JP4635964B2 - Synchronous motor drive device - Google Patents
Synchronous motor drive device Download PDFInfo
- Publication number
- JP4635964B2 JP4635964B2 JP2006155549A JP2006155549A JP4635964B2 JP 4635964 B2 JP4635964 B2 JP 4635964B2 JP 2006155549 A JP2006155549 A JP 2006155549A JP 2006155549 A JP2006155549 A JP 2006155549A JP 4635964 B2 JP4635964 B2 JP 4635964B2
- Authority
- JP
- Japan
- Prior art keywords
- motor
- axis
- current
- control
- speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Control Of Ac Motors In General (AREA)
Description
本発明は、同期電動機の制御に関し、特に電動機の速度・位置を検出するセンサを用いずに、高い精度の高性能な電動機の駆動装置を実現する制御方法に関する。 The present invention relates to control of a synchronous motor, and more particularly, to a control method for realizing a high-precision motor drive device with high accuracy without using a sensor for detecting the speed and position of the motor.
磁極位置を検出せずに、同期電動機を制御する従来技術には、図21に示す同期電動機の速度・位置センサ付きベクトル制御に基づく方法であって、速度・位置センサを用いる代わりに、磁極位置推定器14Pと速度推定器33を設けるベクトル制御型センサレス方式と、図22に示すV/F制御と呼ばれる、同期電動機を開ループで制御する方法とである。
The conventional technique for controlling the synchronous motor without detecting the magnetic pole position is a method based on the vector control with the speed / position sensor of the synchronous motor shown in FIG. They are a vector control type sensorless system in which the estimator 14P and the
図21に示すベクトル制御型センサレス方式では、磁極位置の検出部と速度の検出部以外は、センサ付きのベクトル制御方式と全く同じ構成である。 The vector control type sensorless system shown in FIG. 21 has the same configuration as the vector control system with a sensor, except for the magnetic pole position detection unit and the speed detection unit.
図21で、符号1は回転速度指令であるωr*の発生器、2Pは電動機の制御装置、3は電圧指令をPWMパルスに変換するPWM発生器、4はインバータ、5は同期電動機、6は同期電動機の電流センサ、7は機械角周波数を電気角周波数に変換する変換ゲイン、9は三相交流を回転座標上の値に変換するdq座標変換器、10はd軸電流指令Id*を発生するId*発生器、12は電圧指令演算器、13はdq軸上の値を三相交流の値に変換する座標変換器、14Pは電動機の磁極軸を推定する磁極位置推定器、16は信号の加算(減算)を行う加算器、21Pは速度推定値が速度指令に一致するようにIq*を調整する速度制御器、24は電流検出値Idc,Iqcが、各々の指令値Id*,Iq*に一致するように、電圧指令Vdc*,Vqc*に補正を加える電流制御器、33は電動機の回転速度を推定する速度推定器である。
In FIG. 21,
図21では、磁極位置推定器14Pが、磁極位置センサに相当し、速度推定器33が速度センサに相当する。また、速度制御器21Pと電流制御器24を、速度・位置センサ付きベクトル制御装置と同様に備えており、速度,電流が各々の指令値に一致するように自動調整する。このようなベクトル制御型センサレス方式が、「平成12年電気学会産業応用部門全国大会,講演論文集[III],No.97,pp.963−966,軸誤差の直接推定演算による永久磁石同期モータの位置センサレス制御」に記載されている。また、別の同期電動機のセンサレス駆動技術が「埋めこみ磁石型同期モータと駆動技術:貝谷,松原,度会,三菱電機技報・Vol.73・No.9・1999年,pp.68−71」に開示されている。
In FIG. 21, the magnetic pole position estimator 14P corresponds to a magnetic pole position sensor, and the
前記V/F制御では、図22に示すように、速度や電流の自動調整部を持たず、速度指令から直接電動機への印加電圧を決定する。図22で、符号2QがV/F制御装置、15はVdc* を常に零にする零発生器、125は電動機の発電係数Keに相当する発電係数ゲインである。V/F制御では、ベクトル制御型センサレス方式と異なり、磁極軸の推定等は行わないので、制御構成が極めて単純になる。しかし、駆動中に負荷が急変すると、過渡振動などが生じる場合がある。これを抑制するため、電流検出値から速度を補正するような制御ループを付加する方法が特開2000−236694号公報に開示されている。 In the V / F control, as shown in FIG. 22, the voltage to be applied to the motor is directly determined from the speed command without having an automatic speed / current adjustment unit. In FIG. 22, reference numeral 2Q is a V / F control device, 15 is a zero generator that always makes Vdc * zero, and 125 is a power generation coefficient gain corresponding to the power generation coefficient Ke of the motor. In the V / F control, unlike the vector control type sensorless system, since the magnetic pole axis is not estimated, the control configuration is extremely simple. However, if the load suddenly changes during driving, transient vibrations may occur. In order to suppress this, a method of adding a control loop for correcting the speed from the detected current value is disclosed in Japanese Patent Laid-Open No. 2000-236694.
ベクトル制御型センサレス方式の場合、速度制御器や電流制御器といった自動調整部が存在し、これらの制御ゲインを適切な値に調整することで、電動機の制御性能を引き出すことができる。ただし、そのためには、磁極位置推定器や速度推定器が、位置センサや速度センサの代わりに十分機能する必要がある。しかし、実際の推定演算には、電動機の定数変動や、演算処理の遅れなどの影響があり、位置・速度センサと同等の精度は実現できず、必ず推定誤差を伴う。 In the case of the vector control type sensorless system, there are automatic adjustment units such as a speed controller and a current controller, and the control performance of the motor can be derived by adjusting these control gains to appropriate values. However, for that purpose, the magnetic pole position estimator and the speed estimator need to function sufficiently in place of the position sensor and the speed sensor. However, actual estimation calculations are affected by variations in the motor constants, delays in calculation processing, and the like, and accuracy equivalent to that of the position / speed sensor cannot be realized, and there is always an estimation error.
磁極軸の推定誤差を、図23で説明する。電動機内部の磁極軸をd軸とそれに直交する軸をq軸とし、それらの制御器内部での推定座標軸をdc−qc軸と定義すると、軸誤差Δθが両者の間にある。磁極位置の推定により、軸誤差を零にできれば、図24に示す関係になり、理想的なベクトル制御が実現できる。なおここで、理想的とは、電動機電流が電動機磁束に直交し、電流成分の全てがトルクとして寄与している状態を意味する。 The estimation error of the magnetic pole axis will be described with reference to FIG. If the magnetic pole axis in the motor is defined as the d axis and the axis orthogonal thereto as the q axis, and the estimated coordinate axis in the controller is defined as the dc-qc axis, the axis error Δθ is between them. If the axial error can be made zero by estimating the magnetic pole position, the relationship shown in FIG. 24 is obtained, and ideal vector control can be realized. Here, “ideal” means a state in which the motor current is orthogonal to the motor magnetic flux and all current components contribute as torque.
しかし、現実には軸誤差があるので、ベクトル制御型センサレス方式で速度制御や電流制御しても、十分な性能を得ることができず、逆にそれらの制御ゲインの調整が難しくなる。また、不安定現象が発生した場合には、直接の原因が推定誤差の影響なのか、制御部のゲイン設定の影響なのかの特定が難しくなり、原因究明が困難になる。さらに、ベクトル制御型センサレス方式の場合、高速回転で電動機を駆動するためには、高速演算処理が必要であるので、処理能力の低い低価格マイコンでは対応できない。 However, in reality, since there is an axis error, sufficient performance cannot be obtained even if speed control or current control is performed by the vector control type sensorless method, and it is difficult to adjust the control gains. In addition, when an unstable phenomenon occurs, it is difficult to identify whether the direct cause is the influence of the estimation error or the gain setting of the control unit, and the cause is difficult to investigate. Furthermore, in the case of the vector control type sensorless system, since high-speed arithmetic processing is required to drive the motor at high speed, a low-cost microcomputer with low processing capability cannot cope with it.
一方、V/F制御の場合、ベクトル制御型センサレス方式のような調整個所がないため、無調整で電動機を可変速制御できる。しかし、d−q軸と、dc−qc軸とが一致していないため、高度な制御が難しい。V/F制御の場合、電圧と電流の関係のベクトル図を図25に示す。V/F制御では、電圧軸がqc軸となり、負荷が増加するに従って、軸誤差が大きくなる。このため、負荷トルク変動等の外乱によって、振動や過電流といった不具合が発生する恐れがある。 On the other hand, in the case of V / F control, since there is no adjustment part like the vector control type sensorless system, the motor can be controlled at a variable speed without adjustment. However, since the dq axis and the dc-qc axis do not match, high-level control is difficult. In the case of V / F control, a vector diagram of the relationship between voltage and current is shown in FIG. In the V / F control, the voltage axis becomes the qc axis, and the axial error increases as the load increases. For this reason, troubles such as vibration and overcurrent may occur due to disturbance such as load torque fluctuation.
本発明の目的は、制御構成を単純化して調整個所を少なくして、制御系の安定化を図り、従来のベクトル制御型センサレス方式と同等の性能の電動機の駆動装置の提供である。 An object of the present invention is to provide a motor drive device having a performance equivalent to that of a conventional vector control type sensorless system by simplifying the control configuration, reducing the number of adjustment points, and stabilizing the control system.
本発明の同期電動機の駆動装置は、ベクトル制御と同様に、磁極軸を基準とした座標軸上(dc−qc軸上)で、電動機への印加電圧を演算する。本発明の同期電動機の駆動装置は、速度制御器や、電流制御器といった自動調整部を持たず、電圧指令演算には、回転速度指令,電流指令などの指令値を用いる。ただし、トルク電流指令に相当するIq*は、電動機の負荷状態により変化するため、電流検出値に基づいて演算し与える。 The synchronous motor driving apparatus according to the present invention calculates the voltage applied to the motor on the coordinate axis (on the dc-qc axis) with respect to the magnetic pole axis, as in the vector control. The synchronous motor drive device of the present invention does not have an automatic adjustment unit such as a speed controller or a current controller, and uses command values such as a rotation speed command and a current command for voltage command calculation. However, since Iq * corresponding to the torque current command changes depending on the load state of the motor, it is calculated and given based on the detected current value.
本発明による電動機駆動システムによれば、電動機の制御装置の構成を複雑にすることなく、高性能・高精度な位置・速度センサレス駆動が実現できる。この結果、電動機駆動システムの信頼性・安定性が向上する。 According to the motor drive system of the present invention, high-performance, high-precision position / speed sensorless drive can be realized without complicating the configuration of the motor control device. As a result, the reliability and stability of the motor drive system are improved.
以下、本発明の実施例を図面を用いて説明する。各図で同じ符号は同じ構成要素を示す。 Embodiments of the present invention will be described below with reference to the drawings. In each figure, the same reference numeral indicates the same component.
(実施例1)
図1に本実施例の構成図を示す。図1で、符号1は電動機に回転速度指令ωr*を与える速度指令発生器、2は電動機の印加電圧を演算する制御装置、3は電圧指令V1*に基づいて、インバータ4を駆動するパルスを生成するPWM(パルス幅変調)発生器、4は電動機を駆動するインバータ、5は制御対象の同期電動機(以下電動機と略す)、6は電動機5の電流を検出する電流検出器、7は回転速度指令ωr*を、電動機の電気角周波数指令
ω1*に変換する変換ゲイン(Pは電動機の極数)、8は電気角周波数指令ω1*に基づいて、制御装置内部の交流位相θcを演算する積分器、9は三相交流軸上の電流値を回転座標軸であるdc−qc軸上の成分に変換するdq座標変換器、10は電動機の磁極軸成分の電流指令Id*を与えるId*発生器、11はIq*発生器、12はω1*,Id*,Iq*に基づいて、dc−qc軸上の電圧指令Vdc*,Vqc*を演算する電圧指令演算器、13はdc−
qc軸上の電圧指令Vdc*,Vqc*を、三相交流軸上の値に変換するdq逆変換器、41はインバータ4の主回路電源を構成する直流電源部、42はインバータの主回路部、43は主回路へのゲート信号を発生するゲート・ドライバ、411はインバータ4に電力を供給する三相交流電源、412は三相交流電源を整流するダイオード・ブリッジ、413は直流電源中の脈動成分を抑制する平滑コンデンサである。
Example 1
FIG. 1 shows a configuration diagram of this embodiment. In FIG. 1,
A dq inverse converter that converts voltage commands Vdc * and Vqc * on the qc axis into values on a three-phase AC axis, 41 is a DC power supply unit that constitutes the main circuit power supply of the
図2に、本実施例の構成概略図を示す。本実施例は、交流電源部411と、制御・インバータ部と、電動機5とを備える。図2に示すように、制御・インバータ部の制御ボードに、速度指令発生器1と電動機の印加電圧を演算する制御装置2とPWM発生器3とを備え、これらはマイクロ・プロセッサーをベースにしたディジタル回路で実現している。また、インバータ4,電流検出器6なども、一つの装置内に実装されている。
FIG. 2 shows a schematic configuration diagram of this embodiment. The present embodiment includes an AC
次に、図1に基づいて、本実施例の動作を説明する。速度指令ωr*に基づき、電動機の電気角周波数ω1*が、変換ゲイン7の出力として得られる。位相演算器8で、ω1*を積分して、制御器内部での交流位相θcを得る。交流位相θcに基づいて、三相交流電流の検出値を座標変換し、dc軸成分であるIdcと、qc軸成分であるIqcとを得る。Iq*発生器でIqcに基づいてIq*を演算する。また、Id*発生器では、所定のId*を発生する。ここで電動機の回転子構造が、非突極型ではId*=0を与える。電圧指令演算器12では、回転速度ω1*,と電流指令Id*,Iq*とに基づいて、電動機5への印加電圧であるVdc*、とVqc*を演算する。演算式は、
(数1)
Vdc*=R・Id*−ω1・Lq・Iq*
Vqc*=ω1*・Ld・Id*+R・Iq*+Ke・ω1* …(数1)
ここで、R:電動機抵抗、Ld:d軸インダクタンス、
Lq:q軸インダクタンス、Ke:電動機の発電定数
である。式(1)の演算式は、通常のベクトル制御で用いる式と同じであり、例えば、
「ACサーボシステムの理論と設計の実際:杉本英彦著,総合電子出版,p.78、式
(4.6)」などに記載がある。
Next, the operation of this embodiment will be described with reference to FIG. Based on the speed command ωr * , the electrical angular frequency ω1 * of the motor is obtained as the output of the conversion gain 7. The phase calculator 8 integrates ω1 * to obtain an AC phase θc inside the controller. Based on the AC phase θc, the detected value of the three-phase AC current is coordinate-converted to obtain Idc as the dc axis component and Iqc as the qc axis component. An Iq * generator calculates Iq * based on Iqc. The Id * generator generates a predetermined Id * . Here, when the rotor structure of the motor is a non-salient pole type, Id * = 0 is given. The
(Equation 1)
Vdc * = R · Id * −ω1 · Lq · Iq *
Vqc * = ω1 * · Ld · Id * + R · Iq * + Ke · ω1 * (Equation 1)
Where R: motor resistance, Ld: d-axis inductance,
Lq: q-axis inductance, Ke: power generation constant of the motor. The arithmetic expression of Expression (1) is the same as that used in normal vector control. For example,
"The theory and design of AC servo system: Hidehiko Sugimoto, General Electronic Publishing, p. 78, Formula (4.6)".
式(1)で得たVdc*とVqc*を、三相交流軸上の電圧指令値V1*に座標変換する。次に、PWM発生器3で電圧指令V1*をパルス幅に変換する。ゲートドライバでは、このパルス信号に基づいてスイッチング素子を駆動し、電動機5にVdc*,Vqc*に相当する電圧を印加する。
The coordinates of Vdc * and Vqc * obtained by the equation (1) are converted into a voltage command value V1 * on the three-phase AC axis. Next, the
次に、各部の動作を説明する。電圧指令演算器12は、式(1)に基づいて、電圧指令を演算する。式(1)をブロック図で表すと、図3になる。図3で、符号121は、電動機の抵抗値(R)に相当するゲイン、122はd軸インダクタンス(Ld)に相当するゲイン、123はq軸インダクタンス(Lq)に相当するゲイン、124は乗算器、125は発電定数(Ke)に相当するゲインである。
Next, the operation of each unit will be described. The
式(1)と図3に示すように、電圧指令は電動機の定数であるR,Ld,Lq,Keを用いて演算する。これらの電動機定数が正確であれば、電動機は指令値通りの回転速度,電流値で動く。その時の電圧と電流のベクトル図は、図24のようになり、電動機のd−q軸と、制御上のdc−qc軸が一致する。 As shown in Equation (1) and FIG. 3, the voltage command is calculated using R, Ld, Lq, and Ke that are constants of the motor. If these motor constants are accurate, the motor will operate at the rotational speed and current value as commanded. The vector diagram of the voltage and current at that time is as shown in FIG. 24, and the dq axis of the motor coincides with the dc-qc axis for control.
電圧指令演算器12に与える指令値ω1*とId*は、電動機の負荷状態に無関係に与えることができるが、指令値Iq*は、電動機が必要とするトルクに応じて与えなければならない。指令値Iq*と、実際のトルク負荷とに差異が生じると、電動機の磁極軸と制御軸ずれて、不安定やトルク不足の原因になる。
The command values ω1 * and Id * given to the
本実施例では、指令値Iq*を如何に作成するかが重要である。図21に示した従来技術のベクトル制御型センサレス方式では、速度制御器の出力をIq*としているが、ベクトル制御型センサレス方式では、速度推定器や、速度制御器が必要になり、制御構成が複雑になる。これらを解決するため、本実施例では、電流検出値Iqcを用いて電流指令Iq*を作成する。図1における符号11が、Iq*発生器であり、ここでは次式に従いIq*を演算する。
In this embodiment, how to create the command value Iq * is important. In the vector control type sensorless system of the prior art shown in FIG. 21, the output of the speed controller is set to Iq * . However, the vector control type sensorless system requires a speed estimator and a speed controller, and the control configuration is It becomes complicated. In order to solve these problems, in this embodiment, a current command Iq * is created using the current detection value Iqc.
式(2)は、一次遅れフィルタであるが、これ以外にも移動平均値などを用いてもよい。Iqcを直接Iq*とすると、ポジティブに動作して制御系が不安定になるので、脈動成分を抑制するために遅れ要素を与えて、制御系を安定化している。ただし、定常的にはIqcの基本波成分(すなわち、直流成分)とIq*が一致するため、dc−qc軸と、d−q軸とは最終的に一致する。よって、本実施例では結果的に、図24のベクトル図の関係になり、ゲイン設定等の調整を必要とせずに、軸誤差の生じない安定した電動機の駆動装置が実現できる。また、本実施例では、速度制御器がないが、同期電動機本来の特性により、電動機の回転数は指令値に一致するように制御され、速度の定常偏差が零になる。以上、本実施例によれば、単純な制御構成で、電動機と制御上の軸誤差を零にできる。 Equation (2) is a first-order lag filter, but a moving average value or the like may be used in addition to this. If Iqc is directly set to Iq * , the control system becomes unstable because it operates positively. Therefore, a delay element is provided to suppress the pulsation component, and the control system is stabilized. However, since the fundamental wave component (that is, direct current component) of Iqc and Iq * coincide with each other in a steady state, the dc-qc axis and the dq axis finally coincide with each other. Therefore, in the present embodiment, as a result, the relationship shown in the vector diagram of FIG. 24 is obtained, and a stable electric motor drive device in which no shaft error occurs can be realized without requiring adjustment of gain setting or the like. In this embodiment, there is no speed controller. However, due to the inherent characteristics of the synchronous motor, the rotational speed of the motor is controlled to coincide with the command value, and the steady speed deviation becomes zero. As described above, according to the present embodiment, the shaft error in the motor and control can be made zero with a simple control configuration.
(実施例2)
本実施例では図4の制御装置2Bを、図1の制御装置2の代わりに用いる。図4で符号14は電動機のd−q軸と、制御軸dc−qc軸との軸誤差を推定演算する軸誤差推定器、15は軸誤差に零指令を与える零発生器、16は入力信号を加算(あるいは減算)する加算器、17は軸誤差を用いて、電気角周波数指令ω1*への修正量を演算する磁極軸推定ゲインである。
(Example 2)
In this embodiment, the
次に、本実施例の動作を説明する。軸誤差推定器14で、d−q軸とdc−qc軸の誤差分Δθを推定演算する。Δθは、図23に示すように、d−q軸から観測したdc−
qc軸の誤差成分である。Δθの推定値Δθcの演算は、式(6)で行い、
Next, the operation of this embodiment will be described. The
This is an error component of the qc axis. The calculation of the estimated value Δθc of Δθ is performed by equation (6).
(dc−qc軸上での観測値)に基づいて、直接Δθを推定演算する。式(3)は、非突極型の同期電動機を対象にしているが、突極型の場合にも、同様の演算式で軸誤差が得られることが知られていて、例えば、「電気学会半導体電力変換/産業電力電気応用合同研究会資料、No.SPC−00−67,軸誤差の直接推定によるIPMモータの位置センサレス制御」に記載がある。
軸誤差Δθcが正の場合、図23から、制御軸dc−qc軸が、d−q軸よりも進むので、電気角周波数ω1*を減少するように補正量Δω1(この場合は、Δω1<0)を加え、Δθを減少させる。逆に、軸誤差Δθcが負では、電気角周波数ω1*を増加するように補正量Δω1を加える。これらの動作(PLL動作)を実現しているのが、図4におけるブロック14〜17である。磁極軸推定ゲイン17は、軸誤差Δθcの収束時間を決定する係数であり、基本的には比例ゲインでよいが、比例・積分、あるいは微分要素等を組合せてもよい。
When the axis error Δθc is positive, the control axis dc-qc axis advances from the dq axis from FIG. 23, so that the correction amount Δω1 (in this case, Δω1 <0) so as to reduce the electrical angular frequency ω1 *. ) To decrease Δθ. Conversely, when the axial error Δθc is negative, the correction amount Δω1 is added so as to increase the electrical angular frequency ω1 * . These operations (PLL operations) are realized by the
本実施例によれば、負荷変動等によって軸誤差が発生しても、設定応答時間内に軸誤差Δθcを零に収束できる。本実施例の磁極軸推定ゲインは、高速化できるので、負荷外乱等のトルク変動に対する応答性能が改善できる。 According to the present embodiment, even if an axis error occurs due to a load variation or the like, the axis error Δθc can be converged to zero within the set response time. Since the magnetic pole axis estimation gain of this embodiment can be increased in speed, the response performance to torque fluctuations such as load disturbance can be improved.
また、本実施例では、速度指令への追従性も改善する。PLL動作により、軸誤差
Δθcが高い応答速度で零になれば、磁極軸推定ゲイン17の出力Δω1も零になるため、電動機の駆動周波数が電気角周波数ω1*に一致し、速度偏差が短時間で零に収束し、速度指令への追従性が改善する。
In this embodiment, the followability to the speed command is also improved. If the axis error Δθc becomes zero at a high response speed by the PLL operation, the output Δω1 of the magnetic pole
本実施例では、軸誤差Δθを直接求める方法を説明したが、間接的に軸誤差相当の状態量を求める方法でも、問題なく適用できる。例えば、式(3)の分子だけを演算で求め、その値に基づいて電気角周波数ω1*の修正を行っても、問題はない。その他、磁極位置の推定方法として、高調波を注入して、磁極位置を推定してもよい。 In the present embodiment, the method for directly obtaining the axis error Δθ has been described. However, the method for obtaining the state quantity corresponding to the axis error indirectly can also be applied without any problem. For example, there is no problem even if only the numerator of Expression (3) is obtained by calculation and the electrical angular frequency ω1 * is corrected based on the value. In addition, as a method of estimating the magnetic pole position, harmonics may be injected to estimate the magnetic pole position.
(実施例3)
本実施例では図5の制御装置2Cを、実施例1の制御装置2の代わりに用いる。図5の符号18は、軸誤差の推定値Δθcに基づいて、q軸電流指令Iq*を演算するトルク制御器である。本実施例と実施例2との違いは、Iq*発生器11が削除され、トルク制御器
18が追加された点である。
(Example 3)
In this embodiment, the control device 2C of FIG. 5 is used instead of the
次に、本実施例の動作を説明する。本実施例では、軸誤差の推定値Δθcを用いて電流指令Iq*を決定する。電動機に印加されている交流電圧の位相θcは、主に電気角周波数ω1*の積分により与えられているため、負荷が急変した場合、まず初めに軸誤差の推定値Δθcが変化する。もちろん、磁極軸推定ゲイン17を介して、電気角周波数ω1*は修正されるが、実速度に一致するまでに、PLLの設定応答に応じた時間を要す。よって、軸誤差の推定値Δθcの変化から即座に電流指令Iq*を決定することで、応答の速いトルク制御が実現できる。軸誤差の推定値Δθcは、定常的に零になるので、トルク制御器18には、積分要素が必要になる。よって、トルク制御器18は、PI(比例・積分)制御、あるいはPID(比例・積分・微分)制御等を基本に構成する。
Next, the operation of this embodiment will be described. In this embodiment, the current command Iq * is determined using the estimated value Δθc of the axis error. Since the phase θc of the AC voltage applied to the electric motor is mainly given by the integration of the electrical angular frequency ω1 * , when the load suddenly changes, the estimated value Δθc of the shaft error is changed first. Of course, the electrical angular frequency ω1 * is corrected via the magnetic pole
このように、本実施例ではトルク制御ブロック18を追加して、トルク変化に応じた電流指令を迅速に得ることができ、より性能のよい電動機の駆動装置が実現できる。
As described above, in this embodiment, the
(実施例4)
本実施例は実施例1の制御装置2の代わりに図6の制御装置2Dを用いた。図6で、符号19は、信号の符号を反転する反転ゲイン、20は、電気角周波数を機械角周波数に変換する変換ゲイン、21は、電動機の速度を一定に制御する速度制御器である。本実施例と、実施例3との違いは、トルク制御器18が削除され、符号19〜21が追加された点である。
Example 4
In this embodiment, the control device 2D of FIG. 6 is used instead of the
次に、図6を用いて本実施例の動作を説明する。実施例3では、軸誤差の推定値Δθcで、トルク電流指令Iq*を作成したが、本実施例では、磁極軸推定ゲイン17の出力
Δω1を用いて、トルク電流指令Iq*を作成する。電動機駆動システムには、速度精度が重要な用途がある。例えば、鉄鋼圧延システムの圧延補機等、複数台の電動機の揃速性が強く要求される場合である。そのような用途では、トルク外乱応答より、速度の追従性が重要である。
Next, the operation of this embodiment will be described with reference to FIG. In the third embodiment, the torque current command Iq * is created using the estimated value Δθc of the shaft error. In this embodiment, the torque current command Iq * is created using the output Δω1 of the magnetic pole shaft estimated
本実施例では、速度偏差を迅速に零に収束させるため、速度制御器21を設けてトルク電流指令Iq*を作成する。しかし、従来型技術(図21)のような速度推定器を付加すると、制御装置が複雑になるので、本実施例ではω1*の修正量であるΔω1を用いて、速度制御を行う。
In this embodiment, in order to quickly converge the speed deviation to zero, the
磁極軸推定ゲイン17の出力Δω1は、電動機の実速度が、制御装置内の速度指令よりも高い場合に正の値となるので、反転ゲイン19を介して符号を反転する。これによって、従来技術の速度制御器(図21の速度制御器21P)における入力(速度偏差)と等価になる。次に、変換ゲイン20により、電動機の極対数でΔω1を除算し、機械角周波数の偏差に変換する。最後に、速度制御器21を用いて、Iq*を演算する。本実施例では、速度制御器21に、例えば、従来技術の速度制御に用いる制御(PI制御,PID制御など)をそのまま用いてよい。本実施例によれば交流位相の修正量であるΔω1に基づいて速度制御器を構成することで、速度追従性のよい電動機駆動システムが実現できる。
The output Δω <b> 1 of the magnetic pole
(実施例5)
本実施例は、実施例1の制御装置2の代わりに図7に示す制御装置2Eを用いた。図7の18Eは、積分要素を含まないトルク制御器である。
(Example 5)
In this embodiment, a
本実施例は、実施例4にIq*発生器11を付加した。前述したように、Iq*発生器は、必ずIqc=Iq*に収束するため、定常特性を補償できる。本実施例ではIq*発生器11を組合せて、定常状態と、過渡状態の両方の特性を改善する。 In this embodiment, an Iq * generator 11 is added to the fourth embodiment. As described above, since the Iq * generator always converges to Iqc = Iq * , the steady state characteristic can be compensated. In this embodiment, the Iq * generator 11 is combined to improve both steady state and transient characteristics.
定常時の電流指令Iq*は、Iq*発生器11が全て寄与するようになるため、図7のトルク制御器18Eは、過渡応答時のみに機能すればよい。よって、これらの制御器には、積分要素を備えず、比例制御や微分(不完全微分)制御の要素で組合せればよく、直流に対するゲインを持たせなければよい。本実施例により、定常特性と過渡特性の両者を満足できる電動機駆動システムが実現できる。
Since the constant current command Iq * is all contributed by the Iq * generator 11, the
(実施例6)
本実施例は、実施例5の制御装置2Eの代わりに図8に示す制御装置2Fを用いた。それ以外は実施例5と同じである。図8で、21Fは、積分要素を含まない速度制御器である。本実施例においても実施例5と同様に定常特性と過渡特性の両者を満足できる電動機駆動システムが実現できる。
(Example 6)
In this embodiment, a
(実施例7)
本実施例は、実施例1の制御装置2の代わりに図9の制御装置2Gを用いる。図9で、符号22は、qc軸の電流検出値Iqcを用いて、電気角周波数ω1*に修正するq軸ダンピング・ゲインである。本実施例は、図4のの実施例2にq軸ダンピング・ゲイン22を追加した。
(Example 7)
In this embodiment, the
本実施例の動作を説明する。実施例1から実施例6では、負荷変動、あるいは速度変動時の対応策として、Iq*に補正を加えて、制御側が、負荷に対して追従しよう(負荷に見合ったトルクを出力しよう)というものである。本実施例は、負荷変動等への追従性は重視せず、負荷変動時の過電流によるトリップ防止を、最優先したいという用途、すなわち多少の速度低下,トルク低下は許容できるが、過電流で停止することを回避しなければならぬ用途に有効である。 The operation of this embodiment will be described. In the first to sixth embodiments, as a countermeasure against load fluctuation or speed fluctuation, Iq * is corrected and the control side follows the load (outputs torque corresponding to the load). It is. This embodiment does not place importance on followability to load fluctuations, etc., and is intended to give top priority to trip prevention due to overcurrent during load fluctuations, that is, some speed reduction and torque reduction can be tolerated. This is useful for applications where stopping must be avoided.
電動機の電圧方程式は、 The voltage equation of the motor is
Iqが過大に流れ、過電流による不具合(インバータ停止,素子破壊)が生じることも考えられる。そこで、Iqの急変は、負荷変動が生じているということであるので、Iqcに変動があった場合に、即座に制御器内のω1*を修正し、Iqが過大を抑制する。つまり、誘起電圧ω1・Keが低下した場合、式(5)のVqも低減すれば、電流の増加を抑制できる。ω1*の修正量をΔω1qとし、Iqcの変化率に比例した量を、ω1*から差し引けばよい。具体的には、Iqcの微分、あるいは不完全微分等の進み要素で補償すればよい。
It is also conceivable that Iq flows excessively and malfunctions due to overcurrent (inverter stop, element destruction) occur. Therefore, since a sudden change in Iq means that a load change has occurred, when Iqc changes, ω1 * in the controller is immediately corrected, and Iq suppresses an excessive amount. That is, when the induced voltage ω1 · Ke decreases, an increase in current can be suppressed by reducing Vq in Expression (5). The correction amount of ω1 * is Δω1q, and an amount proportional to the rate of change of Iqc is subtracted from ω1 * . Specifically, it may be compensated by a leading element such as Iqc differentiation or incomplete differentiation.
この結果、負荷変動時にはトルクが低下し、電動機は減速するが、過電流による不具合は抑制できる。なお、電動機が減速したとしても、本実施例では、軸ずれが生じないので、脱調には至らない。本実施例によれば、過電流トリップなどの生じ難い、安定した電動機駆動システムが実現できる。 As a result, the torque decreases when the load fluctuates, and the electric motor decelerates, but problems due to overcurrent can be suppressed. Even if the electric motor decelerates, in this embodiment, the shaft does not deviate, so that step-out does not occur. According to the present embodiment, it is possible to realize a stable motor drive system in which an overcurrent trip or the like hardly occurs.
(実施例8)
本実施例は、実施例1の制御装置2の代わりに図10の制御装置2Hを用いる。図10において、符号23は、dc軸の電流検出値Idcを用いて、電気角周波数ω1*に修正するd軸ダンピング・ゲインである。本実施例は、実施例7にd軸ダンピング・ゲイン23を追加した。
(Example 8)
In this embodiment, the
次に、本施例の動作を説明する。本実施例も、実施例7と同様に、負荷変動、あるいは速度変動時の過電流を抑制する。本実施例では、Iqcだけでなく、Idcを用いてω1*を修正する。図10でd軸ダンピング・ゲイン23は、Idcを入力し、その変動成分に相当した補償量Δω1dを出力し、ω1*に加算する。
Next, the operation of this embodiment will be described. Similarly to the seventh embodiment, this embodiment also suppresses overcurrent during load fluctuation or speed fluctuation. In the present embodiment, not only Iqc but also Idc is used to correct ω1 * . In FIG. 10, the d-
電動機の負荷変動が生じた場合、例えば、図11のベクトル図のように、電動機の実軸であるd軸と、制御軸dc軸の間には、軸誤差Δθが発生する。Δθは、本発明のPLL機能によって、零に収束するが、その間に電流が変動・増加し、過電流トリップを起こす可能性がある。Δθの影響は、q軸電流だけでなく、d軸にも現れる。軸誤差がない場合の電圧ベクトルV1と、軸ずれΔθが生じた直後のV1′の関係は、図11に示すようになる。d軸の電圧成分Vd′が、軸ずれの影響で減少する。この影響で、Idがマイナス側に大きく変化する。特に、逆突極型の電動機(Ld<Lq)は、Ldの値が小さいため、Vdの変化に伴うIdの影響は大きくなる。 When the load fluctuation of the electric motor occurs, for example, as shown in the vector diagram of FIG. 11, an axial error Δθ occurs between the d axis that is the real axis of the electric motor and the control axis dc axis. Δθ converges to zero by the PLL function of the present invention, but the current fluctuates / increases during that time, which may cause an overcurrent trip. The effect of Δθ appears not only on the q-axis current but also on the d-axis. The relationship between the voltage vector V1 when there is no axis error and V1 ′ immediately after the occurrence of the axis deviation Δθ is as shown in FIG. The d-axis voltage component Vd ′ decreases due to the influence of the axis deviation. Due to this influence, Id largely changes to the minus side. In particular, the reverse salient pole type motor (Ld <Lq) has a small value of Ld, so that the influence of Id accompanying the change in Vd becomes large.
以上の現象を利用し、Idcの変化から、負荷変動の大きさがわかる。よって、Idcの値を用いて、その微分、あるいは不完全微分に比例した量をω1*に加えて、軸誤差を減少でき、過電流などの不具合を抑制できる。なお、負荷が増加した場合に、Idはマイナスに減少するため、ω1*の補償は、Δω1dをそのまま加算する。また、Iq*発生器等を使用した本実施例は、定常的な軸ずれが生じないので、d軸ダンピングゲインの設定を厳密に調整する必要はなく、過電流を抑制するようにd軸ダンピングゲインを設定すればよい。このように本実施例により、負荷変動時の過電流対策を、より高感度に行うことができ、安定した電動機駆動システムが実現できる。 Using the above phenomenon, the magnitude of the load fluctuation can be found from the change in Idc. Therefore, by using the value of Idc, an amount proportional to the differential or incomplete differentiation can be added to ω1 * to reduce the axis error and to suppress problems such as overcurrent. Since Id decreases to minus when the load increases, Δω1d is added as it is for compensation of ω1 * . In addition, in the present embodiment using the Iq * generator and the like, there is no steady axis deviation, so it is not necessary to strictly adjust the d-axis damping gain setting, and d-axis damping is performed to suppress overcurrent. What is necessary is just to set a gain. As described above, according to the present embodiment, the countermeasure against overcurrent at the time of load fluctuation can be performed with higher sensitivity, and a stable motor drive system can be realized.
(実施例9)
本実施例は、実施例1の制御装置2の代わりに図12の制御装置2Jを用いる。図12において、符号10Jは、Iq*に基づいて、Id*の値を決定するId*発生器である。
Example 9
In this embodiment, the control device 2J of FIG. 12 is used instead of the
次に、本実施例の動作原理を説明する。永久磁石型電動機には、永久磁石によるトルクと、電動機の突極性(逆突極性)によるリラクタンストルクを組合せて、電動機トルクを発生するものがある。この種の電動機の場合、Idをマイナス側の値にした点に、電動機の最大トルク点あり、Id=0に制御することは、効率面で得策ではない。よって、常に最大効率で電動機を駆動する場合は、常に最大トルクとなる状態で電動機を駆動するればよい。最大トルクを得る条件は、式(6)で表わされ、 Next, the operation principle of this embodiment will be described. Some permanent magnet type motors generate motor torque by combining the torque of a permanent magnet and the reluctance torque due to the saliency (reverse saliency) of the motor. In the case of this type of motor, the maximum torque point of the motor is at the point where Id is set to a negative value, and it is not a good idea in terms of efficiency to control to Id = 0. Therefore, when the electric motor is always driven with the maximum efficiency, the electric motor may be driven in a state where the maximum torque is always obtained. The condition for obtaining the maximum torque is expressed by equation (6),
となり、Iqが定まれば、最大トルクを得るIdが決定する。本実施例では、Id*発生器10Jで、Iq*を用いて式(6)の演算処理をする。その結果、常に最大トルク(最大効率)で電動機駆動ができる。
If Iq is determined, Id for obtaining the maximum torque is determined. In the present embodiment, the Id * generator 10J performs calculation processing of Expression (6) using Iq * . As a result, the motor can always be driven with the maximum torque (maximum efficiency).
なお、式(6)の演算に、Iq*でなくIqcを用いることもできるが、過渡時でのIqcの変動が激しいので、制御系全体が不安定化する恐れがある。また、効率の最大化は、定常状態で機能すれば、装置の省エネ化ができるので、Iq*発生器の出力であるIq*を用いても何ら問題はない。本実施例により、電動機効率を最大で運転できる電動機駆動システムを実現できる。 It is possible to use Iqc instead of Iq * for the calculation of equation (6). However, since the fluctuation of Iqc during transition is severe, the entire control system may be destabilized. Further, maximization of efficiency, if function in the steady state, because it is energy saving devices, there is no problem with Iq * which is the output of the Iq * generator. According to the present embodiment, it is possible to realize an electric motor drive system capable of operating at the maximum electric motor efficiency.
(実施例10)
本実施例は、実施例1の制御装置2の代わりに図13の制御装置2Kを用いる。図13中、符号24は、Idcの値をId*に一致させるための電流制御器である。
(Example 10)
In this embodiment, the
本実施例の動作原理を説明する。実施例1〜9で説明したように、従来技術で必要であった速度制御器を本発明では削除できるので、制御系を簡素化でき、調整個所の少ない電動機駆動システムが実現できるものであるが、問題はトルク電流Iqの指令を如何に作成するかである。上記実施例では、主に、電流検出値Iqcを用いてIq*を作成していた。一方、Id*の方は、速度や負荷トルクには無関係に与えることができるため、任意の指令電流を設定することができる。(図12の効率最大化を行う場合以外は零に設定。)よって、Idに関しては、従来通りの電流制御器を付加できる。 The operation principle of this embodiment will be described. As described in the first to ninth embodiments, the speed controller required in the prior art can be deleted in the present invention, so that the control system can be simplified and an electric motor drive system with few adjustment points can be realized. The problem is how to create a command for the torque current Iq. In the above embodiment, Iq * is mainly created using the current detection value Iqc. On the other hand, since Id * can be given regardless of speed and load torque, an arbitrary command current can be set. (It is set to zero except when the efficiency maximization in FIG. 12 is performed.) Therefore, a conventional current controller can be added for Id.
式(4)に示すように、電動機のd軸とq軸の間には干渉項があり、ω1が大きくなるほど、d−q軸間の干渉が強くなり、過渡時には、d,q軸間での振動が生じやすくなる。Iq*は、Iqcに大きなフィルタを介しているため、この振動を抑制する能力はない。しかし、Idcに対して電流制御器24を付加すると、dq軸間の干渉項を抑制する機能が生じる。すなわち、IdcをId*(一定値)に一致させようとするため、振動を抑制しようとする。この結果、制御系全体の安定性や応答性能が改善する。本実施例では、d軸に電流制御器を追加することで、制御系全体の応答を改善できる電動機駆動システムを実現できる。
As shown in the equation (4), there is an interference term between the d-axis and the q-axis of the motor, and as ω1 increases, the interference between the d-q axes becomes stronger. The vibration is likely to occur. Since Iq * is passed through a large filter in Iqc, there is no ability to suppress this vibration. However, when the
(実施例11)
本実施例は、実施例1の制御装置2の代わりに図14の制御装置2Lを用いる。図14において、符号12Lは、外部信号で制御パラメータを変更できる電圧指令演算器、24LはIdcの値をId*に一致させるため、制御パラメータを変更する電流制御器である。図
15は、電圧指令演算器12Lと、電流制御器24Lの内部の構成を示し、121Lは抵抗値設定器、241は電流制御比例ゲイン、242は電流制御積分ゲインである。
(Example 11)
In this embodiment, the
次に、本実施例の動作を説明する。実施例10で述べたように、Idの電流制御器には、制御系応答を改善する機能があるが、本実施例では、定数設定誤差の補正器に、電流制御器を用いる。実際の電動機定数と、制御器内部の電動機定数設定値とが一致している場合は、定常状態において、電流制御器の積分要素が零になるので、電流制御器の出力は零になるはずである。ところが、定数の設定値に誤差があると、その分を補正しようとして、電流制御器が値を保持し続けることになる。逆に、電流制御器の出力を用いれば、設定値のずれを補正することができる。 Next, the operation of this embodiment will be described. As described in the tenth embodiment, the Id current controller has a function of improving the control system response. In this embodiment, a current controller is used as a constant setting error corrector. If the actual motor constant matches the motor constant set value inside the controller, the integral element of the current controller will be zero in steady state, so the output of the current controller should be zero. is there. However, if there is an error in the set value of the constant, the current controller continues to hold the value in an attempt to correct that amount. On the contrary, if the output of the current controller is used, the deviation of the set value can be corrected.
電動機の場合、配線の引きまわしや、インバータの抵抗分等により、抵抗値に誤差を含むことがある。本実施例は、抵抗の設定ずれを自動的に調整する。図15において、Id*とIdcの偏差を演算し、比例・積分要素からなる電流制御器24Lに入力する。電流制御器24Lの出力を抵抗Rの補正値ΔRとし、電圧指令演算器12L内の抵抗値に補正を加える。Id*とIdcとが一致した時点で、抵抗Rの補正が完了する。電圧指令演算器12Lはd軸だけでなく、q軸の抵抗分も補正するので、電圧指令の演算精度は、d−q軸共に精度が向上する。このように本実施例では、電動機定数を自動調整できる電動機駆動システムが実現できる。
In the case of an electric motor, an error may be included in the resistance value due to wiring routing, the resistance of the inverter, or the like. In this embodiment, the resistance setting deviation is automatically adjusted. In FIG. 15, the deviation between Id * and Idc is calculated and input to a
(実施例12)
本実施例は、実施例1の制御装置2の代わりに図14の制御装置2Mを用いる。図16中、符号10Mは、外部信号RFによって、内部の電流指令値を切り替えるId*発生器、24Mは外部信号RFによって、電流制御機能を停止できる電流制御器、25は速度指令ωr*が、予め設定した所定値以下の場合に出力(RF)を「1」、所定値以上では「0」にするR調整信号発生器、26は抵抗設定値を補正する際の電流値を設定しておく電流値設定器である。図17に、Id*発生器10M,電流制御器24Mの内部構成を示す。図17で、符号27は、信号RFによって切り替えられるスイッチである。
(Example 12)
In this embodiment, the
次に、本実施例の動作を説明する。実施例11では、電流制御器を用いて、制御装置内の抵抗Rの設定値を自動調整した。本実施例では電動機の抵抗だけでなく、さらに磁気飽和や周囲温度の影響で変化する、インダクタンスや発電定数も加味して抵抗設定値を補正する。R調整信号発生器25は、予め抵抗設定値の調整を行う範囲を設定し、所定値以下の速度指令では、RF=1、所定値以上ではRF=0となる信号を出力する。Id*発生器10Mは、RF信号を受けて、電流指令をスイッチ27で切り替える。RF=1の場合
(抵抗設定値の補正時)は、Id*=Id0とし、抵抗値の調整用の電流を流して、抵抗値を調整する。RF=0の場合は、通常のId*(=0)を用いて、電動機を駆動する。電流制御器24Mは、RF=1の期間は、スイッチ27を「1」側にして、電流制御器を動作し、抵抗設定値の値を補正し、RF=0の場合には、スイッチ27を「0」側にして、電流制御器の入力を零にする。なお、電流制御器の入力が零になった後も、積分器8の値が残っているので、補正値ΔRは出力し続ける。
Next, the operation of this embodiment will be described. In Example 11, the set value of the resistance R in the control device was automatically adjusted using a current controller. In this embodiment, not only the resistance of the motor but also the resistance set value is corrected by taking into account the inductance and the power generation constant, which change due to the influence of magnetic saturation and ambient temperature. The R
本実施例では、制御器内の抵抗設定値を、所定の速度以下で補正して、より高精度な抵抗値のチューニングをする。この結果、精度の高い電圧指令演算が実現でき、制御性能が向上する。 In the present embodiment, the resistance set value in the controller is corrected at a predetermined speed or less to tune the resistance value with higher accuracy. As a result, highly accurate voltage command calculation can be realized, and control performance is improved.
(実施例13)
図18〜図20を用いて本実施例を説明する。本実施例は、実施例1の制御装置2の代わりに図14の制御装置2Nを用いる。図18において、符号1Nは、速度指令ωr*を出力するωr*発生器、11Nは外部信号SFによって、内部の電流指令値を切り替えるIq*発生器、17Nは外部信号SFによって、交流位相の修正をオン/オフする磁極軸推定ゲイン、25Lは抵抗設定値の調整信号を発生するR調整信号発生器、28は周波数指令
ωr*を入力し、ωr*が予め設定していた所定の周波数を超えた場合に、運転モードの切り替え信号SFを0から1にする切替信号発生器、29は電動機の起動に必要な信号を出力する起動信号発生器、30は起動時のId*を出力する起動Id*発生器、31は電動機の起動におけるシーケンスを制御する起動処理器である。
(Example 13)
The present embodiment will be described with reference to FIGS. In this embodiment, the
図19に、Iq*発生器11Nと、磁極軸推定ゲイン17Nの詳細を示す。どちらのブロックも、スイッチ27を内蔵しており、切替信号SF=0の場合には、それぞれIq*=0,Δω1=0になる。切替信号SF=1の場合には、Iq*発生器11Nと磁極軸推定ゲイン17Nは、これまでの実施例におけるIq*発生器11と磁極軸推定ゲイン17の動作に切り替わる。
FIG. 19 shows details of the Iq * generator 11N and the magnetic pole axis estimation gain 17N. Both blocks have a built-in
次に、本実施例の動作を説明する。同期電動機を速度・位置センサレスで駆動する場合、例えば式(3)に示す関係式から、Δθを演算し、磁極軸を推定している。しかし、式(3)を精度よく演算するには、電動機の回転速度が最低でも定格の5〜10%程度以上必要であり、停止・低速時にはVdc*,Vqc*の大きさが小さ過ぎるために十分な計算精度が得られない。本発明では、同期電動機を図20に示す3つの運転モードで起動する。 Next, the operation of this embodiment will be described. When the synchronous motor is driven without a speed / position sensor, for example, Δθ is calculated from the relational expression shown in Expression (3) to estimate the magnetic pole axis. However, in order to calculate Equation (3) with high accuracy, the motor speed must be at least about 5-10% of the rating at the minimum, and Vdc * and Vqc * are too small during stop and low speed. Sufficient calculation accuracy cannot be obtained. In the present invention, the synchronous motor is started in the three operation modes shown in FIG.
初めに、「直流位置決めモード」で、制御上のdc軸に直流電流を流し、回転子を動かして磁極軸(d軸)とdc軸を一致させる。実際には、図20(c)のように、Id*をランプ状に増加し、回転子の位置決めを行う。Id*は、起動処理器31からの信号を受けて、起動Id発生器30から出力する。また、この間、直流位置決めと同時に、制御内の抵抗設定値の補正を行う。RF=1の信号を、R調整信号発生器25Lから出力し、電流制御器24Lと電圧指令演算12Lを用いて、実施例12で説明した抵抗値の補正を行う。
First, in the “DC positioning mode”, a direct current is supplied to the dc axis for control, and the rotor is moved so that the magnetic pole axis (d axis) and the dc axis coincide. Actually, as shown in FIG. 20C, Id * is increased in a ramp shape to position the rotor. Id * receives a signal from the
次に、「同期始動モード」では、切替信号発生器28から、SF=0を出力し続け、
Iq*=0と、Δω1=0,Id*=Im(Im:同期始動用の設定電流値)の条件で、電動機を起動する。なお、図20(a)に示すように同期始動と同時に、R調整信号発生器の出力をRF=0とし、抵抗Rの調整を完了する。同期始動モードでの駆動方法は、従来のV/F制御と等価であり、図20(f)に示すように軸ずれが残った状態で電動機を加速する。V/F制御は、周波数指令ωr*に従って、電動機の印加電圧を単純に増加するだけであり、加速率を緩やかに設定することで、脱調することなく電動機を起動できる。
Next, in the “synchronous start mode”, the
The motor is started under the conditions of Iq * = 0, Δω1 = 0, Id * = Im (Im: set current value for synchronous start). As shown in FIG. 20A, simultaneously with the synchronous start, the output of the R adjustment signal generator is set to RF = 0, and the adjustment of the resistance R is completed. The driving method in the synchronous start mode is equivalent to the conventional V / F control, and the motor is accelerated with the shaft misalignment remaining as shown in FIG. In the V / F control, the applied voltage of the motor is simply increased according to the frequency command ωr * , and the motor can be started without being stepped out by setting the acceleration rate gently.
次に、速度指令ωr*が、電動機の定格速度の5〜10%に達した時点で、切替信号発生器28の出力をSF=1に切り替え、センサレス駆動モードとする。SF=1となることで、Id*を切り替えているスイッチ27と、Iq*発生器11N,磁極軸推定ゲイン17N内のスイッチ27が、「1」側に切り替わり、前記実施例2と等価な制御構成になる。この結果、軸誤差Δθが零に収束し、安定なベクトル制御駆動となる。
Next, when the speed command ωr * reaches 5 to 10% of the rated speed of the motor, the output of the
本実施例の一連の起動処理は、起動処理器31に予め設定したプログラムに従って自動的に行う。本実施例によって、速度・位置センサを用いずに同期電動機を停止時から、高速回転まで速やかに起動できる。
A series of startup processing of this embodiment is automatically performed according to a program preset in the
1…速度指令発生器、2…制御装置、3…PWM(パルス幅変調)発生器、4…インバータ、5…同期電動機、6…電流検出器、7…変換ゲイン(Pは電動機の極数)、8…積分器、9…dq座標変換器、10…Id*発生器、11…Iq*発生器、12…電圧指令演算器、13…dq逆変換器、41…直流電源部、42…インバータ主回路部、43…ゲート・ドライバ、411…電源、412…ダイオード・ブリッジ、413…平滑コンデンサ。
DESCRIPTION OF
Claims (3)
モータ電流の検出値のトルク軸成分(q軸成分)に遅れ要素を与えた値から前記モータに付与する電流指令値を作成し、前記電流指令値に基づき前記インバータを駆動するためのパルス幅制御信号を生成し、該パルス幅制御信号を前記インバータに付与して前記モータを駆動することを特徴とする制御装置。 A control device for controlling a motor based on a detected value of a motor current,
Pulse width control for creating a current command value to be applied to the motor from a value obtained by adding a delay element to the torque axis component (q-axis component) of the detected value of the motor current , and driving the inverter based on the current command value A control device that generates a signal and applies the pulse width control signal to the inverter to drive the motor.
モータ電流の検出値のトルク軸成分(q軸成分)に遅れ要素を与えた値から前記モータに付与する電流指令値を作成し、前記電流指令値に基づき前記インバータを駆動するためのパルス幅制御信号を生成し、該パルス幅制御信号を前記インバータに付与して前記モータを駆動することを特徴とするモータの制御方法。 A motor control method for controlling a motor based on a detected value of a motor current,
Pulse width control for creating a current command value to be applied to the motor from a value obtained by adding a delay element to the torque axis component (q-axis component) of the detected value of the motor current , and driving the inverter based on the current command value A motor control method, comprising: generating a signal and applying the pulse width control signal to the inverter to drive the motor.
モータ電流の検出値のトルク軸成分(q軸成分)に遅れ要素を与えた値から前記モータに付与する電流指令値を作成し、前記電流指令値に基づき前記インバータを駆動するためのパルス幅制御信号を生成し、該パルス幅制御信号を前記インバータに付与して前記モータを駆動することを特徴とするモジュール。 A module comprising an inverter and a control device that controls the motor based on the detected value of the motor current,
Pulse width control for creating a current command value to be applied to the motor from a value obtained by adding a delay element to the torque axis component (q-axis component) of the detected value of the motor current , and driving the inverter based on the current command value A module that generates a signal and applies the pulse width control signal to the inverter to drive the motor.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2006155549A JP4635964B2 (en) | 2006-06-05 | 2006-06-05 | Synchronous motor drive device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2006155549A JP4635964B2 (en) | 2006-06-05 | 2006-06-05 | Synchronous motor drive device |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2001064317A Division JP3840905B2 (en) | 2001-03-08 | 2001-03-08 | Synchronous motor drive device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2006230199A JP2006230199A (en) | 2006-08-31 |
| JP4635964B2 true JP4635964B2 (en) | 2011-02-23 |
Family
ID=36991019
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2006155549A Expired - Lifetime JP4635964B2 (en) | 2006-06-05 | 2006-06-05 | Synchronous motor drive device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4635964B2 (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102006045397A1 (en) * | 2006-09-26 | 2008-04-03 | Siemens Ag | Error detection by evaluation of variables of field-oriented control |
| JP5178350B2 (en) * | 2008-06-27 | 2013-04-10 | 日立アプライアンス株式会社 | Motor drive apparatus and refrigeration apparatus using the same |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3121561B2 (en) * | 1997-04-21 | 2001-01-09 | ファナック株式会社 | Injection molding machine |
-
2006
- 2006-06-05 JP JP2006155549A patent/JP4635964B2/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| JP2006230199A (en) | 2006-08-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3840905B2 (en) | Synchronous motor drive device | |
| JP3668870B2 (en) | Synchronous motor drive system | |
| JP3860031B2 (en) | Synchronous motor control device and control method of synchronous motor | |
| JP3867518B2 (en) | Sensorless control system for synchronous motor | |
| JP5357232B2 (en) | Synchronous machine controller | |
| JP3843391B2 (en) | Synchronous motor drive | |
| US9225270B2 (en) | Current control device of synchronous motor | |
| JP3637897B2 (en) | Synchronous motor drive device, inverter device, and synchronous motor control method | |
| JP5276688B2 (en) | Synchronous machine controller | |
| CN108964556A (en) | For driving the senseless control device of permanent magnetic synchronous electrical motor | |
| CN103378792B (en) | The control device of permanent magnet type synchronous motor | |
| JP2010172060A (en) | Vector controller for permanent magnet motor, vector control system for permanent magnet motor, and screw compressor | |
| JP5473289B2 (en) | Control device and control method for permanent magnet type synchronous motor | |
| JP4053511B2 (en) | Vector controller for wound field synchronous machine | |
| JP4635964B2 (en) | Synchronous motor drive device | |
| JP2001190093A (en) | Control device for permanent magnet synchronous motor | |
| JP4639832B2 (en) | AC motor drive device | |
| JP6468433B2 (en) | Control device for permanent magnet type synchronous motor | |
| Hinkkanen et al. | Position estimation for synchronous motor drives: Unified framework for design and analysis | |
| JP7206707B2 (en) | motor controller | |
| JP5511531B2 (en) | Control device for synchronous motor | |
| JP7009861B2 (en) | Motor control device | |
| JP4005510B2 (en) | Synchronous motor drive system | |
| JP2012175776A (en) | Motor controller and motor drive system | |
| JP5517983B2 (en) | AC rotating machine control device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060605 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091110 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100511 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100625 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101026 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101108 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131203 Year of fee payment: 3 |
|
| R151 | Written notification of patent or utility model registration |
Ref document number: 4635964 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131203 Year of fee payment: 3 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131203 Year of fee payment: 3 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
| S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| EXPY | Cancellation because of completion of term |