[go: up one dir, main page]

JP4657897B2 - Seal structure - Google Patents

Seal structure Download PDF

Info

Publication number
JP4657897B2
JP4657897B2 JP2005341928A JP2005341928A JP4657897B2 JP 4657897 B2 JP4657897 B2 JP 4657897B2 JP 2005341928 A JP2005341928 A JP 2005341928A JP 2005341928 A JP2005341928 A JP 2005341928A JP 4657897 B2 JP4657897 B2 JP 4657897B2
Authority
JP
Japan
Prior art keywords
boot
circumferential
diameter
outer diameter
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005341928A
Other languages
Japanese (ja)
Other versions
JP2007146959A (en
Inventor
至徳 寺阪
大 村山
修二 持永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2005341928A priority Critical patent/JP4657897B2/en
Publication of JP2007146959A publication Critical patent/JP2007146959A/en
Application granted granted Critical
Publication of JP4657897B2 publication Critical patent/JP4657897B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Diaphragms And Bellows (AREA)
  • Sealing Devices (AREA)

Description

本発明は、シール構造に関し、特に、等速自在継手の内側継手部材に連結されたシャフトと、等速自在継手用ブーツとの間のシール構造に関するものである。 The present invention relates to a seal structure, and more particularly to a seal structure between a shaft connected to an inner joint member of a constant velocity universal joint and a boot for the constant velocity universal joint.

自動車や各種産業機械における動力の伝達に用いられる等速自在継手には、継手内部への塵埃等の異物進入防止や継手内部に封入されたグリースの漏れ防止を目的とし、蛇腹状のブーツが装着される。   Constant velocity universal joints used for power transmission in automobiles and various industrial machines are equipped with bellows-shaped boots to prevent foreign materials such as dust from entering the joints and leakage of grease sealed inside the joints. Is done.

この種のブーツは例えば図8に示すように、等速自在継手100の外輪101に固定される大径部102と、内輪103から延びるシャフト104に固定される小径部105と、大径部102と小径部105との間に設けられ、谷106と山107とが交互に形成された蛇腹部108とを有する。そして、大径部102と小径部105とはそれぞれブーツバンド109が装着されることによって固定される。 For example, as shown in FIG. 8, this type of boot includes a large diameter portion 102 fixed to the outer ring 101 of the constant velocity universal joint 100, a small diameter portion 105 fixed to a shaft 104 extending from the inner ring 103, and a large diameter portion 102. And the small-diameter portion 105, and a bellows portion 108 in which valleys 106 and peaks 107 are alternately formed. And the large diameter part 102 and the small diameter part 105 are fixed by attaching the boot band 109, respectively.

すなわち、大径部102の外周面及び小径部105の外周面にはそれぞれバンド装着用溝110、111が設けられ、各溝110、111にブーツバンド109、109が嵌合される。また、シャフト104のブーツ取付部には、この図8に示すように、ブーツ溝112と、このブーツ溝112の両側の突起(周方向突起部)113、113とが設けられているものがある(特許文献1)。この場合、ブーツバンド109の締め付けによって、突起113、113をブーツの小径部105の一部に食い込ませることによって、シール性を高めている。 That is, band mounting grooves 110 and 111 are provided on the outer peripheral surface of the large-diameter portion 102 and the outer peripheral surface of the small-diameter portion 105, respectively, and the boot bands 109 and 109 are fitted into the grooves 110 and 111, respectively. Further, as shown in FIG. 8, the boot mounting portion of the shaft 104 includes a boot groove 112 and protrusions (circumferential protrusions) 113 and 113 on both sides of the boot groove 112. (Patent Document 1). In this case, by tightening the boot band 109, the protrusions 113 and 113 are bitten into a part of the small diameter portion 105 of the boot, thereby improving the sealing performance.

また、図9に示すように、シャフト104に複数の周方向溝115を設け、ブーツバンド109の締め付けによって、これらの周方向溝115に小径部105の内周面の一部を嵌合させるようにしているものもある。
特開2002−39383号公報
Further, as shown in FIG. 9, a plurality of circumferential grooves 115 are provided in the shaft 104, and by tightening the boot band 109, a part of the inner circumferential surface of the small diameter portion 105 is fitted into these circumferential grooves 115. Some of them are
JP 2002-39383 A

しかしながら、ブーツバンドによる締付部のシール性は、経時変化により低下する。このため、図8に示すようにシャフトに突起を設けたものであっても、図9に示すように複数の周方向溝を設けたものであっても、締付効果が十分でなくなる。近年では、熱可塑性エラストマーからなる樹脂ブーツは、ゴム製ブーツ(CRブーツ)に比べて、疲労性や摩耗性、高速回転性(回転時振れ廻り性)に優れるため、普及している。このような樹脂ブーツが高温に曝されるとシール性の低下が加速される。これは、熱可塑性エラストマーの圧縮永久歪が大きく、反発力が低下するためであり、特に、デファレンシャルギア側(インボード側)での高温環境下(高温雰囲気下)でこの傾向が著しい。このため、従来のようなシール構造では、長期に渡って安定したシール機能を発揮することができない。 However, the sealing performance of the tightening portion by the boot band is lowered due to a change with time. For this reason, even if the projection is provided on the shaft as shown in FIG. 8 or a plurality of circumferential grooves are provided as shown in FIG. 9, the tightening effect is not sufficient. In recent years, resin boots made of thermoplastic elastomers have become widespread because they are more excellent in fatigue, wear and high-speed rotation (running performance during rotation) than rubber boots (CR boots). When such a resin boot is exposed to a high temperature, the deterioration of the sealing performance is accelerated. This is because the compression set of the thermoplastic elastomer is large and the repulsive force decreases, and this tendency is particularly remarkable in a high temperature environment (high temperature atmosphere) on the differential gear side (inboard side). For this reason, the conventional sealing structure cannot exhibit a stable sealing function over a long period of time.

本発明は、上記課題に鑑みて、高温環境下での使用であっても、シール性の低下を抑えることができ、長期に渡って安定したシール機能を発揮することができる等速自在継手用ブーツのシール構造を提供する。   In view of the above problems, the present invention is for a constant velocity universal joint that can suppress a decrease in sealing performance even when used in a high temperature environment and can exhibit a stable sealing function over a long period of time. A boot seal structure is provided.

本発明のシール構造は、等速自在継手の内側継手部材に連結されたシャフトと、等速自在継手用ブーツとの間のシール構造において、
前記シャフトのブーツ取付部に、ブーツバンドの軸方向幅内に収まってブーツのシャフト固定部にブーツバンドを締付けたブーツ装着状態でシャフト固定部に食い込む複数の周方向突起部を設けるとともに、このブーツ装着状態で、少なくとも1個の周方向突起部によるブーツ圧縮永久歪量を他の周方向突起部によるブーツ圧縮永久歪量と相違させたものである。
The seal structure of the present invention is a seal structure between the shaft connected to the inner joint member of the constant velocity universal joint and the boot for the constant velocity universal joint.
The boot mounting portion of the shaft, provided with a plurality of circumferential projections biting into the shaft fixing portion boots worn tightening the boot band to the shaft fixing portion of the boot fits within the axial width of the boot band, the boot In the mounted state, the amount of boot compression set by at least one circumferential projection is different from the amount of boot compression set by other circumferential projections.

ブーツ圧縮永久歪量に差を付けることにより、シール部(小径部)のいをゆる「へたり」を緩和してシール性の低下を抑えることができる。   By making a difference in the amount of permanent compression set of the boot, the “sagging” of the sealing portion (small diameter portion) can be eased and the deterioration of the sealing performance can be suppressed.

外径寸法が同一である2個以上の周方向突起部を設けるとともに、外径寸法が同一の周方向突起部間に、これらの周方向突起部よりも小径の周方向突起部を配設して、外径寸法が同一の周方向突起部と小径の周方向突起部とで、ブーツ圧縮永久歪量に差を付けたり、外径寸法が同一の周方向突起部間に、これらの周方向突起部よりも大径の周方向突起部を配設して、外径寸法が同一の周方向突起部と大径の周方向突起部とで、ブーツ圧縮永久歪量に差を付けたりすることができる。さらに、外径寸法が異なる2個以上の周方向突起部を設け、外径寸法が異なる周方向突起部で、ブーツ圧縮永久歪量に差を付けることができる。 Two or more circumferential projections having the same outer diameter are provided, and a circumferential projection having a smaller diameter than the circumferential projection is disposed between the circumferential projections having the same outer diameter. Thus, there is a difference in the amount of boot compression set between the circumferential projections having the same outer diameter and the circumferential projections having a smaller diameter, or between the circumferential projections having the same outer diameter. A circumferential protrusion having a larger diameter than that of the protrusion may be disposed to make a difference in the amount of permanent compression set between the circumferential protrusion having the same outer diameter and the large protrusion having a large diameter. Can do. Further, two or more circumferential protrusions having different outer diameter dimensions can be provided, and the boot compression set can be differentiated by the circumferential protrusions having different outer diameter dimensions.

すなわち、外径寸法が同一の周方向突起部間に、これらの周方向突起部よりも小径の周方向突起部を配設した場合、小径の周方向突起部にて受ける圧縮応力は両側の周方向突起部にて受ける圧縮応力よりも低くなる。このため、軸方向に隣合う突起部において、接触する部位の圧縮応力が異なり、シール部の「へたり」が緩和され、シール性の低下を抑えることができる。 That is, when a circumferential projection having a smaller diameter than these circumferential projections is disposed between circumferential projections having the same outer diameter, the compressive stress received by the circumferential projection having a smaller diameter is reduced on both sides. It becomes lower than the compressive stress which a direction protrusion part receives. For this reason, in the protrusion part adjacent to an axial direction, the compressive stress of the site | part which contacts differs, the "sag" of a seal part is relieve | moderated, and the fall of a sealing performance can be suppressed.

また、外径寸法が同一の周方向突起部間に、これらの周方向突起部よりも大径の周方向突起部を配設した場合、この大径の周方向突起部にて受ける圧縮応力は両側の周方向突起部にて受ける圧縮応力よりも高くなる。このため、前記の場合と同様、軸方向に隣合う突起部において、接触する部位の圧縮応力が異なり、シール部のへたりが緩和され、シール性の低下を抑えることができる。 In addition, when a circumferential projection having a larger diameter than these circumferential projections is disposed between circumferential projections having the same outer diameter, the compressive stress received by the circumferential projection having a large diameter is It becomes higher than the compressive stress received by the circumferential protrusions on both sides. For this reason, as in the case described above, in the protruding portions adjacent to each other in the axial direction, the compressive stress of the contacting portion is different, the sag of the seal portion is alleviated, and the deterioration of the sealing performance can be suppressed.

外径寸法が異なる2個以上の周方向突起部を設けた場合、異なる周方向突起部毎に受ける圧縮応力相違し、シール部の「へたり」が緩和され、シール性の低下を抑えることができる。   When two or more circumferential protrusions with different outer diameters are provided, the compressive stress applied to each of the different circumferential protrusions is different, and the “sagging” of the seal portion is alleviated and the deterioration of the sealing performance is suppressed. it can.

このように、外径寸法が相違する周方向突起部を設けることによって、ブーツ圧縮永久歪量に差を簡単に付けることができる。   Thus, by providing the circumferential protrusions having different outer diameter dimensions, it is possible to easily add a difference to the boot compression set.

ブーツ材料を熱可塑性エラストマーとしたので、等速自在継手用ブーツは、疲労性や摩耗性、高速回転性(回転時振れ廻り性)に優れる。   Since the boot material is made of thermoplastic elastomer, the constant velocity universal joint boot is excellent in fatigue, wear and high-speed rotation (running performance during rotation).

本発明は、ブーツ圧縮永久歪量に差を付けることにより、シール部(小径部)の「へたり」を緩和してシール性の低下を抑えることができる。これによって、本発明の等速自在継手用ブーツを、高温雰囲気下で使用しても、安定したシール機能を長期に渡って発揮することができる。   In the present invention, by making a difference in the amount of permanent compression set of the boot, the “sag” of the seal portion (small diameter portion) can be alleviated and deterioration of the sealing performance can be suppressed. Thus, even when the constant velocity universal joint boot of the present invention is used in a high temperature atmosphere, a stable sealing function can be exhibited over a long period of time.

外径寸法が相違する周方向突起部を設けることによって、ブーツ圧縮永久歪量の差を簡単に付けることができ、シール性向上の信頼性を高めることができる。 By providing the circumferential protrusions having different outer diameter dimensions, a difference in the amount of permanent compression set of the boot can be easily applied, and the reliability in improving the sealing performance can be enhanced.

ブーツ材料を熱可塑性エラストマーとしたので、等速自在継手用ブーツは、疲労性や摩耗性、高速回転性(回転時振れ廻り性)に優れ、ブーツとしてより一層安定した機能を発揮することができる。 Because the boot material is made of thermoplastic elastomer, the boots for constant velocity universal joints are excellent in fatigue, wear, and high-speed rotation (running performance during rotation) and can exhibit more stable functions as boots. .

以下本発明の実施の形態を図1〜図7に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1は本発明の第1実施形態のシール構造が使用された等速自在継手2と等速自在継手用ブーツ1を示し、この等速自在継手2は、内周面に複数の案内溝(トラック溝)3を軸方向に形成した外側継手部材としての外輪4と、外周面に複数の案内溝(トラック溝)5を形成した内側継手部材としての内輪6と、外輪4の案内溝3と内輪6の案内溝5とで協働して形成されるボールトラックに配される複数のボール7と、ボール7を収容するためのポケット8aを有するケージ8等から構成される。また、内輪6の内周にセレーションやスプライン等のトルク伝達手段を介してシャフト9を結合している。 FIG. 1 shows a constant velocity universal joint 2 and a constant velocity universal joint boot 1 in which the seal structure according to the first embodiment of the present invention is used. The constant velocity universal joint 2 has a plurality of guide grooves ( An outer ring 4 as an outer joint member in which a track groove) 3 is formed in the axial direction, an inner ring 6 as an inner joint member in which a plurality of guide grooves (track grooves) 5 are formed on the outer peripheral surface, and a guide groove 3 in the outer ring 4 It comprises a plurality of balls 7 arranged on a ball track formed in cooperation with the guide groove 5 of the inner ring 6, a cage 8 having a pocket 8 a for accommodating the balls 7, and the like. Further, the shaft 9 is coupled to the inner periphery of the inner ring 6 via torque transmission means such as serrations and splines.

なお、等速自在継手2としては、この等速自在継手用ブーツ1を取付けることができるものであればよいので、固定式等速自在継手であっても、摺動式等速自在継手であってもよい。   The constant velocity universal joint 2 is not limited as long as the constant velocity universal joint boot 1 can be attached to the constant velocity universal joint 2, so that even a fixed type constant velocity universal joint is a sliding type constant velocity universal joint. May be.

等速自在継手用ブーツ1は、例えば、エステル系、オレフィン系、ウレタン系、アミド系、スチレン系等の熱可塑性エラストマーにて形成される。熱可塑性エラストマーは樹脂とゴムの中間の性質を持っている。熱可塑性エラストマーは、弾性体でありながら、熱可塑性樹脂の通常の成形機にて加工することができる。 The constant velocity universal joint boot 1 is made of, for example, a thermoplastic elastomer such as ester, olefin, urethane, amide, or styrene. Thermoplastic elastomers have intermediate properties between resin and rubber. Although the thermoplastic elastomer is an elastic body, it can be processed by a normal molding machine for thermoplastic resins.

等速自在継手用ブーツ1は、等速自在継手2の外側継手部材(外輪4)の開口端部に装着される大径部10と、等速自在継手2の内側継手部材(内輪6)に連結されたシャフト9に装着される小径部11と、大径部10と小径部11との間に設けられ、軸方向に沿って交互に配設される山部12と谷部13とを有する蛇腹部14とを備える。山部12と谷部13とは傾斜部15にて連結されている。 The constant velocity universal joint boot 1 is attached to the large diameter portion 10 attached to the open end of the outer joint member (outer ring 4) of the constant velocity universal joint 2 and the inner joint member (inner ring 6) of the constant velocity universal joint 2. A small-diameter portion 11 to be attached to the connected shaft 9, and a ridge portion 12 and a valley portion 13 that are provided between the large-diameter portion 10 and the small-diameter portion 11 and are alternately arranged along the axial direction. And a bellows portion 14. The mountain portion 12 and the valley portion 13 are connected by an inclined portion 15.

外輪4の開口部側の外周面に周方向切欠きからなるブーツ取付部16が設けられ、このブーツ取付部16に大径部10が外嵌される。そして、大径部10の外周面に形成された嵌合溝17にブーツバンド18を嵌着することによって、大径部10を外輪4に固定している。 A boot mounting portion 16 made of a circumferential notch is provided on the outer peripheral surface on the opening side of the outer ring 4, and the large-diameter portion 10 is fitted on the boot mounting portion 16. Then, the large-diameter portion 10 is fixed to the outer ring 4 by fitting the boot band 18 into the fitting groove 17 formed on the outer peripheral surface of the large-diameter portion 10.

シャフト9には、外輪4から所定量突出した位置に、図1〜図3に示すように、周方向に沿ったブーツ取付用溝20を有するブーツ取付部22が設けられ、小径部11がブーツ取付部22に外嵌される。ブーツ取付用溝20の開口端(軸方向端)に周方向突起部(突起)23、24が設けられている。この周方向突起部(突起)23、24は、ブーツ取付部22の外径寸法Dよりも大きい外径寸法D1、D2を有し、その外径寸法D1、D2を同一としている。   As shown in FIGS. 1 to 3, the shaft 9 is provided with a boot mounting portion 22 having a boot mounting groove 20 along the circumferential direction at a position projecting from the outer ring 4 by a predetermined amount. The fitting portion 22 is externally fitted. Circumferential protrusions (protrusions) 23 and 24 are provided at the opening end (axial end) of the boot mounting groove 20. The circumferential protrusions (protrusions) 23 and 24 have outer diameters D1 and D2 larger than the outer diameter D of the boot mounting portion 22, and the outer diameters D1 and D2 are the same.

また、ブーツ取付用溝20内には、その軸方向中間部に周方向突起部23、24よりも小径の周方向突起部(突起)25が設けられている。周方向突起部25の外径寸法D3は、ブーツ取付部22の外径寸法Dよりも小さく設定されている。そして、周方向突起部25を設けることによって、ブーツ取付用溝20を、周方向突起部23と周方向突起部25との間に形成される反蛇腹部側溝部20aと、周方向突起部25と周方向突起部24との間に形成される蛇腹部側溝部20bとに分割している。なお、周方向突起部23、24の外周面23a、24aの幅寸法(軸方向長さ)W1、W2は同一に設定され、周方向突起部25の外周面25aの幅寸法(軸方向長さ)W3より大きく設定されている。   Further, in the boot mounting groove 20, a circumferential projection (projection) 25 having a smaller diameter than the circumferential projections 23 and 24 is provided in the axial middle portion thereof. The outer diameter dimension D <b> 3 of the circumferential protrusion 25 is set smaller than the outer diameter dimension D of the boot mounting portion 22. Then, by providing the circumferential protrusion 25, the boot mounting groove 20 is formed between the circumferential protrusion 23 and the circumferential protrusion 25, the anti-bellows side groove 20 a, and the circumferential protrusion 25. And a bellows portion side groove portion 20b formed between the circumferential projection 24 and the circumferential projection 24. The width dimensions (axial lengths) W1 and W2 of the outer peripheral surfaces 23a and 24a of the circumferential projections 23 and 24 are set to be the same, and the width dimension (axial length) of the outer circumferential surface 25a of the circumferential projection 25 is set. ) It is set larger than W3.

ブーツ1の小径部11の内周面には、図4に示すように、断面扁平半楕円状の環状突部26が、前記ブーツ取付用溝20に対応して設けられている。また、ブーツ1の小径部11の外周面には、バンド装着用溝27が設けられている。   On the inner peripheral surface of the small-diameter portion 11 of the boot 1, as shown in FIG. 4, an annular protrusion 26 having a flat semi-elliptical cross section is provided corresponding to the boot mounting groove 20. A band mounting groove 27 is provided on the outer peripheral surface of the small diameter portion 11 of the boot 1.

そして、ブーツ1の小径部11がブーツ取付部22に外嵌された状態で、バンド装着用溝27にブーツバンド18を嵌着することによって、小径部11をシャフト9に固定している。この場合、図2に示すように、周方向突起部23、24がブーツ1の小径部11の内周面に食い込むとともに、環状突部26がブーツ取付用溝20に嵌合して、周方向突起部25がこの環状突部26に食い込む。これによって、ブーツ1の小径部11をブーツ取付部22に装着(固定)することができる。 Then, the small-diameter portion 11 of the boot 1 is fixed to the shaft 9 by fitting the boot band 18 to the band mounting groove 27 in a state where the small-diameter portion 11 of the boot 1 is externally fitted to the boot mounting portion 22. In this case, as shown in FIG. 2, the circumferential protrusions 23 and 24 bite into the inner peripheral surface of the small-diameter portion 11 of the boot 1, and the annular protrusion 26 is fitted into the boot mounting groove 20, The protrusion 25 bites into the annular protrusion 26. Accordingly, the small diameter portion 11 of the boot 1 can be mounted (fixed) to the boot mounting portion 22.

この際、外径寸法D1、D2が同一の周方向突起部23、24間に、これらの周方向突起部23、24よりも小径の周方向突起部25を配設されているので、小径の周方向突起部25にて受ける圧縮応力は両側の周方向突起部23、24にて受ける圧縮応力よりも低くなる。このため、軸方向に隣合う突起部23、25(25、24)において、接触する部位の圧縮応力が異なる。 At this time, since the circumferential projections 25 having a smaller diameter than the circumferential projections 23 and 24 are disposed between the circumferential projections 23 and 24 having the same outer diameter D1 and D2, the small-diameter projections 23 and 24 have a small diameter. The compressive stress received by the circumferential projection 25 is lower than the compressive stress received by the circumferential projections 23 and 24 on both sides. For this reason, in the projection parts 23 and 25 (25, 24) adjacent to an axial direction, the compressive stress of the site | part to contact differs.

このように、第1実施形態のシール構造では、ブーツ1の小径部(シャフト固定部)11にブーツバンド18を締付けてシャフト固定部をシャフト9に装着した状態(ブーツ装着状態)で、1個の周方向突起部25によるブーツ圧縮永久歪量が他の周方向突起部23、24によるブーツ圧縮永久歪量と相違することになる。このため、シール部(小径部)の「へたり」を緩和してシール性の低下を抑えることができ、この等速自在継手用ブーツ1を、高温雰囲気下で使用しても、安定したシール機能を長期に渡って発揮することができる。 As described above, in the seal structure of the first embodiment, one piece is provided in a state where the boot band 18 is fastened to the small diameter portion (shaft fixing portion) 11 of the boot 1 and the shaft fixing portion is attached to the shaft 9 (boot attachment state). The amount of boot compression set by the circumferential protrusions 25 differs from the amount of boot compression set by the other circumferential protrusions 23, 24. For this reason, the “sag” of the seal portion (small diameter portion) can be alleviated to suppress a decrease in the sealing performance, and the constant velocity universal joint boot 1 can be stably sealed even when used in a high temperature atmosphere. The function can be demonstrated for a long time.

特に、ブーツ材料を熱可塑性エラストマーとしたので、等速自在継手用ブーツは疲労性や摩耗性、高速回転性(回転時振れ廻り性)に優れ、ブーツとしてより一層安定した機能を発揮することができる。   In particular, because the boot material is made of thermoplastic elastomer, the boots for constant velocity universal joints are excellent in fatigue, wear and high-speed rotation (running performance during rotation), and can exhibit more stable functions as boots. it can.

次に図5は第2実施形態を示し、この場合、ブーツ取付用溝20内には、その軸方向中間部に外径寸法D4が周方向突起部23、24の外径寸法D1、D2よりも大きい大径の周方向突起部(突起)28が設けられている。ブーツ取付用溝20は、周方向突起部23と周方向突起部28との間に形成される反蛇腹部側溝部20aと、周方向突起部28と周方向突起部24との間に形成される蛇腹部側溝部20bとに分割される。なお、周方向突起部23、24の外周面23a、24aの幅寸法(軸方向長さ)W1、W2は周方向突起部28の外周面28aの幅寸法(軸方向長さ)W4よりも大きく設定されている。 Next, FIG. 5 shows a second embodiment. In this case, the boot mounting groove 20 has an outer diameter dimension D4 in the axial middle portion thereof than the outer diameter dimensions D1, D2 of the circumferential protrusions 23, 24. A large-diameter circumferential protrusion (protrusion) 28 having a large diameter is also provided. The boot mounting groove 20 is formed between the anti-bellows portion side groove 20 a formed between the circumferential protrusion 23 and the circumferential protrusion 28, and between the circumferential protrusion 28 and the circumferential protrusion 24. It is divided into the bellows part side groove part 20b. The width dimensions (axial length) W1 and W2 of the outer circumferential surfaces 23a and 24a of the circumferential protrusions 23 and 24 are larger than the width dimension (axial length) W4 of the outer circumferential surface 28a of the circumferential projection 28. Is set.

そして、ブーツ1の小径部11がブーツ取付部22に外嵌された状態で、バンド装着用溝27にブーツバンド18を嵌着することによって、小径部11をシャフト9に固定している。この場合、図6に示すように、周方向突起部23、24がブーツ1の小径部11の内周面に食い込むとともに、環状突部26がブーツ取付用溝20に嵌合して、周方向突起部28がこの環状突部26に食い込む。これによって、ブーツ1の小径部11をブーツ取付部22に装着(固定)することができる。 Then, the small-diameter portion 11 of the boot 1 is fixed to the shaft 9 by fitting the boot band 18 to the band mounting groove 27 in a state where the small-diameter portion 11 of the boot 1 is externally fitted to the boot mounting portion 22. In this case, as shown in FIG. 6, the circumferential protrusions 23 and 24 bite into the inner peripheral surface of the small-diameter portion 11 of the boot 1, and the annular protrusion 26 fits into the boot mounting groove 20, The protrusion 28 bites into the annular protrusion 26. Accordingly, the small diameter portion 11 of the boot 1 can be mounted (fixed) to the boot mounting portion 22.

この際、外径寸法D1、D2が同一の周方向突起部23、24間に、これらの周方向突起部23、24よりも大径の周方向突起部28を配設されているので、大径の周方向突起部28にて受ける圧縮応力は両側の周方向突起部23、24にて受ける圧縮応力よりも高くなる。このため、軸方向に隣合う突起部23、28(28、24)において、接触する部位の圧縮応力が異なる。 At this time, since the circumferential projections 28 having a larger diameter than the circumferential projections 23 and 24 are arranged between the circumferential projections 23 and 24 having the same outer diameter D1 and D2, the large-diameter projections 23 and 24 are large. The compressive stress received by the circumferential projection 28 of the diameter is higher than the compressive stress received by the circumferential projections 23 and 24 on both sides. For this reason, in the projection parts 23 and 28 (28, 24) adjacent to an axial direction, the compressive stress of the site | part which contacts differs.

このように、第2実施形態のシール構造でも、前記第1実施形態の等速自在継手用ブーツと同様の作用効果を奏する。 Thus, the seal structure of the second embodiment also has the same effects as the constant velocity universal joint boot of the first embodiment.

次に、図7は第3実施形態を示し、この場合、図5に示すシャフト9において、蛇腹部側の周方向突起部24の外径寸法D2を、反蛇腹部側の周方向突起部23の外径寸法D1よりも大きく設定している。このため、各周方向突起部23、28、25の外径寸法が相違し、D<D1<D4<D2となっている。 Next, FIG. 7 shows a third embodiment. In this case, in the shaft 9 shown in FIG. 5, the outer diameter dimension D2 of the circumferential protrusion 24 on the bellows portion side is set to the circumferential protrusion 23 on the anti-bellow portion side. Is set larger than the outer diameter D1. For this reason, the outer diameter dimensions of the circumferential protrusions 23, 28 and 25 are different, and D <D1 <D4 <D2.

この場合も、ブーツ1の小径部11がブーツ取付部22に外嵌された状態で、バンド装着用溝27にブーツバンド18を嵌着することによって、小径部11をシャフト9に固定することになる。したがって、各周方向突起部23、24がブーツ1の小径部11の内周面に食い込むとともに、周方向突起部28がこの環状突部26に食い込む。これによって、ブーツ1の小径部11をブーツ取付部22に装着(固定)することができる。 In this case, the small-diameter portion 11 is fixed to the shaft 9 by fitting the boot band 18 in the band mounting groove 27 in a state where the small-diameter portion 11 of the boot 1 is externally fitted to the boot mounting portion 22. Become. Therefore, the circumferential protrusions 23 and 24 bite into the inner peripheral surface of the small diameter part 11 of the boot 1, and the circumferential protrusion 28 bites into the annular protrusion 26. Accordingly, the small diameter portion 11 of the boot 1 can be mounted (fixed) to the boot mounting portion 22.

第3実施形態では、各周方向突起部23、28、24によるブーツ圧縮永久歪量に差が生じる。このため、第3実施形態のシール構造でも、前記第1実施形態の等速自在継手用ブーツと同様の作用効果を奏する。 In 3rd Embodiment, a difference arises in the amount of boot compression permanent distortion by each circumferential direction protrusion part 23,28,24. For this reason, the seal structure of the third embodiment also has the same effects as the constant velocity universal joint boot of the first embodiment.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、シャフト9の周方向突起部は3個に限るものではなく、4個以上であってもよく、この場合、外径寸法がすべて相違するものであっても、少なくと2個の周方向突起部の外径寸法が同一であるようにしたりすることができる。また、外径寸法が同一の周方向突起部に、この同一の周方向突起部よりも大径の周方向突起部と小径の周方向突起部とを配置するようにしてもよく、この場合、大径の周方向突起部を蛇腹部側に配設したり、小径の周方向突起部を蛇腹部側に配設したりすることができる。 As described above, the embodiment of the present invention has been described. However, the present invention is not limited to the above-described embodiment, and various modifications are possible. For example, the number of circumferential protrusions of the shaft 9 is not limited to three. It may be four or more. In this case, even if the outer diameters are all different, at least two circumferential protrusions can have the same outer diameter. . Further, a circumferential projection having a larger diameter and a circumferential projection having a smaller diameter than the same circumferential projection may be arranged on the circumferential projection having the same outer diameter. A large-diameter circumferential protrusion can be disposed on the bellows side, and a small-diameter circumferential protrusion can be disposed on the bellows side.

さらに、前記各実施形態では、小径の周方向突起部25や大径の周方向突起部28を、ブーツ取付用溝20の軸方向中央部に配置していたが、どちらかの周方向突起部23、24側にずれていてもよい。また、各周方向突起部の外径寸法を相違させる場合、図7では、反蛇腹部側の周方向突起部23を小径として蛇腹部側の周方向突起部24を大径としているが、逆に、反蛇腹部側の周方向突起部を大径として蛇腹部側の周方向突起部を小径としてもよい。 Further, in each of the above embodiments, the small-diameter circumferential protrusion 25 and the large-diameter circumferential protrusion 28 are arranged in the axial center of the boot mounting groove 20. It may be shifted to the 23, 24 side. Further, in the case where the outer diameters of the circumferential protrusions are different from each other, in FIG. 7, the circumferential protrusion 23 on the side opposite to the bellows is made smaller and the circumferential protrusion 24 on the bellows is made larger. Alternatively, the circumferential protrusion on the side of the bellows part may have a large diameter, and the circumferential protrusion on the side of the bellows part may have a small diameter.

各周方向突起部23、24、25、28の幅寸法W1、W2、W3、W4も種々変更できる。例えば、周方向突起部23の幅寸法W1と周方向突起部24の幅寸法W2とを相違させても、周方向突起部25、28の幅寸法W3、W4を周方向突起部23、24の幅寸法W1、W1よりも大きくしてもよい。 The width dimensions W1, W2, W3, and W4 of the circumferential protrusions 23, 24, 25, and 28 can be variously changed. For example, even if the width dimension W1 of the circumferential projection 23 is different from the width dimension W2 of the circumferential projection 24, the width dimensions W3 and W4 of the circumferential projections 25 and 28 are set to be different from those of the circumferential projections 23 and 24. You may make it larger than the width dimensions W1 and W1.

前記実施形態では、ブーツ取付用溝20に対応して、環状突部26が設けられているが、このような環状突部26を設けなくてもよい。また、環状突部26の断面形状は、扁平半楕円以外、半円形状、三角形状、台形状、矩形状等の種々のものを採用することができる。 In the embodiment, the annular protrusion 26 is provided corresponding to the boot mounting groove 20, but such an annular protrusion 26 may not be provided. Further, as the cross-sectional shape of the annular protrusion 26, various shapes such as a semicircular shape, a triangular shape, a trapezoidal shape, and a rectangular shape can be adopted other than the flat semi-elliptical shape.

ブーツ材料は、疲労性や摩耗性等の耐久性、耐熱老化性、耐油性等に優れる熱可塑性エラストマーが好ましいが、クロロプレン等のゴム材料であってもよい。 The boot material is preferably a thermoplastic elastomer having excellent durability such as fatigue and wear, heat aging resistance, and oil resistance, but may be a rubber material such as chloroprene.

本発明の第1実施形態を示すシール構造を使用した等速自在継手と等速自在継手用ブーツの説明図である。It is explanatory drawing of the constant velocity universal joint using the seal structure which shows 1st Embodiment of this invention, and the boot for constant velocity universal joints. 前記第1実施形態の要部拡大断面図である。It is a principal part expanded sectional view of the said 1st Embodiment. 前記第1実施形態に使用されたシャフトの要部拡大図である。It is a principal part enlarged view of the shaft used for the said 1st Embodiment. 前記第1実施形態に使用された等速自在継手用ブーツの要部拡大断面図である。It is a principal part expanded sectional view of the boot for constant velocity universal joints used for the said 1st Embodiment. 本発明の第2実施形態に使用されたシャフトの要部拡大図である。It is a principal part enlarged view of the shaft used for 2nd Embodiment of this invention. 前記第2実施形態の要部拡大断面図である。It is a principal part expanded sectional view of the said 2nd Embodiment. 本発明の第3実施形態に使用されたシャフトの要部拡大図である。It is a principal part enlarged view of the shaft used for 3rd Embodiment of this invention. 従来のシール構造を使用した等速自在継手と等速自在継手用ブーツの説明図である。It is explanatory drawing of the constant velocity universal joint and boot for constant velocity universal joints using the conventional seal structure. 他の従来のシール構造を使用した等速自在継手と等速自在継手用ブーツの説明図である。It is explanatory drawing of the constant velocity universal joint which uses the other conventional seal structure, and the boot for constant velocity universal joints.

符号の説明Explanation of symbols

1 等速自在継手用ブーツ
2 等速自在継手
3 案内溝
4 外輪
5 案内溝
6 内輪
7 ボール
8 ケージ
8a ポケット
9 シャフト
10 大径部
11 小径部
12 山部
13 谷部
14 蛇腹部
15 傾斜部
16、 22 ブーツ取付部部
17 嵌合溝
18 ブーツバンド
20 ブーツ取付用溝
23、24、25、28 周方向突起部
23a、24a、25a、28a 外周面
26 環状突部
27 バンド装着用溝
28 周方向突起部
100 等速自在継手
101 外輪
102 大径部
103 内輪
104 シャフト
105 小径部
106 谷
107 山
108 蛇腹部
109 ブーツバンド
110 バンド装着用溝
110 各溝
112 ブーツ溝
113 突起
DESCRIPTION OF SYMBOLS 1 Constant velocity universal joint boot 2 Constant velocity universal joint 3 Guide groove 4 Outer ring 5 Guide groove 6 Inner ring 7 Ball 8 Cage 8a Pocket 9 Shaft 10 Large diameter part 11 Small diameter part 12 Mountain part 13 Valley part 14 Bellows part 15 Inclined part 16 22 Boot mounting portion 17 Fitting groove 18 Boot band 20 Boot mounting grooves 23, 24, 25, 28 Circumferential protrusions 23a, 24a, 25a, 28a Outer peripheral surface 26 Annular projection 27 Band mounting groove 28 Circumferential direction Protrusion 100 Constant velocity universal joint 101 Outer ring 102 Large diameter part 103 Inner ring 104 Shaft 105 Small diameter part 106 Valley 107 Mountain 108 Bellows part 109 Boot band 110 Band mounting groove 110 Each groove 112 Boot groove 113 Protrusion

Claims (5)

等速自在継手の内側継手部材に連結されたシャフトと、等速自在継手用ブーツとの間のシール構造において、
前記シャフトのブーツ取付部に、ブーツバンドの軸方向幅内に収まってブーツのシャフト固定部にブーツバンドを締付けたブーツ装着状態でシャフト固定部に食い込む複数の周方向突起部を設けるとともに、このブーツ装着状態で、少なくとも1個の周方向突起部によるブーツ圧縮永久歪量を他の周方向突起部によるブーツ圧縮永久歪量と相違させたことを特徴とするシール構造。
In the seal structure between the shaft connected to the inner joint member of the constant velocity universal joint and the boot for the constant velocity universal joint,
The boot mounting portion of the shaft, provided with a plurality of circumferential projections biting into the shaft fixing portion boots worn tightening the boot band to the shaft fixing portion of the boot fits within the axial width of the boot band, the boot A seal structure characterized in that, in the mounted state, the amount of boot compression set by at least one circumferential protrusion is different from the amount of boot compression set by another circumferential protrusion.
外径寸法が同一である2個以上の周方向突起部を設けるとともに、外径寸法が同一の周方向突起部間に、これらの周方向突起部よりも小径の周方向突起部を配設して、外径寸法が同一の周方向突起部と小径の周方向突起部とで、ブーツ圧縮永久歪量に差を付けたことを特徴とする請求項1のシール構造。 Two or more circumferential projections having the same outer diameter are provided, and a circumferential projection having a smaller diameter than the circumferential projection is disposed between the circumferential projections having the same outer diameter. 2. The seal structure according to claim 1, wherein a difference in boot compression set is made between a circumferential projection having the same outer diameter and a circumferential projection having a small diameter. 外径寸法が同一である2個以上の周方向突起部を設けるとともに、外径寸法が同一の周方向突起部間に、これらの周方向突起部よりも大径の周方向突起部を配設して、外径寸法が同一の周方向突起部と大径の周方向突起部とで、ブーツ圧縮永久歪量に差を付けたことを特徴とする請求項1のシール構造。 Two or more circumferential projections having the same outer diameter are provided, and circumferential projections having a larger diameter than these circumferential projections are disposed between the circumferential projections having the same outer diameter. The seal structure according to claim 1, wherein a difference in boot compression set is made different between a circumferential protrusion having the same outer diameter and a circumferential protrusion having a large diameter. 外径寸法が異なる2個以上の周方向突起部を設け、外径寸法が異なる周方向突起部で、ブーツ圧縮永久歪量に差を付けたことを特徴とする請求項1のシール構造。 2. The seal structure according to claim 1, wherein two or more circumferential protrusions having different outer diameter dimensions are provided, and a difference in boot compression set is made between the circumferential protrusions having different outer diameter dimensions. 前記等速自在継手用ブーツのブーツ材料が熱可塑性エラストマーからなること特徴とする請求項1のシール構造。   The seal structure according to claim 1, wherein a boot material of the constant velocity universal joint boot is made of a thermoplastic elastomer.
JP2005341928A 2005-11-28 2005-11-28 Seal structure Expired - Fee Related JP4657897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005341928A JP4657897B2 (en) 2005-11-28 2005-11-28 Seal structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005341928A JP4657897B2 (en) 2005-11-28 2005-11-28 Seal structure

Publications (2)

Publication Number Publication Date
JP2007146959A JP2007146959A (en) 2007-06-14
JP4657897B2 true JP4657897B2 (en) 2011-03-23

Family

ID=38208598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005341928A Expired - Fee Related JP4657897B2 (en) 2005-11-28 2005-11-28 Seal structure

Country Status (1)

Country Link
JP (1) JP4657897B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6517042B2 (en) 2015-02-25 2019-05-22 Ntn株式会社 Constant velocity universal joint
JP7232850B2 (en) * 2021-01-06 2023-03-03 Kyb株式会社 steering device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150370U (en) * 1984-03-19 1985-10-05 三菱自動車工業株式会社 Seal structure
JPH0128343Y2 (en) * 1984-09-05 1989-08-29
JPH07145863A (en) * 1993-09-28 1995-06-06 Ntn Corp Mounting structure for resin boot
JPH0996318A (en) * 1995-09-29 1997-04-08 Toyoda Gosei Co Ltd Resinous boot for universal coupling
JP4122126B2 (en) * 2000-07-26 2008-07-23 Ntn株式会社 Boot mounting structure

Also Published As

Publication number Publication date
JP2007146959A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
WO2016136355A1 (en) Constant velocity universal joint
CN102265049B (en) Boot for constant velocity universal joint, and constant velocity universal joint
KR20050057277A (en) Sealing device
JP4657897B2 (en) Seal structure
JP2007211927A (en) Boots for constant velocity universal joint
JP2008261446A (en) Boot for constant-velocity universal joint and constant-velocity universal joint
KR20190018801A (en) Ball screw with dustproof member
JP2008025751A (en) Sealing structure
JP2009180372A (en) Constant velocity universal joint boot
WO2011013433A1 (en) Boot for universal joint
JP2007232043A (en) Boot mounting structure
JP5763707B2 (en) Constant velocity joint boots
JP4975341B2 (en) Mounting structure for constant velocity universal joint boots
JP4832837B2 (en) Constant velocity universal boots
JP2007146960A (en) Sealing structure
JP5183960B2 (en) Constant velocity universal boots
JP2008240818A (en) Boot for constant velocity universal joint
JP4794867B2 (en) Constant velocity universal joint with boots
JP4527578B2 (en) Constant velocity universal joint and constant velocity universal joint boot
JP2007155003A (en) Constant velocity universal joint boot
JP5188897B2 (en) Constant velocity universal joint boot and constant velocity universal joint
JP2015132334A (en) Boot for constant velocity universal joint
JP2007232144A (en) Shaft for constant velocity universal joint
JP4932355B2 (en) Mounting structure for constant velocity universal joint boots
JP2009270628A (en) Constant velocity universal joint boot, and constant velocity universal joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081003

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4657897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees