[go: up one dir, main page]

JP4677210B2 - Zoom lens and image pickup apparatus using the same - Google Patents

Zoom lens and image pickup apparatus using the same Download PDF

Info

Publication number
JP4677210B2
JP4677210B2 JP2004229554A JP2004229554A JP4677210B2 JP 4677210 B2 JP4677210 B2 JP 4677210B2 JP 2004229554 A JP2004229554 A JP 2004229554A JP 2004229554 A JP2004229554 A JP 2004229554A JP 4677210 B2 JP4677210 B2 JP 4677210B2
Authority
JP
Japan
Prior art keywords
lens
lens group
refractive power
positive
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004229554A
Other languages
Japanese (ja)
Other versions
JP2006047771A5 (en
JP2006047771A (en
Inventor
仁志 向谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004229554A priority Critical patent/JP4677210B2/en
Publication of JP2006047771A publication Critical patent/JP2006047771A/en
Publication of JP2006047771A5 publication Critical patent/JP2006047771A5/ja
Application granted granted Critical
Publication of JP4677210B2 publication Critical patent/JP4677210B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Description

本発明はズームレンズに関し、特にズームレンズを構成する一部のレンズ群を光軸と垂直方向の成分を持つように移動させることにより、画像のぶれを光学的に補正して静止画像を得るようにし、撮影画像の安定化を図ったズームレンズに関するものである。   The present invention relates to a zoom lens, and in particular, by moving a part of a lens group constituting the zoom lens so as to have a component in a direction perpendicular to the optical axis, an image blur is optically corrected to obtain a still image. In addition, the present invention relates to a zoom lens that stabilizes a captured image.

進行中の車や航空機等移動物体上から撮影しようとすると、撮影系に振動が伝わり手振れとなり撮影画像にぶれが生じる。従来、このときの撮影画像のぶれを、撮影系のレンズ群の一部を平行偏心させることにより防止する機能を有した防振光学系が種々提案されている。   If an attempt is made to shoot from a moving object such as an ongoing car or aircraft, vibrations are transmitted to the photographic system, causing camera shake and blurring of the captured image. Conventionally, various anti-vibration optical systems have been proposed that have a function of preventing blurring of a photographed image at this time by decentering a part of a lens group of the photographing system in parallel.

例えば特許文献1では、光学装置に振動状態を検知する検知手段からの出力信号に応じて、一部の光学部材を振動による画像の振動的変位を相殺する方向に移動させることにより画像の安定化を図っている。特許文献2では、最も物体側に可変頂角プリズムを配置した撮影系において、撮影系の振動に対応させて該可変頂角プリズムの頂角を変化させて画像の安定化を図っている。   For example, in Patent Document 1, image stabilization is achieved by moving some optical members in a direction that cancels the vibrational displacement of an image due to vibration in accordance with an output signal from a detection unit that detects a vibration state in the optical device. I am trying. In Patent Document 2, in an imaging system in which a variable apex angle prism is arranged on the most object side, the apex angle of the variable apex angle prism is changed in accordance with vibrations of the imaging system to stabilize the image.

また、特許文献3や特許文献4では、加速度センサ等を利用して撮影系の振動を検出し、この時得られる信号に応じ、撮影系の一部のレンズ群を光軸と垂直方向に振動されることにより静止画像を得ている。   In Patent Document 3 and Patent Document 4, vibration of the photographing system is detected using an acceleration sensor or the like, and a part of the lens group of the photographing system is vibrated in a direction perpendicular to the optical axis according to a signal obtained at this time. As a result, a still image is obtained.

特許文献5では、物体側より順に変倍及び合焦の際に固定の正の屈折力の第1レンズ群、変倍機能を有する負の屈折力の第2レンズ群、開口絞り、正の屈折力の第3レンズ群、そして変倍により変動する像面を補正する補正機能と合焦機能の双方の機能を有する正の屈折力の第4レンズ群の4つのレンズ群を有した変倍光学系であって、第3レンズ群は負の屈折力の第31群と正の屈折力の第32群の2つのレンズ群より成り、第32群を光軸と垂直方向に移動させて該変倍光学系が振動したときの撮影画像のブレを補正している。   In Patent Document 5, a first lens group having a fixed positive refractive power, a second lens group having a negative refractive power having a variable power function, an aperture stop, and positive refraction in order from the object side upon zooming and focusing. A variable power optical system having four lens groups of a fourth lens group having a positive refractive power and both a correction function for correcting an image plane fluctuating due to zooming and a focusing function. The third lens group is composed of two lens groups, ie, a 31st group having a negative refractive power and a 32nd group having a positive refractive power. It corrects the blurring of the captured image when the double optical system vibrates.

特許文献6では、正、負、正、正の屈折力のレンズ群より成る4群構成の変倍光学系の第3レンズ群全体を振動させて防振を行っている。   In Patent Document 6, the entire third lens unit of the variable magnification optical system having a four-group configuration including positive, negative, positive, and positive refractive power lens units is vibrated to prevent vibration.

一方、特許文献7では正、負、正、正の屈折力のレンズ群よりなる4群構成の第3レンズ群を正レンズとメニスカス状の負レンズのテレフォトタイプとしてレンズ全長の短縮化を図っている。また、本出願人は特許文献8にて正、負、正、正の屈折力のレンズ群よりなる4群構成にて第3群全体を振動させて防振を行うズームレンズを開示している。これは、第1レンズ群を物体側から順に負レンズと正レンズからなる接合レンズと物体側に凸面を向けたメニスカス状の正レンズの3枚構成としている。   On the other hand, in Patent Document 7, the third lens group having a four-group structure including positive, negative, positive, and positive refractive power lens groups is used as a telephoto type of a positive lens and a meniscus negative lens to shorten the entire lens length. ing. Further, the present applicant has disclosed a zoom lens that performs vibration isolation by vibrating the entire third group in a four-group configuration including lens groups having positive, negative, positive, and positive refractive powers in Patent Document 8. . In this configuration, the first lens group has a three-lens configuration including a cemented lens including a negative lens and a positive lens in order from the object side, and a meniscus positive lens having a convex surface facing the object side.

また、特許文献9では、正、負、正、正の屈折力のレンズ群よりなる4群構成にて第1レンズ群を物体側から順に負レンズと正レンズからなる接合レンズと物体側に凸面を向けたメニスカス状の2枚の正レンズからなる4枚構成とし、第3群全体を振動させて防振を行うズームレンズを開示している。   Further, in Patent Document 9, in a four-group configuration including positive, negative, positive, and positive refractive lens groups, the first lens unit is a cemented lens including a negative lens and a positive lens in order from the object side, and a convex surface on the object side. Discloses a zoom lens which has a four-lens structure composed of two positive meniscus lenses facing each other, and vibrates the entire third lens unit for vibration isolation.

更に、特許文献10や特許文献11では、正、負、正、正の屈折力のレンズ群より成る4群構成の変倍光学系における第3レンズ群の一部を振動させることにより、3−CCD対応の光学系の小型化と高画質化とを同時に実現させた変倍光学系提案している。
特開昭58−21133号公報 特開昭61−223819号公報 特開平1−116619号公報 特開平2−124521号公報 特開平7−128619号公報 特開平7−199124号公報 特開平5−80974号公報 特開2001−42213号公報 特開2002−169087号公報 特開平11−237550号公報 特開2002−244037号公報
Further, in Patent Document 10 and Patent Document 11, a part of the third lens group in the variable power optical system having a four-group structure including positive, negative, positive, and positive refractive power lens groups is vibrated. We have proposed a variable magnification optical system that simultaneously realizes miniaturization and high image quality of a CCD-compatible optical system.
JP 58-21133 A JP-A-61-223819 JP-A-1-116619 Japanese Patent Laid-Open No. 2-124521 Japanese Patent Laid-Open No. 7-128619 JP-A-7-199124 Japanese Patent Laid-Open No. 5-80974 JP 2001-42213 A JP 2002-169087 A JP 11-237550 A JP 2002-244037 A

一般に撮影系の一部のレンズを、光軸に対して垂直方向に平行偏心させて防振を行う光学系においては、防振のために特別に余分な光学系を必要としないという利点はあるが、移動させるレンズのための空間を必要とし、また防振時における偏心収差の発生量が多くなってくるという問題点があった。   In general, in an optical system that performs image stabilization by decentering a part of a lens of a photographing system in a direction perpendicular to the optical axis, there is an advantage that no extra optical system is required for image stabilization. However, there is a problem that a space for the lens to be moved is required, and the amount of decentration aberrations generated during vibration isolation increases.

また、近年、民生用ビデオカメラにおいても高画質化のために、各色毎に3つのCCD(Charge Coupled Device)を撮像素子として用いた3CCD方式が一部のカメラでは採用されている。3CCD対応の正、負、正、正の屈折力のレンズ群より成る4群構成の変倍光学系において、変倍光学系の一部を構成する比較的小型軽量のレンズ群を光軸と垂直方向に移動させて、該変倍光学系が振動(傾動)したときの画像のぶれを補正するように構成すれば、装置全体の小型化、機構上の簡素化及び駆動手段の負荷の軽減化を図りつつ、該レンズ群を偏心させた時の偏心収差を良好に補正すると共に、偏心レンズ群の防振のための敏感度を大きくして光学系全体の小型化を図った防振機能を有した変倍光学系の提供が可能である。   In recent years, a 3CCD system using three CCDs (Charge Coupled Devices) for each color as an image sensor has been adopted in some cameras in order to improve image quality in consumer video cameras. In a variable power optical system having a four-group structure including positive, negative, positive, and positive refractive power lenses compatible with 3CCD, a relatively small and lightweight lens group constituting a part of the variable power optical system is perpendicular to the optical axis. If it is configured to correct the image blur when the zooming optical system is vibrated (tilted) by moving in the direction, the overall size of the apparatus can be reduced, the mechanism can be simplified, and the load on the driving means can be reduced. The image stabilization function which corrects the decentration aberration when the lens unit is decentered and increases the sensitivity for the image stabilization of the decentering lens unit to reduce the size of the entire optical system. It is possible to provide a variable magnification optical system.

一方、CCDの高密度化とともに撮影系には高い解像周波数が求められている。一般に求められる解像周波数が高くなると、絞り径を小さくしたとき、或いは絞り径が真円形からかけ離れた絞り開口状態になったとき、回折による画像劣化が無視できなくなってくる。   On the other hand, a high resolution frequency is required for a photographing system as the density of a CCD increases. In general, when the required resolution frequency is increased, image degradation due to diffraction cannot be ignored when the aperture diameter is reduced or when the aperture diameter is in the aperture opening state far from the true circle.

これを解決する方法として、虹彩絞りの採用やNDフィルタを光路内に挿入して、回折による影響を最小限に抑制する方法が採られている。この場合、絞り機構やNDフィルターを光路中への挿入に要するための広い軸上間隔が必要であるが、単純に絞り空間を開くと光学系が大型化しやすくなる。また、近年民生用のビデオカメラ等では静止画記録を行うことが可能な撮影装置が増えておりそのためCCDへの光量制御としてレンズに対しメカニカルなシャッター機能を持つレンズが要求されている。   As a method for solving this, a method of suppressing the influence of diffraction to a minimum by adopting an iris diaphragm or inserting an ND filter in the optical path is employed. In this case, a wide on-axis interval is required for inserting the aperture mechanism and the ND filter into the optical path. However, simply opening the aperture space tends to increase the size of the optical system. In recent years, consumer video cameras and the like have increased the number of photographing apparatuses capable of recording a still image, and therefore, a lens having a mechanical shutter function for the lens is required for controlling the amount of light to the CCD.

本発明のズームレンズは、物体側より像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、正の屈折力の第4レンズ群より構成され、ズーミングに際し第2レンズ群と第4レンズ群が移動するズームレンズであって、第1レンズ群が、物体側から像側へ順に、負レンズと正レンズからなる接合レンズと2枚の正レンズからなり、第1レンズ群の最も物体側の面から最も像側の面までの光軸上の間隔をDF、広角端における全系の焦点距離をfwとするとき、
4.472≦DF/fw<5.0
なる条件式を満足することを特徴としている。
The zoom lens according to the present invention includes, in order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a positive lens having a positive refractive power. is composed of the fourth lens group, a zoom lens in which the second lens group and the fourth lens group hand moves during zooming, the first lens group comprises, in order from the object side to the image side, a negative lens and a positive lens Ri Do a cemented lens and two positive lenses, DF spacing on the optical axis from the most object side surface of the first lens group to the surface on the most image side, the focal length of the entire system at the wide angle end and fw When
4.472 ≦ DF / fw <5.0
It satisfies the following conditional expression.

特に第1発明では、第3レンズ群が、物体側から像側へ順に、最も物体側の面が形状の負の屈折力の第3aレンズ群と正の屈折力の第3bレンズ群とから成り、第3bレンズ群光軸と垂直方向の成分を持つように移動させてズームレンズが形成する像の位置を変化させると共に、第3aレンズ群より物体側に絞りユニットを有することを特徴としている。 Particularly in the first invention, the third lens group comprises, in order from the object side to the image side, the surface closest to the object side and the 3b lens unit having a negative refractive power. 3a lens group and positive refractive power of the concave shape The third lens group is moved so as to have a component perpendicular to the optical axis to change the position of the image formed by the zoom lens , and has a diaphragm unit on the object side of the third lens group. It is said.

また、第2発明のズームレンズでは、第3レンズ群が、物体側から像側へ順に、負の屈折力の第3aレンズ群と、正の屈折力の第3bレンズ群からなり、第3レンズ群と開口絞りとの光軸上における間隔をD、第3レンズ群と第4レンズ群との広角端における合成焦点距離をf34とするとき、
0.1×f34<D<0.6×f34
なる条件を満足することを特徴としている。
In the zoom lens according to the second aspect of the invention, the third lens group includes, in order from the object side to the image side, a 3a lens group having a negative refractive power and a 3b lens group having a positive refractive power. When the distance on the optical axis between the group and the aperture stop is D, and the combined focal length at the wide angle end of the third lens group and the fourth lens group is f34,
0.1 × f34 <D <0.6 × f34
It is characterized by satisfying the following conditions.

また、第3発明では、第3レンズ群が、物体側から像側へ順に、最も物体側の面が形状の負の屈折力の第3aレンズ群と正の屈折力の第3bレンズ群とから成り、第3bレンズ群が、物体側より像側へ順に、1枚の正レンズ、像側が凹面の負の屈折力のメニスカスレンズ、1枚の正レンズからなることを特徴としている。 In the third invention, the third lens group comprises, in order from the object side to the image side, and the most object side first 3a lens group faces the negative refractive power of the concave shape of the second 3b lens unit having a positive refractive power consists, 3b-th lens group includes, in order from the object side to the image side, one positive lens, meniscus lens having negative refractive power of the image side concave surface, is characterized in that it consists of one positive lens.

本発明によれば、光学系全体の小型化を図りながらも高画質を維持することが可能なズームレンズを達成することができる。   According to the present invention, it is possible to achieve a zoom lens capable of maintaining high image quality while reducing the size of the entire optical system.

図面を用いて本発明のズームレンズと撮像装置の実施形態について説明する。本実施例で開示するズームレンズは、画像のぶれを補正することができる防振機能を有しながらも、光量制御のためのNDフィルター、虹彩絞り、メカニカルシャッター等(絞り装置)を光路内に挿入するための空間を確保し、且つ機構上の簡素化を可能とし、適切なパワー配置とすることで適切な射出瞳の長さを確保しながらも色分解用のプリズム等を配置すべき適切な量のバックフォーカスも確保可能とした大口径で高性能なズームレンズを開示する。   Embodiments of a zoom lens and an imaging apparatus of the present invention will be described with reference to the drawings. The zoom lens disclosed in this embodiment has an anti-vibration function capable of correcting image blurring, but also includes an ND filter, iris diaphragm, mechanical shutter, and the like (aperture device) for controlling the amount of light in the optical path. The space for insertion should be secured, the mechanism can be simplified, and the appropriate power placement should ensure the proper exit pupil length while arranging the color separation prism, etc. Disclosed is a large-diameter, high-performance zoom lens that can secure a large amount of back focus.

図1〜図4は後述する数値実施例1〜4のズームレンズのレンズ断面図である。   1 to 4 are lens cross-sectional views of zoom lenses according to Numerical Examples 1 to 4 described later.

図5は数値実施例1のズームレンズの無限遠物体にフォーカスした状態での広角端、中間のズーム位置、望遠端での収差図である。図6は数値実施例2のズームレンズの無限遠物体にフォーカスした状態での広角端、中間のズーム位置、望遠端の収差図である。図7は数値実施例3のズームレンズの無限遠物体にフォーカスした状態での広角端、中間のズーム位置、望遠端での収差図である。図8は数値実施例4のズームレンズの無限遠物体にフォーカスした状態での広角端、中間のズーム位置、望遠端の収差図である。   FIG. 5 is an aberration diagram at the wide-angle end, the intermediate zoom position, and the telephoto end when the zoom lens of Numerical Example 1 is focused on an object at infinity. FIG. 6 is an aberration diagram at the wide-angle end, the intermediate zoom position, and the telephoto end when the zoom lens of Numerical Example 2 is focused on an object at infinity. FIG. 7 is an aberration diagram at the wide-angle end, the intermediate zoom position, and the telephoto end when the zoom lens of Numerical Example 3 is focused on an object at infinity. FIG. 8 is an aberration diagram at the wide-angle end, the intermediate zoom position, and the telephoto end when the zoom lens of Numerical Example 4 is focused on an object at infinity.

図1〜4に示すレンズ断面図において、L1は正の屈折力の第1レンズ群、L2は負の屈折力の第2レンズ群、L3は正の屈折力の第3レンズ群、L4は正の屈折力の第4レンズ群である。第3レンズ群L3は負の屈折力の第3aレンズ群L3aと正の屈折力の第3bレンズ群L3bより構成している。   1-4, L1 is a first lens unit having a positive refractive power, L2 is a second lens unit having a negative refractive power, L3 is a third lens unit having a positive refractive power, and L4 is a positive lens unit. This is a fourth lens unit having a refractive power of. The third lens unit L3 includes a third lens unit L3a having a negative refractive power and a third lens unit L3b having a positive refractive power.

本実施例では第3bレンズ群L3bを光軸に垂直方向の成分を持つように移動させることにより、光学系全体が振動(傾動)したときの撮影画像のぶれを補正している。   In the present embodiment, the blur of the photographed image when the entire optical system vibrates (tilts) is corrected by moving the third lens group L3b so as to have a component perpendicular to the optical axis.

SPは開口絞り、FPはフレアカット絞りであり、第2レンズ群L2と第3レンズ群L3の間に位置している。Gはフェースプレート、フィルター、色分解手段等に対応して設計上設けられたガラスブロックである。IPは像面であり、CCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)の撮像面が配置されている。   SP is an aperture stop, and FP is a flare cut stop, which is located between the second lens unit L2 and the third lens unit L3. G is a glass block designed in correspondence with the face plate, filter, color separation means, and the like. IP is an image plane, on which an imaging plane of a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor is arranged.

広角端から望遠端へのズーミングに際して、各レンズ断面図中の矢印で示すように第2レンズ群L2を像側へ移動させて変倍を行うと共に、変倍に伴う像面変動を第4レンズ群L4を物体側に凸状の軌跡の一部を有しつつ移動させて補正している。   During zooming from the wide-angle end to the telephoto end, the second lens unit L2 is moved to the image side as shown by the arrow in each lens cross-sectional view to perform zooming, and the image plane fluctuation accompanying zooming is changed to the fourth lens. The group L4 is moved and corrected while having a part of the convex locus on the object side.

また、第4レンズ群L4を光軸上移動させてフォーカスを行うリアフォーカス方式を採用している。レンズ断面図に示す第4レンズ群L4の実線の曲線4aと破線の曲線4bは、各々無限遠物体と近距離物体にフォーカスしているときの広角端から望遠端へのズーミングの際の像面変動を補正するための移動軌跡である。このように第4レンズ群L4を物体側へ凸状の軌跡とすることで第3レンズ群L3と第4レンズ群L4との間の空間の有効利用を図り、レンズ全長の短縮化を効果的に達成している。   In addition, a rear focus method is employed in which the fourth lens unit L4 is moved on the optical axis for focusing. The solid curve 4a and the dashed curve 4b of the fourth lens unit L4 shown in the lens cross-sectional view are the image planes during zooming from the wide-angle end to the telephoto end when focusing on an object at infinity and an object at close distance, respectively. It is a movement locus for correcting the fluctuation. Thus, by making the fourth lens unit L4 a locus convex toward the object side, the space between the third lens unit L3 and the fourth lens unit L4 can be effectively used, and the entire lens length can be shortened effectively. Has been achieved.

各実施形態において、例えば望遠端において無限遠物体から近距離物体へのフォーカスは、レンズ断面図の直線4cに示すように、第4レンズ群L4を前方へ繰り出すことにより行う。   In each embodiment, for example, focusing from an infinitely distant object to a close object at the telephoto end is performed by extending the fourth lens unit L4 forward as indicated by a straight line 4c in the lens cross-sectional view.

本実施例におけるズームレンズは、第1レンズ群L1と第2レンズ群L2の合成系で形成した虚像を、第3レンズ群L3と第4レンズ群L4で感光面上(撮像手段面上)に結像するズーム方式をとっている。   In the zoom lens in this embodiment, a virtual image formed by the combined system of the first lens unit L1 and the second lens unit L2 is formed on the photosensitive surface (on the imaging unit surface) by the third lens unit L3 and the fourth lens unit L4. The zoom method is used to form an image.

本実施例では従来の所謂4群ズームレンズにおいて第1レンズ群L1を繰り出してフォーカスを行う場合に比べて、前述のようなリアフォーカス方式を採ることにより、第1レンズ群L1のレンズ有効径の増大化を効果的に防止している。   In this embodiment, compared with a conventional so-called four-group zoom lens in which the first lens unit L1 is extended and focusing is performed, the rear focus method as described above is employed, so that the effective lens diameter of the first lens unit L1 is increased. The increase is effectively prevented.

また開口絞りSPを第3レンズ群L3の物体側へ配置することにより、入射瞳位置を短く設定することができ、前玉レンズ径(第1レンズ群の有効系)の縮小化を容易に達成している。   Further, by arranging the aperture stop SP on the object side of the third lens unit L3, the entrance pupil position can be set short, and the front lens diameter (effective system of the first lens unit) can be easily reduced. is doing.

本発明のズームレンズの数値実施例においては第3レンズ群L3を負の屈折力の第3aレンズ群L3aと正の屈折力の第3bレンズ群L3bにより構成し、このうち第3bレンズ群L3bを、防振のために光軸と垂直方向の成分を持つように移動させて光学系全体が振動したときの像ぶれを補正している。これにより可変頂角プリズム等の光学部材や防振のためのレンズ群を新たに付加することなく防振を行っている。   In the numerical example of the zoom lens according to the present invention, the third lens unit L3 is composed of a third lens unit L3a having a negative refractive power and a third lens unit L3b having a positive refractive power, of which the third lens unit L3b is composed. For image stabilization, image blur is corrected when the entire optical system is vibrated by moving it so as to have a component perpendicular to the optical axis. As a result, image stabilization is performed without adding an optical member such as a variable apex angle prism or a lens group for image stabilization.

特に3CCD対応のビデオカメラ用の撮影レンズでは像面側に色分解のための色分解プリズムを配置するための空間が必要であるため通常の単板式の撮影レンズよりも長いバックフォーカスが必要となる。このため第3レンズ群L3の屈折力が第4レンズ群L4に対して弱くなり、第3レンズ群L3の光軸に垂直方向の偏心敏感度が小さくなる。従って第3レンズ群L3全体を光軸方向に対して垂直方向に移動させることで防振を行おうとすると第3レンズ群L3の移動量が大きくなり、有効径の大きなレンズが必要となる。   In particular, a photographing lens for a video camera compatible with 3CCD requires a space for arranging a color separation prism for color separation on the image plane side, and therefore requires a longer back focus than an ordinary single-plate photographing lens. . For this reason, the refractive power of the third lens unit L3 is weaker than that of the fourth lens unit L4, and the decentration sensitivity in the direction perpendicular to the optical axis of the third lens unit L3 is reduced. Therefore, if vibration is to be prevented by moving the entire third lens unit L3 in a direction perpendicular to the optical axis direction, the amount of movement of the third lens unit L3 increases, and a lens having a large effective diameter is required.

そこで本発明では、正の屈折力の第3レンズ群L3を負の屈折力の第3aレンズ群L3aと正の屈折力の第3bレンズ群L3bに分割し、負の屈折力のレンズ群を用いた分だけ、シフトレンズ群(第3bレンズ群L3b)の正の屈折力を大きくし、その偏心敏感度を大きくすることによって防振のための光軸と垂直な方向への移動量を小さくし、それにより第3レンズ群L3を含む光学系全体のコンパクト化を達成している。   Therefore, in the present invention, the third lens unit L3 having a positive refractive power is divided into a third lens unit L3a having a negative refractive power and a third b lens unit L3b having a positive refractive power, and a lens unit having a negative refractive power is used. The amount of movement in the direction perpendicular to the optical axis for anti-vibration is reduced by increasing the positive refractive power of the shift lens unit (the 3b lens unit L3b) and increasing its decentration sensitivity. As a result, the entire optical system including the third lens unit L3 is made compact.

本発明のズームタイプのように高画質を目的とした撮影系では、多数枚の絞り羽根を有する虹彩絞りを採用することで、ボケ味の改善が可能となる。またCCD等の固体撮像素子への入射光量を一時的にカットするためのシャッター機構なども静止画像を取り込む時には必要とされる。従って本発明では第2レンズ群L2と第3レンズ群L3の間をそのためのの空間として利用し、開口絞り、シャッター、ND挿脱機構等の絞り装置を第3レンズ群L3前に配置することにした。   In a photographing system aiming at high image quality, such as the zoom type of the present invention, it is possible to improve the blur by adopting an iris diaphragm having a large number of diaphragm blades. In addition, a shutter mechanism for temporarily cutting the amount of light incident on a solid-state imaging device such as a CCD is also required when capturing a still image. Therefore, in the present invention, the space between the second lens unit L2 and the third lens unit L3 is used as a space for that purpose, and an aperture device such as an aperture stop, a shutter, and an ND insertion / removal mechanism is disposed in front of the third lens unit L3. I made it.

そのため、第3レンズ群L3と開口絞りSPとの光軸上における間隔をD、第3レンズ群と第4レンズ群の広角端における合成焦点距離をf34とするとき、
0.1×f34 < D < 0.6×f34 (1)
なる条件を満足することが肝要である。
Therefore, when the distance on the optical axis between the third lens unit L3 and the aperture stop SP is D, and the combined focal length at the wide-angle end of the third lens unit and the fourth lens unit is f34,
0.1 × f34 <D <0.6 × f34 (1)
It is important to satisfy the following conditions.

上式は、ズーミングに際し第4レンズ群L4の移動に伴って変動する射出瞳位置を遠くに保ちつつ、レンズ全長の最適化を維持するための条件である。   The above equation is a condition for maintaining the optimization of the entire lens length while keeping the exit pupil position that fluctuates with the movement of the fourth lens unit L4 away during zooming.

上限値を超えて開口絞りSPまでの空間を広げすぎると、入射瞳位置がレンズ内部に入り込むため前玉レンズ径が増大しコンパクト化が達成できず、また下限値を超えて開口絞りSPまでの間隔が短くなると射出瞳位置がプラスで短くなり、そのため3CCD用色分解ダイクロイックミラーへの軸外光線の入射角変動が大きくなり画面全体の色むらが大きくなり好ましくない。更に、虹彩絞り、メカニカルシャッター、光量調節のためのNDフィルターの挿脱機構等の絞り装置を配置する空間が確保できなくなるなどの問題が発生する。   If the space up to the aperture stop SP exceeds the upper limit value, the entrance pupil position enters the inside of the lens, the front lens diameter increases, and compactness cannot be achieved. When the interval is shortened, the exit pupil position is shortened by plus, and therefore, the variation in the incident angle of off-axis rays to the color separation dichroic mirror for 3CCD becomes large, and the color unevenness of the entire screen becomes large, which is not preferable. Furthermore, there arises a problem that it becomes impossible to secure a space for disposing an iris device such as an iris diaphragm, a mechanical shutter, and an ND filter insertion / removal mechanism for adjusting the amount of light.

更には、
0.2×f34 < D < 0.47×f34 (1a)
の範囲にあることが好ましい。
Furthermore,
0.2 × f34 <D <0.47 × f34 (1a)
It is preferable that it exists in the range.

本発明において開口絞りSP前後の間隔を十分確保した上で、高い光学性能を実現する為には、第3aレンズ群L3aが、物体側に凹面を向けた凹レンズと正レンズとで構成することである。   In the present invention, in order to achieve a high optical performance while ensuring a sufficient distance before and after the aperture stop SP, the third-a lens unit L3a is composed of a concave lens and a positive lens with a concave surface facing the object side. is there.

これによれば第2レンズ群L2からの発散光束を略アフォーカルとする際、高次の球面収差を発生させること無く良好な光学性能を保つことができ、防振時の偏心収差の変動も良好に補正することが可能となる。   According to this, when making the divergent light beam from the second lens unit L2 substantially afocal, it is possible to maintain good optical performance without generating higher-order spherical aberration, and fluctuations in decentration aberrations during image stabilization It becomes possible to correct well.

更には第3aレンズ群L3aと第3bレンズ群L3bの各々少なくとも1面に非球面レンズを設けることである。   Furthermore, an aspherical lens is provided on at least one surface of each of the third-a lens unit L3a and the third-b lens unit L3b.

これによれば各レンズ群内で発生する諸収差を小さくし、防振時の光学性能の劣化を抑制するのが容易となる。   According to this, it becomes easy to reduce various aberrations occurring in each lens group and to suppress deterioration of optical performance during image stabilization.

特に第3aレンズ群L3aの最も像面側のレンズ面、第3bレンズ群L3bの凸形状のレンズ面に非球面を導入するのが良く、これによれば各レンズ群内で発生する球面収差、コマ収差を小さくし、防振時に発生する偏心収差、特に偏心コマ収差を良好に補正するのが容易となる。   In particular, it is preferable to introduce an aspherical surface into the most image side lens surface of the 3a lens unit L3a and the convex lens surface of the 3b lens unit L3b. According to this, spherical aberration generated in each lens unit, The coma aberration is reduced, and it is easy to satisfactorily correct the decentration aberration generated during the image stabilization, particularly the decentration coma aberration.

尚、非球面の位置は、各レンズ群の異なるレンズ面でもよい。   The position of the aspheric surface may be a different lens surface of each lens group.

防振レンズ群である正屈折力の第3bレンズ群L3bは1以上の負レンズを有することである。   The third-b lens unit L3b having positive refractive power, which is the anti-vibration lens unit, has one or more negative lenses.

第3bレンズ群L3bを防振のために偏心させたときの倍率色収差や、偏心させたことによる像面湾曲を補正するためには、防振レンズ群単独で出来るだけ色収差が補正されており、かつペッツバール和が小さくなっていることが望ましい。したがって、防振レンズ群(第3bレンズ群L3b)には少なくとも1枚の負レンズを含むように構成するのが、色収差の補正やペッツバール和を小さくするのに効果的である。   In order to correct the lateral chromatic aberration when the third lens unit L3b is decentered for image stabilization and the curvature of field due to the decentering, the chromatic aberration is corrected as much as possible by the image stabilizing lens unit alone. In addition, it is desirable that the Petzval sum is small. Therefore, it is effective for correcting the chromatic aberration and reducing the Petzval sum to include at least one negative lens in the anti-vibration lens group (the third b lens group L3b).

さらにペッツバール和を良好に小さくするためには第3bレンズ群L3bに含まれる負レンズの屈折率をN3bとしたとき、N3bは1.8以上とすることが好ましい。   Further, in order to reduce the Petzval sum satisfactorily, when the refractive index of the negative lens included in the third lens group L3b is N3b, N3b is preferably 1.8 or more.

また、全系の色収差を良好に保つためには、第3aレンズ群L3a内に少なくとも1枚の正レンズを有するようにするのが良い。   In order to keep the chromatic aberration of the entire system favorable, it is preferable to have at least one positive lens in the 3a lens unit L3a.

また、第3aレンズ群L3a、第3bレンズ群L3bの焦点距離を各々f3a、f3bとするとき、
1.0 < |f3a/f3b| < 2.0 (2)
なる条件式を満足することが好ましい。
When the focal lengths of the 3a lens unit L3a and the 3b lens unit L3b are f3a and f3b, respectively.
1.0 <| f3a / f3b | <2.0 (2)
It is preferable to satisfy the following conditional expression:

上式の上限値を越えた場合、第3bレンズ群L3bの屈折力が強くなり過ぎることになり、第3レンズ群L3の屈折力が相対的に強くなり適切なバックフォーカスを確保することが困難となる。下限値を超えた場合は、防振レンズ群としての第3bレンズ群L3bの防振敏感度が小さくなり、手振れなどを補正するための移動量が増大し好ましくない。   When the upper limit of the above formula is exceeded, the refractive power of the third lens unit L3b becomes too strong, and the refractive power of the third lens unit L3 becomes relatively strong, making it difficult to ensure an appropriate back focus. It becomes. If the lower limit is exceeded, the anti-vibration sensitivity of the third lens unit L3b as the anti-vibration lens unit becomes small, and the movement amount for correcting camera shake increases, which is not preferable.

更には、上記条件式は、
1.25 < |f3a/f3b| < 1.8 (2a)
の範囲にあることが好ましい。
Furthermore, the conditional expression is
1.25 <| f3a / f3b | <1.8 (2a)
It is preferable that it exists in the range.

第2レンズ群L2は、物体側から順に、像側が凹面の負メニスカスレンズ、物体側が凹面である負レンズ、両レンズ面が凸形状の正レンズ、両レンズ面が凹形状の負レンズで構成するのが良い。これによれば全ズーム範囲にわたり、倍率色収差を良好に補正するのが容易となる。   The second lens unit L2 includes, in order from the object side, a negative meniscus lens having a concave surface on the image side, a negative lens having a concave surface on the object side, a positive lens having both convex surfaces, and a negative lens having both concave surfaces. Is good. According to this, it becomes easy to satisfactorily correct lateral chromatic aberration over the entire zoom range.

また第1レンズ群L1を構成する正レンズと負レンズの平均屈折率を各々Np、Nn、平均アッベ数を各々νp、νn、第1レンズ群L1を構成する正レンズのうち最も屈折率が低いレンズの屈折率をNp1とするとき、
1.7 < Np < 1.8 (3)
0.1 < Nn−Np < 0.2 (4)
νP−νn > 28 (5)
Nn−Np1 > 0.3 (6)
なる条件式を満足することが好ましい。
The positive lens and the respective average refractive index of the negative lens Np constituting the first lens unit L1, Nn, the average Abbe numbers respectively vp, .nu.n, most refractive index of the positive lens constituting the first lens unit L1 is low When the refractive index of the lens is Np1,
1.7 <Np <1.8 (3)
0.1 <Nn-Np <0.2 (4)
νP-νn> 28 (5)
Nn-Np1> 0.3 (6)
It is preferable to satisfy the following conditional expression:

(3)式を満足するように、正レンズの平均屈折率を1.7以上とすることで曲率を小さくすることが可能になり、正レンズを薄くし、前玉レンズ径の小型化に寄与する。且つ(4)式を満足するように、負レンズとの屈折率差を0.1以上確保し、(5)式を満足するように、アッベ数差を28以上とし、(6)式を満足するように、少なくとも一つの正レンズとの屈折率差を0.3以上確保することにより、第1レンズ群L1で発生する色収差を効果的に消すことが可能となる。   By satisfying the equation (3), the curvature of the positive lens can be reduced by setting the average refractive index of the positive lens to 1.7 or more, contributing to the reduction of the front lens diameter by reducing the thickness of the positive lens. To do. In addition, the refractive index difference with the negative lens is 0.1 or more so as to satisfy the expression (4), and the Abbe number difference is 28 or more so as to satisfy the expression (5), and the expression (6) is satisfied. As described above, by ensuring a refractive index difference of 0.3 or more with respect to at least one positive lens, it is possible to effectively eliminate chromatic aberration generated in the first lens unit L1.

これらの限界値はどちらに超えても色収差の補正過剰か、補正不足となり望遠端での軸上色収差、広角端での倍率色収差の残留収差を残すこととなる。   If either of these limits is exceeded, the chromatic aberration will be overcorrected or undercorrected, leaving the longitudinal chromatic aberration at the telephoto end and the residual chromatic aberration at the wide angle end.

また、各数値実施例のズームレンズは、第1レンズ群L1の厚さ(第1レンズ群L1の最も物体側の面から最も像側の面までの光軸上の間隔)をDF、広角端における全系の焦点距離をfwとするとき、
3.0 < DF/fw < 5.0 (7)
なる条件式を満足している。
In the zoom lens of each numerical example, the thickness of the first lens unit L1 (the distance on the optical axis from the most object-side surface to the most image-side surface of the first lens unit L1) is DF, and the wide-angle end. Where fw is the focal length of the entire system at
3.0 <DF / fw <5.0 (7)
The following conditional expression is satisfied .

この条件式は第1レンズ群L1の合成厚であるDFを全体焦点距離に対して正規化したものである。(7)式の上限値を超えて、第1レンズ群L1が厚くなると前玉レンズ径の増大を招き、特にレンズ全体に対する重量比率の最も大きい前玉重量が増大するため好ましくない。また下限値を超えて第1レンズ群L1を薄くしようとすると、正レンズの外周厚が小さくなり加工が困難となるため好ましくない。   This conditional expression is obtained by normalizing DF, which is the combined thickness of the first lens unit L1, with respect to the total focal length. If the upper limit of the expression (7) is exceeded and the first lens unit L1 is thick, the front lens diameter increases, and the front lens weight, which has the largest weight ratio to the entire lens, increases. Further, it is not preferable to make the first lens unit L1 thin beyond the lower limit value because the outer peripheral thickness of the positive lens becomes small and processing becomes difficult.

第4レンズ群L4は少なくとも1枚の負レンズと2枚の正レンズで構成し、かつ少なくとも1つ非球面を有するようにするのが望ましい。   The fourth lens unit L4 is preferably composed of at least one negative lens and two positive lenses, and has at least one aspherical surface.

これによれば3CCD対応のカメラに適用し、バックフォーカスを伸ばしたとき第4レンズ群L4の屈折力が強くなると共に、軸上光線が第4レンズ群L4を通る高さが高くなって球面収差が発生するのを良好に補正することが容易となる。   According to this, when applied to a 3CCD camera, when the back focus is extended, the refractive power of the fourth lens unit L4 increases, and the height of the axial ray passing through the fourth lens unit L4 increases, resulting in spherical aberration. It is easy to properly correct the occurrence of the above.

第4レンズ群L4は少なくとも非球面1面を有する両レンズ面が凸面の正レンズ、物体側に凸面を向けた負メニスカスレンズ、両レンズ面が凸面の正レンズより構成することである。本提案に従って長いバックフォーカスを得るために第3レンズ群L3から射出してくる軸上光線は高い位置で第4レンズ群L4に入射してくる。そのため第4レンズ群L4の最初に非球面を有する正レンズを配置することにより球面収差の補正をより有効に行うことができる。第4レンズ群L4中に負レンズを配置することによって光軸方向に移動する際の色収差の変動を小さくし高い光学性能を維持することを可能ならしめている。   The fourth lens unit L4 is composed of a positive lens having at least one aspheric surface and convex both surfaces, a negative meniscus lens having a convex surface facing the object side, and a positive lens having both surfaces convex. In order to obtain a long back focus according to the present proposal, the on-axis light beam emitted from the third lens unit L3 enters the fourth lens unit L4 at a high position. Therefore, the spherical aberration can be corrected more effectively by arranging a positive lens having an aspheric surface at the beginning of the fourth lens unit L4. By disposing a negative lens in the fourth lens unit L4, it is possible to reduce variation in chromatic aberration when moving in the optical axis direction and maintain high optical performance.

また第4レンズ群L4の焦点距離をf4とするとき、
4.5 < f4/fw < 8.0 (8)
なる条件式を満足することでバックフォーカスの確保は更に容易になる。
When the focal length of the fourth lens unit L4 is f4,
4.5 <f4 / fw <8.0 (8)
Satisfying the following conditional expression makes it easier to secure the back focus.

(8)式の下限値を超えて第4レンズ群L4の焦点距離が小さくすると、超広角ズームレンズを設計する際に適切なバックフォーカスを得ることが難しくなる。(8)式の上限値を超えて第4レンズ群L4の焦点距離を長くすると、色分解用プリズム等を確保するのに必要以上の空間を維持させることとなり大口径化することが困難となる。   When the focal length of the fourth lens unit L4 is reduced beyond the lower limit of the equation (8), it is difficult to obtain an appropriate back focus when designing an ultra wide-angle zoom lens. If the focal length of the fourth lens unit L4 is increased beyond the upper limit of the expression (8), a space more than necessary for maintaining the color separation prism and the like is maintained, and it becomes difficult to increase the diameter. .

更に(8)式は、
5.0 < f4/fw < 6. (8a)
の範囲にあることが好ましい。
Furthermore, equation (8) is
5.0 <f4 / fw <6. (8a)
It is preferable that it exists in the range.

次に数値実施例1〜4の数値データを示す。数値実施例において、fは焦点距離、FnoはFナンバー、ωは半画角である。iは物体側より数えた順序を示し、riは第i番目の面の曲率半径、diは第i番目の面と第(i+1)番目の面との軸上間隔、niとνiは各々第i番目の材料のd線を基準とした屈折率とアッベ数である。   Next, numerical data of numerical examples 1 to 4 will be shown. In the numerical examples, f is a focal length, Fno is an F number, and ω is a half angle of view. i indicates the order counted from the object side, ri is the radius of curvature of the i-th surface, di is the axial distance between the i-th surface and the (i + 1) -th surface, and ni and νi are i-th The refractive index and the Abbe number based on the d-line of the second material.

数値実施例1におけるR31からR37、数値実施例2におけるR28からR32、数値実施例3におけるR31からR36、数値実施例4におけるR31からR36、数値実施例5におけるR29からR35は、各々ローパスフィルター、赤外カットフィルター、三色分解プリズム、CCDカバーガラス等に相当する。   R31 to R37 in Numerical Example 1; R28 to R32 in Numerical Example 2; R31 to R36 in Numerical Example 3; R31 to R36 in Numerical Example 4; and R29 to R35 in Numerical Example 5 are low-pass filters. It corresponds to an infrared cut filter, a three-color separation prism, a CCD cover glass, and the like.

非球面形状は、光の進行方向を正とし、Xを光軸方向の面頂点からの変位量、hを光軸と垂直な方向の光軸からの高さ、Rを近軸曲率半径、Kを円錐定数、B〜Eを各々非球面係数とするとき、   The aspherical shape is such that the traveling direction of light is positive, X is the amount of displacement from the surface vertex in the optical axis direction, h is the height from the optical axis in the direction perpendicular to the optical axis, R is the paraxial radius of curvature, K Is a conic constant, and B to E are aspherical coefficients, respectively.

Figure 0004677210
Figure 0004677210

なる式で表している。なお「e±Z」は「×10±Z」を意味する。 It is expressed by the following formula. “E ± Z” means “× 10 ± Z ”.

又前述の各条件式と数値実施例の関係を表1に示す。   Table 1 shows the relationship between the above-described conditional expressions and numerical examples.

(数値実施例1)
f=10〜 116.6 Fno= 1.66 〜 1.95 2ω=58.5゜ 〜 5.5゜
R 1 = 2432.438 D 1 = 5.83 N 1 = 1.84666 ν 1 = 23.8
R 2 = 121.734 D 2 = 17.07 N 2 = 1.48749 ν 2 = 70.2
R 3 = -818.931 D 3 = 0.54
R 4 = 167.005 D 4 = 10.15 N 3 = 1.83480 ν 3 = 42.7
R 5 = 2351.013 D 5 = 0.54
R 6 = 92.340 D 6 = 10.59 N 4 = 1.80400 ν 4 = 46.6
R 7 = 261.296 D 7 = 可変
R 8 = 161.055 D 8 = 2.27 N 5 = 1.80609 ν 5 = 40.9
R 9 = 19.845 D 9 = 10.31
R10 = -89.388 D10 = 2.38 N 6 = 1.77249 ν 6 = 49.6
R11 = 68.384 D11 = 2.92
R12 = 39.816 D12 = 9.72 N 7 = 1.84666 ν 7 = 23.8
R13 = -53.929 D13 = 1.94 N 8 = 1.83400 ν 8 = 37.2
R14 = 86.612 D14 = 可変
R15 = フレアー絞り D15 = 6.48
R16 = 虹彩絞り D16 = 12.96
r17 = -55.284 D17 = 1.94 N 9 = 1.69680 ν 9 = 55.5
R18 = 35.267 D18 = 6.91 N10 = 1.68329 ν10 = 31.4
R19*= -131.198 D19 = 1.94
R20*= 44.978 D20 = 4.75 N11 = 1.58913 ν11 = 61.3
R21 = 132.008 D21 = 2.16 N12 = 1.80518 ν12 = 25.4
R22 = 57.994 D22 = 1.78
R23 = 174.373 D23 = 5.83 N13 = 1.48749 ν13 = 70.2
R24 = -75.386 D24 = 可変
R25*= 53.816 D25 = 7.13 N14 = 1.583130 ν14 = 59.4
R26 = -236.538 D26 = 0.43
R27 = 64.274 D27 = 1.94 N15 = 1.846660 ν15 = 23.8
R28 = 29.798 D28 = 10.59 N16 = 1.487490 ν16 = 70.2
R29 = -86.155 D29 = 可変
R30 = ∞ D30 = 3.89 N17 = 1.516330 ν17 = 64.1
R31 = ∞ D31 = 2.16
R32 = ∞ D32 = 46.98 N18 = 1.516330 ν18 = 64.1
R33 = ∞ D33 = 6.30
R34 = ∞

\焦点距離 10.0 30.2 116.6
可変間隔\
D 7 2.118 45.738 74.818
D14 78.713 35.093 6.013
D24 21.593 16.133 18.979
D29 6.162 11.621 8.776

*印は非球面を表し、非球面係数は
R19 k=-124.820 B=-6.42746e-06 C=1.99763e-08 D=-2.97435e-11 E=0.0
R20 k=-0.19830 B=-1.63530e-06 C=3.01342e-09 D=-6.90812e-12 E=0.0
R25 k=-0.68858 B=-8.53526e-07 C=5.45737e-10 D=-1.72620e-13 E=0.0

(数値実施例2)
f=10〜 116.8 Fno= 1.66 〜 1.95 2ω=58.5゜ 〜 5.5゜
R 1 = 697.890 D 1 = 5.44 N 1 = 1.846660 ν 1 = 23.8
R 2 = 107.693 D 2 = 16.71 N 2 = 1.496999 ν 2 = 81.5
R 3 = 1560.073 D 3 = 0.37
R 4 = 154.122 D 4 = 10.77 N 3 = 1.804000 ν 3 = 46.6
R 5 = -254618.720 D 5 = 0.48
R 6 = 95.557 D 6 = 11.46 N 4 = 1.834000 ν 4 = 37.2
R 7 = 260.308 D 7 = 可変
R 8 = 177.036 D 8 = 2.16 N 5 = 1.806098 ν 5 = 40.9
R 9 = 21.017 D 9 = 10.96
R10 = -61.404 D10 = 2.91 N 6 = 1.772499 ν 6 = 49.6
R11 = 56.089 D11 = 2.92
R12 = 46.422 D12 = 7.76 N 7 = 1.846660 ν 7 = 23.8
R13 = -82.547 D13 = 2.14 N 8 = 1.834000 ν 8 = 37.2
R14 = 280.162 D14 = 可変
R15 = 絞り D15 = 19.43
R16 = -51.178 D16 = 1.94 N 9 = 1.696797 ν 9 = 55.5
R17 = 41.435 D17 = 6.69 N10 = 1.688931 ν10 = 31.1
R18*= -105.058 D18 = 1.94
R19*= 36.414 D19 = 6.91 N11 = 1.589130 ν11 = 61.3
R20 = 189.839 D20 = 2.16 N12 = 1.805181 ν12 = 25.4
R21 = 54.043 D21 = 2.66
R22 = 1625.338 D22 = 6.91 N13 = 1.487490 ν13 = 70.2
R23 = -64.107 D23 = 可変
R24*= 58.424 D24 = 7.56 N14 = 1.583126 ν14 = 59.4
R25 = -196.169 D25 = 0.43
R26 = 59.587 D26 = 1.94 N15 = 1.846660 ν15 = 23.9
R27 = 30.636 D27 = 10.15 N16 = 1.487490 ν16 = 70.2
R28 = -116.012 D28 = 可変
R29 = ∞ D29 = 3.89 N17 = 1.516330 ν17 = 64.1
R30 = ∞ D30 = 2.16
R31 = ∞ D31 = 46.84 N18 = 1.516330 ν18 = 64.2
R32 = ∞

\焦点距離 10.0 29.6 116.8
可変間隔\
D 7 2.116 45.106 73.766
D14 78.660 35.670 7.010
D23 23.207 18.281 21.502
D28 6.158 11.083 7.863

*印は非球面を表し、非球面係数は
R18 k=-96.7046 B=-1.04102e-05 C=3.06287e-08 D=-4.39663e-11 E=0.0
R19 k=-1.09924 B=-1.25161e-06 C=6.10487e-09 D=-9.86198e-12 E=0.0
R24 k= 1.31001 B=-2.05391e-06 C=-1.11659e-09 D=2.05162e-12 E=-2.01940e-15

(数値実施例3)
f=10〜 117.2 Fno= 1.66 〜 1.95 2ω=58.5゜ 〜 5.5゜
R 1 = 1718.915 D 1 = 5.39 N 1 = 1.846660 ν 1 = 23.8
R 2 = 111.669 D 2 = 16.60 N 2 = 1.496999 ν 2 = 81.5
R 3 = -6364.569 D 3 = 0.54
R 4 = 157.475 D 4 = 11.64 N 3 = 1.804000 ν 3 = 46.6
R 5 = -2753.019 D 5 = 0.54
R 6 = 93.097 D 6 = 10.57 N 4 = 1.834000 ν 4 = 37.2
R 7 = 237.557 D 7 = 可変
R 8 = 147.493 D 8 = 2.16 N 5 = 1.806098 ν 5 = 40.9
R 9 = 19.642 D 9 = 10.33
R10 = -75.204 D10 = 2.91 N 6 = 1.772499 ν 6 = 49.6
R11 = 87.050 D11 = 2.92
R12 = 41.118 D12 = 8.30 N 7 = 1.846660 ν 7 = 23.8
R13 = -54.014 D13 = 1.94 N 8 = 1.834000 ν 8 = 37.2
R14 = 83.927 D14 = 可変
R15 = 虹彩絞り D15 = 4.31
R16 = フレアー絞り D16 = 15.09
R17 = -59.736 D17 = 1.94 N 9 = 1.696797 ν 9 = 55.5
R18 = 36.801 D18 = 7.98 N10 = 1.688931 ν10 = 31.1
R19*= -124.316 D19 = 1.94
R20*= 41.822 D20 = 6.90 N11 = 1.589130 ν11 = 61.3
R21 = 149.700 D21 = 2.16 N12 = 1.805181 ν12 = 25.4
R22 = 55.160 D22 = 2.66
R23 = 257.115 D23 = 6.90 N13 = 1.487490 ν13 = 70.2
R24 = -68.575 D24 = 可変
R25*= 52.975 D25 = 7.55 N14 = 1.583126 ν14 = 59.4
R26 = -285.863 D26 = 0.43
R27 = 60.981 D27 = 1.94 N15 = 1.846660 ν15 = 23.9
R28 = 29.058 D28 = 10.57 N16 = 1.487490 ν16 = 70.2
R29 = -100.378 D29 = 可変
R30 = ∞ D30 = 3.88 N17 = 1.516330 ν17 = 64.1
R31 = ∞ D31 = 2.16
R32 = ∞ D32 = 46.79 N18 = 1.516330 ν18 = 64.1
R33 = ∞

\焦点距離 10.00 30.0 117.2
可変間隔\
D 7 2.114 45.554 74.514
D14 78.575 35.135 6.175
D24 19.973 14.705 17.678
D29 6.151 11.420 8.447

*印は非球面を表し、非球面係数は
R19 k=-102.330 B=-6.40087e-06 C=2.01455e-08 D=-3.13331e-11 E=0.00
R20 k=-0.69845 B=-1.22524e-06 C=4.96336e-09 D=-9.93644e-12 E=0.00
R25 k=-0.03891 B=-9.17462e-07 C=-5.10062e-10 D=1.79248e-12 E=-1.69755e-15

(数値実施例4)
f=10〜 116.1 Fno= 1.66 〜 1.95 2ω=58.5゜ 〜 5.5゜
R 1 = 10584.097 D 1 = 5.82 N 1 = 1.846660 ν 1 = 23.9
R 2 = 124.113 D 2 = 17.25 N 2 = 1.487490 ν 2 = 70.2
R 3 = -632.187 D 3 = 0.54
R 4 = 163.602 D 4 = 10.13 N 3 = 1.834807 ν 3 = 42.7
R 5 = 2439.838 D 5 = 0.54
R 6 = 91.838 D 6 = 10.56 N 4 = 1.804000 ν 4 = 46.6
R 7 = 249.308 D 7 = 可変
R 8 = 153.472 D 8 = 2.26 N 5 = 1.806098 ν 5 = 40.9
R 9 = 19.556 D 9 = 10.29
R10 = -93.040 D10 = 2.37 N 6 = 1.772499 ν 6 = 49.6
R11 = 65.428 D11 = 2.91
R12 = 38.665 D12 = 9.70 N 7 = 1.846660 ν 7 = 23.8
R13 = -57.519 D13 = 1.94 N 8 = 1.834000 ν 8 = 37.2
R14 = 84.333 D14 = 可変
R15 = フレアー絞り D15 = 4.31
R16 = 虹彩絞り D16 = 15.09
R17 = -53.227 D17 = 1.94 N 9 = 1.696797 ν 9 = 55.5
R18 = 35.905 D18 = 7.65 N10 = 1.683290 ν10 = 31.4
R19*= -128.190 D19 = 1.94
R20*= 45.679 D20 = 6.47 N11 = 1.589130 ν11 = 61.3
R21 = 121.490 D21 = 2.16 N12 = 1.805181 ν12 = 25.4
R22 = 57.309 D22 = 1.75
R23 = 153.556 D23 = 5.82 N13 = 1.487490 ν13 = 70.2
R24 = -77.312 D24 = 可変
R25*= 52.359 D25 = 7.11 N14 = 1.583126 ν14 = 59.4
R26 = -229.097 D26 = 0.43
R27 = 70.837 D27 = 1.94 N15 = 1.846660 ν15 = 23.9
R28 = 31.363 D28 = 10.76 N16 = 1.487490 ν16 = 70.2
R29 = -84.181 D29 = 可変
R30 = ∞ D30 = 3.88 N17 = 1.516330 ν17 = 64.1
R31 = ∞ D31 = 2.16
R32 = ∞ D32 = 46.89 N18 = 1.516330 ν18 = 64.2
R33 = ∞

\焦点距 10.000 30.2 116.1
可変間隔\
D 7 2.114 45.626 74.634
D14 78.555 35.043 6.035
D24 20.462 14.961 17.779
D29 10.366 15.867 13.049

*印は非球面を表し、非球面係数は
R19 k=-102.123 B=-5.87959e-06 C=1.84834e-08 D=-3.36183e-11 E=1.81092e-14
R20 k=-0.13863 B=-1.50799e-06 C=2.90309e-09 D=-9.46585e-12 E=7.48131e-15
R25 k=-1.03360 B=-8.21071e-07 C=9.59867e-10 D=-1.14958e-12 E=9.35384e-16
(Numerical example 1)
f = 10-116.6 Fno = 1.66-1.95 2ω = 58.5 ° -5.5 °
R 1 = 2432.438 D 1 = 5.83 N 1 = 1.84666 ν 1 = 23.8
R 2 = 121.734 D 2 = 17.07 N 2 = 1.48749 ν 2 = 70.2
R 3 = -818.931 D 3 = 0.54
R 4 = 167.005 D 4 = 10.15 N 3 = 1.83480 ν 3 = 42.7
R 5 = 2351.013 D 5 = 0.54
R 6 = 92.340 D 6 = 10.59 N 4 = 1.80 400 ν 4 = 46.6
R 7 = 261.296 D 7 = variable
R 8 = 161.055 D 8 = 2.27 N 5 = 1.80609 ν 5 = 40.9
R 9 = 19.845 D 9 = 10.31
R10 = -89.388 D10 = 2.38 N 6 = 1.77249 ν 6 = 49.6
R11 = 68.384 D11 = 2.92
R12 = 39.816 D12 = 9.72 N 7 = 1.84666 ν 7 = 23.8
R13 = -53.929 D13 = 1.94 N 8 = 1.83400 ν 8 = 37.2
R14 = 86.612 D14 = variable
R15 = flare aperture D15 = 6.48
R16 = iris diaphragm D16 = 12.96
r17 = -55.284 D17 = 1.94 N 9 = 1.69680 ν 9 = 55.5
R18 = 35.267 D18 = 6.91 N10 = 1.68329 ν10 = 31.4
R19 * = -131.198 D19 = 1.94
R20 * = 44.978 D20 = 4.75 N11 = 1.58913 ν11 = 61.3
R21 = 132.008 D21 = 2.16 N12 = 1.80518 ν12 = 25.4
R22 = 57.994 D22 = 1.78
R23 = 174.373 D23 = 5.83 N13 = 1.48749 ν13 = 70.2
R24 = -75.386 D24 = variable
R25 * = 53.816 D25 = 7.13 N14 = 1.583130 ν14 = 59.4
R26 = -236.538 D26 = 0.43
R27 = 64.274 D27 = 1.94 N15 = 1.846660 ν15 = 23.8
R28 = 29.798 D28 = 10.59 N16 = 1.487490 ν16 = 70.2
R29 = -86.155 D29 = variable
R30 = ∞ D30 = 3.89 N17 = 1.516330 ν17 = 64.1
R31 = ∞ D31 = 2.16
R32 = ∞ D32 = 46.98 N18 = 1.516330 ν18 = 64.1
R33 = ∞ D33 = 6.30
R34 = ∞

\ Focal length 10.0 30.2 116.6
Variable interval \
D 7 2.118 45.738 74.818
D14 78.713 35.093 6.013
D24 21.593 16.133 18.979
D29 6.162 11.621 8.776

* Indicates an aspheric surface, and the aspheric coefficient is
R19 k = -124.820 B = -6.42746e-06 C = 1.99763e-08 D = -2.97435e-11 E = 0.0
R20 k = -0.19830 B = -1.63530e-06 C = 3.01342e-09 D = -6.90812e-12 E = 0.0
R25 k = -0.68858 B = -8.53526e-07 C = 5.45737e-10 D = -1.72620e-13 E = 0.0

(Numerical example 2)
f = 10 to 116.8 Fno = 1.66 to 1.95 2ω = 58.5 ° to 5.5 °
R 1 = 697.890 D 1 = 5.44 N 1 = 1.846660 ν 1 = 23.8
R 2 = 107.693 D 2 = 16.71 N 2 = 1.496999 ν 2 = 81.5
R 3 = 1560.073 D 3 = 0.37
R 4 = 154.122 D 4 = 10.77 N 3 = 1.804000 ν 3 = 46.6
R 5 = -254618.720 D 5 = 0.48
R 6 = 95.557 D 6 = 11.46 N 4 = 1.834000 ν 4 = 37.2
R 7 = 260.308 D 7 = Variable
R 8 = 177.036 D 8 = 2.16 N 5 = 1.806098 ν 5 = 40.9
R 9 = 21.017 D 9 = 10.96
R10 = -61.404 D10 = 2.91 N 6 = 1.772499 ν 6 = 49.6
R11 = 56.089 D11 = 2.92
R12 = 46.422 D12 = 7.76 N 7 = 1.846660 ν 7 = 23.8
R13 = -82.547 D13 = 2.14 N 8 = 1.834000 ν 8 = 37.2
R14 = 280.162 D14 = variable
R15 = Aperture D15 = 19.43
R16 = -51.178 D16 = 1.94 N 9 = 1.696797 ν 9 = 55.5
R17 = 41.435 D17 = 6.69 N10 = 1.688931 ν10 = 31.1
R18 * = -105.058 D18 = 1.94
R19 * = 36.414 D19 = 6.91 N11 = 1.589130 ν11 = 61.3
R20 = 189.839 D20 = 2.16 N12 = 1.805181 ν12 = 25.4
R21 = 54.043 D21 = 2.66
R22 = 1625.338 D22 = 6.91 N13 = 1.487490 ν13 = 70.2
R23 = -64.107 D23 = variable
R24 * = 58.424 D24 = 7.56 N14 = 1.583126 ν14 = 59.4
R25 = -196.169 D25 = 0.43
R26 = 59.587 D26 = 1.94 N15 = 1.846660 ν15 = 23.9
R27 = 30.636 D27 = 10.15 N16 = 1.487490 ν16 = 70.2
R28 = -116.012 D28 = variable
R29 = ∞ D29 = 3.89 N17 = 1.516330 ν17 = 64.1
R30 = ∞ D30 = 2.16
R31 = ∞ D31 = 46.84 N18 = 1.516330 ν18 = 64.2
R32 = ∞

\ Focal length 10.0 29.6 116.8
Variable interval \
D 7 2.116 45.106 73.766
D14 78.660 35.670 7.010
D23 23.207 18.281 21.502
D28 6.158 11.083 7.863

* Indicates an aspheric surface, and the aspheric coefficient is
R18 k = -96.7046 B = -1.04102e-05 C = 3.06287e-08 D = -4.39663e-11 E = 0.0
R19 k = -1.09924 B = -1.25161e-06 C = 6.10487e-09 D = -9.86198e-12 E = 0.0
R24 k = 1.31001 B = -2.05391e-06 C = -1.11659e-09 D = 2.05162e-12 E = -2.01940e-15

(Numerical Example 3)
f = 10 ~ 117.2 Fno = 1.66 ~ 1.95 2ω = 58.5 ° ~ 5.5 °
R 1 = 1718.915 D 1 = 5.39 N 1 = 1.846660 ν 1 = 23.8
R 2 = 111.669 D 2 = 16.60 N 2 = 1.496999 ν 2 = 81.5
R 3 = -6364.569 D 3 = 0.54
R 4 = 157.475 D 4 = 11.64 N 3 = 1.804000 ν 3 = 46.6
R 5 = -2753.019 D 5 = 0.54
R 6 = 93.097 D 6 = 10.57 N 4 = 1.834000 ν 4 = 37.2
R 7 = 237.557 D 7 = variable
R 8 = 147.493 D 8 = 2.16 N 5 = 1.806098 ν 5 = 40.9
R 9 = 19.642 D 9 = 10.33
R10 = -75.204 D10 = 2.91 N 6 = 1.772499 ν 6 = 49.6
R11 = 87.050 D11 = 2.92
R12 = 41.118 D12 = 8.30 N 7 = 1.846660 ν 7 = 23.8
R13 = -54.014 D13 = 1.94 N 8 = 1.834000 ν 8 = 37.2
R14 = 83.927 D14 = variable
R15 = iris diaphragm D15 = 4.31
R16 = flare aperture D16 = 15.09
R17 = -59.736 D17 = 1.94 N 9 = 1.696797 ν 9 = 55.5
R18 = 36.801 D18 = 7.98 N10 = 1.688931 ν10 = 31.1
R19 * = -124.316 D19 = 1.94
R20 * = 41.822 D20 = 6.90 N11 = 1.589130 ν11 = 61.3
R21 = 149.700 D21 = 2.16 N12 = 1.805181 ν12 = 25.4
R22 = 55.160 D22 = 2.66
R23 = 257.115 D23 = 6.90 N13 = 1.487490 ν13 = 70.2
R24 = -68.575 D24 = variable
R25 * = 52.975 D25 = 7.55 N14 = 1.583126 ν14 = 59.4
R26 = -285.863 D26 = 0.43
R27 = 60.981 D27 = 1.94 N15 = 1.846660 ν15 = 23.9
R28 = 29.058 D28 = 10.57 N16 = 1.487490 ν16 = 70.2
R29 = -100.378 D29 = variable
R30 = ∞ D30 = 3.88 N17 = 1.516330 ν17 = 64.1
R31 = ∞ D31 = 2.16
R32 = ∞ D32 = 46.79 N18 = 1.516330 ν18 = 64.1
R33 = ∞

\ Focal length 10.00 30.0 117.2
Variable interval \
D 7 2.114 45.554 74.514
D14 78.575 35.135 6.175
D24 19.973 14.705 17.678
D29 6.151 11.420 8.447

* Indicates an aspheric surface, and the aspheric coefficient is
R19 k = -102.330 B = -6.40087e-06 C = 2.01455e-08 D = -3.13331e-11 E = 0.00
R20 k = -0.69845 B = -1.22524e-06 C = 4.96336e-09 D = -9.93644e-12 E = 0.00
R25 k = -0.03891 B = -9.17462e-07 C = -5.10062e-10 D = 1.79248e-12 E = -1.69755e-15

(Numerical example 4)
f = 10-116.1 Fno = 1.66-1.95 2ω = 58.5 ° -5.5 °
R 1 = 10584.097 D 1 = 5.82 N 1 = 1.846660 ν 1 = 23.9
R 2 = 124.113 D 2 = 17.25 N 2 = 1.487490 ν 2 = 70.2
R 3 = -632.187 D 3 = 0.54
R 4 = 163.602 D 4 = 10.13 N 3 = 1.834807 ν 3 = 42.7
R 5 = 2439.838 D 5 = 0.54
R 6 = 91.838 D 6 = 10.56 N 4 = 1.804000 ν 4 = 46.6
R 7 = 249.308 D 7 = variable
R 8 = 153.472 D 8 = 2.26 N 5 = 1.806098 ν 5 = 40.9
R 9 = 19.556 D 9 = 10.29
R10 = -93.040 D10 = 2.37 N 6 = 1.772499 ν 6 = 49.6
R11 = 65.428 D11 = 2.91
R12 = 38.665 D12 = 9.70 N 7 = 1.846660 ν 7 = 23.8
R13 = -57.519 D13 = 1.94 N 8 = 1.834000 ν 8 = 37.2
R14 = 84.333 D14 = variable
R15 = flare aperture D15 = 4.31
R16 = iris diaphragm D16 = 15.09
R17 = -53.227 D17 = 1.94 N 9 = 1.696797 ν 9 = 55.5
R18 = 35.905 D18 = 7.65 N10 = 1.683290 ν10 = 31.4
R19 * = -128.190 D19 = 1.94
R20 * = 45.679 D20 = 6.47 N11 = 1.589130 ν11 = 61.3
R21 = 121.490 D21 = 2.16 N12 = 1.805181 ν12 = 25.4
R22 = 57.309 D22 = 1.75
R23 = 153.556 D23 = 5.82 N13 = 1.487490 ν13 = 70.2
R24 = -77.312 D24 = variable
R25 * = 52.359 D25 = 7.11 N14 = 1.583126 ν14 = 59.4
R26 = -229.097 D26 = 0.43
R27 = 70.837 D27 = 1.94 N15 = 1.846660 ν15 = 23.9
R28 = 31.363 D28 = 10.76 N16 = 1.487490 ν16 = 70.2
R29 = -84.181 D29 = variable
R30 = ∞ D30 = 3.88 N17 = 1.516330 ν17 = 64.1
R31 = ∞ D31 = 2.16
R32 = ∞ D32 = 46.89 N18 = 1.516330 ν18 = 64.2
R33 = ∞

\ Focal length 10.000 30.2 116.1
Variable interval \
D 7 2.114 45.626 74.634
D14 78.555 35.043 6.035
D24 20.462 14.961 17.779
D29 10.366 15.867 13.049

* Indicates an aspheric surface, and the aspheric coefficient is
R19 k = -102.123 B = -5.87959e-06 C = 1.84834e-08 D = -3.36183e-11 E = 1.81092e-14
R20 k = -0.13863 B = -1.50799e-06 C = 2.90309e-09 D = -9.46585e-12 E = 7.48131e-15
R25 k = -1.03360 B = -8.21071e-07 C = 9.59867e-10 D = -1.14958e-12 E = 9.35384e-16

Figure 0004677210
Figure 0004677210

次に数値実施例1〜4のズームレンズを撮影光学系として用いた光学機器の実施例を、図9を用いて説明する。   Next, an embodiment of an optical apparatus using the zoom lenses of Numerical Examples 1 to 4 as a photographing optical system will be described with reference to FIG.

図9は、本発明のズームレンズをビデオカメラに用いた例である。図9において、10はカメラ本体、11は数値実施例1〜4のズームレンズによって構成された撮影光学系、12は撮影光学系11によって形成される被写体像を受光するCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)、13は固体撮像素子12が受光した被写体像を記録するメモリ、14は被写体像を観察するためのファインダーである。ファインダー14としては、光学ファインダーや液晶パネル等の表示素子に表示された被写体像を観察するタイプのファインダーが考えられる。   FIG. 9 shows an example in which the zoom lens of the present invention is used in a video camera. In FIG. 9, 10 is a camera body, 11 is a photographing optical system constituted by the zoom lenses of Numerical Examples 1 to 4, 12 is a CCD sensor, a CMOS sensor, or the like that receives a subject image formed by the photographing optical system 11. A solid-state image sensor (photoelectric conversion element), 13 is a memory for recording a subject image received by the solid-state image sensor 12, and 14 is a viewfinder for observing the subject image. As the finder 14, a finder of a type that observes a subject image displayed on a display element such as an optical finder or a liquid crystal panel can be considered.

このように本発明のズームレンズをビデオカメラ等の撮像装置に適用することにより、小型で高い光学性能を有する撮像装置が実現できる。   Thus, by applying the zoom lens of the present invention to an imaging apparatus such as a video camera, an imaging apparatus having a small size and high optical performance can be realized.

数値実施例1のズームレンズのレンズ断面図である。2 is a lens cross-sectional view of a zoom lens according to Numerical Example 1. FIG. 数値実施例2のズームレンズのレンズ断面図である。6 is a lens cross-sectional view of a zoom lens according to Numerical Example 2. FIG. 数値実施例3のズームレンズのレンズ断面図である。10 is a lens cross-sectional view of a zoom lens according to Numerical Example 3. FIG. 数値実施例4のズームレンズのレンズ断面図である。6 is a lens cross-sectional view of a zoom lens according to Numerical Example 4. FIG. 数値実施例1のズームレンズの収差図である。FIG. 6 is an aberration diagram of the zoom lens according to Numerical Example 1. 数値実施例2のズームレンズの収差図である。FIG. 6 is an aberration diagram of the zoom lens according to Numerical Example 2. 数値実施例3のズームレンズの収差図である。FIG. 10 is an aberration diagram of the zoom lens according to Numerical example 3; 数値実施例4のズームレンズの収差図である。FIG. 10 is an aberration diagram of the zoom lens according to Numerical example 4; ビデオカメラの要部概略図である。It is a principal part schematic diagram of a video camera.

符号の説明Explanation of symbols

L1 第1レンズ群
L2 第2レンズ群
L3 第3レンズ群
L4 第4レンズ群
SP 開口絞り
IP 像面
G ガラスブロック
L3a 第3aレンズ群
L3b 第3bレンズ群
L1 1st lens group L2 2nd lens group L3 3rd lens group L4 4th lens group SP Aperture stop IP Image surface G Glass block L3a 3a lens group L3b 3b lens group

Claims (8)

物体側より像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、正の屈折力の第4レンズ群より構成され、ズーミングに際し前記第2レンズ群と前記第4レンズ群が移動するズームレンズであって、前記第1レンズ群は、物体側から像側へ順に、負レンズと正レンズからなる接合レンズと2枚の正レンズからなり、前記第3レンズ群は、物体側から像側へ順に、最も物体側の面が凹形状で負の屈折力の第3aレンズ群と、正の屈折力の第3bレンズ群から成り、該3bレンズ群を光軸と垂直方向の成分を持つように移動させて、前記ズームレンズが形成する像の位置を変化させると共に、前記第3aレンズ群より物体側に絞りユニットを有し、前記第1レンズ群の最も物体側の面から最も像側の面までの光軸上の間隔をDF、広角端における全系の焦点距離をfwとするとき、
4.472≦DF/fw<5.0
なる条件式を満足することを特徴とするズームレンズ。
In order from the object side to the image side, the lens unit includes a first lens unit having a positive refractive power, a second lens unit having a negative refractive power, a third lens unit having a positive refractive power, and a fourth lens group having a positive refractive power. , a zoom lens, wherein the hand the second lens group the fourth lens group moves during zooming, the first lens group comprises, in order from the object side to the image side, a cemented lens consisting of a negative lens and a positive lens and 2 The third lens group includes, in order from the object side to the image side, the third lens group having a negative refractive power and a 3a lens group having a negative refractive power, and a 3b lens having a positive refractive power. made from the group, the 3b-th lens group is moved so as to have an optical axis vertical component, together with changing the position of the image where the zoom lens is formed, the first 3a lens aperture unit on the object side of the group It has a most image from the most object side surface of the first lens group When the distance on the optical axis to the surface DF, the focal length of the entire system at the wide angle end fw,
4.472 ≦ DF / fw <5.0
A zoom lens satisfying the following conditional expression:
物体側より像側へ順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、正の屈折力の第4レンズ群より構成され、ズーミングに際し前記第2レンズ群と前記第4レンズ群が移動するズームレンズであって、前記第1レンズ群は、物体側から像側へ順に、負レンズと正レンズからなる接合レンズと2枚の正レンズからなり、前記第3レンズ群は、物体側から像側へ順に、負の屈折力の第3aレンズ群と、正の屈折力の第3bレンズ群からなり、前記第3レンズ群と開口絞りとの光軸上における間隔をD、前記第3レンズ群と前記第4レンズ群の広角端における合成焦点距離をf34、前記第1レンズ群の最も物体側の面から最も像側の面までの光軸上の間隔をDF、広角端における全系の焦点距離をfwとするとき、
0.1×f34<D<0.6×f34
4.472≦DF/fw<5.0
なる条件式を満足することを特徴とするズームレンズ。
In order from the object side to the image side, the lens unit includes a first lens unit having a positive refractive power, a second lens unit having a negative refractive power, a third lens unit having a positive refractive power, and a fourth lens group having a positive refractive power. , a zoom lens, wherein the hand the second lens group the fourth lens group moves during zooming, the first lens group comprises, in order from the object side to the image side, a cemented lens consisting of a negative lens and a positive lens and 2 The third lens group is composed of , in order from the object side to the image side, the third lens group having a negative refractive power and the third lens group having a positive refractive power. and a distance on the optical axis between the aperture stop D, the third combined lens group at the wide angle end of the fourth lens group focal distance f34, the most image side from the most object side surface of the first lens group The distance on the optical axis to the surface is DF, and the focal length of the entire system at the wide angle end is f. When w
0.1 × f34 <D <0.6 × f34
4.472 ≦ DF / fw <5.0
A zoom lens satisfying the following conditional expression:
物体側より像側順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、正の屈折力の第4レンズ群より構成され、ズーミングに際し前記第2レンズ群と前記第4レンズ群が移動するズームレンズであって、前記第1レンズ群は、物体側から像側へ順に、負レンズと正レンズからなる接合レンズと2枚の正レンズからなり、前記第3レンズ群は、物体側から像側へ順に、最も物体側の面が凹形状の負の屈折力の第3aレンズ群と正の屈折力の第3bレンズ群から成り、前記第3bレンズ群は、物体側より像側へ順に、1枚の正レンズ、像側が凹面の負の屈折力のメニスカスレンズ、1枚の正レンズからなり、前記第1レンズ群の最も物体側の面から最も像側の面までの光軸上の間隔をDF、広角端における全系の焦点距離をfwとするとき、
4.472≦DF/fw<5.0
なる条件式を満足することを特徴とするズームレンズ。
In order from the object side to the image side , the lens unit includes a first lens unit having a positive refractive power, a second lens unit having a negative refractive power, a third lens unit having a positive refractive power, and a fourth lens group having a positive refractive power. , a zoom lens, wherein the hand the second lens group the fourth lens group moves during zooming, the first lens group comprises, in order from the object side to the image side, a cemented lens consisting of a negative lens and a positive lens and 2 The third lens group includes, in order from the object side to the image side, the third lens group having a negative refractive power and a third lens group having a positive refractive power. made, the 3b-th lens group includes, in order from the object side to the image side, one positive lens, meniscus lens having negative refractive power of the image side concave surface, Ri Do one positive lens, the first lens group The distance on the optical axis from the most object-side surface to the most image-side surface of The focal length of the entire system when the fw that,
4.472 ≦ DF / fw <5.0
A zoom lens satisfying the following conditional expression:
前記第3aレンズ群と前記第3bレンズ群の焦点距離を各々f3a、f3bとするとき、When the focal lengths of the 3a lens group and the 3b lens group are f3a and f3b, respectively.
1.0<|f3a/f3b|<2.01.0 <| f3a / f3b | <2.0
なる条件式を満足することを特徴とする請求項1乃至3のいずれか1項に記載のズームレンズ。The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
前記第1レンズ群を構成する正レンズと負レンズの平均屈折率を各々Np、Nn、平均アッベ数を各々νp、νn、前記第1レンズ群を構成する正レンズのうち最も屈折率が低いレンズの屈折率をNp1とするとき、Lenses having the lowest refractive index among the positive lenses constituting the first lens group, the average refractive index of the positive lens and the negative lens being Np, Nn, the average Abbe number being νp, νn, respectively. When the refractive index of Np1 is Np1,
1.7<Np<1.81.7 <Np <1.8
0.1<Nn−Np<0.20.1 <Nn-Np <0.2
νP−νn>28νP-νn> 28
Nn−Np1>0.3Nn-Np1> 0.3
なる条件式を満足することを特徴とする請求項1乃至4のいずれか1項に記載のズームレンズ。The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
前記第4レンズ群の焦点距離をf4とするとき、When the focal length of the fourth lens group is f4,
4.5<f4/fw<8.04.5 <f4 / fw <8.0
なる条件式を満足することを特徴とする請求項1乃至5のいずれか1項に記載のズームレンズ。The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
光電変換素子上に像を形成することを特徴とする請求項1乃至6のいずれか1項に記載のズームレンズ。 The zoom lens according to claim 1 , wherein an image is formed on the photoelectric conversion element. 請求項1乃至7のいずれか1項に記載のズームレンズと、該ズームレンズによって形成される像を受光する光電変換素子とを備えることを特徴とする撮像装置。 An imaging apparatus comprising: the zoom lens according to claim 1 ; and a photoelectric conversion element that receives an image formed by the zoom lens.
JP2004229554A 2004-08-05 2004-08-05 Zoom lens and image pickup apparatus using the same Expired - Fee Related JP4677210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004229554A JP4677210B2 (en) 2004-08-05 2004-08-05 Zoom lens and image pickup apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004229554A JP4677210B2 (en) 2004-08-05 2004-08-05 Zoom lens and image pickup apparatus using the same

Publications (3)

Publication Number Publication Date
JP2006047771A JP2006047771A (en) 2006-02-16
JP2006047771A5 JP2006047771A5 (en) 2007-09-13
JP4677210B2 true JP4677210B2 (en) 2011-04-27

Family

ID=36026386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004229554A Expired - Fee Related JP4677210B2 (en) 2004-08-05 2004-08-05 Zoom lens and image pickup apparatus using the same

Country Status (1)

Country Link
JP (1) JP4677210B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103492925A (en) * 2011-04-05 2014-01-01 富士胶片株式会社 Zoom lens and image pick-up device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4650676B2 (en) 2005-03-03 2011-03-16 ソニー株式会社 Zoom lens and imaging device
JP5006575B2 (en) * 2006-05-25 2012-08-22 キヤノン株式会社 Zoom lens and imaging apparatus using the same
JP4944499B2 (en) * 2006-05-31 2012-05-30 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5072447B2 (en) * 2007-06-18 2012-11-14 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5027018B2 (en) 2008-03-12 2012-09-19 富士フイルム株式会社 Zoom lens and imaging device
JP4775672B2 (en) * 2009-01-14 2011-09-21 ソニー株式会社 Zoom lens and imaging device
JP5361496B2 (en) * 2009-03-31 2013-12-04 キヤノン株式会社 Zoom lens and imaging apparatus having the same
CN104395809B (en) * 2012-07-05 2016-08-24 富士胶片株式会社 Zoom lens and camera head
CN104412146B (en) 2012-07-05 2016-12-14 富士胶片株式会社 Zoom lens and camera head
JP6153310B2 (en) * 2012-10-30 2017-06-28 キヤノン株式会社 Zoom lens and imaging apparatus having the same
CN105807411B (en) * 2016-06-01 2018-05-18 福建福光股份有限公司 Compact penetrating fog high definition television zoom lens
JP7245606B2 (en) * 2018-03-30 2023-03-24 株式会社タムロン Zoom lens and imaging device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3359131B2 (en) * 1993-11-04 2002-12-24 キヤノン株式会社 Variable power optical system with anti-vibration function
JP3814406B2 (en) * 1998-02-19 2006-08-30 キヤノン株式会社 Variable magnification optical system having anti-vibration function and camera having the same
JP4672880B2 (en) * 2001-02-19 2011-04-20 キヤノン株式会社 Variable magnification optical system and optical apparatus using the same
JP4829445B2 (en) * 2001-09-25 2011-12-07 キヤノン株式会社 Zoom lens and optical apparatus having the same
JP4109896B2 (en) * 2002-05-01 2008-07-02 キヤノン株式会社 Variable magnification optical system having anti-vibration function and imaging apparatus using the same
JPWO2004025348A1 (en) * 2002-09-10 2006-01-12 松下電器産業株式会社 Zoom lens with image stabilization function

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103492925A (en) * 2011-04-05 2014-01-01 富士胶片株式会社 Zoom lens and image pick-up device

Also Published As

Publication number Publication date
JP2006047771A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
JP5006575B2 (en) Zoom lens and imaging apparatus using the same
US6646804B2 (en) Zoom lens system and optical apparatus using the same
JP4447704B2 (en) Variable magnification optical system and camera having the same
US7227699B2 (en) Zoom lens system and image pick-up apparatus including same
JP4928165B2 (en) Zoom lens and imaging apparatus having the same
JP5053750B2 (en) Zoom lens and imaging apparatus having the same
JP4944499B2 (en) Zoom lens and imaging apparatus having the same
JP4845492B2 (en) Zoom optical system
JP4865239B2 (en) Zoom lens and imaging apparatus having the same
US20060146417A1 (en) Zoom lens system and image pickup apparatus including the same
JP2006058584A (en) Zoom lens and imaging apparatus having the same
JP4677210B2 (en) Zoom lens and image pickup apparatus using the same
JP5361496B2 (en) Zoom lens and imaging apparatus having the same
JP4545849B2 (en) Variable magnification optical system
JP4612795B2 (en) Zoom lens and imaging apparatus using the same
JP4944495B2 (en) Zoom lens and imaging apparatus using the same
JP4630578B2 (en) Zoom lens and imaging apparatus having the same
US20080024881A1 (en) Wide converter lens and image pickup apparatus equipped with the wide converter lens
JP4717399B2 (en) Zoom lens and imaging apparatus having the same
JP2009198656A (en) Zoom lens and imaging apparatus having the same
JP4971632B2 (en) Zoom lens and imaging apparatus having the same
JP4314248B2 (en) Variable magnification optical system having anti-vibration function and imaging apparatus having the same
JP5020695B2 (en) Zoom lens and imaging apparatus having the same
JP5372205B2 (en) Zoom lens and imaging apparatus using the same
JPH063626A (en) Variable power optical system having vibration-control function

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070801

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070801

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees