JP4762695B2 - Proton conducting solid polymer electrolyte and fuel cell - Google Patents
Proton conducting solid polymer electrolyte and fuel cell Download PDFInfo
- Publication number
- JP4762695B2 JP4762695B2 JP2005338463A JP2005338463A JP4762695B2 JP 4762695 B2 JP4762695 B2 JP 4762695B2 JP 2005338463 A JP2005338463 A JP 2005338463A JP 2005338463 A JP2005338463 A JP 2005338463A JP 4762695 B2 JP4762695 B2 JP 4762695B2
- Authority
- JP
- Japan
- Prior art keywords
- polymer electrolyte
- group
- solid polymer
- acid
- proton
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000005518 polymer electrolyte Substances 0.000 title claims description 67
- 239000000446 fuel Substances 0.000 title claims description 60
- 239000007787 solid Substances 0.000 title claims description 25
- 229920000343 polyazomethine Polymers 0.000 claims description 57
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 40
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 30
- 239000012528 membrane Substances 0.000 claims description 30
- 239000001301 oxygen Substances 0.000 claims description 30
- 229910052760 oxygen Inorganic materials 0.000 claims description 30
- 239000002253 acid Substances 0.000 claims description 28
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 20
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 16
- 125000000217 alkyl group Chemical group 0.000 claims description 15
- 150000001875 compounds Chemical class 0.000 claims description 14
- 239000003431 cross linking reagent Substances 0.000 claims description 13
- 230000001590 oxidative effect Effects 0.000 claims description 13
- 239000007800 oxidant agent Substances 0.000 claims description 12
- 238000009826 distribution Methods 0.000 claims description 10
- 229920000642 polymer Polymers 0.000 claims description 10
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 claims description 8
- 125000002947 alkylene group Chemical group 0.000 claims description 8
- 125000004432 carbon atom Chemical group C* 0.000 claims description 6
- 125000005442 diisocyanate group Chemical group 0.000 claims description 5
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 claims description 4
- 125000003118 aryl group Chemical group 0.000 claims description 4
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 claims description 4
- 150000008064 anhydrides Chemical class 0.000 claims description 3
- 125000000732 arylene group Chemical group 0.000 claims description 3
- 125000002529 biphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C12)* 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 125000001624 naphthyl group Chemical group 0.000 claims description 3
- 125000005628 tolylene group Chemical group 0.000 claims description 3
- 125000006839 xylylene group Chemical group 0.000 claims description 3
- 238000010248 power generation Methods 0.000 description 18
- 125000003277 amino group Chemical group 0.000 description 12
- 239000003054 catalyst Substances 0.000 description 11
- 239000000758 substrate Substances 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 239000012298 atmosphere Substances 0.000 description 9
- 239000011521 glass Substances 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 229920006254 polymer film Polymers 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 7
- 238000002329 infrared spectrum Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 5
- HSTOKWSFWGCZMH-UHFFFAOYSA-N 3,3'-diaminobenzidine Chemical compound C1=C(N)C(N)=CC=C1C1=CC=C(N)C(N)=C1 HSTOKWSFWGCZMH-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- IZALUMVGBVKPJD-UHFFFAOYSA-N benzene-1,3-dicarbaldehyde Chemical compound O=CC1=CC=CC(C=O)=C1 IZALUMVGBVKPJD-UHFFFAOYSA-N 0.000 description 3
- 150000004985 diamines Chemical class 0.000 description 3
- 125000005594 diketone group Chemical group 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- UWFRVQVNYNPBEF-UHFFFAOYSA-N 1-(2,4-dimethylphenyl)propan-1-one Chemical compound CCC(=O)C1=CC=C(C)C=C1C UWFRVQVNYNPBEF-UHFFFAOYSA-N 0.000 description 2
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 2
- 239000004971 Cross linker Substances 0.000 description 2
- ZNZYKNKBJPZETN-WELNAUFTSA-N Dialdehyde 11678 Chemical compound N1C2=CC=CC=C2C2=C1[C@H](C[C@H](/C(=C/O)C(=O)OC)[C@@H](C=C)C=O)NCC2 ZNZYKNKBJPZETN-WELNAUFTSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 239000002737 fuel gas Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 2
- FKTHNVSLHLHISI-UHFFFAOYSA-N 1,2-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC=C1CN=C=O FKTHNVSLHLHISI-UHFFFAOYSA-N 0.000 description 1
- ZXHZWRZAWJVPIC-UHFFFAOYSA-N 1,2-diisocyanatonaphthalene Chemical compound C1=CC=CC2=C(N=C=O)C(N=C=O)=CC=C21 ZXHZWRZAWJVPIC-UHFFFAOYSA-N 0.000 description 1
- LVQFKRXRTXCQCZ-UHFFFAOYSA-N 1-(2-acetylphenyl)ethanone Chemical compound CC(=O)C1=CC=CC=C1C(C)=O LVQFKRXRTXCQCZ-UHFFFAOYSA-N 0.000 description 1
- VCHOFVSNWYPAEF-UHFFFAOYSA-N 1-(3-acetylphenyl)ethanone Chemical compound CC(=O)C1=CC=CC(C(C)=O)=C1 VCHOFVSNWYPAEF-UHFFFAOYSA-N 0.000 description 1
- SKBBQSLSGRSQAJ-UHFFFAOYSA-N 1-(4-acetylphenyl)ethanone Chemical compound CC(=O)C1=CC=C(C(C)=O)C=C1 SKBBQSLSGRSQAJ-UHFFFAOYSA-N 0.000 description 1
- VLDPXPPHXDGHEW-UHFFFAOYSA-N 1-chloro-2-dichlorophosphoryloxybenzene Chemical compound ClC1=CC=CC=C1OP(Cl)(Cl)=O VLDPXPPHXDGHEW-UHFFFAOYSA-N 0.000 description 1
- KDLIYVDINLSKGR-UHFFFAOYSA-N 1-isocyanato-4-(4-isocyanatophenoxy)benzene Chemical compound C1=CC(N=C=O)=CC=C1OC1=CC=C(N=C=O)C=C1 KDLIYVDINLSKGR-UHFFFAOYSA-N 0.000 description 1
- SSOVVTOURMQUSM-UHFFFAOYSA-N 2-[(4-propylphenoxy)methyl]oxirane Chemical compound C1=CC(CCC)=CC=C1OCC1OC1 SSOVVTOURMQUSM-UHFFFAOYSA-N 0.000 description 1
- HAUDLKKUHAFHRO-UHFFFAOYSA-N 2-oxaspiro[3.3]hept-6-ene-1,3-dione Chemical compound O=C1OC(=O)C11C=CC1 HAUDLKKUHAFHRO-UHFFFAOYSA-N 0.000 description 1
- FEHLIYXNTWAEBQ-UHFFFAOYSA-N 4-(4-formylphenyl)benzaldehyde Chemical group C1=CC(C=O)=CC=C1C1=CC=C(C=O)C=C1 FEHLIYXNTWAEBQ-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 239000005058 Isophorone diisocyanate Substances 0.000 description 1
- OMRDSWJXRLDPBB-UHFFFAOYSA-N N=C=O.N=C=O.C1CCCCC1 Chemical compound N=C=O.N=C=O.C1CCCCC1 OMRDSWJXRLDPBB-UHFFFAOYSA-N 0.000 description 1
- NHQZNWCIHVVFPO-UHFFFAOYSA-N N=C=O.N=C=O.FC(C=CC=C1)=C1C(C(F)=C(C(F)=C1F)F)=C1F Chemical compound N=C=O.N=C=O.FC(C=CC=C1)=C1C(C(F)=C(C(F)=C1F)F)=C1F NHQZNWCIHVVFPO-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004693 Polybenzimidazole Substances 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- SBRUFOSORMQHES-UHFFFAOYSA-N anthracene-9,10-dialdehyde Chemical compound C1=CC=C2C(C=O)=C(C=CC=C3)C3=C(C=O)C2=C1 SBRUFOSORMQHES-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Natural products C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000002847 impedance measurement Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- AYLRODJJLADBOB-QMMMGPOBSA-N methyl (2s)-2,6-diisocyanatohexanoate Chemical compound COC(=O)[C@@H](N=C=O)CCCCN=C=O AYLRODJJLADBOB-QMMMGPOBSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- IYDGMDWEHDFVQI-UHFFFAOYSA-N phosphoric acid;trioxotungsten Chemical compound O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.OP(O)(O)=O IYDGMDWEHDFVQI-UHFFFAOYSA-N 0.000 description 1
- 229920002480 polybenzimidazole Polymers 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- KUCOHFSKRZZVRO-UHFFFAOYSA-N terephthalaldehyde Chemical compound O=CC1=CC=C(C=O)C=C1 KUCOHFSKRZZVRO-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/103—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
- H01B1/122—Ionic conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Fuel Cell (AREA)
- Conductive Materials (AREA)
- Inert Electrodes (AREA)
- Phenolic Resins Or Amino Resins (AREA)
Description
本発明は、プロトン伝導性固体高分子電解質及び燃料電池に関するものであり、特に、100℃以上200℃以下の作動温度下において、無加湿あるいは相対湿度50%以下であっても良好な発電性能を長期間安定的に示す固体高分子型燃料電池に関する。 The present invention relates to a proton-conducting solid polymer electrolyte and a fuel cell, and in particular, at an operating temperature of 100 ° C. or more and 200 ° C. or less, good power generation performance is obtained even when there is no humidification or a relative humidity of 50% or less. The present invention relates to a polymer electrolyte fuel cell that is stably displayed for a long period of time.
従来、固体高分子型燃料電池用プロトン伝導性電解質としては、システム効率、構成部材の長期耐久性の観点から、100℃から300℃程度の作動温度において、無加湿あるいは相対湿度50%以下の低加湿な作動条件で良好なプロトン伝導性を長期安定的に示すプロトン伝導体が望まれている。従来の固体高分子型燃料電池の開発において、上記要求に鑑みて検討されてきたが、パーフルオロカーボンスルホン酸膜を電解質膜として用いた固体高分子型燃料電池では100℃以上300℃以下の作動温度下、相対湿度50%以下では十分な発電性能を得る事が出来ない欠点があった。 Conventionally, as a proton conductive electrolyte for a polymer electrolyte fuel cell, from the viewpoint of system efficiency and long-term durability of components, at a working temperature of about 100 ° C. to 300 ° C., it is not humidified or has a low relative humidity of 50% or less. There is a demand for a proton conductor that stably exhibits good proton conductivity for a long period of time under humid operating conditions. In the development of a conventional polymer electrolyte fuel cell, it has been studied in view of the above requirements, but in a polymer electrolyte fuel cell using a perfluorocarbon sulfonic acid membrane as an electrolyte membrane, an operating temperature of 100 ° C. or more and 300 ° C. or less. Below, there was a drawback that sufficient power generation performance could not be obtained at a relative humidity of 50% or less.
また、プロトン伝導性付与剤を含有させたもの(例えば、特許文献1参照。)や、シリカ分散膜を使用したもの(例えば、特許文献2参照。)、無機−有機複合膜を使用したもの(例えば、特許文献3参照。)、リン酸ドープグラフト膜を使用したもの(例えば、特許文献4参照。)、あるいはイオン性液体複合膜を使用したもの(例えば、特許文献5、特許文献6参照。)があるが、いずれも100℃以上300℃以下の作動温度下、無加湿あるいは相対湿度50%以下の使用環境下では十分な発電性能性を長期間安定的に発揮することはできない。 Further, a material containing a proton conductivity-imparting agent (for example, see Patent Document 1), a material using a silica dispersion film (for example, Patent Document 2), or a material using an inorganic-organic composite film ( For example, see Patent Document 3), using a phosphate-doped graft membrane (see, for example, Patent Document 4), or using an ionic liquid composite membrane (see, for example, Patent Document 5 and Patent Document 6). However, in any case, sufficient power generation performance cannot be exhibited stably for a long period of time under an operating temperature of 100 ° C. or more and 300 ° C. or less, no humidification, or a relative humidity of 50% or less.
唯一、特許文献7に開示されているリン酸などの強酸をドープさせたポリベンズイミダゾールからなる高分子電解質膜を用いることによって、200℃までの高温であっても十分な発電性能を示す固体高分子型燃料電池を得る事が出来るが、ポリマーの重量の4倍ものりん酸を含浸させて使用するため、長期間安定的に発電性能を維持する事は困難であった。
本発明は、上記課題を解決するためになされたもので、100℃から200℃程度の作動温度において、無加湿あるいは相対湿度50%以下の作動条件で良好に作動する発電性能を長期間安定的に示すことが可能なプロトン伝導性固体高分子電解質及びこの電解質を備えた燃料電池を提供することを目的とする。 The present invention has been made in order to solve the above-mentioned problems, and has stable power generation performance for a long period of time at an operating temperature of about 100 ° C. to 200 ° C. under a non-humidified or relative humidity of 50% or less. An object of the present invention is to provide a proton-conducting solid polymer electrolyte that can be shown in (1) and a fuel cell equipped with the electrolyte.
上記の目的を達成するために、本発明は以下の構成を採用した。
本発明のプロトン伝導性固体高分子電解質は、酸と、前記酸を含浸する高分子化合物とを具備してなり、前記高分子化合物が、下記の一般式(1)で表される繰り返し単位を有するポリアゾメチン類であることを特徴とする。ただし、一般式(1)において、R1は水素原子、アルキル基、アリル基のいずれかであり、R2は水素原子、アルキル基、アリル基のいずれかであり、Xはアリーレン基であり、繰り返し数を示すnは100乃至100000の範囲の整数である。
In order to achieve the above object, the present invention employs the following configuration.
The proton conductive solid polymer electrolyte of the present invention comprises an acid and a polymer compound impregnated with the acid, and the polymer compound has a repeating unit represented by the following general formula (1). It is characterized by having polyazomethines. However, in the general formula (1), R 1 is hydrogen atom, an alkyl group, or a aryl group, R 2 represents a hydrogen atom, an alkyl group, or a allyl group, X is an arylene group , N indicating the number of repetitions is an integer in the range of 100 to 100,000.
また、本発明のプロトン伝導性固体高分子電解質は、前記の一般式(1)において、R1は水素原子、炭素数が1乃至6のアルキル基、アリル基のいずれかであり、R2は水素原子、炭素数が1乃至6のアルキル基、アリル基のいずれかであり、Xはフェニレン基、トリレン基、キシリレン基、ビフェニレン基、ナフチレン基、アントリレン基、フェナントリレン基のいずれかであり、繰り返し数を示すnは100乃至100000の範囲の整数であることが好ましい。
また、本発明のプロトン伝導性固体高分子電解質においては、前記ポリアゾメチン類の一部が酸化されて変性されていても良い。
また、本発明のプロトン伝導性固体高分子電解質においては、低分子架橋剤による架橋構造が形成されていても良い。低分子架橋剤としては、二酸無水物、ジエポキシ化合物、ジイソシアネートから選ばれる化合物が好ましい。
また、本発明のプロトン伝導性固体高分子電解質においては、前記酸が、リン酸あるいはホスホン酸またはこれらの混合物であることが好ましい。
In the proton conductive solid polymer electrolyte of the present invention, in the general formula (1), R 1 is any one of a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, and an allyl group, and R 2 is hydrogen atom, an alkyl group of 1 to 6 carbon atoms, are either allyl group, X is phenylene group, tolylene group, xylylene group, biphenylene group, naphthyl alkylene group, Antori alkylene group, Fenantori alkylene group N representing the number of repetitions is preferably an integer in the range of 100 to 100,000.
In the proton conductive solid polymer electrolyte of the present invention, a part of the polyazomethines may be oxidized and modified.
In the proton conductive solid polymer electrolyte of the present invention, a crosslinked structure with a low molecular crosslinking agent may be formed. As the low molecular crosslinking agent, a compound selected from a diacid anhydride, a diepoxy compound, and a diisocyanate is preferable.
In the proton conductive solid polymer electrolyte of the present invention, the acid is preferably phosphoric acid, phosphonic acid, or a mixture thereof.
次に本発明の燃料電池は、酸素極、燃料極および両電極に挟持された高分子電解質膜を備え、酸化剤流路を形成した酸化剤配流板を酸素極側に設け、燃料流路を形成した燃料配流板を燃料極側に設けたものを単位セルとする燃料電池であり、前記高分子電解質膜が先のいずれかに記載のプロトン伝導性固体高分子電解質からなることを特徴とする。
また、本発明の燃料電池においては、前記酸素極または前記燃料極のいずれか一方または両方に、先のいずれかに記載のプロトン伝導性固体高分子電解質が含まれていることが好ましい。
Next, a fuel cell according to the present invention includes an oxygen electrode, a fuel electrode, and a polymer electrolyte membrane sandwiched between both electrodes, an oxidant distribution plate having an oxidant channel formed on the oxygen electrode side, and the fuel channel A fuel cell having a unit cell formed by providing a formed fuel flow distribution plate on the fuel electrode side, wherein the polymer electrolyte membrane is formed of the proton-conducting solid polymer electrolyte described above. .
In the fuel cell of the present invention, it is preferable that either one or both of the oxygen electrode and the fuel electrode contain the proton-conducting solid polymer electrolyte described above.
本発明によれば、作動温度が100℃以上200℃以下で無加湿、あるいは相対湿度50%以下であっても、少量の酸がドープされてなるプロトン伝導性固体高分子電解質を用いることによって、良好な発電性能を長期間安定的に示す固体高分子型燃料電池を得ることが出来る。 According to the present invention, even when the operating temperature is 100 ° C. or higher and 200 ° C. or lower and no humidification or a relative humidity of 50% or less, by using a proton conductive solid polymer electrolyte doped with a small amount of acid, It is possible to obtain a polymer electrolyte fuel cell that stably exhibits good power generation performance for a long period.
以下、本発明の実施の形態について図面を参照して説明する。
[プロトン伝導性固体高分子電解質]
本実施形態のプロトン伝導性固体高分子電解質(以下、高分子電解質という)は、酸と、酸を含浸する高分子化合物とを具備して構成されている。高分子化合物は、上記の一般式(1)で表される繰り返し単位を有するポリアゾメチン類である。本実施形態の高分子電解質においては、ポリアゾメチン類からなる高分子化合物に対して酸が含浸(ドープ)されている。また、本実施形態の高分子電解質には、低分子架橋剤によってポリアゾメチン類の主鎖同士が架橋された架橋構造が形成されていても良い。
以下、本実施形態の高分子電解質を構成する成分について以下に説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Proton conductive solid polymer electrolyte]
The proton conductive solid polymer electrolyte (hereinafter referred to as polymer electrolyte) of the present embodiment is configured to include an acid and a polymer compound impregnated with the acid. The polymer compound is a polyazomethine having a repeating unit represented by the general formula (1). In the polymer electrolyte of the present embodiment, an acid is impregnated (doped) with a polymer compound composed of polyazomethines. Moreover, the polymer electrolyte of this embodiment may have a crosslinked structure in which the main chains of polyazomethines are crosslinked with a low molecular crosslinking agent.
Hereinafter, components constituting the polymer electrolyte of the present embodiment will be described below.
(ポリアゾメチン類)
ポリアゾメチン類は、先に説明したように、上記の一般式(1)に示す繰り返し単位を有する高分子である。このポリアゾメチン類は、一般式(1)に示すように、フェニル基に結合するアミン基を有しており、このアミン基と酸との相互作用によって酸がポリアゾメチン類にドープされ、これによりプロトン伝導度が発現されるものと考えられる。また、ポリアゾメチン類は、フェニル基に結合する窒素−炭素の二重結合を有しており、この窒素−炭素の二重結合の存在によってポリアゾメチン類に熱的安定性が付与され、これにより高分子電解質の耐熱性が向上するものと考えられる。
(Polyazomethines)
As described above, the polyazomethine is a polymer having a repeating unit represented by the general formula (1). As shown in the general formula (1), the polyazomethines have an amine group bonded to a phenyl group, and the acid is doped into the polyazomethines by the interaction between the amine group and the acid. Proton conductivity is considered to be expressed. In addition, polyazomethines have a nitrogen-carbon double bond bonded to a phenyl group, and the presence of this nitrogen-carbon double bond imparts thermal stability to the polyazomethine, thereby It is considered that the heat resistance of the polymer electrolyte is improved.
一般式(1)において、R1は水素原子、アルキル基、アリル基のいずれかであり、R2は水素原子、アルキル基、アリル基のいずれかであり、Xはアリーレン基であり、繰り返し数を示すnは1乃至6の範囲の整数である。より好ましくは、R1が水素原子、炭素数が1乃至6のアルキル基、アリル基のいずれかであり、R2が水素原子、炭素数が1乃至6のアルキル基、アリル基のいずれかであり、Xがフェニレン基、トリレン基、キシリレン基、ビフェニレン基、ナフチレン基、アントリレン基、フェナントリレン基のいずれかであり、繰り返し数を示すnが100乃至100000の範囲の整数である。特に好ましくは、R1及びR2が水素原子であり、Xがフェニレン基であり、繰り返し数を示すnが100乃至100000の範囲の整数である。 In the general formula (1), R 1 is hydrogen atom, an alkyl group, or a aryl group, R 2 represents a hydrogen atom, an alkyl group, or a aryl group, X is arylene group, repeated N representing a number is an integer in the range of 1 to 6. More preferably, R 1 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an allyl group, and R 2 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an allyl group. There, X is phenylene group, tolylene group, xylylene group, biphenylene group, naphthyl alkylene group, Antori alkylene group, or a Fenantori alkylene groups, integers ranging n is 100 to 100,000 indicating the number of repetitions It is. Particularly preferably, R 1 and R 2 are hydrogen atoms, X is phenylene group, which is an integer in the range n of 100 to 100,000 indicating the number of repetitions.
R1及びR2が上記以外の置換基になると、フェニル基に結合するアミノ基との相互作用によってポリアゾメチン類の熱的安定性が低下するので好ましくない。また、Xが上記以外の置換基になると、ポリアゾメチン類の熱的安定性が低下するので好ましくない。更に、繰り返し数を示すnが100未満になると、高分子電解質の機械的強度が低下してしまうので好ましくなく、一方、nが100000を越えるとポリアゾメチン類の溶媒に対する溶解性が低下し、これにより所謂キャスト法によるポリアゾメチン類の成形性が低下し、高分子電解質を所望の形状にすることが困難になるので好ましくない。 When R 1 and R 2 are substituents other than those described above, the thermal stability of the polyazomethines decreases due to the interaction with the amino group bonded to the phenyl group, which is not preferable. Moreover, when X becomes a substituent other than the above, it is not preferable because the thermal stability of the polyazomethines is lowered. Further, when n indicating the number of repetitions is less than 100, the mechanical strength of the polymer electrolyte is decreased, which is not preferable. On the other hand, when n exceeds 100000, the solubility of polyazomethines in a solvent is decreased. Therefore, the moldability of polyazomethines by the so-called casting method is lowered, and it becomes difficult to make the polymer electrolyte into a desired shape, which is not preferable.
また、本実施形態のポリアゾメチン類には、その一部が加熱酸化されて変性されていてもよい。ポリアゾメチン類は、上述したように窒素−炭素の二重結合の存在により熱的安定性に優れ、またアミン基と酸との相互作用によってプロトン伝導度が発現されるが、その一方で、特にR1またはR2のいずれが水素原子の場合に、酸素の存在下で窒素−炭素二重結合とアミン基との間で加熱酸化による脱水反応が起こりやすい。この脱水反応は、窒素−炭素二重結合の炭素に結合するR1またはR2(水素原子)と、雰囲気中の酸素と、アミン基の水素とが化合して水が生成される反応である。この反応によって、窒素−炭素二重結合が単結合となり、更にこの窒素−炭素結合の炭素原子にアミン基の窒素原子が結合して窒素含有炭素環構造が形成される。下記一般式(2)及び(3)には、ポリアゾメチン類が加熱酸化されて変性された構造の一例を示す。 In addition, a part of the polyazomethines of this embodiment may be modified by heat oxidation. As described above, polyazomethines have excellent thermal stability due to the presence of a nitrogen-carbon double bond, and also exhibit proton conductivity due to the interaction between an amine group and an acid. When either R 1 or R 2 is a hydrogen atom, a dehydration reaction due to thermal oxidation is likely to occur between the nitrogen-carbon double bond and the amine group in the presence of oxygen. This dehydration reaction is a reaction in which R 1 or R 2 (hydrogen atom) bonded to carbon of a nitrogen-carbon double bond, oxygen in the atmosphere, and hydrogen of the amine group combine to generate water. . By this reaction, the nitrogen-carbon double bond becomes a single bond, and the nitrogen atom of the amine group is further bonded to the carbon atom of the nitrogen-carbon bond to form a nitrogen-containing carbocyclic structure. The following general formulas (2) and (3) show examples of structures in which polyazomethines are modified by heat oxidation.
こうした変性は、ポリアゾメチン類が酸素存在下で60℃程度に加熱される条件で起きやすい。酸素が存在しない条件では、たとえ60℃程度に加熱されても変性は起きない。また、酸がドープされたポリアゾメチン類については、酸によってアミン基が保護されていると推定され、酸素存在下で60℃程度に加熱されても変性が起きにくい。
なお、R1及びR2が水素原子以外の場合には、酸素存在下で60℃に加熱するだけでは変性が起こりにくく、R1基及びR2基を引き抜くための塩化第二鉄等の触媒の存在が必要になる。
Such modification is likely to occur under conditions in which polyazomethines are heated to about 60 ° C. in the presence of oxygen. In the absence of oxygen, denaturation does not occur even when heated to about 60 ° C. In addition, with respect to polyazomethines doped with an acid, it is presumed that the amine group is protected by the acid, and even when heated to about 60 ° C. in the presence of oxygen, the modification is unlikely to occur.
In addition, when R 1 and R 2 are other than hydrogen atoms, modification is unlikely to occur only by heating to 60 ° C. in the presence of oxygen, and a catalyst such as ferric chloride for extracting the R 1 and R 2 groups. The existence of
この変性構造は、ポリアゾメチン類の一部に存在することが望ましく、ポリアゾメチン類全体が変性されることは望ましくない。ポリアゾメチン類の一部が変性されることによってポリアゾメチン類の熱安定性及び耐溶媒性が向上し、燃料電池のような比較的高温の雰囲気下でも安定したプロトン伝導度を発現させることができる。一方、ポリアゾメチン類の全体が変性されると、アミン基が消失してしまい、酸の含浸率(ドープ率)が大幅に低下してプロトン伝導度が低下してしまうので好ましくない。 This modified structure is desirably present in a part of the polyazomethines, and it is not desirable that the entire polyazomethines are modified. Modification of part of polyazomethines improves the thermal stability and solvent resistance of polyazomethines, and allows stable proton conductivity to be expressed even in relatively high-temperature atmospheres such as fuel cells. . On the other hand, if the whole polyazomethine is modified, the amine group disappears, the acid impregnation rate (doping rate) is significantly lowered, and the proton conductivity is lowered, which is not preferable.
(酸)
本実施形態における酸とは、りん酸、ホスホン酸、硫酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸、トリフルオロメタンスルホイミド酸、リンタングステン酸等を示すが、耐熱性、腐食性、揮発性、導電性の観点から、りん酸およびホスホン酸またはこれらの混合物が好ましい。これらの酸はいずれも、ポリアゾメチン類のアミン基と相互作用してポリアゾメチン類に含浸(ドープ)されてプロトン伝導度を発現させる。ポリアゾメチン類に対する酸のドープ率は、酸の種類にもよるが、50%以上400%以下の範囲が好ましく、100%以上300%以下の範囲がより好ましい。ドープ率が低すぎるとプロトン伝導度が低下してしまうので好ましくなく、またドープ率が高すぎると固体高分子電解質の機械的強度が低下するので好ましくない。
(acid)
Examples of the acid in the present embodiment include phosphoric acid, phosphonic acid, sulfuric acid, trifluoroacetic acid, trifluoromethanesulfonic acid, trifluoromethanesulfimidic acid, phosphotungstic acid, and the like, but heat resistance, corrosiveness, volatility, conductivity From this point of view, phosphoric acid and phosphonic acid or mixtures thereof are preferred. Any of these acids interacts with the amine group of the polyazomethine and is impregnated (doped) into the polyazomethine to develop proton conductivity. The acid doping ratio with respect to polyazomethines is preferably in the range of 50% to 400%, more preferably in the range of 100% to 300%, although it depends on the type of acid. If the doping rate is too low, the proton conductivity is lowered, which is not preferable, and if the doping rate is too high, the mechanical strength of the solid polymer electrolyte is reduced.
(低分子架橋剤)
また、本実施形態の固体高分子電解質においては、低分子架橋剤による架橋構造が形成されていても良い。低分子架橋剤としては、二酸無水物、ジエポキシ化合物、ジイソシアネートから選ばれる化合物が好ましい。これら低分子架橋剤によって、ポリアゾメチン類の主鎖同士が架橋された架橋構造が形成され、高分子電解質の機械的強度が更に向上する。架橋反応は主に、ポリアゾメチン類のアミン基に対して起こり、隣接する分子鎖のアミン基同士が架橋されてポリアゾメチン類全体の分子構造が安定化される。
(Low molecular crosslinking agent)
Moreover, in the solid polymer electrolyte of this embodiment, the crosslinked structure by a low molecular crosslinking agent may be formed. As the low molecular crosslinking agent, a compound selected from a diacid anhydride, a diepoxy compound, and a diisocyanate is preferable. By these low molecular crosslinking agents, a crosslinked structure in which the main chains of polyazomethines are crosslinked is formed, and the mechanical strength of the polymer electrolyte is further improved. The cross-linking reaction mainly occurs with respect to the amine group of the polyazomethine, and the amine groups of adjacent molecular chains are cross-linked to stabilize the molecular structure of the whole polyazomethine.
二酸無水物としては、二無水ピロメリット酸、シクロブテンニカルボン酸無水物、あるいはこれらの誘導体などが挙げられる。
また、ジエポキシ化合物としては、エチレングリコールジグリシジルエーテル,2,2’−ビス(4−グリシジルオキシフェニル)−プロパンなどが挙げられる。
更に、ジイソシアネートとしては、ジフェニルメタンジイソシアネート(以下、MDIと略す)、4,4’−ジフェニルエーテルジイソシアネート(ODI)、トリレンジイソシアネート、キシリレンジイソシアネート、ナフタレンジイソシアネート、ヘキサフルオロビフェニルジイソシアネート、ヘキサメチレンジイソシアネート、リジンジイソシアネート、イソホロンジイソシアネート、シクロヘキサンジイソシアネートなどが挙げられる。更にはこれらの誘導体も使用できる。
Examples of the dianhydride include dianhydride pyromellitic acid, cyclobutene dicarboxylic acid anhydride, and derivatives thereof.
Examples of the diepoxy compound include ethylene glycol diglycidyl ether and 2,2′-bis (4-glycidyloxyphenyl) -propane.
Further, as the diisocyanate, diphenylmethane diisocyanate (hereinafter abbreviated as MDI), 4,4′-diphenyl ether diisocyanate (ODI), tolylene diisocyanate, xylylene diisocyanate, naphthalene diisocyanate, hexafluorobiphenyl diisocyanate, hexamethylene diisocyanate, lysine diisocyanate, Examples include isophorone diisocyanate and cyclohexane diisocyanate. Furthermore, these derivatives can also be used.
また、これらの低分子架橋剤とポリアゾメチン類の混合比(低分子架橋剤/ポリアゾメチン類)は1/5(mol/mol)〜1/3(mol/mol)の割合で混合されるのが好ましい。低分子架橋剤がこれより多くなるとゲル化が進行して高分子電解質を膜状に成形することが困難になる。 Also, the mixing ratio of these low molecular crosslinkers and polyazomethines (low molecular crosslinkers / polyazomethines) is mixed at a ratio of 1/5 (mol / mol) to 1/3 (mol / mol). Is preferred. When the amount of the low molecular crosslinking agent is larger than this, gelation proceeds and it becomes difficult to form the polymer electrolyte into a film.
(高分子電解質の製造方法)
高分子電解質の製造方法は、ポリアゾメチン類を合成する工程と、合成されたポリアゾメチン類を例えば膜状に成形するとともにポリアゾメチン類に酸を含浸させる工程とからなる。
ポリアゾメリン類の合成方法は、例えば、文献(Macromolecules, vol.16, No.1 (1983) 128-136)にあるように、3,3’−ジアミノベンジジン等のジアミンと、イソフタルアルデヒド等のジアルデヒドを反応させることによって得られる。反応スキームを下記の式(4)に示す。
(Polymer electrolyte production method)
The method for producing a polymer electrolyte includes a step of synthesizing polyazomethines, and a step of forming the synthesized polyazomethines into, for example, a film and impregnating the polyazomethines with an acid.
As described in the literature (Macromolecules, vol.16, No.1 (1983) 128-136), for example, polyazomelins can be synthesized by using a diamine such as 3,3′-diaminobenzidine and a dialdehyde such as isophthalaldehyde. Is obtained by reacting. The reaction scheme is shown in the following formula (4).
また、一般式(1)におけるR1あるいはR2がメチル基等のアルキル基の場合は、下記の式(5)に示すように、3,3’−ジアミノベンジジン等のジアミンと、1,4−ジアセチルベンゼン等のジケトンとを反応させることによって得られる。式(5)はR1及びR2がメチル基の場合だが、他のアルキル基を導入する場合には、式(5)においてジケトンのカルボニル基に結合しているメチル基を他のアルキル基にすれば良い。 When R 1 or R 2 in the general formula (1) is an alkyl group such as a methyl group, a diamine such as 3,3′-diaminobenzidine and 1,4, as shown in the following formula (5) -Obtained by reacting with a diketone such as diacetylbenzene. In the formula (5), R 1 and R 2 are methyl groups, but when other alkyl groups are introduced, the methyl group bonded to the carbonyl group of the diketone in the formula (5) is replaced with other alkyl groups. Just do it.
上記式(4)及び(5)におけるジアミンとしては、3,3’−ジアミノベンジジンが好ましい。またジアルデヒドとしては、イソフタルアルデヒドの他に、テレフタルアルデヒド、9,10−ジホルミルアントラセン、4,4’−ジホルミルビフェニル等を用いることができる。更にジケトンとしては、1,4−ジアセチルベンゼンの他に1,3−ジアセチルベンゼン等を用いることができる。 As the diamine in the above formulas (4) and (5), 3,3′-diaminobenzidine is preferable. In addition to isophthalaldehyde, terephthalaldehyde, 9,10-diformylanthracene, 4,4'-diformylbiphenyl, and the like can be used as the dialdehyde. Further, as the diketone, 1,3-diacetylbenzene and the like can be used in addition to 1,4-diacetylbenzene.
次に、合成されたポリアゾメチン類を溶媒に溶解し、ガラス基板等の基板上に溶液を塗布し、その後、加熱して溶媒を除去することにより、ポリアゾメチン類からなる高分子膜を形成する。ポリアゾメチン類を溶かす溶媒としては、例えばジメチルアセトアミドを例示できる。加熱して溶媒を除去する際には、ポリアゾメチン類が加熱酸化されて変性されやすいので、加熱温度及び加熱雰囲気を調整することが望ましい。
ポリアゾメチン類を変性させたくない場合には、加熱雰囲気を減圧雰囲気または不活性ガス雰囲気等の非酸化性雰囲気とすることが望ましい。また、ポリアゾメチン類の一部を変性させる場合には、加熱雰囲気を、空気等の酸化性雰囲気とすれば良い。
Next, the synthesized polyazomethines are dissolved in a solvent, a solution is applied onto a substrate such as a glass substrate, and then the solvent is removed by heating to form a polymer film made of polyazomethines. . An example of a solvent that dissolves polyazomethines is dimethylacetamide. When removing the solvent by heating, polyazomethines are easily oxidized by heating and denatured, so it is desirable to adjust the heating temperature and heating atmosphere.
When it is not desired to modify the polyazomethines, the heating atmosphere is preferably a non-oxidizing atmosphere such as a reduced pressure atmosphere or an inert gas atmosphere. In addition, when a part of the polyazomethines is modified, the heating atmosphere may be an oxidizing atmosphere such as air.
次に、ポリアゾメチン類からなる高分子膜を酸の水溶液に浸すことでポリアゾメチン類に酸を含浸させる。このようにして膜状の高分子電解質が得られる。 Next, the polyazomethines are impregnated with an acid by immersing a polymer film made of the polyazomethines in an acid aqueous solution. In this way, a membrane-like polymer electrolyte is obtained.
また、ポリアゾメチン類を溶媒に溶解してガラス基板上に塗布する際に、ポリアゾメチン類とともに溶媒に酸を予め混合し、この混合溶液をガラス基板上に塗布してもよい。塗布後は上記と同様にして、加熱して溶媒を除去する。このようにして高分子電解質が得られる。この手法によれば、ポリアゾメチン類からなる高分子膜を成膜すると同時に酸を含浸させることができ、製造工程を簡略化することができる。 In addition, when polyazomethines are dissolved in a solvent and applied onto a glass substrate, an acid may be mixed in advance with the polyazomethines together with the solvent, and this mixed solution may be applied onto the glass substrate. After coating, the solvent is removed by heating in the same manner as described above. In this way, a polymer electrolyte is obtained. According to this method, a polymer film made of polyazomethines can be formed and simultaneously impregnated with an acid, and the manufacturing process can be simplified.
以上説明したように、本実施形態の高分子電解質によれば、優れた熱安定性と、高いプロトン伝導度を示すことができる。 As described above, according to the polymer electrolyte of the present embodiment, excellent thermal stability and high proton conductivity can be exhibited.
「燃料電池」
図1には、本実施形態の燃料電池を構成する単セルの模式図を示す。図1に示す単セル1は、酸素極2と、燃料極3と、酸素極2および燃料極3の間に挟持された高分子電解質4(以下、電解質膜4と表記する場合がある)と、酸素極2の外側に配置された酸化剤流路5aを有する酸化剤配流板5と、燃料極3の外側に配置された燃料流路6aを有する燃料配流板6とから構成され、作動温度100℃〜200℃、湿度が無加湿若しくは相対湿度50%以下の条件で作動するものである。
"Fuel cell"
In FIG. 1, the schematic diagram of the single cell which comprises the fuel cell of this embodiment is shown. A
燃料極3及び酸素極2はそれぞれ、多孔質性の触媒層2a、3aと、各触媒層2a、3aを保持する多孔質カーボンシート(カーボン多孔質体)2b、3bから概略構成されている。触媒層2a、3aには、電極触媒(触媒)と、この電極触媒を固化成形するための疎水性結着剤と、導電材とが含まれている。
The
触媒は、水素の酸化反応および酸素の還元反応を促進する金属であれば、特に限定されないが、例えば鉛、鉄、マンガン、コバルト、クロム、ガリウム、バナジウム、タングステン、ルテニウム、イリジウム、パラジウム、白金、ロジウムまたはそれらの合金を挙げることができる。こうした金属または合金を活性炭に担持させることによって電極触媒を構成することができる。 The catalyst is not particularly limited as long as it is a metal that promotes the oxidation reaction of hydrogen and the reduction reaction of oxygen. For example, lead, iron, manganese, cobalt, chromium, gallium, vanadium, tungsten, ruthenium, iridium, palladium, platinum, There may be mentioned rhodium or an alloy thereof. An electrode catalyst can be constituted by supporting such a metal or alloy on activated carbon.
また、疎水性結着剤には例えば、フッ素樹脂を用いることができる。フッ素樹脂の中でも融点が400℃以下のものが好ましく、そのようなフッ素樹脂としてポリ四フッ化エチレン、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、ポリフッ化ビニリデン、テトラフルオロエチレン・ヘキサフルオロエチレン共重合体、パーフルオロエチレン等といった疎水性および耐熱性に優れた樹脂を用いることができる。疎水性結着剤を添加することにより、発電反応に伴って生成した水によって触媒層2a、3aが過剰に濡れるのを防止することができ、燃料極3及び酸素極2内部における燃料ガス及び酸素の拡散阻害を防止することができる。
For example, a fluororesin can be used as the hydrophobic binder. Among the fluororesins, those having a melting point of 400 ° C. or less are preferable. Examples of such fluororesins include polytetrafluoroethylene, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, polyvinylidene fluoride, tetrafluoroethylene / hexafluoroethylene copolymer. A resin excellent in hydrophobicity and heat resistance such as a polymer and perfluoroethylene can be used. By adding the hydrophobic binder, it is possible to prevent the catalyst layers 2a and 3a from being wetted excessively by the water generated in response to the power generation reaction, and the fuel gas and oxygen in the
更に、導電材としては、電気伝導性物質であればどのようなものでもよく、各種金属や炭素材料などが挙げられる。たとえばアセチレンブラック等のカーボンブラック、活性炭および黒鉛等が挙げられ、これらは単独あるいは混合して使用される。 Further, the conductive material may be any material as long as it is an electrically conductive material, and examples thereof include various metals and carbon materials. Examples thereof include carbon black such as acetylene black, activated carbon and graphite, and these are used alone or in combination.
また触媒層2a、3aには、疎水性結着剤に代えて、または疎水性結着剤とともに、本発明に係る高分子電解質を含有させても良い。本発明に係る高分子電解質を添加することによって、燃料極3及び酸素極2におけるプロトン伝導度を向上することができ、燃料極3及び酸素極2の内部抵抗を低減することができる。
The catalyst layers 2a and 3a may contain the polymer electrolyte according to the present invention instead of the hydrophobic binder or together with the hydrophobic binder. By adding the polymer electrolyte according to the present invention, the proton conductivity in the
酸化剤配流板5および燃料配流板6は導電性を有する金属等から構成されており、酸素極2および燃料極3にそれぞれ接合することで、集電体として機能するとともに、酸素極2および燃料極3に対して、酸素および燃料ガスを供給する。すなわち、燃料極3には、燃料配流板6の燃料流路6aを介して水素を主成分とする燃料ガスが供給され、また酸素極2には、酸化剤配流板5の酸化剤流路5aを介して酸化剤としての酸素が供給される。
なお、燃料として供給される水素は、炭化水素若しくはアルコールの改質により発生された水素が供給されるものでも良く、また、酸化剤として供給される酸素は、空気に含まれる状態で供給されても良い。
The oxidant distribution plate 5 and the fuel distribution plate 6 are made of conductive metal or the like, and function as a current collector by being joined to the oxygen electrode 2 and the
The hydrogen supplied as fuel may be supplied by hydrogen generated by reforming hydrocarbon or alcohol, and oxygen supplied as oxidant is supplied in a state of being contained in air. Also good.
この単セル1においては、燃料極3側で水素が酸化されてプロトンが生じ、このプロトンが電解質膜4を伝導して酸素極2に到達し、酸素極2においてプロトンと酸素が電気化学的に反応して水を生成するとともに、電気エネルギーを発生させる。
In this
上記の燃料電池によれば、作動温度が100℃以上200℃以下で、無加湿あるいは相対湿度50%以下であっても良好な発電性能を長期間安定的に示す燃料電池を得ることができ、自動車用、家庭発電用または携帯機器用として好適に用いることができる。 According to the above fuel cell, it is possible to obtain a fuel cell that stably exhibits good power generation performance for a long period of time even when the operating temperature is 100 ° C. or higher and 200 ° C. or lower and no humidification or relative humidity is 50% or less, It can be suitably used for automobiles, home power generation or portable devices.
以下、実施例により本発明をより具体的に説明する。
なお、燃料電池の特性は、電解質膜を市販の燃料電池用電極(Electrochem社)で挟持し膜電極接合体とし、150℃、無加湿の条件下、水素/空気で燃料電池運転を行うことにより評価した。
Hereinafter, the present invention will be described more specifically with reference to examples.
The characteristics of the fuel cell are that the electrolyte membrane is sandwiched between commercially available fuel cell electrodes (Electrochem) to form a membrane electrode assembly, and the fuel cell is operated with hydrogen / air under conditions of 150 ° C. and no humidification. evaluated.
(実施例1)
3,3’−ジアミノベンジジンとイソフタルアルデヒドを原料として、上記式(4)の反応スキームに従い、下記構造式(6)を有するポリアゾメチンを合成した。
得られたポリアゾメチンをジメチルアセトアミド(DMAc)に溶解し、この溶液をガラス基板上にキャストし、減圧下、60℃にて3時間乾燥することで、厚さ30μmの橙色の高分子膜を得た。次いで、20%のリン酸に浸漬し1時間かけてリン酸をドープすることにより、実施例1の高分子電解質膜を製造した。
Example 1
Using 3,3′-diaminobenzidine and isophthalaldehyde as raw materials, a polyazomethine having the following structural formula (6) was synthesized according to the reaction scheme of the above formula (4).
The obtained polyazomethine was dissolved in dimethylacetamide (DMAc), this solution was cast on a glass substrate and dried at 60 ° C. under reduced pressure for 3 hours to obtain an orange polymer film having a thickness of 30 μm. It was. Subsequently, the polymer electrolyte membrane of Example 1 was manufactured by immersing in 20% phosphoric acid and doping phosphoric acid for 1 hour.
この実施例1の高分子電解質膜のリン酸のドープ率は150質量%であった。
また、得られた高分子電解質膜を円形の白金電極(直径13mm)で挟み、複素インピーダンス測定より得られた溶液抵抗から、イオン伝導度の温度依存性を評価した。結果を図2及び表1に示す。
The polymer electrolyte membrane of Example 1 had a phosphoric acid doping rate of 150% by mass.
Further, the obtained polymer electrolyte membrane was sandwiched between circular platinum electrodes (diameter 13 mm), and the temperature dependence of ion conductivity was evaluated from the solution resistance obtained from the complex impedance measurement. The results are shown in FIG.
更に、得られた高分子電解質膜を上記のように燃料電池に組み込んで発電特性の評価を行った。燃料として水素、酸化剤として空気をそれぞれ燃料電池に供給して、150℃にて発電試験を行った。表1に、燃料電池の発電開始前の開路電圧を示すとともに、電流密度0.3A/cm2における出力電圧を示す。 Furthermore, the obtained polymer electrolyte membrane was incorporated into a fuel cell as described above, and the power generation characteristics were evaluated. Hydrogen was supplied as fuel and air as oxidant was supplied to the fuel cell, and a power generation test was conducted at 150 ° C. Table 1 shows the open circuit voltage before starting the power generation of the fuel cell and the output voltage at a current density of 0.3 A / cm 2 .
(実施例2)
実施例1と同様の方法によって得られたポリアゾメチン1.25gと、エチレングリコールジグリシジルエーテル(低分子架橋剤)0.174gとをDMAc15mlに溶解し、この溶液をガラス基板上にキャストし、減圧下60℃にて3時間乾燥することで、厚さ30μmの橙色のフィルムを得た。次いで、20%のリン酸に浸漬し1時間かけてリン酸をドープすることにより、実施例2の高分子電解質膜を製造した。
この実施例2の高分子電解質膜のドープ率は184質量%であった。
(Example 2)
1.25 g of polyazomethine obtained by the same method as in Example 1 and 0.174 g of ethylene glycol diglycidyl ether (low molecular cross-linking agent) were dissolved in 15 ml of DMAc, this solution was cast on a glass substrate, By drying at 60 ° C. for 3 hours, an orange film having a thickness of 30 μm was obtained. Subsequently, the polymer electrolyte membrane of Example 2 was manufactured by immersing in 20% phosphoric acid and doping phosphoric acid for 1 hour.
The doping rate of the polymer electrolyte membrane of Example 2 was 184% by mass.
この高分子電解質膜を用いて実施例1と同様に燃料電池として発電特性の測定を行った。結果を表1に示す。表1に示すように150℃のイオン伝導度は2.6×10−4Scm−1であった。また表1には開回路電圧および電流密度0.3A/cm2における出力電圧を示す。 Using this polymer electrolyte membrane, power generation characteristics were measured as a fuel cell in the same manner as in Example 1. The results are shown in Table 1. As shown in Table 1, the ion conductivity at 150 ° C. was 2.6 × 10 −4 Scm −1 . Table 1 shows the open circuit voltage and the output voltage at a current density of 0.3 A / cm 2 .
(実施例3)
実施例1と同様の方法によって得られたポリアゾメチン1.25gと、4,4’−オキシビス(フェニルイソシアナート)(低分子架橋剤)0.252gとをDMAc15mlに溶解し、この溶液をガラス基板上にキャストし、減圧下60℃にて3時間乾燥することで、厚さ30μmの橙色のフィルムを得た。次いで、20%のリン酸に浸漬し1時間かけてリン酸をドープすることにより、実施例3の高分子電解質膜を製造した。
この実施例3の高分子電解質膜のリン酸のドープ率は263質量%であった。
また、この高分子電解質膜を用いて実施例1と同様に燃料電池として発電特性の測定を行った。結果を表1に示す。表1に示すように150℃のイオン伝導度は3.1×10−3Scm−1であった。また表1には開回路電圧および電流密度0.3A/cm2における出力電圧を示す。
(Example 3)
1.25 g of polyazomethine obtained by the same method as in Example 1 and 0.252 g of 4,4′-oxybis (phenylisocyanate) (low molecular crosslinking agent) were dissolved in 15 ml of DMAc, and this solution was dissolved in a glass substrate. Casting up and drying at 60 ° C. for 3 hours under reduced pressure, an orange film having a thickness of 30 μm was obtained. Subsequently, the polymer electrolyte membrane of Example 3 was manufactured by immersing in 20% phosphoric acid and doping phosphoric acid for 1 hour.
The polymer electrolyte membrane of Example 3 had a phosphoric acid doping rate of 263 mass%.
Further, using this polymer electrolyte membrane, power generation characteristics were measured as a fuel cell in the same manner as in Example 1. The results are shown in Table 1. As shown in Table 1, the ion conductivity at 150 ° C. was 3.1 × 10 −3 Scm −1 . Table 1 shows the open circuit voltage and the output voltage at a current density of 0.3 A / cm 2 .
(実施例4)
実施例1と同様の方法によって得られたポリアゾメチン1.25gと、二無水ピロメリット酸(低分子架橋剤)0.218gとをDMAc15mlに溶解し、この溶液をガラス基板上にキャストし、減圧下60℃にて3時間乾燥することで厚さ30μmの橙色のフィルムを得た。次いで、20%のリン酸に浸漬し1時間かけてリン酸をドープすることにより、実施例4の高分子電解質膜を製造した。
実施例4の高分子電解質膜のリン酸のドープ率は235質量%であった。
また、この高分子電解質膜を用いて実施例1と同様に燃料電池として発電特性の測定を行った。結果を表1に示す。表1に示すように150℃のイオン伝導度は7.5×10−4Scm−1であった。また表1には開回路電圧および電流密度0.3A/cm2における出力電圧を示す。
Example 4
1.25 g of polyazomethine obtained by the same method as in Example 1 and 0.218 g of pyromellitic dianhydride (low molecular crosslinking agent) were dissolved in 15 ml of DMAc, this solution was cast on a glass substrate, The film was dried at 60 ° C. for 3 hours to obtain an orange film having a thickness of 30 μm. Subsequently, the polymer electrolyte membrane of Example 4 was manufactured by immersing in 20% phosphoric acid and doping phosphoric acid for 1 hour.
The polymer electrolyte membrane of Example 4 had a phosphoric acid doping rate of 235% by mass.
Further, using this polymer electrolyte membrane, power generation characteristics were measured as a fuel cell in the same manner as in Example 1. The results are shown in Table 1. As shown in Table 1, the ion conductivity at 150 ° C. was 7.5 × 10 −4 Scm −1 . Table 1 shows the open circuit voltage and the output voltage at a current density of 0.3 A / cm 2 .
(比較例1)
米国特許第5525436号公報に開示されている技術に基づき、ポリ−2,2‘−(m−フェニレン)−5,5’−ビベンズイミダゾールを20%のリン酸に浸漬し、1時間かけてリン酸をドープすることにより、比較例1の高分子電解質膜を製造した。
この比較例1のリン酸のドープ率は200質量%であった。
また、この比較例1の高分子電解質膜を実施例1と同様にしてイオン伝導度を決定したところ、8.0×10−6Scm−1であった。更に、実施例1と同様な方法により燃料電池として発電特性の測定を試みたが、セル抵抗が高く発電は不可能であった。
(Comparative Example 1)
Based on the technique disclosed in US Pat. No. 5,525,436, poly-2,2 ′-(m-phenylene) -5,5′-bibenzimidazole is immersed in 20% phosphoric acid and is taken for 1 hour. A polymer electrolyte membrane of Comparative Example 1 was produced by doping phosphoric acid.
The phosphoric acid doping rate of Comparative Example 1 was 200 mass%.
Further, when the ionic conductivity of the polymer electrolyte membrane of Comparative Example 1 was determined in the same manner as in Example 1, it was 8.0 × 10 −6 Scm −1 . Further, measurement of power generation characteristics as a fuel cell was attempted by the same method as in Example 1, but the cell resistance was high and power generation was impossible.
(実施例6)
ポリアゾメチンがDMAcに溶解された溶液をガラス基板上にキャストする際に、大気中で60℃にて3時間乾燥したこと以外は実施例1と同様にして、厚さ30μmの橙色の高分子膜を得た。
(Example 6)
An orange polymer film having a thickness of 30 μm was prepared in the same manner as in Example 1 except that, when a solution of polyazomethine dissolved in DMAc was cast on a glass substrate, it was dried in the atmosphere at 60 ° C. for 3 hours. Got.
得られた高分子膜について、赤外分光光度法により赤外スペクトルを測定した。結果を図3に示す。また、図4には、実施例1における高分子膜の赤外スペクトルを示す。 About the obtained polymer film, the infrared spectrum was measured by the infrared spectrophotometry. The results are shown in FIG. FIG. 4 shows an infrared spectrum of the polymer film in Example 1.
図3及び図4に示すように、ポリアゾメチンを含む溶液をガラス基板上にキャストする際に、大気中で乾燥するか、真空中で乾燥するかによって、赤外スペクトルに大きな差が生じていることがわかる。具体的には、空気酸化されていない実施例1の赤外スペクトル(図4)においては、ベンゼン環に結合したNH2基に由来する1489cm−1付近の吸収ピークが確認できる。また図4では、NH2基に由来する3300cm−1〜3460cm−1付近の吸収ピークも確認できる。一方、空気酸化された実施例6の赤外スペクトル(図3)においては、1489cm−1付近の吸収ピークや、3300cm−1〜3460cm−1付近の吸収ピークは確認できない。これは、空気酸化によってベンゼン環に結合したNH2基が反応して窒素含有炭素環構造が形成されたためと推定される。以上の結果から、大気中で乾燥することにより、ポリアゾメチン類の変性が起きていることがわかる。 As shown in FIGS. 3 and 4, when a solution containing polyazomethine is cast on a glass substrate, there is a large difference in the infrared spectrum depending on whether it is dried in the air or in a vacuum. I understand that. Specifically, in the infrared spectrum of Example 1 that was not air-oxidized (FIG. 4), an absorption peak near 1489 cm −1 derived from the NH 2 group bonded to the benzene ring can be confirmed. In FIG. 4, the absorption peak around 3300cm -1 ~3460cm -1 derived from the NH 2 group can also be confirmed. On the other hand, in the infrared spectrum of Example 6 is air oxidized (FIG. 3), and the absorption peak in the vicinity of 1489cm -1, absorption peaks in the vicinity of 3300cm -1 ~3460cm -1 can not be confirmed. This is presumably because the NH 2 group bonded to the benzene ring was reacted by air oxidation to form a nitrogen-containing carbocyclic structure. From the above results, it can be seen that the polyazomethines are denatured by drying in the air.
1…単セル(燃料電池)、2…酸素極(電極)、3…燃料極(電極)、4…電解質膜(プロトン伝導性固体高分子電解質)
DESCRIPTION OF
Claims (7)
ただし、一般式(1)において、R1は水素原子、アルキル基、アリル基のいずれかであり、R2は水素原子、アルキル基、アリル基のいずれかであり、Xはアリーレン基であり、繰り返し数を示すnは100乃至100000の範囲の整数である。
However, in the general formula (1), R 1 is hydrogen atom, an alkyl group, or a aryl group, R 2 represents a hydrogen atom, an alkyl group, or a allyl group, X is an arylene group , N indicating the number of repetitions is an integer in the range of 100 to 100,000.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2005338463A JP4762695B2 (en) | 2005-11-24 | 2005-11-24 | Proton conducting solid polymer electrolyte and fuel cell |
| KR1020060029063A KR100754375B1 (en) | 2005-11-24 | 2006-03-30 | Proton conductive solid polymer electrolyte and fuel cell comprising the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2005338463A JP4762695B2 (en) | 2005-11-24 | 2005-11-24 | Proton conducting solid polymer electrolyte and fuel cell |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2007149366A JP2007149366A (en) | 2007-06-14 |
| JP4762695B2 true JP4762695B2 (en) | 2011-08-31 |
Family
ID=38210549
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2005338463A Active JP4762695B2 (en) | 2005-11-24 | 2005-11-24 | Proton conducting solid polymer electrolyte and fuel cell |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JP4762695B2 (en) |
| KR (1) | KR100754375B1 (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101613473B (en) * | 2009-07-10 | 2011-06-01 | 吉林大学 | Polymethylimine containing ether ketone structure with high glass transition temperature and preparation method thereof |
| US11530288B2 (en) * | 2018-09-06 | 2022-12-20 | Mallinda | Anhydrous routes to highly processable covalent network polymers and blends |
| KR102136152B1 (en) | 2019-06-03 | 2020-07-21 | 충남대학교산학협력단 | Polyazomethine polymer-based carbon nanofibers and manufacturing method the same |
| KR102372233B1 (en) | 2020-11-03 | 2022-03-08 | 충남대학교산학협력단 | Manufacturing methods and electrode material applications of poly(ether amide)-based carbon nanofibers |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060138042A1 (en) | 2002-10-24 | 2006-06-29 | Kazutake Okamoto | Heat-resistant film and composite ion-exchange membrane |
| KR100632392B1 (en) | 2003-05-02 | 2006-10-11 | 국방과학연구소 | Polyazomethine synthesized from diaminocarbazole derivative compound and preparation method thereof |
| WO2005001969A1 (en) | 2003-06-25 | 2005-01-06 | Toray Industries, Inc. | Polymer electrolyte, polymer electrolyte membrane therefrom, membrane electrode assembly and polymer electrolyte fuel cell |
| JP2005048022A (en) * | 2003-07-31 | 2005-02-24 | Toyobo Co Ltd | Composite ion exchange membrane and method for producing the same |
-
2005
- 2005-11-24 JP JP2005338463A patent/JP4762695B2/en active Active
-
2006
- 2006-03-30 KR KR1020060029063A patent/KR100754375B1/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| KR20070055307A (en) | 2007-05-30 |
| KR100754375B1 (en) | 2007-08-31 |
| JP2007149366A (en) | 2007-06-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6989212B2 (en) | Fuel cell, polyelectrolyte and ion-exchange resin used for same | |
| JP2008535181A (en) | Novel electrolyte for promoting oxygen reduction reaction (ORR) in cathode layer of PEM fuel cell | |
| JP2006332066A (en) | PROTON CONDUCTIVE ELECTROLYTE AND ITS MANUFACTURING METHOD, FUEL CELL ELECTRODE AND ITS MANUFACTURING METHOD, AND FUEL CELL USING THE SAME | |
| US7488549B2 (en) | Proton conducting polymer, polymer membrane comprising the same, method of manufacturing the polymer membrane, and fuel cell using the polymer membrane | |
| KR100754375B1 (en) | Proton conductive solid polymer electrolyte and fuel cell comprising the same | |
| KR100506096B1 (en) | Polymer comprising terminal sulfonic acid group, and polymer electrolyte and fuel cell using the same | |
| JP4554541B2 (en) | Proton conducting electrolyte and fuel cell | |
| KR100754376B1 (en) | Proton conductive electrolyte membrane, method for preparing the same and fuel cell comprising the same | |
| US8628895B2 (en) | Hyper-branched polymer, electrode including the polymer, electrolyte membrane including the polymer, and fuel cell including the electrode and/or the electrolyte membrane | |
| KR100695113B1 (en) | Proton conductive solid polymer electrolyte and fuel cell having same | |
| JP5079306B2 (en) | Polymer electrolyte membrane for fuel cell, membrane-electrode assembly, and fuel cell | |
| JP4813218B2 (en) | Proton conducting electrolyte and fuel cell | |
| KR100695114B1 (en) | Proton conductive solid polymer electrolyte and fuel cell using the same | |
| JP4583874B2 (en) | Proton conducting solid polymer electrolyte membrane and fuel cell | |
| JP4684620B2 (en) | Solid polymer electrolyte for fuel cell and fuel cell | |
| KR101719547B1 (en) | Direct formic acid fuel cell comprising sulfonated polyetheretherketone membrane | |
| JP4593420B2 (en) | Proton conducting electrolyte for fuel cell, method for producing proton conducting electrolyte for fuel cell, and fuel cell | |
| US20060141317A1 (en) | Proton conductor, polymer electrolyte comprising the same and fuel cell employing the polymer electrolyte | |
| KR100931146B1 (en) | Polymer electrolyte membrane for fuel cell vehicles, manufacturing method thereof and fuel cell using the same | |
| US20110195338A1 (en) | Hyper-branched polymer, electrode and electrolyte membrane including the hyper-branched polymer, and fuel cell including at least one of the electrode and the electrolyte membrane | |
| JP5264068B2 (en) | Proton conducting polymer electrolyte and fuel cell | |
| JP2006147164A (en) | POLYMER ELECTROLYTE MEMBRANE, MANUFACTURING METHOD THEREOF, AND FUEL CELL USING THE SAME | |
| KR100612363B1 (en) | Polymer membrane for fuel cell, manufacturing method thereof and fuel cell system comprising same | |
| JP2007238806A (en) | Proton conducting material, proton conducting electrolyte for fuel cell and fuel cell |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100608 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100907 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110510 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110608 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140617 Year of fee payment: 3 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4762695 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |