[go: up one dir, main page]

JP4780726B2 - Multilayer solid electrolytic capacitor - Google Patents

Multilayer solid electrolytic capacitor Download PDF

Info

Publication number
JP4780726B2
JP4780726B2 JP2007125405A JP2007125405A JP4780726B2 JP 4780726 B2 JP4780726 B2 JP 4780726B2 JP 2007125405 A JP2007125405 A JP 2007125405A JP 2007125405 A JP2007125405 A JP 2007125405A JP 4780726 B2 JP4780726 B2 JP 4780726B2
Authority
JP
Japan
Prior art keywords
anode
solid electrolytic
electrolytic capacitor
welding
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007125405A
Other languages
Japanese (ja)
Other versions
JP2008282955A (en
Inventor
浩正 上尾
文雄 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2007125405A priority Critical patent/JP4780726B2/en
Publication of JP2008282955A publication Critical patent/JP2008282955A/en
Application granted granted Critical
Publication of JP4780726B2 publication Critical patent/JP4780726B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

この発明は、固体電解質を陰極として備えた電解コンデンサに関し、特に積層型の固体電解コンデンサに関するものである。   The present invention relates to an electrolytic capacitor having a solid electrolyte as a cathode, and more particularly to a multilayer solid electrolytic capacitor.

従来、固体電解コンデンサとしては、アルミニウム、タンタルなどの弁作用金属を陽極とし、その表面に陽極酸化皮膜を形成して誘電体層とし、その上に固体電解質層、陰極引出層が順次形成された後、樹脂パッケージにより樹脂封止された構造のものが多く使われている。(例えば、特許文献1参照)。   Conventionally, as a solid electrolytic capacitor, a valve metal such as aluminum or tantalum is used as an anode, an anodic oxide film is formed on the surface thereof as a dielectric layer, and a solid electrolyte layer and a cathode lead layer are sequentially formed thereon. Later, a resin-sealed structure with a resin package is often used. (For example, refer to Patent Document 1).

上記のコンデンサは、例えばバイパスコンデンサとしてCPUなどの電子機器と電源回路との間に接続されて使用される。最近では、電子デバイスの高速化およびデジタル化に伴い、安定性がよくかつ高速応答が可能な電源系が必要とされる。
そのため、ノイズの除去や電源系の安定のために用いられる固体電解コンデンサも、広い周波数領域においてノイズ除去特性に優れ、また電力供給に際して高速応答性に優れることが要望される。また、大電流の電力供給に対応して静電容量が大きいことや発火防止の信頼性が高いことも強く要望される。(例えば、特許文献2参照)。
The capacitor is used as a bypass capacitor, for example, connected between an electronic device such as a CPU and a power supply circuit. Recently, along with the speeding up and digitization of electronic devices, there is a need for a power supply system that is stable and capable of high-speed response.
For this reason, solid electrolytic capacitors used for noise removal and power supply system stability are also required to have excellent noise removal characteristics in a wide frequency range and high-speed response when supplying power. In addition, there is a strong demand for a large electrostatic capacity and high reliability for preventing ignition in response to power supply with a large current. (For example, refer to Patent Document 2).

これらの要望に対して実装時の占有面積をできるだけ抑えたままで大容量化、低ESR化を図る方法として平板状の素子や薄型の焼結体素子を積層する技術が実用化されている。(例えば、特許文献3参照)。   In order to meet these demands, a technique for laminating flat elements and thin sintered elements has been put into practical use as a method for increasing the capacity and reducing the ESR while keeping the occupied area during mounting as small as possible. (For example, refer to Patent Document 3).

積層型固体電解コンデンサの構造としては、陽極部と陰極部を備えた平板状のコンデンサ素子基板をその陽極部は陽極部同士、陰極部は陰極部同士が互いに重なり合うように、複数枚積層してコンデンサ素子ユニットを作製し、それらユニットを一つのリードフレーム上に複数個パラレルに接続した2端子構成のものが知られている(例えば、特許文献4参照)。   The multilayer solid electrolytic capacitor has a structure in which a plurality of flat capacitor element substrates having an anode part and a cathode part are laminated such that the anode part overlaps the anode part and the cathode part overlaps the cathode part. 2. Description of the Related Art A two-terminal configuration in which a capacitor element unit is manufactured and a plurality of these units are connected in parallel on one lead frame is known (for example, see Patent Document 4).

また、陽極部と陰極部を備えた平板状のコンデンサ素子基板を陽極部が陰極部を中心になるように交互に互い違いになるように複数枚積層した3端子構造のものもある(例えば、特許文献5参照)。   There is also a three-terminal structure in which a plurality of flat capacitor element substrates having an anode part and a cathode part are laminated so that the anode parts are alternately staggered so that the cathode part is the center (for example, patents) Reference 5).

このような積層構造を有する固体電解コンデンサでは、複数のコンデンサ素子陽極部と陽極リードフレームを接続する必要があるため、強度的に安定している溶接を行う。溶接方法としては、抵抗溶接、アーク溶接、レーザー溶接、超音波溶接等が知られている。(例えば、特許文献6参照)。
特許第2969692号公報 特開2005−223113号公報 特開2005−158769号公報 特開2000−138138号公報 特願2005−308846号公報 特開2003−257788号公報
In the solid electrolytic capacitor having such a laminated structure, since it is necessary to connect a plurality of capacitor element anode portions and the anode lead frame, welding that is stable in strength is performed. Known welding methods include resistance welding, arc welding, laser welding, and ultrasonic welding. (For example, refer to Patent Document 6).
Japanese Patent No. 2996992 JP 2005-223113 A JP 2005-158769 A JP 2000-138138 A Japanese Patent Application No. 2005-308846 JP 2003-257788 A

上記溶接のなかで、レーザー溶接は、コンデンサ素子の陽極部および陽極フレームを一様に溶融することができるため、その他の溶接(抵抗溶接、アーク溶接、超音波溶接)に比べ溶接点が強固であり、接続強度に優れている。   Among the above welding, laser welding can uniformly melt the anode part and anode frame of the capacitor element, so the welding point is stronger than other welding (resistance welding, arc welding, ultrasonic welding). Yes, excellent connection strength.

しかしながら、レーザー溶接の場合は、コンデンサ素子陽極部間または陽極部と陽極リードフレーム間に微小な空間がある場合、陽極部および陽極リードフレームを一様に溶融させることができず接続不良が発生してしまうという問題点があった。   However, in the case of laser welding, if there is a minute space between the capacitor element anode part or between the anode part and the anode lead frame, the anode part and the anode lead frame cannot be uniformly melted, resulting in poor connection. There was a problem that it was.

上記問題を解決するため、本発明に係る積層型固体電解コンデンサは、表面に誘電体となる酸化皮膜を有する弁作用金属の、一方の側に固体電解質層および陰極引出層からなる陰極部を、他方の側に弁作用金属の露出部である陽極部を備えたコンデンサ素子基板が、複数枚積層されてなる積層型固体電解コンデンサにおいて、陽極部とリードフレームとを抵抗溶接で溶接した抵抗溶接部と、この抵抗溶接部に抵抗溶接の接合幅の50〜100%となる(所謂はみ出さない大きさの)スポット径のレーザー溶接によるレーザー溶接部を有する。   In order to solve the above problem, the multilayer solid electrolytic capacitor according to the present invention has a valve metal having an oxide film serving as a dielectric on the surface thereof, and a cathode portion comprising a solid electrolyte layer and a cathode lead layer on one side. In a multilayer solid electrolytic capacitor in which a capacitor element substrate having an anode portion that is an exposed portion of a valve action metal is laminated on the other side, a resistance welding portion in which the anode portion and the lead frame are welded by resistance welding. The resistance welded portion has a laser welded portion by laser welding with a spot diameter (so-called non-extruding size) that is 50 to 100% of the joint width of resistance welding.

好ましくは、コンデンサ素子基板を複数枚、陰極部を中心として、その陽極露出部の方向が交互に左右互い違いになるように積層する。   Preferably, a plurality of capacitor element substrates are stacked so that the anode exposed portions are alternately staggered left and right with the cathode portion as the center.

さらに好ましくは、抵抗溶接部を複数設ける。   More preferably, a plurality of resistance welds are provided.

本発明によって提供される積層型固体電解コンデンサは、コンデンサ素子陽極部同士および陽極リードフレーム間を抵抗溶接で溶接した後、略長方形となる溶接箇所の中心部をその接合部位の幅よりも小さなスポット径のレーザー溶接により導電接合する。
これにより、接合困難なアルミニウム箔と銅系リードフレームの電気的、物理的な接合を可能にし、コンデンサ素子の陽極部と陽極フレームの結合を安定にし、電気抵抗の低い接続ができる。また、結合部が強固であるため、熱ストレスに対する性能も向上する。
In the multilayer solid electrolytic capacitor provided by the present invention, after welding the capacitor element anode portions and the anode lead frame by resistance welding, the center portion of the welded portion having a substantially rectangular shape is a spot smaller than the width of the joining portion. Conductive joining is performed by laser welding of diameter.
As a result, it is possible to electrically and physically join the aluminum foil and the copper-based lead frame that are difficult to join, to stabilize the coupling between the anode part of the capacitor element and the anode frame, and to make a connection with low electrical resistance. Moreover, since the coupling portion is strong, the performance against heat stress is also improved.

その結果、より低ESRの積層型固体電解コンデンサが得られるとともに、陽極外れが原因の接触不良などによる性能劣化を防止できる。   As a result, a multilayer solid electrolytic capacitor having a lower ESR can be obtained, and performance deterioration due to poor contact due to anode dislocation can be prevented.

以下、図面に基づき、本発明に係る積層型固体電解コンデンサの実施例について詳細に説明する。   Hereinafter, embodiments of the multilayer solid electrolytic capacitor according to the present invention will be described in detail with reference to the drawings.

図1および図2は、本発明の積層型固体電解コンデンサにおいて、積層される前のコンデンサ素子基板の基本構成を説明するための図である。図1は、1個のコンデンサ素子基板Cの外観斜視図である。図2は、図1の詳細構成を示す断面図である。なお、図2では説明の便宜上、厚さは拡大して表示した。図4は、4枚のコンデンサ素子基板を積層した積層型固体電解コンデンサを示す斜視図である。   FIG. 1 and FIG. 2 are diagrams for explaining the basic configuration of a capacitor element substrate before being laminated in the multilayer solid electrolytic capacitor of the present invention. FIG. 1 is an external perspective view of one capacitor element substrate C. FIG. FIG. 2 is a cross-sectional view showing a detailed configuration of FIG. In FIG. 2, the thickness is enlarged and displayed for convenience of explanation. FIG. 4 is a perspective view showing a stacked solid electrolytic capacitor in which four capacitor element substrates are stacked.

図1および図2において、1は、アルミニウム、タンタルなどの弁作用金属を粗面化した薄板(箔)を示し、陽極を構成する部分である。2は、表面が粗面化された弁作用金属薄板1の表面に形成された酸化皮膜層を示し、誘電体を構成する層である。3は、酸化皮膜層(誘電体層)2の右側部分の表面に形成された固体電解質層を示し、陰極部を構成する層で、例えば、ポリエチレンジオキシチオフェン(PEDT)などの導電性高分子を含む電解質を化学重合によって形成した層である。4および5は、陰極引出層で、各々4はカーボン層、5は銀層である。   1 and 2, reference numeral 1 denotes a thin plate (foil) obtained by roughening a valve metal such as aluminum or tantalum, which is a portion constituting an anode. Reference numeral 2 denotes an oxide film layer formed on the surface of the valve metal thin plate 1 whose surface is roughened, and is a layer constituting a dielectric. Reference numeral 3 denotes a solid electrolyte layer formed on the surface of the right side portion of the oxide film layer (dielectric layer) 2, which is a layer constituting the cathode portion, for example, a conductive polymer such as polyethylenedioxythiophene (PEDT). Is a layer formed by chemical polymerization. 4 and 5 are cathode extraction layers, 4 is a carbon layer, and 5 is a silver layer.

なお、機能的には弁作用金属薄板1全体が陽極であるが、本実施例では、弁作用金属薄板1の陰極部(固体電解質層)3が形成されていない部分、即ち図2の左側に突出している部分を陽極部(陽極露出部)Pとし、固体電解質層3、カーボン層4および銀層5からなる部分を陰極部Nとする。   Functionally, the valve metal thin plate 1 as a whole is the anode, but in this embodiment, the portion of the valve metal thin plate 1 where the cathode portion (solid electrolyte layer) 3 is not formed, that is, the left side of FIG. The protruding portion is an anode portion (anode exposed portion) P, and the portion composed of the solid electrolyte layer 3, the carbon layer 4 and the silver layer 5 is a cathode portion N.

図1および図2に示すように、コンデンサ素子基板Cは、陽極部Pおよび陰極部Nで構成されている。陽極部Pと陰極部Nとの間は、絶縁性マスキング部材6によって完全に絶縁隔離されている。   As shown in FIGS. 1 and 2, the capacitor element substrate C includes an anode part P and a cathode part N. The anode part P and the cathode part N are completely insulated and isolated by the insulating masking member 6.

図4に示すように、本実施例の積層型固体電解コンデンサは、4枚のコンデンサ素子基板C1〜C4を複数枚積層して構成されている。各コンデンサ素子基板C1〜C4は、陰極部N1〜N4を中心として、陽極部P1〜P4が交互に左右に配置されている。   As shown in FIG. 4, the multilayer solid electrolytic capacitor of this example is configured by laminating a plurality of four capacitor element substrates C1 to C4. In each of the capacitor element substrates C1 to C4, the anode portions P1 to P4 are alternately arranged on the left and right with the cathode portions N1 to N4 as the center.

上記固体電解コンデンサは、コンデンサ素子基板C1〜C4の各陰極部N1〜N4間、コンデンサ素子基板C1の陰極部N1と陰極リードフレーム8との間が、導電性接着剤により電気的に導電接続されている。   In the solid electrolytic capacitor, the cathode elements N1 to N4 of the capacitor element substrates C1 to C4 and the cathode part N1 of the capacitor element substrate C1 and the cathode lead frame 8 are electrically conductively connected by a conductive adhesive. ing.

さらに、上記固体電解コンデンサは、図3に示すように、コンデンサ素子基板C1〜C4の陽極部P1〜P4間、およびコンデンサ素子基板C1,C2の陽極部P1,P2と陽極リードフレーム7、7’との間を、抵抗溶接で溶接することにより3箇所仮止めした後(3箇所の抵抗溶接部10)、この抵抗溶接部10に、抵抗溶接の接合幅の50〜100%となる(所謂はみ出さない大きさの)スポット径のレーザー溶接により導電接合する(3箇所のレーザー溶接部11)。その後、リードフレーム7,7’に接続された固体電解コンデンサは外装樹脂9により封止される。   Further, as shown in FIG. 3, the solid electrolytic capacitor includes the anode portions P1 to P4 of the capacitor element substrates C1 to C4 and the anode portions P1 and P2 of the capacitor element substrates C1 and C2 and the anode lead frames 7, 7 ′. Are temporarily fixed to each other by resistance welding (three resistance welds 10), and the resistance weld 10 becomes 50 to 100% of the joint width of resistance welding (so-called protrusion). Conductive joining is performed by laser welding with a spot diameter (not so large) (three laser welds 11). Thereafter, the solid electrolytic capacitor connected to the lead frames 7, 7 ′ is sealed with the exterior resin 9.

次に、本発明に係る積層型固体電解コンデンサの効果を説明するために実施例、従来例および比較例を以下に示す。   Next, in order to explain the effect of the multilayer solid electrolytic capacitor according to the present invention, examples, conventional examples and comparative examples are shown below.

(実施例1)
表面を電気化学的に粗面化した厚さ0.1mmの長尺のアルミニウム箔を弁作用金属薄板1として、このアルミニウム箔1をアジピン酸アンモニウム水溶液中で10Vの電圧を印加して約60分間陽極酸化を行い、表面に誘電体層(酸化皮膜層)2を形成する。
Example 1
An aluminum foil having a thickness of 0.1 mm whose surface is electrochemically roughened is used as a valve metal thin plate 1, and a voltage of 10 V is applied to the aluminum foil 1 in an aqueous solution of ammonium adipate for about 60 minutes. Anodization is performed to form a dielectric layer (oxide film layer) 2 on the surface.

このようにして誘電体層(酸化皮膜層)2が形成されたアルミニウム箔(弁作用金属)1を、図1に示したように、幅(w)11mm、長さ(l)11mmの寸法に裁断し、図2に示すように、適切な位置に絶縁性樹脂などのマスキング部材6を周方向に塗布して、左右の領域(陽極部Pと陰極部N)を区分する。   As shown in FIG. 1, the aluminum foil (valve metal) 1 having the dielectric layer (oxide film layer) 2 thus formed has a width (w) of 11 mm and a length (l) of 11 mm. As shown in FIG. 2, a masking member 6 such as an insulating resin is applied in a circumferential direction at an appropriate position to divide the left and right regions (anode portion P and cathode portion N).

その後、裁断によってアルミニウム箔(弁作用金属)1が露出した端面部を、再度アジピン酸アンモニウム水溶液中で10Vの電圧を印加して約30分間酸化処理を行い、裁断面にも誘電体層(酸化皮膜層)2を形成する。その後、マスキング部分6より右側部分に、ポリエチレンジオキシチオフェン(PEDT)からなる固体電解質層3、カーボン層4および銀層5を設けて陰極部Nを形成する。   After that, the end surface portion where the aluminum foil (valve action metal) 1 is exposed by cutting is again subjected to an oxidation treatment for about 30 minutes by applying a voltage of 10 V in an aqueous solution of ammonium adipate. Film layer) 2 is formed. Thereafter, the cathode portion N is formed by providing the solid electrolyte layer 3, the carbon layer 4, and the silver layer 5 made of polyethylenedioxythiophene (PEDT) on the right side of the masking portion 6.

図4に示すように、4枚のコンデンサ素子基板C1〜C4の陰極部N1〜N4を順次積層し、それぞれの積層面の間を、導電性接着剤(図示を省略する)を介して密に接合する。一方、各コンデンサ素子基板C1〜C4の、陽極部P1、P3を左側に、陽極部P2、P4を右側に、即ち交互に反対方向になるように積層する。   As shown in FIG. 4, the cathode portions N1 to N4 of the four capacitor element substrates C1 to C4 are sequentially laminated, and the gap between the laminated surfaces is tightly sandwiched with a conductive adhesive (not shown). Join. On the other hand, the capacitor elements substrates C1 to C4 are laminated so that the anode portions P1 and P3 are on the left side and the anode portions P2 and P4 are on the right side, that is, alternately in opposite directions.

本実施例では、左側に突出した陽極部P1、P3および下面の陽極電位取り出し用リードフレーム7、右側に突出した陽極部P2、P4および陽極電位取り出し用リードフレーム7’を、それぞれ直径50mm、幅0.8mmの円板電極を用いて、円板電極の円周部の一部をコンデンサ素子基板に押しあてて、抵抗溶接で1500mV、2.5msの条件で3箇所仮止めした後、抵抗溶接した箇所の中心部を、レーザーのスポット径がφ=0.8mm(抵抗溶接の接合部位の幅0.8mmの100%)のYAGレーザー溶接により導電接合した。
この時、抵抗溶接による接合部10は略長方形となり、その大きさは、幅0.8mm×長さ3.7mmとなる。8は陰極電位取り出し用のリードフレームであり、陰極部N1と導電性接着剤を介して接続した。また、レーザー溶接の出力波形は4.0Jで2.5ms照射後、2.4Jで5.0ms照射する2段階波形とした。
なお、今回のリードフレームの材料には銅合金系を使用した。
In this embodiment, the anode portions P1 and P3 projecting to the left and the anode potential extracting lead frame 7 on the lower surface, the anode portions P2 and P4 projecting to the right and the anode potential extracting lead frame 7 ′ having a diameter of 50 mm and a width, respectively. Using a 0.8 mm disk electrode, a part of the circumference of the disk electrode is pressed against the capacitor element substrate, and temporarily fixed at three locations under the conditions of 1500 mV and 2.5 ms by resistance welding, and then resistance welding. The central portion of the spot was conductively joined by YAG laser welding with a laser spot diameter of φ = 0.8 mm (100% of the resistance welding joint width 0.8 mm).
At this time, the joint portion 10 formed by resistance welding has a substantially rectangular shape, and the size thereof is 0.8 mm wide × 3.7 mm long. Reference numeral 8 denotes a lead frame for taking out the cathode potential, which is connected to the cathode portion N1 through a conductive adhesive. The output waveform of laser welding was a two-step waveform in which irradiation was performed at 2.5 J for 2.5 ms after irradiation at 4.0 J for 2.5 ms.
The lead frame material used here was a copper alloy.

なお、陽極部P1〜P4の表面に形成される酸化皮膜2は、抵抗溶接した際、溶接温度によって接合面の皮膜2は溶解されるので、電気的には完全に導電接合される。
その後、図4に示すように、リードフレーム(端子板)7、7’、8の外部回路との接続部だけを露出させた状態で、全体を樹脂9(破線)で外装し、積層型固体電解コンデンサを作製した。
In addition, since the oxide film 2 formed on the surfaces of the anode portions P1 to P4 is resistance-welded, the coating film 2 on the joint surface is dissolved by the welding temperature, so that it is electrically conductively joined.
After that, as shown in FIG. 4, the whole is covered with a resin 9 (broken line) in a state where only the connection portions of the lead frames (terminal plates) 7, 7 ′, 8 to the external circuit are exposed, and the laminated solid An electrolytic capacitor was produced.

(実施例2)
実施例2は、上記実施例1と略同様であるので、異なる点のみ説明する。本実施例では、陽極部P1〜P4と陽極リードフレーム7,7’とを、実施例1と同様の円板電極を用いて、円板電極の円周部の一部をコンデンサ素子基板に押しあてて抵抗溶接し、各3箇所仮止めした後、レーザーのスポット径をφ=0.4mm(抵抗溶接の接合部位の幅0.8mmの50%)とし、中心部をYAGレーザー溶接により導電接合し、積層型固体電解コンデンサを作製した。
(Example 2)
Since the second embodiment is substantially the same as the first embodiment, only different points will be described. In this embodiment, the anode portions P1 to P4 and the anode lead frames 7 and 7 ′ are pushed using a disc electrode similar to that of the embodiment 1 and a part of the circumferential portion of the disc electrode is pushed onto the capacitor element substrate. After applying resistance welding and temporarily fixing each of the three locations, the laser spot diameter is set to φ = 0.4 mm (50% of the resistance welding joint width of 0.8 mm), and the central portion is conductively joined by YAG laser welding. Thus, a multilayer solid electrolytic capacitor was produced.

(比較例1)
比較例1は、上記実施例1と略同様であるので、異なる点のみ説明する。本比較例では、陽極部P1〜P4と陽極リードフレーム7,7’とを、実施例1と同様の円板電極を用いて、円板電極の円周部の一部をコンデンサ素子基板に押しあてて抵抗溶接し、各3箇所仮止めした後、レーザーのスポット径をφ=1.2mm(抵抗溶接の接合部位の幅0.8mmよりも大きい)とし、中心部をYAGレーザー溶接により導電接合し、積層型固体電解コンデンサを作製した。
(Comparative Example 1)
Since the comparative example 1 is substantially the same as the said Example 1, only a different point is demonstrated. In this comparative example, the anode portions P1 to P4 and the anode lead frames 7 and 7 ′ are pushed using a disc electrode similar to that of the first embodiment, and a part of the circumferential portion of the disc electrode is pushed onto the capacitor element substrate. After applying resistance welding and temporarily fixing each of the three locations, the laser spot diameter is φ = 1.2 mm (the width of the resistance welding joint is larger than 0.8 mm), and the central portion is conductively joined by YAG laser welding. Thus, a multilayer solid electrolytic capacitor was produced.

(比較例2)
比較例2は、上記実施例1と略同様であるので、異なる点のみ説明する。本比較例では、陽極部P1〜P4と陽極リードフレーム7,7’とを、実施例1と同様の円板電極を用いて、円板電極の円周部の一部をコンデンサ素子基板に押しあてて抵抗溶接し、各3箇所仮止めした後、レーザーのスポット径をφ=0.3mm(抵抗溶接の接合部位の幅0.8mmの40%)とし、中心部をYAGレーザー溶接により導電接合し、積層型固体電解コンデンサを作製した。
(Comparative Example 2)
Since the comparative example 2 is substantially the same as the said Example 1, only a different point is demonstrated. In this comparative example, the anode portions P1 to P4 and the anode lead frames 7 and 7 ′ are pushed using a disc electrode similar to that of the first embodiment, and a part of the circumferential portion of the disc electrode is pushed onto the capacitor element substrate. After applying resistance welding and temporarily fixing each of the three locations, the laser spot diameter was set to φ = 0.3 mm (40% of the resistance welding width of 0.8 mm), and the central portion was conductively joined by YAG laser welding. Thus, a multilayer solid electrolytic capacitor was produced.

(従来例1)
従来例1は、上記実施例1と略同様であるので、異なる点のみ説明する。本従来例1では、陽極部P1〜P4と陽極リードフレーム7,7’とを、実施例1と同様の円板電極を用いて、円板電極の円周部の一部をコンデンサ素子基板に押しあてて抵抗溶接し、各3箇所仮止めし、その後のレーザー溶接は行わずに、積層型固体電解コンデンサを作製した。
(Conventional example 1)
Since Conventional Example 1 is substantially the same as Example 1, only different points will be described. In this conventional example 1, the anode parts P1 to P4 and the anode lead frames 7 and 7 ′ are made of disk electrodes similar to those of the example 1, and a part of the circumferential part of the disk electrode is used as the capacitor element substrate. The laminated solid electrolytic capacitor was manufactured by pressing and resistance welding, temporarily fixing each of the three locations, and without performing subsequent laser welding.

(従来例2)
従来例2は、上記実施例1と略同様であるので、異なる点のみ説明する。本従来例2では、抵抗溶接は行わずに、左側に突出した陽極部P1、P3および下面の電位取り出し用リードフレーム7、右側に突出した陽極部P2、P4および電位取り出し用リードフレーム7’をYAGレーザー溶接により3箇所、導電接合し、積層型固体電解コンデンサを作製した。
(Conventional example 2)
Since Conventional Example 2 is substantially the same as Example 1, only different points will be described. In this conventional example 2, the anode parts P1 and P3 projecting to the left and the potential extracting lead frame 7 projecting to the left side, the anode parts P2 and P4 projecting to the right side, and the potential extracting lead frame 7 ′ are configured without resistance welding. Conductive bonding was conducted at three locations by YAG laser welding to produce a multilayer solid electrolytic capacitor.

図5は、実施例、比較例および従来例の積層型コンデンサについて、温度サイクル試験を行ったときのESR(mΩ)を実測した結果を示すグラフ図である。ESRは100kHzで測定した。また、温度サイクル条件は、−55℃〜+125℃の温度条件で1000回行った。   FIG. 5 is a graph showing the results of actual measurement of ESR (mΩ) when the temperature cycle test was performed on the multilayer capacitors of Examples, Comparative Examples, and Conventional Examples. ESR was measured at 100 kHz. The temperature cycle condition was 1000 times under the temperature condition of −55 ° C. to + 125 ° C.

図5から分かるように、実施例の積層型固体電解コンデンサのESR値は、温度サイクル1000回後も初期と同等の値を示すのに対して、従来例および比較例の積層型固体電解コンデンサのESR値は、温度サイクル500回後からすでに劣化が見られる。   As can be seen from FIG. 5, the ESR value of the multilayer solid electrolytic capacitor of the example shows the same value as the initial value even after 1000 temperature cycles, whereas the multilayer solid electrolytic capacitors of the conventional example and the comparative example have the same value. The ESR value has already deteriorated after 500 temperature cycles.

すなわち、従来例1のように抵抗溶接のみで陽極部を溶接した場合は、陽極部と陽極リードフレームの接合が不安定になる。また、従来例2のようにレーザー溶接のみで陽極部を溶接した場合は、陽極部と陽極リードフレームの間に空間が生じているため、接合が不安定になると考えられる。   That is, when the anode part is welded only by resistance welding as in Conventional Example 1, the joining of the anode part and the anode lead frame becomes unstable. Further, when the anode part is welded only by laser welding as in Conventional Example 2, it is considered that the bonding becomes unstable because a space is formed between the anode part and the anode lead frame.

また、比較例1のようにレーザー溶接のスポット径が、抵抗溶接の接合部より大きい場合は、箔が破れてコンデンサ素子が破損してしまうため、陽極部が劣化して熱ストレスに対して不安定になると考えられる。   Further, when the spot diameter of laser welding is larger than the joint portion of resistance welding as in Comparative Example 1, the foil is broken and the capacitor element is damaged, so that the anode portion is deteriorated and is not resistant to thermal stress. It will be stable.

上記の実施例では、固体電解質としてPEDTの場合について説明したが、ポリアニリン、ポリピロールなどの公知の導電性高分子も有効であることが確認されている。   In the above embodiments, the case where PEDT is used as the solid electrolyte has been described. However, it has been confirmed that known conductive polymers such as polyaniline and polypyrrole are also effective.

上記の各実施例では、レーザー溶接の光源としてYAGレーザーの場合について説明したが、YVOレーザー、炭酸ガスレーザー、アルゴンレーザーである場合でも有効であることが確認されている。 In each of the above-described embodiments, the case of using a YAG laser as the light source for laser welding has been described. However, it has been confirmed that it is effective even when using a YVO 4 laser, a carbon dioxide gas laser, or an argon laser.

上記の各実施例では、レーザー溶接の出力波形が2段階波形の場合について説明したが、出力波形は、1段階でもよく3段階以上でもよく実質的に複数のコンデンサ素子とリードフレームが電気的、機械的に接続できればよい。   In each of the above embodiments, the case where the output waveform of laser welding is a two-stage waveform has been described. However, the output waveform may be one stage or three or more stages, and a plurality of capacitor elements and lead frames are substantially electrically connected. It only needs to be mechanically connectable.

上記の各実施例では、リードフレームの材料として銅合金系の場合について説明したが、銅系である場合でも有効であることが確認されている。   In each of the above embodiments, the case of a copper alloy system has been described as the material of the lead frame, but it has been confirmed that the lead frame material is effective even in the case of a copper system.

上記の各実施例では、抵抗溶接3箇所について説明したが、抵抗溶接は1箇所でも3箇所以上でもよく、実質的に複数のコンデンサ素子とリードフレームが電気的、機械的に接続できればよい。   In each of the above-described embodiments, the three resistance weldings have been described. However, the resistance welding may be performed at one point or three or more, as long as a plurality of capacitor elements and lead frames can be electrically and mechanically connected.

さらに、抵抗溶接部へのレーザー溶接は、各抵抗溶接部において、1箇所に限定されるものではなく、抵抗溶接部からはみ出さないように複数箇所行ってもよい。   Furthermore, laser welding to the resistance welded portion is not limited to one location in each resistance welded portion, and may be performed at a plurality of locations so as not to protrude from the resistance welded portion.

また、上記の実施例より、レーザーのスポット径は、抵抗溶接の接合部位の縦方向の長さ(接合部の幅)の50〜100%である。上記の通り、50%未満(比較例2)では、導電接続が十分でなくなる問題があり、100%を超える(比較例1)と、箔が破れてコンデンサ素子が破損する問題がある。   Further, from the above examples, the laser spot diameter is 50 to 100% of the length in the longitudinal direction (width of the joined portion) of the joined portion of resistance welding. As described above, if it is less than 50% (Comparative Example 2), there is a problem that the conductive connection is not sufficient, and if it exceeds 100% (Comparative Example 1), there is a problem that the foil is broken and the capacitor element is damaged.

また、実施例では、コンデンサ素子の陽極部とリードフレームの間は直接接続したが、コンデンサ素子の陽極部とリードフレームの間、コンデンサ素子の陽極部間の何れか一箇所以上にニッケル、鉄、銅、アルミニウムの何れか、またはそれらの合金のマクラ材を介在させてもよい。   Further, in the example, the anode part of the capacitor element and the lead frame were directly connected, but between the anode part of the capacitor element and the lead frame, between the anode part of the capacitor element, nickel, iron, You may interpose the copper material of either copper, aluminum, or those alloys.

上記各実施例では、電極として円板電極の場合について説明したが、形状は円柱電極でも長方形電極でもよく実質的に複数のコンデンサ素子とリードフレームが電気的、機械的に接続できればよい。   In each of the above embodiments, the case of a disk electrode has been described. However, the shape may be a cylindrical electrode or a rectangular electrode as long as a plurality of capacitor elements and a lead frame can be electrically and mechanically connected.

また、陰極電位取り出し用端子板、陽極電位取り出し用端子板は、実施例では積層体の下面に取り付けた例について説明したが、コンデンサの使用態様や用途に応じて積層体の側面または中間部から取り出すようにしてもよい。   Further, the cathode potential extraction terminal plate and the anode potential extraction terminal plate have been described in the examples as being attached to the lower surface of the multilayer body, but from the side surface or intermediate portion of the multilayer body depending on the usage mode and application of the capacitor. You may make it take out.

1個のコンデンサ素子基板の外観斜視図である。It is an external appearance perspective view of one capacitor | condenser element board | substrate. 図1の詳細構成を示す断面図である。It is sectional drawing which shows the detailed structure of FIG. コンデンサ素子の抵抗溶接箇所およびレーザー溶接箇所を示す平面図である。It is a top view which shows the resistance welding location and laser welding location of a capacitor | condenser element. 4枚のコンデンサ素子基板を積層した固体電解コンデンサを示す斜視図である。It is a perspective view which shows the solid electrolytic capacitor which laminated | stacked four capacitor | condenser element substrates. 実施例、従来例および比較例の積層型固体電解コンデンサについて、温度サイクル試験を行ったときのESR(mΩ)を実測した結果を示すグラフ図である。It is a graph which shows the result of having actually measured ESR (m (ohm)) when the temperature cycle test was done about the multilayer type solid electrolytic capacitor of an Example, the prior art example, and the comparative example.

符号の説明Explanation of symbols

P、P1〜P4 陽極部(陽極露出部)
N、N1〜N4 陰極部
C,C1〜C4 コンデンサ素子基板
1 弁金属薄板
2 誘電体層(酸化皮膜層)
3 固体電解質層
4 カーボン層
5 銀層
6 マスキング部材
7、7’ 陽極電位取り出し用リードフレーム
8 陰極電位取り出し用リードフレーム
9 樹脂モールド
10 抵抗溶接の箇所
11 レーザー溶接の箇所
P, P1-P4 Anode part (anode exposed part)
N, N1 to N4 Cathode C, C1 to C4 Capacitor element substrate 1 Valve metal thin plate 2 Dielectric layer (oxide film layer)
DESCRIPTION OF SYMBOLS 3 Solid electrolyte layer 4 Carbon layer 5 Silver layer 6 Masking member 7, 7 'Lead frame for taking out anode potential 8 Lead frame for taking out cathode potential 9 Resin mold 10 Location of resistance welding 11 Location of laser welding

Claims (3)

表面に誘電体となる酸化皮膜を有する弁作用金属の、一方の側に固体電解質層および陰極引出層からなる陰極部を、他方の側に前記弁作用金属の露出部である陽極部を備えたコンデンサ素子基板が、複数枚積層されてなる積層型固体電解コンデンサにおいて、
前記陽極部とリードフレームとを抵抗溶接で溶接した抵抗溶接部と、該抵抗溶接部に前記抵抗溶接の接合幅の50〜100%となるスポット径のレーザー溶接によるレーザー溶接部を有することを特徴とする積層型固体電解コンデンサ。
A valve action metal having an oxide film serving as a dielectric on the surface, a cathode portion comprising a solid electrolyte layer and a cathode lead layer on one side, and an anode portion which is an exposed portion of the valve action metal on the other side In a multilayer solid electrolytic capacitor in which a plurality of capacitor element substrates are laminated,
A resistance welded portion in which the anode portion and the lead frame are welded by resistance welding, and a laser welded portion by laser welding with a spot diameter of 50 to 100% of the joint width of the resistance welding is provided in the resistance welded portion. A multilayer solid electrolytic capacitor.
請求項1に記載のコンデンサ素子基板を複数枚、陰極部を中心として、その陽極露出部の方向が交互に左右互い違いになるように積層することを特徴とする積層型固体電解コンデンサ。   A multilayer solid electrolytic capacitor, wherein a plurality of capacitor element substrates according to claim 1 are laminated so that the direction of the anode exposed portion is alternately left and right with the cathode portion as the center. 請求項1に記載の抵抗溶接部を複数設けたことを特徴とする積層型固体電解コンデンサ。   A multilayer solid electrolytic capacitor comprising a plurality of resistance welds according to claim 1.
JP2007125405A 2007-05-10 2007-05-10 Multilayer solid electrolytic capacitor Active JP4780726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007125405A JP4780726B2 (en) 2007-05-10 2007-05-10 Multilayer solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007125405A JP4780726B2 (en) 2007-05-10 2007-05-10 Multilayer solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2008282955A JP2008282955A (en) 2008-11-20
JP4780726B2 true JP4780726B2 (en) 2011-09-28

Family

ID=40143535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007125405A Active JP4780726B2 (en) 2007-05-10 2007-05-10 Multilayer solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4780726B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7300616B2 (en) * 2017-09-28 2023-06-30 パナソニックIpマネジメント株式会社 Electrolytic capacitor and manufacturing method thereof
CN115229340A (en) * 2022-07-21 2022-10-25 武汉逸飞激光股份有限公司 Welding method for lithium ion battery

Also Published As

Publication number Publication date
JP2008282955A (en) 2008-11-20

Similar Documents

Publication Publication Date Title
JP3755336B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH05205984A (en) Laminated solid electrolytic capacitor
JP2006324555A (en) Laminated capacitor and its manufacturing method
JP4930124B2 (en) Solid electrolytic capacitor
JP2007116064A (en) Laminated solid electrolytic capacitor
TWI248097B (en) Solid electrolytic capacitor
TWI466155B (en) Lower-face electrode type solid electrolytic multilayer capacitor and mounting member having the same
JP4688675B2 (en) Multilayer solid electrolytic capacitor
JP4780726B2 (en) Multilayer solid electrolytic capacitor
JP2009260235A (en) Solid electrolytic capacitor device and method of manufacturing the same
US7619876B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2002043170A (en) Laminated ceramic capacitor module
JP4588630B2 (en) Manufacturing method of chip-shaped solid electrolytic capacitor
JP4780725B2 (en) Manufacturing method of multilayer solid electrolytic capacitor
JP2969692B2 (en) Manufacturing method of multilayer solid electrolytic capacitor
JP2645562B2 (en) Manufacturing method of multilayer solid electrolytic capacitor
JP5294311B2 (en) Solid electrolytic capacitor
JP2645559B2 (en) Multilayer solid electrolytic capacitor and manufacturing method thereof
JP4352802B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4936458B2 (en) Multilayer solid electrolytic capacitor
JP3079780B2 (en) Multilayer solid electrolytic capacitor and method of manufacturing the same
JP5279019B2 (en) Solid electrolytic capacitor
JP7554163B2 (en) Manufacturing method of electrolytic capacitor
JP4756172B2 (en) Solid electrolytic capacitor
JP4671347B2 (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4780726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R314533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250