JP4655519B2 - Electrolyte for dye-sensitized solar cell and dye-sensitized solar cell - Google Patents
Electrolyte for dye-sensitized solar cell and dye-sensitized solar cell Download PDFInfo
- Publication number
- JP4655519B2 JP4655519B2 JP2004181298A JP2004181298A JP4655519B2 JP 4655519 B2 JP4655519 B2 JP 4655519B2 JP 2004181298 A JP2004181298 A JP 2004181298A JP 2004181298 A JP2004181298 A JP 2004181298A JP 4655519 B2 JP4655519 B2 JP 4655519B2
- Authority
- JP
- Japan
- Prior art keywords
- dye
- solar cell
- sensitized solar
- electrolyte
- sensitized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
Landscapes
- Photovoltaic Devices (AREA)
- Hybrid Cells (AREA)
Description
本発明は色素増感型太陽電池用電解液と、この電解液を用いた色素増感型太陽電池に係り、特に揮発し難く、このため電池性能の安定化に有効で、しかも電池性向の向上を図ることもできる色素増感型太陽電池用電解液と、この電解液を用いた色素増感型太陽電池に関する。 The present invention relates to an electrolyte solution for a dye-sensitized solar cell and a dye-sensitized solar cell using this electrolyte solution, and is particularly difficult to volatilize. Therefore, the present invention is effective in stabilizing battery performance and improving the battery property. The present invention relates to an electrolyte solution for a dye-sensitized solar cell that can also be used, and a dye-sensitized solar cell using the electrolyte solution.
増感色素を吸着させた酸化物半導体を電極に用いて太陽電池を構成することは既に知られている。図1は、このような色素増感型太陽電池の一般的な構造を示す断面図である。図1に示す如く、ガラス基板等の基板1上にFTO(フッ素ドープ酸化スズ)、ITO(インジウムスズ酸化物)等の透明導電膜2が設けられ、この透明導電膜2上に分光増感色素を吸着させた金属酸化物半導体膜3が形成されることにより色素増感型半導体電極4が形成される。この色素吸着半導体膜3と対向して間隔をあけて対向電極5が配置されており、封止材6により色素増感型半導体電極と対向電極5との間に電解質7が封入されている(例えば、特開2003−308893号公報)。 It is already known that a solar cell is configured using an oxide semiconductor adsorbed with a sensitizing dye as an electrode. FIG. 1 is a cross-sectional view showing a general structure of such a dye-sensitized solar cell. As shown in FIG. 1, a transparent conductive film 2 such as FTO (fluorine-doped tin oxide) or ITO (indium tin oxide) is provided on a substrate 1 such as a glass substrate, and a spectral sensitizing dye is formed on the transparent conductive film 2. As a result, the dye-sensitized semiconductor electrode 4 is formed. A counter electrode 5 is disposed opposite to the dye-adsorbing semiconductor film 3 with a space therebetween, and an electrolyte 7 is sealed between the dye-sensitized semiconductor electrode and the counter electrode 5 by a sealing material 6 ( For example, Unexamined-Japanese-Patent No. 2003-308893).
色素吸着半導体膜3は、通常、色素を吸着させた酸化チタン薄膜よりなり、この酸化チタン膜はゾルゲル法により成膜される。この酸化チタン薄膜に吸着されている色素が可視光によって励起され、発生した電子を酸化チタン微粒子に渡すことによって発電が行われる。 The dye-adsorbing semiconductor film 3 is usually composed of a titanium oxide thin film to which a dye is adsorbed, and this titanium oxide film is formed by a sol-gel method. The dye adsorbed on the titanium oxide thin film is excited by visible light, and power is generated by passing the generated electrons to the titanium oxide fine particles.
対向電極5は、ガラス又はプラスチック等の基板上にITOやFTO等の透明導電膜が形成され、この透明導電膜上に、透明導電膜と増感色素との間の電子の授受を促進させるための触媒としての白金膜が、透過率を低下させない程度の膜厚に形成されたものである。対向電極5はまた、白金板により形成される場合もある。 The counter electrode 5 has a transparent conductive film such as ITO or FTO formed on a substrate such as glass or plastic, and promotes the transfer of electrons between the transparent conductive film and the sensitizing dye on the transparent conductive film. The platinum film as the catalyst is formed to a thickness that does not decrease the transmittance. The counter electrode 5 may also be formed of a platinum plate.
また、電解質7としては、酸化還元性物質、例えば、LiI、NaI、KI、CaI2などの金属ヨウ化物とヨウ素の組み合わせ、LiBr、NaBr、KBr、CaBr2などの金属臭化物と臭素の組み合わせ、好ましくは、金属ヨウ化物とヨウ素の組み合わせよりなる酸化還元性物質を、アセトニトリルやメトキシアセトニトリル等のニトリル化合物等の溶媒に溶解してなる電解液が用いられている。この電解液中には、電池性能の向上のために更にt−ブチルピリジンが配合されている場合もある。
従来の電解質には、アセトニトリル(沸点82℃)やメトキシアセトニトリル(沸点118〜119℃)等の揮発性の溶媒が用いられているため、経時により、特に高温環境下において、溶媒が揮発することにより電解液組成が変化するために、電池性能が安定化しないという欠点があった。 In conventional electrolytes, volatile solvents such as acetonitrile (boiling point 82 ° C.) and methoxyacetonitrile (boiling point 118 to 119 ° C.) are used. As a result, the solvent volatilizes over time, particularly in a high temperature environment. Since the electrolyte composition changes, there is a drawback that the battery performance is not stabilized.
また、従来、電池性能向上のために配合されているt−ブチルピリジンは、臭気が強く、電池組立時の作業環境が悪いという問題もあった。 Conventionally, t-butylpyridine blended for improving battery performance has a problem of strong odor and poor working environment during battery assembly.
本発明は上記従来の問題点を解決し、揮発し難く、電池性能の安定化に有効であり、しかもt−ブチルピリジンの非含有での電池性能の向上も可能な色素増感型太陽電池用電解液と、この電解液を用いた色素増感型太陽電池を提供することを目的とする。 The present invention solves the above-mentioned conventional problems, is less likely to volatilize, is effective for stabilizing battery performance, and can also improve battery performance without containing t-butylpyridine. An object is to provide an electrolytic solution and a dye-sensitized solar cell using the electrolytic solution.
本発明の色素増感型太陽電池用電解液は、酸化還元性物質と溶媒とを含む色素増感型太陽電池用電解液において、該溶媒を兼ねる電解質として液状イミダゾール化合物を含むと共に、特性向上剤としてアルキレンカーボネートが添加されている色素増感型太陽電池用電解液であって、溶媒としてさらにγ−ブチロラクトンを含有することを特徴とする。 The dye-sensitized solar cell electrolyte of the present invention is a dye-sensitized solar cell electrolyte containing a redox substance and a solvent, and contains a liquid imidazole compound as an electrolyte that also serves as the solvent, and a property improver As an electrolyte solution for a dye-sensitized solar cell to which alkylene carbonate is added as a solvent, γ-butyrolactone is further contained as a solvent .
本発明者らは、上記課題を解決すべく鋭意検討した結果、電解液に不揮発性の液状イミダゾール化合物を用いることにより、電解液が揮発し難くなり、電池性能を安定化させることができることを見出した。しかし、液状イミダゾール化合物を用いた電解液では、開放電圧や変換効率等の電池性能が低下する傾向にあることを併せて見出した。そこで、この電池性能の向上について更に検討を重ねた結果、特性向上剤としてアルキレンカーボネート、特にエチレンカーボネートを添加することにより、電池性能の向上を図ることができ、t−ブチルピリジンを添加することなく開放電圧や変換効率等の電池性能を向上させることができることを知見し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have found that the use of a non-volatile liquid imidazole compound for the electrolytic solution makes it difficult for the electrolytic solution to volatilize and stabilize the battery performance. It was. However, it has also been found that an electrolytic solution using a liquid imidazole compound tends to lower battery performance such as open-circuit voltage and conversion efficiency. Therefore, as a result of further investigations on the improvement of the battery performance, it is possible to improve the battery performance by adding alkylene carbonate, particularly ethylene carbonate, as a characteristic improver, without adding t-butylpyridine. The inventors have found that battery performance such as open-circuit voltage and conversion efficiency can be improved, and have completed the present invention.
本発明において、イミダゾール化合物としては1−メチル−3−プロピルイミダゾリウムイオダイド(以下「MPI」と記載。)が好ましく、また、アルキレンカーボネートとしてはエチレンカーボネートが好ましい。また、酸化還元性物質としてはヨウ化リチウム及びヨウ素が好ましい。 In the present invention, 1-methyl-3-propylimidazolium iodide (hereinafter referred to as “MPI”) is preferable as the imidazole compound, and ethylene carbonate is preferable as the alkylene carbonate. Further, as the redox substance, lithium iodide and iodine are preferable.
また、本発明の電解液は、γ−ブチロラクトン1Lに対して、MPIを0.1〜10モル、エチレンカーボネートを10〜60重量%、酸化還元性物質を0.1〜20モル含むことが好ましい。このような電解液であれば、t−ブチルピリジン非含有であっても優れた電池性能を得ることができる。 Moreover, it is preferable that the electrolyte solution of this invention contains 0.1-10 mol of MPI, 10-60 weight% of ethylene carbonate, and 0.1-20 mol of oxidation-reduction substances with respect to 1L of (gamma) -butyrolactone. . With such an electrolytic solution, excellent battery performance can be obtained even when t-butylpyridine is not contained.
本発明の色素増感型太陽電池は、色素増感型半導体電極と、この色素増感型半導体電極に対向して設けられた対向電極と、該色素増感型半導体電極と対向電極との間に配置された電解液とを有する色素増感型太陽電池において、該電解液がこの本発明の色素増感型太陽電池用電解液であることを特徴とする。 The dye-sensitized solar cell of the present invention includes a dye-sensitized semiconductor electrode, a counter electrode provided opposite to the dye-sensitized semiconductor electrode, and a space between the dye-sensitized semiconductor electrode and the counter electrode. In the dye-sensitized solar cell having the electrolyte solution disposed in the electrolyte, the electrolyte solution is the electrolyte solution for the dye-sensitized solar cell according to the present invention.
本発明の色素増感型太陽電池用電解液は、揮発し難く、電池性能の安定化に有効である。しかも、開放電圧、変換効率等の電池性能の向上も可能であり、t−ブチルピリジン非含有とすることにより、電池組立時の作業環境の改善を図ることもできる。 The electrolyte solution for a dye-sensitized solar cell of the present invention hardly volatilizes and is effective for stabilizing the battery performance. In addition, battery performance such as open-circuit voltage and conversion efficiency can be improved. By not containing t-butylpyridine, the working environment at the time of battery assembly can be improved.
本発明の色素増感型太陽電池は、電解液としてこのような本発明の色素増感型太陽電池用電解液を用いたものであり、電池性能に優れ、しかもその長期安定性にも優れる。 The dye-sensitized solar cell of the present invention uses such a dye-sensitized solar cell electrolytic solution of the present invention as an electrolytic solution, and has excellent battery performance and long-term stability.
以下に本発明の色素増感型太陽電池用電解液及び色素増感型太陽電池の実施の形態を詳細に説明する。 Hereinafter, embodiments of the electrolyte solution for dye-sensitized solar cells and the dye-sensitized solar cell of the present invention will be described in detail.
本発明の色素増感型太陽電池用電解液は、酸化還元性物質と溶媒とを含む色素増感型太陽電池用電解液において、溶媒を兼ねる電解質として液状イミダゾール化合物を含むと共に、特性向上剤としてアルキレンカーボネートが添加されたものである。 The dye-sensitized solar cell electrolyte of the present invention is a dye-sensitized solar cell electrolyte containing a redox substance and a solvent, and contains a liquid imidazole compound as an electrolyte that also serves as a solvent, and as a property improver. An alkylene carbonate is added.
液状イミダゾール化合物としては、特にMPIが好適に用いられる。なお、MPIは不揮発性であり、正確な沸点は不明であるが、10%分解減少温度で約400℃であることから、この程度の温度が沸点であると推定される。 Especially as a liquid imidazole compound, MPI is used suitably. Note that MPI is non-volatile and the exact boiling point is unknown, but it is estimated that this temperature is the boiling point because it is about 400 ° C. at a 10% decomposition reduction temperature.
また、特性向上剤としてのアルキレンカーボネートとしては、エチレンカーボネート(沸点243〜244℃)やプロピレンカーボネート(沸点240℃)が挙げられるが、好ましくはエチレンカーボネートである。 Examples of the alkylene carbonate as the property improver include ethylene carbonate (boiling point 243 to 244 ° C.) and propylene carbonate (boiling point 240 ° C.), and ethylene carbonate is preferable.
酸化還元性物質としては、一般に電池や太陽電池などにおいて使用することができるものであれば特に限定されないが、LiI、NaI、KI、CaI2などの金属ヨウ化物とヨウ素(I2)の組み合わせ、LiBr、NaBr、KBr、CaBr2などの金属臭化物と臭素の組み合わせが好ましく、これらの中でも、金属ヨウ化物とヨウ素の組み合わせ、とりわけLiIとI2との組み合わせが好ましい。 The oxidation-reduction substance is not particularly limited as long as it can be generally used in a battery or a solar battery, but a combination of a metal iodide such as LiI, NaI, KI, and CaI 2 and iodine (I 2 ), A combination of a metal bromide such as LiBr, NaBr, KBr, or CaBr 2 and bromine is preferable. Among these, a combination of metal iodide and iodine, particularly a combination of LiI and I 2 is preferable.
また、本発明の電解液は、溶媒として更にγ−ブチロラクトン(沸点203〜204℃)を含み、これにより電解液の粘性を下げ、半導体電極への電解液の浸透性を高めることができる。 Further, the electrolytic solution of the present invention, viewed contains more γ- butyrolactone (boiling point 203-204 ° C.) as a solvent, thereby lowering the viscosity of the electrolyte solution, it is possible to increase the electrolyte permeability into the semiconductor electrode.
本発明において、最も好ましい電解液構成は、γ−ブチロラクトン1Lに対して
酸化還元性物質(LiIとI2):0.1〜5モル
MPI等の液状イミダゾール化合物:0.1〜10モル
エチレンカーボネート等の特性向上剤:10〜60重量%
を含むものであり、更にt−ブチルピリジンを含まず、実質的にγ−ブチロラクトン、MPI、エチレンカーボネート、LiI、及びI2よりなる電解液であることが好ましい。
In the present invention, the most preferable electrolyte solution configuration is as follows: 1 L of γ-butyrolactone Redox substances (LiI and I 2 ): 0.1 to 5 mol Liquid imidazole compound such as MPI: 0.1 to 10 mol Ethylene carbonate Properties improver such as: 10 to 60% by weight
It is preferable that the electrolytic solution is substantially free of t-butylpyridine and substantially composed of γ-butyrolactone, MPI, ethylene carbonate, LiI, and I 2 .
上記範囲よりもMPI等の液状イミダゾール化合物が少な過ぎるとMPIを配合することによる揮発性の低減効果を十分に得ることができず、多過ぎると電解液が高粘性となって半導体電極への浸透性が悪くなり、また、イオン伝導性が低下するおそれがある。好ましいMPI等の液状イミダゾール化合物の含有量は、γ−ブチロラクトン1Lに対して0.3〜6モルである。 If the amount of liquid imidazole compound such as MPI is too small than the above range, the effect of reducing volatility by adding MPI cannot be obtained sufficiently, and if too much, the electrolyte becomes highly viscous and penetrates into the semiconductor electrode. The ionic conductivity may be deteriorated and the ion conductivity may be lowered. The content of a liquid imidazole compound such as MPI is preferably 0.3 to 6 mol with respect to 1 L of γ-butyrolactone.
また、エチレンカーボネート等の特性向上剤の含有量が上記範囲よりも少ないと、エチレンカーボネートを配合したことによる電池性能の向上効果を得ることができず、多過ぎると析出し易く性能も低下する。好ましいエチレンカーボネート等の特性向上剤の含有量は、γ−ブチロラクトン1Lに対して30〜60重量%である。 Moreover, when content of characteristic improvers, such as ethylene carbonate, is less than the said range, the improvement effect of the battery performance by having mix | blended ethylene carbonate cannot be acquired, and when too much, it will precipitate easily and performance will also fall. The content of a property improver such as ethylene carbonate is preferably 30 to 60% by weight based on 1 L of γ-butyrolactone.
また、酸化還元性物質(LiIとI2との合計。LiIとI2とはほぼ等当量で含有されることが好ましい。)の含有量が上記範囲よりも少ないと十分な発電効率をえることができず、多いと電解液の粘度が高くなり不適である。 Further, the content of the redox substance (are preferably contained in a total .LiI a substantially finally amount and I 2 with LiI and I 2.) To obtain sufficient power generation efficiency and smaller than the above range If the amount is too large, the viscosity of the electrolyte is increased, which is not suitable.
本発明の色素増感型太陽電池は、電解質としてこのような本発明の色素増感型太陽電池用電解液を用いたものであるが、電解質以外の他の構成は、図1に示すような従来の色素増感型太陽電池と同様の構成とされる。 The dye-sensitized solar cell according to the present invention uses such an electrolyte solution for a dye-sensitized solar cell according to the present invention as an electrolyte. The other configuration than the electrolyte is as shown in FIG. It is set as the structure similar to the conventional dye-sensitized solar cell.
色素増感型太陽電池の基板1は、通常ガラス板であり、通常珪酸塩ガラスであるが、可視光線の透過性を確保できる限り、種々のプラスチック基板等を使用することができる。基板の厚さは、0.1〜10mmが一般的であり、0.3〜5mmが好ましい。ガラス板は、化学的に或いは熱的に強化させたものが好ましい。 The substrate 1 of the dye-sensitized solar cell is usually a glass plate and is usually silicate glass, but various plastic substrates and the like can be used as long as visible light transmittance can be secured. The thickness of the substrate is generally 0.1 to 10 mm, and preferably 0.3 to 5 mm. The glass plate is preferably chemically or thermally strengthened.
透明導電膜2としては、導電性金属酸化物薄膜が用いられる。導電性金属酸化物の好ましい例としては、In2O3:Sn(ITO)、SnO2:Sb、SnO2:F、ZnO:Al、ZnO:F、CdSnO4を挙げることができる。 As the transparent conductive film 2, a conductive metal oxide thin film is used. Preferable examples of the conductive metal oxide include In 2 O 3 : Sn (ITO), SnO 2 : Sb, SnO 2 : F, ZnO: Al, ZnO: F, and CdSnO 4 .
分光増感色素を吸着させた半導体膜3の金属酸化物半導体としては、酸化チタン、酸化亜鉛、酸化タングステン、酸化アンチモン、酸化ニオブ、酸化タングステン、酸化インジウム、チタン酸バリウム、チタン酸ストロンチウム、硫化カドミウムなどの公知の半導体の1種又は2種以上を用いることができる。特に、安定性、安全性の点から酸化チタンが好ましい。酸化チタンとしてはアナタース型酸化チタン、ルチル型酸化チタン、無定形酸化チタン、メタチタン酸、オルソチタン酸などの各種の酸化チタン或いは水酸化チタン、含水酸化チタンが含まれるが、特に本発明ではアナタース型酸化チタンが好ましい。また半導体膜3は微細な結晶構造を有することが好ましい。また多孔質膜であることも好ましい。半導体膜3の膜厚は、1〜20μm以上であることが一般的であり、5〜15μmが好ましい。 Examples of the metal oxide semiconductor of the semiconductor film 3 on which the spectral sensitizing dye is adsorbed include titanium oxide, zinc oxide, tungsten oxide, antimony oxide, niobium oxide, tungsten oxide, indium oxide, barium titanate, strontium titanate, cadmium sulfide. 1 type, or 2 or more types of well-known semiconductors, such as these, can be used. In particular, titanium oxide is preferable from the viewpoint of stability and safety. Examples of titanium oxide include anatase-type titanium oxide, rutile-type titanium oxide, amorphous titanium oxide, various titanium oxides such as metatitanic acid, orthotitanic acid, titanium hydroxide, and hydrous titanium oxide. Titanium oxide is preferred. The semiconductor film 3 preferably has a fine crystal structure. A porous film is also preferred. The film thickness of the semiconductor film 3 is generally 1 to 20 μm or more, and preferably 5 to 15 μm.
半導体膜3に吸着させる有機色素(分光増感色素)は、可視光領域及び/又は赤外光領域に吸収を持つものであり、種々の金属錯体や有機色素の1種又は2種以上を用いることができる。分光増感色素の分子中にカルボキシル基、ヒドロキシアルキル基、ヒドロキシル基、スルホン基、カルボキシアルキル基の官能基を有するものが半導体への吸着が速いため、好ましい。また、分光増感の効果や耐久性に優れているため、金属錯体が好ましい。金属錯体としては、銅フタロシアニン、チタニルフタロシアニンなどの金属フタロシアニン、クロロフィル、ヘミン、特開平1−220380号公報、特表平5−504023号公報に記載のルテニウム、オスミウム、鉄、亜鉛の錯体を用いることができる。有機色素としては、メタルフリーフタロシアニン、シアニン系色素、メロシアニン系色素、キサンテン系色素、トリフェニルメタン色素を用いることができる。シアニン系色素としては、具体的には、NK1194、NK3422(いずれも日本感光色素研究所(株)製)が挙げられる。メロシアニン系色素としては、具体的には、NK2426、NK2501(いずれも日本感光色素研究所(株)製)が挙げられる。キサンテン系色素としては、具体的には、ウラニン、エオシン、ローズベンガル、ローダミンB、ジブロムフルオレセインが挙げられる。トリフェニルメタン色素としては、具体的には、マラカイトグリーン、クリスタルバイオレットが挙げられる。 The organic dye (spectral sensitizing dye) adsorbed on the semiconductor film 3 has absorption in the visible light region and / or infrared light region, and uses one or more of various metal complexes and organic dyes. be able to. Those having a functional group such as a carboxyl group, a hydroxyalkyl group, a hydroxyl group, a sulfone group, and a carboxyalkyl group in the molecule of the spectral sensitizing dye are preferable because adsorption onto a semiconductor is fast. Moreover, since it is excellent in the effect of spectral sensitization and durability, a metal complex is preferable. As the metal complex, metal phthalocyanines such as copper phthalocyanine and titanyl phthalocyanine, chlorophyll, hemin, and ruthenium, osmium, iron, and zinc complexes described in JP-A-1-220380 and JP-A-5-504023 are used. Can do. As the organic dye, metal-free phthalocyanine, cyanine dye, merocyanine dye, xanthene dye, and triphenylmethane dye can be used. Specific examples of cyanine dyes include NK1194 and NK3422 (both manufactured by Nippon Sensitive Dye Research Co., Ltd.). Specific examples of merocyanine dyes include NK2426 and NK2501 (both manufactured by Nippon Sensitive Dye Research Laboratories). Specific examples of xanthene dyes include uranin, eosin, rose bengal, rhodamine B, and dibromofluorescein. Specific examples of the triphenylmethane dye include malachite green and crystal violet.
有機色素(分光増感色素)を半導体膜に吸着させるこのためには、有機色素を有機溶媒に溶解させて調製した有機色素溶液中に、常温又は加熱下に酸化物半導体膜を基板ととも浸漬すれば良い。前記の溶液の溶媒としては、使用する分光増感色素を溶解するものであれば良く、具体的には、水、アルコール、トルエン、ジメチルホルムアミドを用いることができる。 In order to adsorb the organic dye (spectral sensitizing dye) to the semiconductor film, the oxide semiconductor film is immersed with the substrate in an organic dye solution prepared by dissolving the organic dye in an organic solvent at room temperature or under heating. Just do it. The solvent of the solution is not particularly limited as long as it can dissolve the spectral sensitizing dye to be used. Specifically, water, alcohol, toluene, and dimethylformamide can be used.
また、対向電極5としては、導電性を有するものであれば良く、任意の導電性材料が用いられるが、電解質のI3 −イオン等の酸化型のレドックスイオンの還元反応を充分な速さで行わせる触媒能を持ったものの使用が好ましい。このようなものとしては、白金電極、導電材料表面に白金めっきや白金蒸着を施したもの、ロジウム金属、ルテニウム金属、酸化ルテニウム、カーボン、コバルト、ニッケル、クロム等が挙げられる。 As the counter electrode 5, as long as it has conductivity, but any conductive material is used, the electrolyte of I 3 - a reduction reaction of oxidation-type redox ions such as ion fast enough It is preferable to use those having catalytic ability. Examples of such a material include a platinum electrode, a surface of a conductive material subjected to platinum plating or platinum deposition, rhodium metal, ruthenium metal, ruthenium oxide, carbon, cobalt, nickel, chromium, and the like.
色素増感型半導体電極4は、基板1上に、透明電極(透明性導電膜)2をコートし、その上に光電変換材料用半導体膜を形成し、上述のように色素を吸着して形成される。 The dye-sensitized semiconductor electrode 4 is formed by coating a transparent electrode (transparent conductive film) 2 on the substrate 1, forming a semiconductor film for photoelectric conversion material thereon, and adsorbing the dye as described above. Is done.
本発明の色素増感型太陽電池は、上述の色素増感型半導体電極4に対向電極5として別の透明性導電膜をコートしたガラス板などの基板を対面させ、これらの電極間に本発明の電解液を封止材6により封入すれば良い。
The dye-sensitized solar cell of the present invention has a substrate such as a glass plate coated with another transparent conductive film as the counter electrode 5 facing the dye-sensitized semiconductor electrode 4 described above, and the present invention is interposed between these electrodes. The electrolytic solution may be sealed with the sealing
通常、電解液による電解質7は、100nm〜2mm程度の厚さに形成される。 Usually, the electrolyte 7 by the electrolytic solution is formed to a thickness of about 100 nm to 2 mm.
本発明の色素増感型太陽電池は、色素増感型半導体電極、電解質及び対向電極をケース内に収納して封止するが、それら全体を樹脂封止しても良い。この場合、その色素増感型半導体電極には光があたる構造とする。このような構造の電池では、その色素増感型半導体電極に太陽光又は太陽光と同等な可視光を当てると、色素増感型半導体電極とその対向電極との間に電位差が生じ、両極間に電流が流れるようになる。 In the dye-sensitized solar cell of the present invention, the dye-sensitized semiconductor electrode, the electrolyte, and the counter electrode are housed and sealed in a case, but the whole may be resin-sealed. In this case, the dye-sensitized semiconductor electrode has a structure that is exposed to light. In a battery having such a structure, when sunlight or a visible light equivalent to sunlight is applied to the dye-sensitized semiconductor electrode, a potential difference is generated between the dye-sensitized semiconductor electrode and the counter electrode. A current starts to flow through.
以下に実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例により限定されるものではない。 EXAMPLES The present invention will be described more specifically with reference to the following examples and comparative examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
説明の便宜上、まず比較例を挙げる。 For convenience of explanation, a comparative example is given first.
比較例1〜4
MPI、γ−ブチロラクトン、LiI、I2及びt−ブチルピリジンを表1に示す割合で配合して電解液を調製した。
Comparative Examples 1-4
MPI, .gamma.-butyrolactone, LiI, an electrolyte solution was prepared by blending I 2 and t- butylpyridine in proportions shown in Table 1.
この電解液を用いて、以下のようにして色素増感型太陽電池を作製した。 Using this electrolytic solution, a dye-sensitized solar cell was produced as follows.
ガラス基板(厚さ:2mm)上に、厚さ9000ÅのFTO(フッ素ドープ酸化スズ)膜を形成し、この上に厚さ10μmの酸化チタン膜を塗布し乾燥した後、450℃で、30分焼成した。 An FTO (fluorine-doped tin oxide) film having a thickness of 9000 mm is formed on a glass substrate (thickness: 2 mm), a titanium oxide film having a thickness of 10 μm is applied thereon and dried, and then at 450 ° C. for 30 minutes. Baked.
分光増感色素として、シス−ジ(チオシアナト)−ビス(2,2’−ビピリジル−4−ジカルボキシレート−4’−テトラブチルアンモニウムカルボキシレート)ルテニウム(II)をエタノール液に3×10−4モル/Lで溶解した液に上記酸化チタン膜を形成した基板を入れ、室温で18時間浸漬して、色素増感型半導体電極を得た。分光増感色素の吸着量は、酸化チタン膜の比表面積1cm2あたり10μgであった。 As a spectral sensitizing dye, cis-di (thiocyanato) -bis (2,2′-bipyridyl-4-dicarboxylate-4′-tetrabutylammonium carboxylate) ruthenium (II) in ethanol solution is 3 × 10 −4. The substrate on which the above titanium oxide film was formed was put in a solution dissolved at a mol / L, and immersed for 18 hours at room temperature to obtain a dye-sensitized semiconductor electrode. The adsorption amount of the spectral sensitizing dye was 10 μg per 1 cm 2 of the specific surface area of the titanium oxide film.
この色素増感型半導体電極と、対向電極としての白金を担持した透明導電性ガラス板との間に、各電解液を注入して樹脂で封止し、リード線を取付けて、色素増感型太陽電池を作製した。 Each dye solution is injected between this dye-sensitized semiconductor electrode and a transparent conductive glass plate carrying platinum as a counter electrode, sealed with resin, and a lead wire is attached. A solar cell was produced.
得られた色素増感型太陽電池に、ソーラーシュミレーターで100mWの強度の光を照射して(セル面積1cm2)、電池性能の評価を行ったところ、表1に示す通りであった。また、表1には各電解液の揮発性の程度(揮発性大、揮発性中、揮発性小)を併記した。 The obtained dye-sensitized solar cell was irradiated with light having an intensity of 100 mW with a solar simulator (cell area 1 cm 2 ) and the battery performance was evaluated. Table 1 also shows the degree of volatility of each electrolytic solution (large volatility, medium volatility, small volatility).
表1より、MPIの配合量の増加に伴い、電解液の沸点が高くなり、揮発し難くなる反面、t−ブチルピリジンを用いていても開放電圧及び変換効率が低下する傾向にあることが分かる。 From Table 1, it can be seen that with the increase in the amount of MPI added, the boiling point of the electrolyte solution becomes higher and it is difficult to volatilize, but the open circuit voltage and conversion efficiency tend to decrease even when t-butylpyridine is used. .
実施例1〜5
表2に示す配合組成としたこと以外は、比較例2と同様にして電解液を調製し、同様に色素増感型太陽電池の作製及び評価を行い、結果を比較例2の結果と共に表2に示した。
Examples 1-5
An electrolyte solution was prepared in the same manner as in Comparative Example 2 except that the composition shown in Table 2 was used, and a dye-sensitized solar cell was similarly prepared and evaluated. The results are shown in Table 2 together with the results of Comparative Example 2. It was shown to.
表2より、エチレンカーボネートを添加することにより、t−ブチルピリジンを配合しなくても、電池性能を改善することができ、特にエチレンカーボネート30〜60重量%の添加で開放電圧を高くすることができることが分かる。 From Table 2, by adding ethylene carbonate, the battery performance can be improved without adding t-butylpyridine. In particular, the addition of 30 to 60% by weight of ethylene carbonate can increase the open-circuit voltage. I understand that I can do it.
この実施例1〜5の電解液はt−ブチルピリジンに起因する臭気の問題はなく、良好な作業環境で電池の組み立てを行うことができた。 The electrolyte solutions of Examples 1 to 5 did not have a problem of odor caused by t-butylpyridine, and the batteries could be assembled in a good working environment.
1 基板
2 透明導電膜
3 色素吸着半導体膜
4 色素増感型半導体電極
5 対向電極
6 封止材
7 電解質
DESCRIPTION OF SYMBOLS 1 Substrate 2 Transparent conductive film 3 Dye adsorption semiconductor film 4 Dye sensitized semiconductor electrode 5
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2004181298A JP4655519B2 (en) | 2004-06-18 | 2004-06-18 | Electrolyte for dye-sensitized solar cell and dye-sensitized solar cell |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2004181298A JP4655519B2 (en) | 2004-06-18 | 2004-06-18 | Electrolyte for dye-sensitized solar cell and dye-sensitized solar cell |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2006004823A JP2006004823A (en) | 2006-01-05 |
| JP4655519B2 true JP4655519B2 (en) | 2011-03-23 |
Family
ID=35773030
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2004181298A Expired - Fee Related JP4655519B2 (en) | 2004-06-18 | 2004-06-18 | Electrolyte for dye-sensitized solar cell and dye-sensitized solar cell |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4655519B2 (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5170357B2 (en) * | 2006-03-17 | 2013-03-27 | 宇部興産株式会社 | Photoelectric conversion element and photochemical battery |
| CN101656274B (en) * | 2008-08-20 | 2011-04-13 | 中国科学院半导体研究所 | Method for improving open circuit voltage of amorphous silicon thin film solar cell |
| JP2013041736A (en) * | 2011-08-15 | 2013-02-28 | Sharp Corp | Photoelectric conversion element |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4790105B2 (en) * | 2000-08-29 | 2011-10-12 | 富士フイルム株式会社 | Electrolyte composition and electrochemical cell using the same |
| JP4453889B2 (en) * | 2001-07-12 | 2010-04-21 | 富士フイルム株式会社 | Electrolytic solution composition, photoelectric conversion element and photovoltaic cell |
| JP2003064259A (en) * | 2001-08-27 | 2003-03-05 | Fuji Photo Film Co Ltd | Electrolyte composition, electrochemical cell, photoelectrochemical cell, and nonaqueous secondary battery |
| JP2003092153A (en) * | 2001-09-18 | 2003-03-28 | Fuji Photo Film Co Ltd | Electrolyte composition, photoelectric conversion element and photovoltaic cell |
| JP2003109677A (en) * | 2001-09-28 | 2003-04-11 | Toto Ltd | Dye-sensitized photosemiconductor electrode and dye- sensitized photoelectric conversion element |
-
2004
- 2004-06-18 JP JP2004181298A patent/JP4655519B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JP2006004823A (en) | 2006-01-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5428555B2 (en) | Method for producing dye-sensitized photoelectric conversion element | |
| JP5237664B2 (en) | Photoelectric conversion element | |
| JP4177172B2 (en) | Dye-sensitized solar cell | |
| WO2011002073A1 (en) | Photoelectric conversion element, process for production thereof, and electronic device | |
| EP1873862A1 (en) | Electrolyte composition for photoelectric converter and photoelectric converter using same | |
| JP2011204662A (en) | Photoelectric conversion element and method of manufacturing the same, and electronic apparatus | |
| JP2004152613A (en) | Dye-sensitized solar cell | |
| JP4459578B2 (en) | Dye-sensitized solar cell | |
| JP5006573B2 (en) | Dye-sensitized solar cell | |
| JP4391447B2 (en) | Electrolyte composition and solar cell using the same | |
| JP4655519B2 (en) | Electrolyte for dye-sensitized solar cell and dye-sensitized solar cell | |
| JP2004247158A (en) | Dye-sensitized solar cell | |
| JP2012243721A (en) | Photoelectric conversion element | |
| JP2004152747A (en) | Carbon electrode, electrode including the same, and dye-sensitized solar cell | |
| JP5655591B2 (en) | Photoelectric conversion element | |
| JP2007200714A (en) | Dye-sensitized solar cell and method for producing the same | |
| JP5589770B2 (en) | Photoelectric conversion element | |
| JP4772311B2 (en) | Electrolyte composition, photoelectric conversion element and dye-sensitized solar cell using the same, and evaluation method for ionic liquid | |
| JP5540744B2 (en) | Photoelectric conversion element | |
| JP4537693B2 (en) | Dye-sensitized solar cell | |
| JP4455868B2 (en) | Dye-sensitized solar cell | |
| JP2003346928A (en) | Dye-sensitized solar cell | |
| JP2006134615A (en) | Photoelectric conversion element | |
| JP4380188B2 (en) | Electrolyte for dye-sensitized solar cell and dye-sensitized solar cell | |
| JP2003123852A (en) | Organic dye sensitized metal oxide semiconductor electrode and manufacturing method of the same, and solar cell having the semiconductor electrode |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061220 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100720 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100726 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101130 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101213 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140107 Year of fee payment: 3 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| LAPS | Cancellation because of no payment of annual fees |