the portion a, and the electric field is weak in the portion b. The state remains parallel to the electrode, and the portion c is oriented obliquely. That is, the liquid crystal 40 is in a non-uniform alignment state inside the non-electrode portion 211. At this time, the refractive index for light passing through the element (abnormal light) forms a distribution that continuously decreases from the center of the non-electrode portion 211 toward the periphery, and therefore the effect of the convex lens in the non-electrode portion 211 portion. Will be shown. Thereby, a phase difference can be given to the passing light.
Therefore, when the size and arrangement interval of the non-electrode portions 211 are continuously changed depending on the positions on the segment electrodes 21, the phase difference obtained at each position is different. By appropriately designing the arrangement pattern, the aberration can be linearly corrected for the entire element.

なお、印加する電圧を変化させた場合、それに応じて液晶分子の配向状態が変化する。例えば、電圧を大きくした場合には、非電極部位211の中心でも液晶分子が垂直に配向するため、逆に、非電極部位211の中心から周辺にかけて屈折率が大きくなる凹レンズ効果を示すようになる。すなわち、印加する電圧によって、素子全体で得られる位相差カーブを変化させることができるため、例えば再生(RF)波形に基づいて補正量を計算し、その結果に応じて電圧を制御することで発生する収差をリアルタイムで補正することも可能である。   In addition, when the voltage to apply is changed, the orientation state of a liquid crystal molecule changes according to it. For example, when the voltage is increased, the liquid crystal molecules are vertically aligned even at the center of the non-electrode portion 211, and conversely, a concave lens effect is exhibited in which the refractive index increases from the center to the periphery of the non-electrode portion 211. . In other words, the phase difference curve obtained for the entire device can be changed by the applied voltage. For example, the correction amount is calculated based on the reproduction (RF) waveform, and the voltage is controlled according to the result. It is also possible to correct the aberration to be performed in real time.

また、図4の例では、非電極部位211の大きさ及び配置間隔を、半径方向rに沿って変化させている。このようにすると、非電極部位211の配置パターンに対応して同心円状に変化する位相差カーブが得られるため、ディスクの厚さずれによって発生する球面収差を良好に補正することができる。しかも、非電極部位211の大きさ及び配置間隔は連続的に変化させているため、セグメント電極を同心円状に分割した従来の収差補正素子のように階段状の不連続な補正ではなく、よりリニアな補正が可能となる。   In the example of FIG. 4, the size and arrangement interval of the non-electrode portions 211 are changed along the radial direction r. In this way, a phase difference curve that changes concentrically in accordance with the arrangement pattern of the non-electrode portions 211 is obtained, so that it is possible to satisfactorily correct the spherical aberration caused by the disc thickness deviation. In addition, since the size and the arrangement interval of the non-electrode portion 211 are continuously changed, the linear correction is not linear rather than the stepwise discontinuous correction as in the conventional aberration correction element in which the segment electrodes are divided concentrically. Correction is possible.

さらに、非電極部位211の配置間隔は、セグメント電極21上を同心円状に分けたときの各領域内(例えば領域M、領域N)で不規則(ランダム配置)とすることが好ましい。すなわち、図4に示すように、配置間隔h1とh2とが若干異なるようにする。このようにすると、隣接する非電極部位をそれぞれ通過する光が互いに干渉し合って波面が乱れるような事態を防止することができる。
なお、光の波長と配置間隔との関係で干渉効果がほとんど無いと見込まれる場合には、h1とh2とを同一にして規則的に配置しても構わない。
Furthermore, the arrangement interval of the non-electrode portions 211 is preferably irregular (random arrangement) within each region (for example, the region M and the region N) when the segment electrode 21 is concentrically divided. That is, as shown in FIG. 4, the arrangement intervals h1 and h2 are slightly different. In this way, it is possible to prevent a situation in which light passing through adjacent non-electrode portions interferes with each other and disturbs the wavefront.
If it is expected that there will be almost no interference effect due to the relationship between the wavelength of light and the arrangement interval, h1 and h2 may be arranged regularly.

また、非電極部位211を形成する方法としては、まず基板11上の全面に電極材を形成した後に、フォトプロセスによって複数の非電極部位211を所望の配置パターンで形成する方法が好適に用いられる。このようにすると、連続的に変化する微細な配置パターンを容易に作り出すことができる。あるいは、基板11にセグメント電極21を蒸着、めっき等する際にマスクを介して行う方法を用いても良い。   Further, as a method of forming the non-electrode portion 211, a method in which an electrode material is first formed on the entire surface of the substrate 11 and then a plurality of non-electrode portions 211 are formed in a desired arrangement pattern by a photo process is preferably used. . In this way, it is possible to easily create a fine arrangement pattern that changes continuously. Alternatively, a method of performing through a mask when the segment electrode 21 is vapor-deposited or plated on the substrate 11 may be used.

次に、基板10、11としてはガラス基板等の透明基板が用いられる。また、コモン電極20、及びセグメント電極21としては、インジウム−スズ酸化膜を形成したITO等の透明電極が適宜採用される。   Next, as the substrates 10 and 11, a transparent substrate such as a glass substrate is used. Moreover, as the common electrode 20 and the segment electrode 21, a transparent electrode such as ITO having an indium-tin oxide film formed thereon is appropriately employed.

そして、この実施形態では、基板11の厚さ方向に穴30A、30B、30Cと、同様に基板10にも穴30D、30E、30Fとが穿たれている。それぞれの穴にはコモン電極20、及びセグメント電極21へ接続するための端子31A、31B、31C、31D、31E、31Fがそれぞれ設けられている。すなわち、端子31A、31Dが液晶収差補正素子1Aのセグメント電極21へ、端子31B、31Eがコモン電極20へ、端子31C、31Fが液晶収差補正素子1Bのセグメント電極21へそれぞれ接続されている。対向する端子間(例えば、端子31Bと端子31E)は、導通材70を介在させて接続している。なお、各端子は、穴の内周面に沿ってNi−Au等の金属をめっきする等して形成される。   In this embodiment, holes 30A, 30B, and 30C are formed in the thickness direction of the substrate 11, and holes 30D, 30E, and 30F are formed in the substrate 10 as well. Terminals 31A, 31B, 31C, 31D, 31E, and 31F for connecting to the common electrode 20 and the segment electrode 21 are provided in the respective holes. That is, the terminals 31A and 31D are connected to the segment electrode 21 of the liquid crystal aberration correction element 1A, the terminals 31B and 31E are connected to the common electrode 20, and the terminals 31C and 31F are connected to the segment electrode 21 of the liquid crystal aberration correction element 1B. The opposing terminals (for example, the terminal 31B and the terminal 31E) are connected with the conductive material 70 interposed therebetween. Each terminal is formed by plating a metal such as Ni—Au along the inner peripheral surface of the hole.

上記のように各端子を基板10、11の面上に配置することにより、基板の側方に端子を集約配置していた従来の素子に比べて、素子に偏った力が加わることなく、割れ・カケ等の不良が生じにくくなる。したがって、基板10、11をより薄く(例えば0.2mm)することが可能となり、素子を軽量化することができる。具体的には、従来に比して40%以上(従来の端子から面上配置の端子へ変更した効果が約10%、基板の厚さを0.3mmから0.2mmへ変更した効果が約33%)の軽量化となる。   By arranging the terminals on the surfaces of the substrates 10 and 11 as described above, it is possible to crack without applying a biased force to the elements as compared with the conventional elements in which the terminals are concentrated on the side of the substrate.・ Defects such as chipping are less likely to occur. Accordingly, the substrates 10 and 11 can be made thinner (for example, 0.2 mm), and the element can be reduced in weight. Specifically, 40% or more compared to the conventional case (the effect of changing from the conventional terminal to the terminal arranged on the surface is about 10%, the effect of changing the thickness of the substrate from 0.3 mm to 0.2 mm is about 33%).

また、この実施形態では、基板10、11間に液晶40を注入するための注入口60が、基板11の面上に形成されている。注入口60の形状は円形、楕円形等であり、液晶40を注入した後に封止材61により適宜封止される。
特に、図1の例では、端子31A〜31F、及び液晶の注入口60の全てが、基板10、11の面上に配置され、対向する端子同士が厚さ方向に相互に接続され、上側の液晶収差補正素子1Aに設けられた駆動用の各端子に集約されているため、後述するように素子の生産効率を高めることができる。
In this embodiment, an injection port 60 for injecting the liquid crystal 40 between the substrates 10 and 11 is formed on the surface of the substrate 11. The shape of the inlet 60 is circular, elliptical, or the like, and is appropriately sealed with a sealing material 61 after the liquid crystal 40 is injected.
In particular, in the example of FIG. 1, all of the terminals 31 </ b> A to 31 </ b> F and the liquid crystal injection port 60 are disposed on the surfaces of the substrates 10 and 11, and the opposing terminals are connected to each other in the thickness direction. Since the liquid crystal aberration correction element 1A is concentrated at each driving terminal, the element production efficiency can be increased as described later.

さらに、図1の例では、穴30A〜30F、及び液晶の注入口60を、光束が通過する円形領域(セグメント電極21、及びコモン電極20が形成された領域)以外の、四角形状に形成された基板11(10)上のコーナー部101付近に形成している。また、シール材50を略円形に設け、光束が通過する円形領域内に液晶40をシールするようにしている。このようにすると、光束が通過しない基板11上の余剰部分を、端子等の位置として有効に利用することができるため、素子をより小型化することができる。また、端子等をコーナー部101に配置することにより、素子の重量バランスを最適化することができる。その結果、高精度な駆動が可能となり、また、温度変化によって液晶が膨張・収縮した場合に、基板11に対し均等に圧力が加わるため不均一な変形が起こらず、素子の性能を維持することができる。   Further, in the example of FIG. 1, the holes 30 </ b> A to 30 </ b> F and the liquid crystal injection port 60 are formed in a rectangular shape other than the circular region through which the light beam passes (the region where the segment electrode 21 and the common electrode 20 are formed). It is formed in the vicinity of the corner portion 101 on the substrate 11 (10). Further, the sealing material 50 is provided in a substantially circular shape, and the liquid crystal 40 is sealed in a circular region through which the light beam passes. In this way, since the surplus portion on the substrate 11 through which the light beam does not pass can be used effectively as the position of the terminal or the like, the element can be further downsized. Further, by arranging the terminals and the like in the corner portion 101, the weight balance of the element can be optimized. As a result, it is possible to drive with high accuracy, and when the liquid crystal expands and contracts due to a temperature change, pressure is applied uniformly to the substrate 11 so that non-uniform deformation does not occur and the device performance is maintained. Can do.

なお、従来の一般的な液晶を利用する素子(液晶表示素子など)においては、表示エリアの拡大に伴って額縁部分(基板の余剰部分)をできるだけ狭くすることが要求されている。また、高分割駆動方式等に対応して端子数も増大する傾向にあるため、基板のコーナー部分を有効利用するという発想はなく、本発明に独自のものといえる。   Note that in a conventional element using liquid crystal (such as a liquid crystal display element), it is required to make the frame portion (the surplus portion of the substrate) as narrow as possible with the expansion of the display area. In addition, since the number of terminals tends to increase corresponding to the high-division driving method or the like, there is no idea of effectively using the corner portion of the substrate, which can be said to be unique to the present invention.

なお、複数の非電極部位211の配置パターンは、上記実施の形態に限定されない。すなわち、発生する収差等に応じて、非電極部位211の大きさもしくは配置間隔又はその両方をセグメント電極21上の位置によって適宜設定することができる。具体的には、例えば、図4とは逆に非電極部位の大きさをセグメント電極21の中心から周辺に向かって小さい径から大きい径、また小さい径へと連続的に変化させる場合等が挙げられる。また、大きさ及び配置間隔をセグメント電極21上で同心円状に変化させる場合に限らず、例えばセグメント電極21を左右の領域に分けたときに、それぞれの領域で異なる配置パターンとなるように形成しても良い。この場合には、ディスクの反り等によって生じるコマ収差を有効に補正することができる。   Note that the arrangement pattern of the plurality of non-electrode portions 211 is not limited to the above embodiment. That is, according to the aberration etc. which generate | occur | produce, the magnitude | size or arrangement | positioning space | interval of the non-electrode part 211 or both can be suitably set with the position on the segment electrode 21. FIG. Specifically, for example, the case where the size of the non-electrode portion is continuously changed from the small diameter to the large diameter and the small diameter from the center to the periphery of the segment electrode 21 contrary to FIG. It is done. In addition, the size and the arrangement interval are not limited to being concentrically changed on the segment electrode 21, but for example, when the segment electrode 21 is divided into left and right areas, the arrangement patterns are formed so as to be different in the respective areas. May be. In this case, coma caused by the warp of the disk can be effectively corrected.

また、上記実施の形態では、複数の非電極部位211の形状が円形の場合について説明したが、これに限定されず、例えば発生する収差の種類や、ラビング方向等を考慮して、別の形状にすることができる。具体的には、楕円形状、半円形状等が挙げられる。   In the above-described embodiment, the case where the shapes of the plurality of non-electrode portions 211 are circular has been described. However, the present invention is not limited to this. Can be. Specific examples include an elliptical shape and a semicircular shape.

また、図1の例では、セグメント電極21のパターンを、端子31Aに直接接続するように形成しているが、この他にも、例えば、閉じた円形領域からなる各電極パターンを形成した後に、それぞれの電極と各端子とをリード線等で接続しても良い。   In the example of FIG. 1, the pattern of the segment electrode 21 is formed so as to be directly connected to the terminal 31 </ b> A. In addition to this, for example, after forming each electrode pattern composed of a closed circular region, Each electrode and each terminal may be connected by a lead wire or the like.

なお、基板10、11上に設けた端子同士を厚さ方向に相互に接続し、一番上の基板上の端子に集約させたことについて、上記実施の形態ではセグメント電極21に複数の非電極部位211を形成した場合を例に説明したが、これに限られず、例えばセグメント電極を同心円状に複数の領域に分割した場合にも同様に適用可能である。この場合にも、基板上に端子を配置することによって素子の小型化、軽量化を達成することができる。あるいは、セグメント電極を左右に分割しても良い。この場合は、光ディスクの反り等によって発生するコマ収差を良好に補正することができる。   Note that the terminals provided on the substrates 10 and 11 are connected to each other in the thickness direction and concentrated on the terminals on the uppermost substrate. Although the case where the part 211 is formed has been described as an example, the present invention is not limited to this. Also in this case, the device can be reduced in size and weight by arranging the terminals on the substrate. Alternatively, the segment electrode may be divided into left and right. In this case, it is possible to satisfactorily correct coma generated by warping of the optical disk.

以上のような二重液晶収差補正素子1は、例えばレーザ光源、偏光子、1/2波長板、1/4波長板、対物レンズ、受光素子等とともに光ピックアップを構成し、光ディスク装置に組み込んで使用することができる。
特に、往路・復路における収差を補正可能であるため、次世代BD(Blu-ray Disc)や、多層ディスク等の高密度光ディスクにも好適に用いることができる。
The double liquid crystal aberration correcting element 1 as described above constitutes an optical pickup together with, for example, a laser light source, a polarizer, a half-wave plate, a quarter-wave plate, an objective lens, a light receiving element, and the like, and is incorporated in an optical disc apparatus. Can be used.
In particular, since aberrations in the forward and return paths can be corrected, it can be suitably used for next-generation BD (Blu-ray Disc) and high-density optical disks such as multilayer disks.

次に、上述の図1の例に係る二重液晶収差補正素子1の製造方法を図6〜図17に基づき説明する。   Next, a method for manufacturing the double liquid crystal aberration correcting element 1 according to the example of FIG. 1 will be described with reference to FIGS.

まず、液晶補正素子1Aにおける基板11の加工工程について順に説明する。図8〜図11は、図2のP方向から見た状態を示している。最初に、図6及び図8に示すように、母材となる基板110に、多数個の液晶収差補正素子に対応させた穴30A、30B、30Cと、液晶の注入口60とを所定の位置に形成する(S101)。続いて、母材となる基板110の全面に反射防止膜(AR膜)を形成し(S102)た後、それぞれの穴に端子31A、31B、31Cを設ける(S103)。なお、後述するように端子31A〜31Cは、基板110を裏返しかつ90度回転させた場合に端子同士が重なり合う必要があるため、母材となる基板110は好ましくは正方形であり、また配列する多数個の液晶収差補正素子は縦横で同数形成されている。なお、各端子(例えば端子31A)を設ける際には、図9に示すように、穴30A以外の部分にマスク80を形成した上で、端子31Aとなる金属をめっき等により形成した後、マスク80を除去することにより好適に行われる。   First, processing steps of the substrate 11 in the liquid crystal correction element 1A will be described in order. 8 to 11 show states viewed from the P direction in FIG. First, as shown in FIGS. 6 and 8, holes 30A, 30B, 30C corresponding to a large number of liquid crystal aberration correction elements and a liquid crystal injection port 60 are formed at predetermined positions on a substrate 110 serving as a base material. (S101). Subsequently, after an antireflection film (AR film) is formed on the entire surface of the substrate 110 serving as a base material (S102), terminals 31A, 31B, and 31C are provided in the respective holes (S103). As will be described later, since the terminals 31A to 31C need to overlap each other when the substrate 110 is turned upside down and rotated 90 degrees, the substrate 110 which is a base material is preferably a square and is arranged in a large number. The same number of liquid crystal aberration correction elements are formed in the vertical and horizontal directions. In addition, when providing each terminal (for example, terminal 31A), as shown in FIG. 9, after forming the mask 80 in parts other than the hole 30A, after forming the metal used as the terminal 31A by plating etc., mask This is preferably done by removing 80.

続いて、図2のR方向から見た側に対し、後述するような検査に用いる配線を形成した後(S104)、所定の位置に電極材を蒸着等によって形成し(S105)、エッチング等によるパターンニングを行ってセグメント電極21を作製する(S106)。この状態を図10に示す。なお、上述の端子を設ける工程と、検査に用いる配線を形成する工程とは前後しても良い。   Subsequently, on the side viewed from the R direction in FIG. 2, after forming a wiring used for inspection as described later (S104), an electrode material is formed at a predetermined position by vapor deposition (S105), and etching is performed. Patterning is performed to produce the segment electrode 21 (S106). This state is shown in FIG. Note that the above-described step of providing the terminal and the step of forming the wiring used for the inspection may be mixed.

次に、P方向の側に透明絶縁層を必要に応じて積層させ、PVA等の液晶配向膜を形成し、ラビングを行う(S107)。さらに液晶を封入するためのシール材50を、印刷等によりセグメント電極21の外側に設ける(S108)。この状態を図11に示す。   Next, a transparent insulating layer is laminated on the P direction side as necessary, a liquid crystal alignment film such as PVA is formed, and rubbing is performed (S107). Further, a sealing material 50 for enclosing the liquid crystal is provided outside the segment electrode 21 by printing or the like (S108). This state is shown in FIG.

一方、対向させる別の基板(基板10側)については、図2のQ方向から見た図12に示すように、母材となる基板100に対して上記の基板110と同じ位置に穴30D、31E、30Fを形成し(S201)、AR膜を形成し(S202)た後、端子31D、31E、31Fを設け(S203)、電極材の蒸着等を行い(S204)、パターンニングを行ってコモン電極20を形成する(S205)。また、液晶配向膜を形成してラビングを行い(S206)、対向させる基板110の各端子同士と接続するための導通材を印刷等により設ける(S207)。
なお、場合によっては、注入口60を基板10側に形成したり、あるいはシール材50を基板10側に、導通材を基板11側に印刷することも可能である。
On the other hand, with respect to another substrate (substrate 10 side) to be opposed, as shown in FIG. 12 as viewed from the Q direction of FIG. 2, the hole 30D is formed at the same position as the substrate 110 with respect to the substrate 100 as a base material. After forming 31E and 30F (S201) and forming an AR film (S202), terminals 31D, 31E and 31F are provided (S203), electrode material is deposited (S204), patterning is performed, and common is performed. The electrode 20 is formed (S205). Further, a liquid crystal alignment film is formed and rubbed (S206), and a conductive material for connecting each terminal of the substrate 110 to be opposed is provided by printing or the like (S207).
In some cases, the injection port 60 may be formed on the substrate 10 side, or the sealing material 50 may be printed on the substrate 10 side and the conductive material may be printed on the substrate 11 side.

そして、上記のような端子等を形成した基板110と基板100とを、対向させて組み合わせる(S301)。この工程は、スペーサを介して接着剤で貼り合わせる等して行われる。
続いて、注入口60からシール材50の内側へ液晶を注入し(S302)、封止材によって封止する。そして、母材となる基板110上に配列した各端子を使用して、素子の動作検査を行う(S303)。このとき、基板110上には、図13に示すように予め配線90を形成している(S104)ため、その配線90を利用して全数検査が一度に行われる。検査の結果不合格であった箇所についてはNGマーキングを行う(S304)。
And the board | substrate 110 and the board | substrate 100 which formed the above terminals etc. are made to oppose, and are combined (S301). This step is performed by bonding with an adhesive via a spacer.
Subsequently, liquid crystal is injected into the sealing material 50 from the injection port 60 (S302) and sealed with a sealing material. Then, using each terminal arranged on the substrate 110 serving as a base material, an operation inspection of the element is performed (S303). At this time, since the wiring 90 is formed in advance on the substrate 110 as shown in FIG. 13 (S104), 100% inspection is performed at once using the wiring 90. NG marking is performed about the location which failed as a result of the inspection (S304).

以上の各工程(S101〜S303)を経て、液晶収差補正素子1Aが多数個配列した組が得られる。そして、この組に対し、同様の各工程(S101〜S303)を経て製造された別の組(液晶収差補正素子1Bが配列している)を積層させる(S501)。このとき、図14に示すように、別の組をZ方向に裏返し、かつX方向に90度回転させた状態にして、液晶収差補正素子1Aが配列する組の基板100側と、液晶収差補正素子1Bが配列する組の基板100側とを積層させることにより、コモン端子同士、対応するセグメント端子同士が組み合わされ、なおかつ液晶の配向方向が直交した状態が得られることになる。   Through the above steps (S101 to S303), a set in which a large number of liquid crystal aberration correction elements 1A are arranged is obtained. Then, another set (the liquid crystal aberration correction elements 1B are arranged) manufactured through the same steps (S101 to S303) is stacked on this set (S501). At this time, as shown in FIG. 14, another set is turned over in the Z direction and rotated 90 degrees in the X direction, and the substrate 100 side of the set in which the liquid crystal aberration correction elements 1A are arranged, and the liquid crystal aberration correction By stacking the substrate 100 side of the set in which the elements 1B are arranged, the common terminals and the corresponding segment terminals are combined, and the liquid crystal alignment direction is orthogonal.

また、組同士を積層させる際には、組の間に予めシール材51及び導通材70を印刷等しておく(S305、S401)。このシール材51及び導通材70は、それぞれ液晶収差補正素子1A側に設けても良いし、反対の液晶収差補正素子1B側に設けても良い。   Further, when the sets are stacked, the sealing material 51 and the conductive material 70 are printed in advance between the sets (S305, S401). The seal material 51 and the conductive material 70 may be provided on the liquid crystal aberration correction element 1A side or on the opposite liquid crystal aberration correction element 1B side.

シール材51は、図15に示すように、光束が通過する円形領域を囲むように閉じた状態で設けることができる。この場合、シール材51の内側に閉じ込められる気体の膨張によって積層状態が損なわれないように、組同士を積層させる作業は真空中で行う必要がある。シール材51が閉じた状態でかつ内側が真空であると、ゴミ等が内部に侵入せず、光透過率を高くできるため好ましい。   As shown in FIG. 15, the sealing material 51 can be provided in a closed state so as to surround a circular region through which the light beam passes. In this case, it is necessary to perform the operation of stacking the sets in a vacuum so that the stacked state is not impaired by the expansion of the gas confined inside the sealing material 51. It is preferable that the sealing material 51 is closed and the inside is a vacuum because dust or the like does not enter the inside and the light transmittance can be increased.

そして、組同士を積層させた後、母材となる基板110上に配列した各端子を使用して、二重液晶収差補正素子の動作検査を行う(S502)。このときも、上述の場合と同様に基板110上に形成した配線90を利用して全数検査を一度に行うことができる。検査の結果不合格であった箇所についてはNGマーキングを行う(S503)。   Then, after the sets are stacked, the operation of the double liquid crystal aberration correction element is inspected using each terminal arranged on the substrate 110 as the base material (S502). Also at this time, 100% inspection can be performed at a time using the wiring 90 formed on the substrate 110 as in the case described above. NG marking is performed about the location which failed as a result of the inspection (S503).

最後に、図16に示すように、母材となる基板を、ダイサー等を用いて個々の二重液晶収差補正素子1に切り分け(S504)、単品の検査工程(S505)を経た後に出荷する(S507)。なお、単品の検査において不合格となった素子は、廃棄又は修理するか、又は再生工程に移される(S506)。   Finally, as shown in FIG. 16, the base material substrate is cut into individual double liquid crystal aberration correction elements 1 using a dicer or the like (S504), and is shipped after undergoing a single product inspection step (S505) ( S507). In addition, the element which failed in the inspection of a single item is discarded or repaired, or moved to a regeneration process (S506).

なお、組同士を積層させる際、図15で示したシール材51に代わって、図17に示すような、光束が通過する円形領域を囲むように一部開いた状態で設けられるシール材51Aを介在させても良い。この場合は、シール材51Aの内側に接着剤52を設け、この接着剤52により組同士を接着させる。図17の例では、組同士を積層させる作業を大気中で行うことができるため、生産効率が高いという利点がある。   In addition, when laminating a pair, instead of the sealing material 51 shown in FIG. 15, a sealing material 51 </ b> A provided in a partially opened state so as to surround a circular region through which a light beam passes is used as shown in FIG. 17. It may be interposed. In this case, an adhesive 52 is provided on the inner side of the sealing material 51 </ b> A, and the pair is bonded by the adhesive 52. In the example of FIG. 17, since the operation | work which laminates | stacks sets can be performed in air | atmosphere, there exists an advantage that production efficiency is high.

以上のような製造方法によれば、各端子や電極の形成、及び液晶の注入工程等が、個々の素子に切り分ける前の母材の状態で全て行われるため、生産効率が非常に高く、コストも大幅に低減することができる。また、生産規模の拡大にも容易に対応可能である。
特に、積層させる2つの液晶収差補正素子が、別々に作るのではなく同一の工程で製造され、片方を裏返して90度回転させるだけで良いので、全体の生産効率は大きく向上する。
さらに、液晶を注入・封止した後に行われる検査工程も、母材の状態で一斉に行えるため、産業上極めて有用である。
According to the manufacturing method as described above, the formation of each terminal and electrode, the liquid crystal injection process, etc. are all performed in the state of the base material before dividing into individual elements, so the production efficiency is very high and the cost is high. Can also be greatly reduced. In addition, it can easily cope with the expansion of production scale.
In particular, the two liquid crystal aberration correction elements to be stacked are manufactured in the same process rather than separately, and it is only necessary to turn one side over and rotate it 90 degrees, so that the overall production efficiency is greatly improved.
Furthermore, since the inspection process performed after injecting and sealing the liquid crystal can be performed in the same state as the base material, it is extremely useful in the industry.

Claims (12)

厚さ方向に積層した2つの液晶収差補正素子から構成され、前記各々の液晶収差補正素子は、一方にコモン電極が、他方にセグメント電極が形成された一対の基板と、前記一対の基板に挟まれた液晶とを備え、前記セグメント電極には、電極材の存在しない複数の非電極部位が前記セグメント電極上の位置によって大きさもしくは配置間隔又はその両方を変化させて形成され、前記非電極部位の内側では電圧印加時に液晶が不均一に配向するように構成され、前記一対の基板の各々には厚さ方向に複数の穴が穿たれるとともに前記穴には前記コモン電極およびセグメント電極のいずれかに接続される端子が設けられ、前記一対の基板の一方には液晶を注入するための注入口が形成され、電圧の非印加時における液晶の配向方向が2つの液晶収差補正素子で直交してなる二重液晶収差補正素子。  The liquid crystal aberration correction elements are stacked in the thickness direction, and each liquid crystal aberration correction element is sandwiched between a pair of substrates each having a common electrode and a segment electrode on the other side, and the pair of substrates. The segment electrode is formed with a plurality of non-electrode portions where no electrode material is present by changing the size and / or the arrangement interval depending on the position on the segment electrode. The liquid crystal is configured to be non-uniformly oriented when a voltage is applied, and a plurality of holes are formed in the thickness direction in each of the pair of substrates, and any of the common electrode and the segment electrode is formed in the holes. A terminal connected to each other is formed, and an inlet for injecting liquid crystal is formed in one of the pair of substrates. Double crystal aberration correcting element formed by orthogonal correcting element. 請求項記載の二重液晶収差補正素子において、基板が四角形状に形成され、前記基板の光束が通過する円形領域に沿って液晶がシールされ、前記円形領域以外のコーナー部付近に、液晶の注入口および端子が設けられることを特徴とする二重液晶収差補正素子。2. The double liquid crystal aberration correcting element according to claim 1 , wherein the substrate is formed in a square shape, the liquid crystal is sealed along a circular region through which the light flux of the substrate passes, and the liquid crystal is near the corner portion other than the circular region. A double liquid crystal aberration correcting element, characterized in that an inlet and a terminal are provided. 請求項記載の二重液晶収差補正素子において、積層した各々の液晶収差補正素子のコモン電極に接続される端子同士、一方の液晶収差補正素子のセグメント電極に接続される端子同士、および他方の液晶収差補正素子のセグメント電極に接続される端子同士が厚さ方向に相互に接続され、二重液晶収差補正素子の外側に位置する一の基板に設けられた端子にそれぞれ集約されることを特徴とする二重液晶収差補正素子。2. The double liquid crystal aberration correction element according to claim 1, wherein terminals connected to the common electrode of each laminated liquid crystal aberration correction element, terminals connected to the segment electrode of one liquid crystal aberration correction element, and the other are connected. The terminals connected to the segment electrodes of the liquid crystal aberration correction element are connected to each other in the thickness direction, and are integrated into terminals provided on one substrate located outside the double liquid crystal aberration correction element. A double liquid crystal aberration correction element. 請求項記載の二重液晶収差補正素子において、積層した各々の液晶収差補正素子のコモン電極に接続される端子同士、一方の液晶収差補正素子のセグメント電極に接続される端子同士、および他方の液晶収差補正素子のセグメント電極に接続される端子同士が厚さ方向に相互に接続され、二重液晶収差補正素子の最も外側である一の基板に設けられた端子にそれぞれ集約されることを特徴とする二重液晶収差補正素子。 3. The double liquid crystal aberration correction element according to claim 2, wherein terminals connected to the common electrode of each laminated liquid crystal aberration correction element, terminals connected to the segment electrode of one liquid crystal aberration correction element, and the other are connected. The terminals connected to the segment electrodes of the liquid crystal aberration correction element are connected to each other in the thickness direction, and are respectively integrated into terminals provided on one substrate which is the outermost side of the double liquid crystal aberration correction element. A double liquid crystal aberration correction element. 請求項記載の二重液晶収差補正素子において、一方の液晶収差補正素子のセグメント電極に接続される端子と、他方の液晶収差補正素子のセグメント電極に接続される端子とが、四角形状の基板の対角に位置するコーナー部付近に設けられ、コモン電極に接続される端子と液晶の注入口とが残りのコーナー部付近に設けられることを特徴とする二重液晶収差補正素子。5. The double liquid crystal aberration correction element according to claim 4, wherein a terminal connected to the segment electrode of one liquid crystal aberration correction element and a terminal connected to the segment electrode of the other liquid crystal aberration correction element are rectangular substrates. A double liquid crystal aberration correction element, characterized in that a terminal connected to a common electrode and a liquid crystal injection port are provided in the vicinity of the remaining corner portion. 請求項記載の二重液晶収差補正素子の製造方法であって、母材となる基板に対し、多数個の液晶収差補正素子に対応する端子および注入口を設ける工程と、セグメント電極を形成する工程と、前記の端子、注入口、およびセグメント電極を形成した基板に対し、対向する位置に端子を設けるとともにコモン電極を形成した別の基板を組み合わせる工程と、組み合わせた後に注入口から液晶を注入する工程と、前記各工程を経て製造される多数個の液晶収差補正素子が配列した組に対し、同様の各工程を経て得られる別の組を裏返しかつ90度回転させた上で積層させる工程と、個々の二重液晶収差補正素子に切り分ける工程と、を有してなる二重液晶収差補正素子の製造方法。6. The method of manufacturing a double liquid crystal aberration correction element according to claim 5, wherein a step of providing terminals and injection holes corresponding to a large number of liquid crystal aberration correction elements on a base substrate and a segment electrode are formed. A step of combining a substrate on which the terminal, the injection port, and the segment electrode are formed with a terminal on the opposite position and another substrate on which the common electrode is formed, and injecting liquid crystal from the injection port after the combination And a step in which another set obtained through the same steps is turned upside down and rotated 90 degrees with respect to a set in which a large number of liquid crystal aberration correction elements manufactured through the steps are arranged. And a step of dividing the liquid crystal aberration correction element into individual liquid crystal aberration correction elements. 請求項記載の二重液晶収差補正素子の製造方法であって、母材となる基板に対し、多数個の液晶収差補正素子に対応する端子を設ける工程と、セグメント電極を形成する工程と、前記の端子、およびセグメント電極を形成した基板に対し、対向する位置に端子とさらに注入口を設けるとともにコモン電極を形成した別の基板を組み合わせる工程と、組み合わせた後に注入口から液晶を注入する工程と、前記各工程を経て製造される多数個の液晶収差補正素子が配列した組に対し、同様の各工程を経て得られる別の組を裏返しかつ90度回転させた上で積層させる工程と、個々の二重液晶収差補正素子に切り分ける工程と、を有してなる二重液晶収差補正素子の製造方法。A method for manufacturing a double liquid crystal aberration correction element according to claim 5, wherein a step of providing terminals corresponding to a large number of liquid crystal aberration correction elements on a substrate serving as a base material, a step of forming segment electrodes, A step of providing a terminal and a further injection port at a position opposite to the substrate on which the terminal and the segment electrode are formed and combining another substrate on which a common electrode is formed, and a step of injecting liquid crystal from the injection port after the combination And, with respect to the set in which a large number of liquid crystal aberration correction elements manufactured through the respective steps are arranged, another step obtained through the same steps is turned over and rotated 90 degrees, and then laminated. A method of manufacturing a double liquid crystal aberration correction element comprising the steps of dividing the individual double liquid crystal aberration correction element. 請求項又は記載の製造方法において、基板の表面には、それぞれの端子に共通して接続される検査用の配線を形成し、多数個の液晶収差補正素子が配列した組に対して別の組を積層させる工程の前、もしくは個々の二重液晶収差補正素子に切り分ける工程の前のいずれか一方又は両方の時点で前記配線を利用して検査を行うことを特徴とする二重液晶収差補正素子の製造方法。The manufacturing method according to claim 6 or 7, wherein the surface of the substrate, the wiring for inspection that are commonly connected to the respective terminals to form another respect plurality sets liquid crystal aberration correcting element arranged in The double liquid crystal aberration is characterized in that the inspection is performed using the wiring at one or both of the time before the step of laminating the set of the two or before the step of separating the individual double liquid crystal aberration correction elements. A method of manufacturing a correction element. 請求項又は記載の製造方法において、多数個の液晶収差補正素子が配列した組に対して別の組を積層させる際に、真空中で、光束が通過する円形領域を囲むように閉じた状態で設けられるシール材を介して積層させることを特徴とする二重液晶収差補正素子の製造方法。The manufacturing method according to claim 6 or 7, wherein, when to stack another set against a large number sets liquid crystal aberration correcting element arranged in, in a vacuum, closed so as to surround the circular region in which the light flux passes A method for producing a double liquid crystal aberration correction element, wherein the liquid crystal aberration correction element is laminated through a sealing material provided in a state. 請求項記載の製造方法において、多数個の液晶収差補正素子が配列した組に対して別の組を積層させる際に、真空中で、光束が通過する円形領域を囲むように閉じた状態で設けられるシール材を介して積層させることを特徴とする二重液晶収差補正素子の製造方法。9. The manufacturing method according to claim 8 , wherein when another set is stacked on a set in which a large number of liquid crystal aberration correction elements are arranged, the set is closed in a vacuum so as to surround a circular region through which a light beam passes. A method for producing a double liquid crystal aberration correction element, wherein the lamination is performed through a sealing material provided. 請求項又は記載の製造方法において、多数個の液晶収差補正素子が配列した組に対して別の組を積層させる際に、大気中で、光束が通過する円形領域を囲むように一部開いた状態で設けられるシール材と前記シール材の内側に設けられる接着剤とを介して積層させることを特徴とする二重液晶収差補正素子の製造方法。8. The manufacturing method according to claim 6 or 7 , wherein when another set is stacked on a set in which a large number of liquid crystal aberration correction elements are arranged, a part is surrounded so as to surround a circular region through which a light beam passes. A method for producing a double liquid crystal aberration correcting element, comprising: laminating via a sealing material provided in an open state and an adhesive provided inside the sealing material. 請求項記載の製造方法において、多数個の液晶収差補正素子が配列した組に対して別の組を積層させる際に、大気中で、光束が通過する円形領域を囲むように一部開いた状態で設けられるシール材と前記シール材の内側に設けられる接着剤とを介して積層させることを特徴とする二重液晶収差補正素子の製造方法。9. The manufacturing method according to claim 8 , wherein when another set is stacked on a set in which a large number of liquid crystal aberration correction elements are arranged, a part of the set is opened so as to surround a circular region through which a light beam passes in the atmosphere. A method for producing a double liquid crystal aberration correcting element, comprising: laminating via a sealing material provided in a state and an adhesive provided inside the sealing material.
JP2006512022A 2004-03-31 2005-03-25 Double liquid crystal aberration correction element and manufacturing method thereof Expired - Fee Related JP4532482B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004105099 2004-03-31
JP2004105099 2004-03-31
PCT/JP2005/005500 WO2005098479A1 (en) 2004-03-31 2005-03-25 Double liquid-crystal aberration correcting element and its manufacturing method

Publications (2)

Publication Number Publication Date
JPWO2005098479A1 JPWO2005098479A1 (en) 2008-02-28
JP4532482B2 true JP4532482B2 (en) 2010-08-25

Family

ID=35125206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006512022A Expired - Fee Related JP4532482B2 (en) 2004-03-31 2005-03-25 Double liquid crystal aberration correction element and manufacturing method thereof

Country Status (4)

Country Link
JP (1) JP4532482B2 (en)
KR (1) KR100803340B1 (en)
CN (1) CN100409032C (en)
WO (1) WO2005098479A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2297606B1 (en) * 2008-06-06 2018-11-28 Lensvector Inc. Tunable liquid crystal optical device and method of making the same
WO2011008443A2 (en) 2009-06-29 2011-01-20 Lensvector Inc. Wafer level camera module with active optical element
JP5647887B2 (en) * 2010-12-24 2015-01-07 株式会社スマートセンシング Multi-structure liquid crystal optical element and manufacturing method thereof
US9671671B2 (en) * 2013-10-10 2017-06-06 Stmicroelectronics Pte Ltd Optical assembly including electrically conductive coupling member and related methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106219U (en) * 1985-12-25 1987-07-07
JPH05232463A (en) * 1992-02-21 1993-09-10 Matsushita Electric Works Ltd Liquid crystal element
JP2002319202A (en) * 2001-04-24 2002-10-31 Asahi Glass Co Ltd Magneto-optical head device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6532202B1 (en) * 1999-07-07 2003-03-11 Matsushita Electric Industrial Co., Ltd. Optical element, optical head and optical recording reproducing apparatus
JP3781273B2 (en) * 2001-02-07 2006-05-31 パイオニア株式会社 Aberration correction element and aberration correction unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106219U (en) * 1985-12-25 1987-07-07
JPH05232463A (en) * 1992-02-21 1993-09-10 Matsushita Electric Works Ltd Liquid crystal element
JP2002319202A (en) * 2001-04-24 2002-10-31 Asahi Glass Co Ltd Magneto-optical head device

Also Published As

Publication number Publication date
WO2005098479A1 (en) 2005-10-20
CN1938606A (en) 2007-03-28
JPWO2005098479A1 (en) 2008-02-28
CN100409032C (en) 2008-08-06
KR20060132935A (en) 2006-12-22
KR100803340B1 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
US7710536B2 (en) Liquid crystal diffraction lens element and optical head device
KR20070004757A (en) Liquid Crystal Lens Element and Optical Head Device
JP2007017934A (en) Optical element and optical pickup
JP4552556B2 (en) Liquid crystal lens element and optical head device
JP4532482B2 (en) Double liquid crystal aberration correction element and manufacturing method thereof
JP4008945B2 (en) Liquid crystal aberration correction element and manufacturing method thereof
JP5491903B2 (en) Multi-layer structure liquid crystal optical element and manufacturing method thereof
JP2007115299A (en) Liquid crystal device for optical pickup and optical pickup
JP4008944B2 (en) Liquid crystal aberration correction element
JP2011175104A (en) Liquid crystal optical element having multilayer structure, and method for manufacturing liquid crystal lens
JP2011164427A (en) Multilayered liquid crystal optical element and liquid crystal lens using the same
JP2009181142A (en) Liquid crystal aberration correction element
JP2005222586A (en) Optical element for phase modulation and optical apparatus
JP2009222974A (en) Liquid crystal cell, optical pick-up device, and manufacturing method for liquid crystal cell
JP4370723B2 (en) Optical head device
JP4337255B2 (en) Optical head device
JP2007248986A (en) Liquid crystal aberration correction element and manufacturing method thereof
JP2011054251A (en) Liquid crystal optical element and optical pickup device using the same
JP2005292326A (en) Liquid crystal element
JP4490842B2 (en) Optical pickup device
JP2007114248A (en) Liquid crystal device and optical pickup
JP2007034030A (en) Liquid crystal device
JP2006058713A (en) Liquid crystal optical element and optical head device
JP2008076928A (en) Liquid crystal optical element and optical pickup device
JP2009186732A (en) Liquid crystal optical element, method for manufacturing the same and optical head device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees