[go: up one dir, main page]

JP4796688B2 - Rare gas recovery method and rare gas recovery device - Google Patents

Rare gas recovery method and rare gas recovery device Download PDF

Info

Publication number
JP4796688B2
JP4796688B2 JP2000262751A JP2000262751A JP4796688B2 JP 4796688 B2 JP4796688 B2 JP 4796688B2 JP 2000262751 A JP2000262751 A JP 2000262751A JP 2000262751 A JP2000262751 A JP 2000262751A JP 4796688 B2 JP4796688 B2 JP 4796688B2
Authority
JP
Japan
Prior art keywords
gas
rare gas
cryopump
turbo molecular
molecular pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000262751A
Other languages
Japanese (ja)
Other versions
JP2002081857A (en
Inventor
新治 降矢
充級 寺島
秀敏 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Cryogenics Inc
Original Assignee
Ulvac Cryogenics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Cryogenics Inc filed Critical Ulvac Cryogenics Inc
Priority to JP2000262751A priority Critical patent/JP4796688B2/en
Publication of JP2002081857A publication Critical patent/JP2002081857A/en
Application granted granted Critical
Publication of JP4796688B2 publication Critical patent/JP4796688B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、真空成膜装置などの希ガスを使用する真空室から希ガスを回収する方法と装置に関する。
【0002】
【従来の技術】
従来、真空成膜装置の真空室にKrガスやXeガスなどの希ガスが混入したガスを使用して成膜することが行われているが、その用済み後には希ガスは真空成膜装置の排気系から大気に放出されるようになっている。すなわち、真空成膜装置の排気系には、ターボ分子ポンプやクライオポンプが使用されており、これらのポンプは排気した気体はそのまま大気に放出する仕組みになっている。
【0003】
また、活性炭などの多孔質物質のターゲット材を使用したガス精製器で、ガス中からH2O、N2、O2、CO、CO2、CH4、H2などの不純物を除去して希ガスに精製することも行われている。
【0004】
【発明が解決しようとする課題】
真空成膜装置において使用されるガス中からガス精製器により希ガスを回収する場合、ガス中の不純物濃度が高いとガス精製器が短時間で吸着飽和状態になってゲッター材の交換が必要になり、真空成膜装置のランニングコストが高価になるのみならず、ゲッター材交換の煩わしさを伴う。
【0005】
本発明は、長時間に亘り真空室から排気されるガス中から希ガスを回収する方法と装置を提供することをその目的とするものである。
【0006】
【課題を解決するための手段】
本発明では、真空室内から放出されるガス中の希ガスを含む一部のガスを、クライオポンプ内の圧力を制御してその内部に一旦凝縮させ、該凝縮したガスを再蒸発させて希ガス以外のガスを吸着するゲッター材を備えたガス精製器を通過させ、通過した希ガスを希ガス貯留容器に貯留することにより、希ガスを長時間にわたり回収するようにした。本発明の上記目的は、真空室に、機械式冷凍機を用いた複数の温度の異なる冷却面を有するクライオポンプと希ガスを捕捉しないゲッター材を用いたガス精製器及び希ガス貯留容器を順次に接続し、該クライオポンプにその内圧を制御するターボ分子ポンプと粗引きポンプを順次に接続した構成の装置により達成される。該クライオポンプを該真空室に接続したターボ分子ポンプのフォア側に接続してもよい。該クライオポンプ、ガス精製器及び希ガス貯留容器は、それぞれ複数台を並列に設けて交互に使用可能とすることで、より一層長時間の回収を行える。該希ガス貯留容器からこれに貯留した希ガスを該真空室へ循環させる戻り管を設けることで、回収された希ガスを有効利用してコストダウンが可能になる。
【0007】
【発明の実施の形態】
図面に基づき本発明の実施の形態を説明すると、図1において符号1は真空成膜装置を構成する真空に排気された真空室を示し、該真空室1内にはKrやXeなどの希ガスを含む成膜ガスがガス導入口3から導入され、該真空室1内に用意した基板2にスパッタリング法やプラズマCVD法などの成膜方法により薄膜が形成される。該成膜ガスは、適当なガス源から供給され、ターボ分子ポンプなどの適当なポンプにより排気されて成膜に必要な流量が該真空室1内に確保される。
【0008】
こうした構成は一般的な真空成膜装置が備える構成であるが、本発明では成膜ガスに含まれる希ガスを回収するため、該真空室1に、直接若しくは間接にクライオポンプ5とガス精製器6及び希ガス貯留容器7を順次に接続した構成の希ガス回収系8を設けた。これらクライオポンプ5、ガス精製器6及び希ガス貯留容器7は交代で作動できるように並列に複数台ずつ設けられ、これらの機器の交代使用により、長時間に亘る希ガス回収作動を行うようにした。該回収系8は、図1のように該真空室1の作動中の排気をターボ分子ポンプ9で排気する場合は、該ターボ分子ポンプ9のフォア側9aに接続され、該真空室1の排気をクライオポンプで排気する場合は、図2のように、該真空室1に直接接続される。符号10乃至19は、各機器の間に設けた開閉バルブである。
【0009】
該クライオポンプ5には機械式冷凍機を用いた冷却温度の異なる複数の冷却面を有する公知のクライオポンプが使用され、130〜150Kの低温になるバッフル20と、50〜60Kの低温が生成されるクライオパネル21の2段を持つクライオポンプを使用した。その詳細は図3に示す如くであり、ポンプケース22の内部に機械式冷凍機23により作動されて冷却される2段のコールドヘッド24a、24bを備え、コールドヘッド24aにはシールド25を介して該バッフル20を取付け、コールドヘッド24bには該クライオパネル21が取付けられる。該クライオポンプ5には、ポンプケース22の内部がポンプ作動を開始できるような真空に排気するため及びその内圧を制御するための小型のターボ分子ポンプ26および粗引きポンプ27が開閉バルブ28を介して接続される。符号29はクライオポンプ5の再生時に内部に溜まるH2Oを排出するドレンバルブ、30は大気開放バルブである。
【0010】
また、該ガス精製器6も公知のもので、一般ガスを吸着捕捉するが希ガスを捕捉しない活性炭素などのゲッター材を封入したガス流入口とガス流出口を有する容器で構成され、クライオポンプ5からのガスがガス流入口からガス流出口へ流れるとき、該ゲッター材によりガス中のH2O、N2、O2、CO、CO2、CH4、H2などの一般ガスが不純物として捕捉されて除去され、ガスが精製される。
【0011】
該ガス精製器6に続いて設けられた希ガス貯留容器7は、ガス流入口とガス流出口を備えた公知のガス容器で構成され、該ガス精製器6を通過することで不純物が除去され精製された希ガスが貯留される。該希ガス貯留容器7のガス流出口は、希ガスの需要先に接続され、図示の場合は真空室1へ戻り管31で接続して再使用するようにした。
【0012】
KrやXeの希ガスの蒸気圧は、図4に見られるように、H2Oよりも高く、H2、N2、O2よりは低い。本発明では、原則としてこの蒸気圧の差を利用して希ガスの精製を行うが、KrとCH4、XeとCO2は蒸気圧が近いので蒸気圧差による分離は困難であるから、ガス精製器6のゲッター材によりCH4とCO2に対する精製分離を行うようにした。この蒸気圧の差を利用するために、クライオポンプ5の1段側のバッフル20の温度を130〜150Kに制御してH2Oを吸着排気する冷却面とし、その2段側のクライオパネル21の温度を50〜60Kに制御してKrやXeを吸着排気する冷却面とした。
【0013】
該バッフル20を130Kに温度設定した場合、H2Oの分圧は10-8Paで、Kr、Xeの分圧は夫々105Paと6000Paである。この状態では、H2OとKr、Xeの間には大きな蒸気圧の差があるので、該バッフル20にはH2Oのみが凝縮する。そして2段側のクライオパネル21の温度を50Kに設定すると、H2の分圧は105Pa以上、N2の分圧は300Pa以上、O2の分圧は20Paになり、Kr、Xeの各分圧は0.02Paと10-6Paになる。従って、小型のターボ分子ポンプ26により該クライオポンプ5の内圧を1〜0.1Paになるように制御すれば、H2、N2、O2はクライオポンプ5のクライオパネル21に凝縮せずに大気中へ排出することができる。一般的に、真空成膜装置などの真空室から放出されるガスの大部分は、H2OやH2であり、これらのガスが下記のようにガス精製器6のゲッター材に捕捉されないようにすることで、ゲッター材の寿命を延ばせ、希ガスの回収が可能になる。
【0014】
図1に示した装置により真空室1内から放出される希ガスを回収する場合、高真空に排気した希ガス貯留容器7をセットしてその両側の開閉バルブ16〜19を閉じておく。更に開閉バルブ10、11、14、15およびドレンバルブ29、大気開放バルブ30も閉じておく。そしてクライオポンプ5の内部を小型のターボ分子ポンプ26または粗引きポンプ27を作動させて排気し、該クライオポンプ5を運転可能な真空状態としたのち該クライオポンプ5の運転を開始する。バッフル20およびクライオパネル21が130Kと50Kの設定温度に達し、クライオポンプ内の圧力が10−3〜10−4Paに入ったところで開閉バルブ10aを開き、真空室1内のガスをターボ分子ポンプ9のフォア側9aからクライオポンプ5に導入する。このときバルブ10bと28を開き、ターボ分子ポンプ26でクライオポンプ5内の圧力が1〜0.1Paになるように調節する。このガス中のH2Oは1段側のバッフル20に凝縮し、Kr又はXeやCH4、CO2ガスが2段側のクライオパネル21に凝縮し、残りのガスは該ターボ分子ポンプ26および粗引きポンプ27により大気中に放出される。
【0015】
該クライオポンプ5に予定量のKr、Xeが凝縮したら、開閉バルブ10a、10b、28を閉じて真空室1とターボ分子ポンプ26との接続関係を断ち、開閉バルブ12、14、16を開く。そしてクライオポンプ5の温度を徐々に上げ、その2段側のクライオパネル21が例えば150Kになるまで昇温させる。これにより、クライオパネル21からKr及び又はXe、CH4、CO2が再蒸発し、ガス精製器6のゲッター材を介して希ガス貯留容器7へ流れ込み、該ゲッター材にCH4、CO2が吸着されるので、希ガス貯留容器6にはKr及び又はXeが貯留される。クライオポンプ5内の圧力が下がって希ガス貯留容器7よりも圧力が下がった場合は、バルブ11a、11bとバルブ12、13間にドライポンプを設けて加圧して希ガス貯留容器7に溜め込むこともできる。クライオパネル21が150Kに達したら、開閉バルブ12、14、16を閉じ、大気開放バルブ30を開いてクライオポンプ5の内部に大気を導入し、その内部を室温に戻すことで1段側のバッフル20に凝縮したH2Oを液体に戻し、ドレンバルブ29を介して外部へ排出する。該ガス貯留容器7を真空室1に接続した場合は、回収した希ガスを真空室1で再使用できる。
【0016】
以上の回収作動を行う間に、もう一方のクライオポンプ5の内部をターボ分子ポンプ26及び粗引きポンプ27を作動させて排気しておき、開閉バルブ10aを閉じると同時に開閉バルブ11を開き、該もう一方のクライオポンプ5を運転することで、真空室1内を連続して排気でき、該クライオポンプ5に或る量の希ガスが溜め込まれたら、上記した操作を行なうことで希ガスを長時間に亘り回収できる。尚、クライオポンプ5、ガス精製器6、希ガス貯留容器7の数は、希ガス回収量に応じて任意の台数が設置される。また、該クライオポンプ5を図2のように真空室1に直接接続した場合も、その回収作動は上記の場合と特に異ならない。
【0017】
【発明の効果】
以上のように本発明によるときは、真空室内から放出され希ガスを含む一部のガスを、クライオポンプ内に一旦凝縮させ、これを再蒸発させて希ガス以外のガスを吸着するゲッター材を備えたガス精製器を通過させ、通過した希ガスを希ガス貯留容器に貯留するので、ゲッター材の能力を増大させて長時間に亘る希ガスの回収を行える効果があり、この方法は、真空室に、複数の温度の異なる冷却面を有するクライオポンプと希ガスを捕捉しないゲッター材を用いたガス精製器及び希ガス貯留容器を接続し、該クライオポンプにその内圧を制御するターボ分子ポンプと粗引きポンプを接続することで、更には請求項3乃至5の構成とすることで、適切に実施できる。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す線図
【図2】本発明の他の実施の形態を示す線図
【図3】図1、図2のクライオポンプの具体的説明図
【図4】各種ガスの平衡蒸気圧曲線図
【符号の説明】
1 真空室、5 クライオポンプ、6 ガス精製器、7 希ガス貯留容器、9 ターボ分子ポンプ、9a フォア側、26 小型のターボ分子ポンプ、27 粗引きポンプ、
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for recovering a rare gas from a vacuum chamber using a rare gas such as a vacuum film forming apparatus.
[0002]
[Prior art]
Conventionally, film formation using a gas mixed with a rare gas such as Kr gas or Xe gas has been performed in a vacuum chamber of a vacuum film formation apparatus. The exhaust system is released into the atmosphere. That is, a turbo molecular pump or a cryopump is used for the exhaust system of the vacuum film forming apparatus, and these pumps are configured to discharge the exhausted gas to the atmosphere as it is.
[0003]
In addition, a gas purifier using a porous target material such as activated carbon removes impurities such as H 2 O, N 2 , O 2 , CO, CO 2 , CH 4 , and H 2 from the gas. Refinement to gas is also performed.
[0004]
[Problems to be solved by the invention]
When collecting a rare gas from a gas used in a vacuum deposition system with a gas purifier, if the impurity concentration in the gas is high, the gas purifier will be in an adsorption saturation state in a short time and the getter material must be replaced. Thus, not only the running cost of the vacuum film-forming apparatus is expensive, but also the troublesome replacement of the getter material is involved.
[0005]
An object of the present invention is to provide a method and apparatus for recovering rare gas from gas exhausted from a vacuum chamber for a long time.
[0006]
[Means for Solving the Problems]
In the present invention, a part of the gas including the rare gas in the gas discharged from the vacuum chamber is temporarily condensed inside the cryopump by controlling the pressure in the cryopump, and the condensed gas is re-evaporated to obtain the rare gas. A rare gas was recovered over a long period of time by passing through a gas purifier equipped with a getter material that adsorbs other gases and storing the passed rare gas in a rare gas storage container. The above object of the present invention is to sequentially provide a cryopump having a plurality of cooling surfaces with different temperatures using a mechanical refrigerator, a gas purifier using a getter material that does not capture a rare gas, and a rare gas storage container in a vacuum chamber. And a turbo molecular pump for controlling the internal pressure of the cryopump and a roughing pump are sequentially connected to the cryopump. The cryopump may be connected to the fore side of a turbo molecular pump connected to the vacuum chamber. The cryopump, the gas purifier, and the rare gas storage container can be used for a longer time by providing a plurality of them in parallel and allowing them to be used alternately. By providing a return pipe for circulating the rare gas stored in the rare gas storage container to the vacuum chamber, the recovered rare gas can be effectively used to reduce the cost.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. In FIG. 1, reference numeral 1 denotes a vacuum chamber that is evacuated to form a vacuum film forming apparatus, and a rare gas such as Kr or Xe is contained in the vacuum chamber 1. Is introduced from the gas inlet 3 and a thin film is formed on the substrate 2 prepared in the vacuum chamber 1 by a film forming method such as sputtering or plasma CVD. The film forming gas is supplied from an appropriate gas source and is exhausted by an appropriate pump such as a turbo molecular pump to ensure a flow rate necessary for film formation in the vacuum chamber 1.
[0008]
Such a configuration is a configuration provided in a general vacuum film forming apparatus. However, in the present invention, a cryopump 5 and a gas purifier are directly or indirectly disposed in the vacuum chamber 1 in order to recover a rare gas contained in the film forming gas. 6 and a rare gas storage system 8 having a configuration in which the noble gas storage container 7 is sequentially connected. A plurality of cryopumps 5, gas purifiers 6 and rare gas storage containers 7 are provided in parallel so that they can be operated alternately, and by using these devices alternately, a rare gas recovery operation can be performed for a long time. did. When the exhaust during operation of the vacuum chamber 1 is exhausted by the turbo molecular pump 9 as shown in FIG. 1, the recovery system 8 is connected to the fore side 9a of the turbo molecular pump 9, and the exhaust of the vacuum chamber 1 is exhausted. 2 is directly connected to the vacuum chamber 1 as shown in FIG. Reference numerals 10 to 19 are open / close valves provided between the devices.
[0009]
A known cryopump having a plurality of cooling surfaces with different cooling temperatures using a mechanical refrigerator is used for the cryopump 5, and a baffle 20 having a low temperature of 130 to 150 K and a low temperature of 50 to 60 K are generated. A cryopump having a two-stage cryopanel 21 was used. The details are as shown in FIG. 3, and two-stage cold heads 24 a and 24 b that are operated and cooled by a mechanical refrigerator 23 are provided inside the pump case 22, and the cold head 24 a is provided with a shield 25. The baffle 20 is attached, and the cryopanel 21 is attached to the cold head 24b. In the cryopump 5, a small turbo molecular pump 26 and a roughing pump 27 for exhausting to a vacuum so that the inside of the pump case 22 can start the pump operation and controlling the internal pressure are provided via an opening / closing valve 28. Connected. Reference numeral 29 is a drain valve that discharges H 2 O accumulated inside the cryopump 5 during regeneration, and 30 is an air release valve.
[0010]
The gas purifier 6 is also a known one, and is composed of a container having a gas inlet and a gas outlet filled with a getter material such as activated carbon that adsorbs and captures a general gas but does not capture a rare gas, and is a cryopump. When the gas from 5 flows from the gas inlet to the gas outlet, the getter material causes general gases such as H 2 O, N 2 , O 2 , CO, CO 2 , CH 4 , and H 2 in the gas as impurities. It is captured and removed, and the gas is purified.
[0011]
The rare gas storage container 7 provided after the gas purifier 6 is a known gas container having a gas inlet and a gas outlet, and impurities are removed by passing through the gas purifier 6. Purified noble gas is stored. The gas outlet of the rare gas storage container 7 is connected to a customer of rare gas, and in the illustrated case, the gas outlet is connected to the vacuum chamber 1 by a return pipe 31 and reused.
[0012]
The vapor pressure of rare gases such as Kr and Xe is higher than H 2 O and lower than H 2 , N 2 , and O 2 as seen in FIG. In the present invention, the rare gas is purified by utilizing this difference in vapor pressure in principle. However, since Kr and CH 4 , Xe and CO 2 are close to each other in vapor pressure, separation by vapor pressure difference is difficult. Purification and separation with respect to CH 4 and CO 2 were performed by the getter material of the vessel 6. In order to utilize this difference in vapor pressure, the temperature of the baffle 20 on the first stage side of the cryopump 5 is controlled to 130 to 150K to provide a cooling surface for adsorbing and exhausting H 2 O, and the cryopanel 21 on the second stage side. The temperature was controlled to 50-60K, and a cooling surface for adsorbing and exhausting Kr and Xe was used.
[0013]
When the temperature of the baffle 20 is set to 130 K, the partial pressure of H 2 O is 10 −8 Pa, and the partial pressures of Kr and Xe are 10 5 Pa and 6000 Pa, respectively. In this state, since there is a large difference in vapor pressure between H 2 O and Kr, Xe, only H 2 O is condensed in the baffle 20. When the temperature of the second-stage cryopanel 21 is set to 50K, the partial pressure of H2 is 10 5 Pa or higher, the partial pressure of N2 is 300 Pa or higher, and the partial pressure of O 2 is 20 Pa. The pressure is 0.02 Pa and 10 −6 Pa. Therefore, if the internal pressure of the cryopump 5 is controlled to 1 to 0.1 Pa by the small turbo molecular pump 26, H 2 , N 2 , and O 2 are not condensed on the cryopanel 21 of the cryopump 5. It can be discharged into the atmosphere. In general, most of the gas released from a vacuum chamber such as a vacuum film-forming apparatus is H 2 O or H 2 so that these gases are not trapped by the getter material of the gas purifier 6 as described below. By extending the life of the getter material, it becomes possible to recover the rare gas.
[0014]
When the rare gas released from the vacuum chamber 1 is recovered by the apparatus shown in FIG. 1, the rare gas storage container 7 exhausted to a high vacuum is set, and the open / close valves 16 to 19 on both sides thereof are closed. Further, the open / close valves 10, 11, 14, 15 and the drain valve 29 and the air release valve 30 are also closed. Then, the inside of the cryopump 5 is evacuated by operating the small turbo molecular pump 26 or the roughing pump 27, and the cryopump 5 is brought into a vacuum state in which the cryopump 5 can be operated, and then the operation of the cryopump 5 is started. When the baffle 20 and the cryopanel 21 reach the set temperatures of 130K and 50K and the pressure in the cryopump enters 10-3 to 10-4 Pa, the open / close valve 10a is opened, and the gas in the vacuum chamber 1 is supplied to the turbo molecular pump 9 Is introduced into the cryopump 5 from the fore side 9a. At this time, the valves 10b and 28 are opened, and the turbo molecular pump 26 is adjusted so that the pressure in the cryopump 5 becomes 1 to 0.1 Pa. H 2 O in this gas is condensed in the first stage baffle 20, Kr or Xe, CH 4, and CO 2 gases are condensed in the second stage cryopanel 21, and the remaining gas is the turbo molecular pump 26 and roughing. It is discharged into the atmosphere by the pump 27.
[0015]
When the predetermined amounts of Kr and Xe are condensed in the cryopump 5, the on-off valves 10 a, 10 b and 28 are closed to disconnect the connection between the vacuum chamber 1 and the turbo molecular pump 26 and the on-off valves 12, 14 and 16 are opened. Then, the temperature of the cryopump 5 is gradually raised, and the temperature is raised until the cryopanel 21 on the second stage side reaches, for example, 150K. As a result, Kr and / or Xe, CH 4 , and CO 2 re-evaporate from the cryopanel 21 and flow into the rare gas storage container 7 through the getter material of the gas purifier 6, and CH 4 and CO 2 flow into the getter material. Since it is adsorbed, Kr and / or Xe are stored in the rare gas storage container 6. When the pressure in the cryopump 5 drops and the pressure falls below the rare gas storage container 7, a dry pump is provided between the valves 11 a and 11 b and the valves 12 and 13 to pressurize and store in the rare gas storage container 7. You can also. When the cryopanel 21 reaches 150K, the open / close valves 12, 14, and 16 are closed, the air release valve 30 is opened, the atmosphere is introduced into the cryopump 5, and the interior is returned to room temperature, thereby bringing the baffle on the first stage side. The H 2 O condensed to 20 is returned to the liquid and discharged to the outside through the drain valve 29. When the gas storage container 7 is connected to the vacuum chamber 1, the recovered rare gas can be reused in the vacuum chamber 1.
[0016]
While performing the above recovery operation, the inside of the other cryopump 5 is evacuated by operating the turbo molecular pump 26 and the roughing pump 27, and at the same time the open / close valve 10a is closed, the open / close valve 11 is opened, By operating the other cryopump 5, the inside of the vacuum chamber 1 can be continuously evacuated. When a certain amount of rare gas is stored in the cryopump 5, the above operation is performed to lengthen the rare gas. Can be recovered over time. Note that any number of cryopumps 5, gas purifiers 6, and rare gas storage containers 7 may be installed according to the rare gas recovery amount. Further, when the cryopump 5 is directly connected to the vacuum chamber 1 as shown in FIG. 2, the recovery operation is not particularly different from the above case.
[0017]
【The invention's effect】
As described above, according to the present invention, a part of the gas that is released from the vacuum chamber and contains a rare gas is once condensed in the cryopump and then re-evaporated to adsorb a gas other than the rare gas. Since the passed rare gas is stored in the rare gas storage container through the gas purifier provided, it has the effect of increasing the capacity of the getter material and recovering the rare gas over a long period of time. A cryopump having a plurality of cooling surfaces with different temperatures, a gas purifier using a getter material that does not trap rare gas, and a rare gas storage container, and a turbo molecular pump that controls the internal pressure of the cryopump; By connecting the roughing pump, the configuration of claims 3 to 5 can be further implemented appropriately.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an embodiment of the present invention. FIG. 2 is a diagram illustrating another embodiment of the present invention. FIG. 3 is a specific explanatory diagram of the cryopump of FIGS. ] Equilibrium vapor pressure curves for various gases [Explanation of symbols]
1 vacuum chamber, 5 cryopump, 6 gas purifier, 7 noble gas storage container, 9 turbo molecular pump, 9a fore side, 26 small turbo molecular pump, 27 roughing pump,

Claims (7)

真空室内から放出されるガス中の希ガスを含む一部のガスを、クライオポンプ内部に一旦凝縮させ、ターボ分子ポンプにより前記クライオポンプの内圧を制御しながら前記ターボ分子ポンプにより残りのガスを大気中に排出し、前記凝縮したガスを再蒸発させて希ガス以外のガスを吸着するゲッター材を備えたガス精製器を通過させ、通過した希ガスを希ガス貯留容器に貯留することを特徴とする希ガス回収方法。The portion of the gas containing a rare gas in the gas discharged from the vacuum chamber, is once condensed in the Kuraiopon flop unit, the remaining gas by using the turbo molecular pump while controlling the internal pressure of the cryopump by a turbo molecular pump It is discharged into the atmosphere , passes through a gas purifier equipped with a getter material that re-evaporates the condensed gas and adsorbs a gas other than the rare gas, and stores the passed rare gas in a rare gas storage container. Noble gas recovery method. 前記クライオポンプは、水分子を凝結・除去するために温度を130K〜150Kに制御された冷却面と、Kr及びXeを凝結するために温度を50K〜60Kに制御された冷却面とを備えることを特徴とする請求項1に記載の希ガス回収方法。The cryopump includes a cooling surface whose temperature is controlled to 130K to 150K to condense and remove water molecules, and a cooling surface whose temperature is controlled to 50K to 60K to condense Kr and Xe. The rare gas recovery method according to claim 1. 前記クライオポンプの内部を、前記ターボ分子ポンプにより1〜0.1Paに減圧することを特徴とする請求項2に記載の希ガス回収方法。The rare gas recovery method according to claim 2, wherein the inside of the cryopump is depressurized to 1 to 0.1 Pa by the turbo molecular pump. 真空室に、機械式冷凍機を用いた複数の温度の異なる冷却面を有するクライオポンプ、希ガスを捕捉しないゲッター材を用いたガス精製器及び希ガス貯留容器を順次に接続し、前記クライオポンプに、前記クライオポンプの内部を排気中にその内圧を制御するターボ分子ポンプと粗引きポンプを順次に接続したことを特徴とする希ガス回収装置。A vacuum chamber, connected Kuraiopon up with different cooling surface of a plurality of temperature using a mechanical refrigerator, the gas purifier and a rare gas storage container with a getter material that does not capture the noble gases sequentially, the cryopump , the rare gas recovery apparatus characterized by sequentially connecting a turbo molecular pump and a roughing pump for controlling the pressure of its internal in the exhaust of the cryopump. 前記クライオポンプ、ガス精製器及び希ガス貯留容器は、それぞれ複数台を並列に設けて交互に使用可能としたことを特徴とする請求項4に記載の希ガス回収装置。 5. The rare gas recovery apparatus according to claim 4 , wherein a plurality of the cryopump, the gas purifier, and the rare gas storage container are provided in parallel and can be used alternately. 真空室にターボ分子ポンプを接続し、前記ターボ分子ポンプに機械式冷凍機を用いた複数の温度の異なる冷却面を有するクライオポンプ、希ガスを捕捉しないゲッター材を用いたガス精製器及び希ガス貯留容器を順次に接続し、前記クライオポンプに、前記クライオポンプの内部を排気中にその内圧を制御するための他のターボ分子ポンプと粗引きポンプとを順次に接続したことを特徴とする希ガス回収装置。A turbo molecular pump connected to a vacuum chamber, a cryopump having a plurality of cooling surfaces with different temperatures using a mechanical refrigerator for the turbo molecular pump, a gas purifier using a getter material that does not trap a rare gas, and a rare gas A storage container is connected in order, and another turbo molecular pump and a roughing pump for controlling the internal pressure of the cryopump while exhausting the inside of the cryopump are sequentially connected to the cryopump. Gas recovery device. 前記希ガス貯留容器からこれに貯留した希ガスを上記真空室へ循環させる戻り管を設けたことを特徴とする請求項4乃至6の何れか1項に記載の希ガス回収装置。Rare gas recovery apparatus according to any one of claims 4 to 6, characterized in that the rare gas stored in it from the noble gas reservoir provided with a return pipe for circulating into the vacuum chamber.
JP2000262751A 2000-08-31 2000-08-31 Rare gas recovery method and rare gas recovery device Expired - Fee Related JP4796688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000262751A JP4796688B2 (en) 2000-08-31 2000-08-31 Rare gas recovery method and rare gas recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000262751A JP4796688B2 (en) 2000-08-31 2000-08-31 Rare gas recovery method and rare gas recovery device

Publications (2)

Publication Number Publication Date
JP2002081857A JP2002081857A (en) 2002-03-22
JP4796688B2 true JP4796688B2 (en) 2011-10-19

Family

ID=18750388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000262751A Expired - Fee Related JP4796688B2 (en) 2000-08-31 2000-08-31 Rare gas recovery method and rare gas recovery device

Country Status (1)

Country Link
JP (1) JP4796688B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5071962B2 (en) * 2007-01-17 2012-11-14 アネスト岩田株式会社 Negative pressure forming apparatus and drain discharging method thereof
DE102014011877B4 (en) * 2014-08-11 2021-08-05 Grenzebach Maschinenbau Gmbh Method and device for saving energy and at the same time increasing the throughput speed in vacuum coating systems
JP7011384B2 (en) * 2016-11-08 2022-02-10 株式会社アルバック Vacuum processing equipment and rare gas recovery equipment
DE102017221346A1 (en) * 2017-11-28 2019-05-29 Thyssenkrupp Ag Gas circuit filter for vacuum systems
DE102018102693B4 (en) * 2018-02-07 2024-06-27 VON ARDENNE Asset GmbH & Co. KG Dehydration network, vacuum arrangement and process
JP2023000161A (en) * 2021-06-17 2023-01-04 エドワーズ株式会社 Rare gas recovery system and rare gas recovery method
CN116272241B (en) * 2023-01-10 2024-10-22 中船鹏力(南京)超低温技术有限公司 Rare gas low-temperature purification gas circuit and control method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311403A (en) * 1992-05-11 1993-11-22 Shin Meiwa Ind Co Ltd Gas regenerator for film forming equipment
JPH0861232A (en) * 1994-08-24 1996-03-08 Ebara Corp Regeneration method for cryopump and device for the same
JP3227105B2 (en) * 1997-03-24 2001-11-12 株式会社荏原製作所 Evacuation system
JPH11324918A (en) * 1998-05-20 1999-11-26 Shin Meiwa Ind Co Ltd Vacuum equipment

Also Published As

Publication number Publication date
JP2002081857A (en) 2002-03-22

Similar Documents

Publication Publication Date Title
FI95662C (en) Air purification for separation
JP4769350B2 (en) Noble gas recovery method and apparatus
US4425142A (en) Pressure swing adsorption cycle for natural gas pretreatment for liquefaction
JP3891834B2 (en) Gas supply method and apparatus
JP2010037631A (en) Raw material recovery method, trap mechanism, exhaust system and film deposition system using the same
JP4796688B2 (en) Rare gas recovery method and rare gas recovery device
AU2023307298A1 (en) Method for separating carbon dioxide from the ambient air and facility for carrying out such a method
WO2005052369A1 (en) Method and apparatus for regenerating water
JP3553310B2 (en) Evacuation system
JPH0861232A (en) Regeneration method for cryopump and device for the same
KR20060018459A (en) Krypton gas and xenon gas separation method and apparatus
JP4139565B2 (en) PFC gas recovery method and apparatus
GB2171927A (en) Method and apparatus for separating a gaseous mixture
JP4430913B2 (en) Gas supply method and apparatus
JP2020143646A (en) Cryopump and method for regenerating cryopump
JP2003062419A (en) Method for separating gas mixture and apparatus for the same
JP2009160559A (en) Volatile organic matter recovery equipment
JPH05311403A (en) Gas regenerator for film forming equipment
JP4301532B2 (en) Cryopump regeneration method
JPH07208332A (en) Regeneration method of cryopump in sputtering device
JP2001269532A (en) Pressure fluctuation adsorption type air separation method
JP2002070737A (en) Regenerating method of cryopump
JP2644823B2 (en) Regeneration method of helium gas purification adsorber
JP3295136B2 (en) Cryopump regeneration method and regeneration device
JPH09122432A (en) Gas separator using pressure swing adsorption process

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4796688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees