[go: up one dir, main page]

JP4797727B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP4797727B2
JP4797727B2 JP2006078157A JP2006078157A JP4797727B2 JP 4797727 B2 JP4797727 B2 JP 4797727B2 JP 2006078157 A JP2006078157 A JP 2006078157A JP 2006078157 A JP2006078157 A JP 2006078157A JP 4797727 B2 JP4797727 B2 JP 4797727B2
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
use side
side heat
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006078157A
Other languages
Japanese (ja)
Other versions
JP2007255750A (en
Inventor
伸一 笠原
貴弘 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006078157A priority Critical patent/JP4797727B2/en
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to US12/224,720 priority patent/US20090019879A1/en
Priority to KR1020087021871A priority patent/KR100988712B1/en
Priority to EP07737919.6A priority patent/EP1998123B1/en
Priority to CN2007800081990A priority patent/CN101395435B/en
Priority to CN201010263292XA priority patent/CN101907366B/en
Priority to AU2007228237A priority patent/AU2007228237B2/en
Priority to ES07737919.6T priority patent/ES2671446T3/en
Priority to PCT/JP2007/054405 priority patent/WO2007108319A1/en
Priority to TR2018/07246T priority patent/TR201807246T4/en
Publication of JP2007255750A publication Critical patent/JP2007255750A/en
Application granted granted Critical
Publication of JP4797727B2 publication Critical patent/JP4797727B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0232Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses
    • F25B2313/02323Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/24Low amount of refrigerant in the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、複数の利用側熱交換器で個別に加熱動作を可能とする冷凍装置に関し、特に休止状態の利用側熱交換器における冷媒の寝込み対策に係るものである。   The present invention relates to a refrigeration apparatus that can individually perform a heating operation with a plurality of usage-side heat exchangers, and particularly relates to countermeasures against stagnation of refrigerant in a dormant usage-side heat exchanger.

冷媒を循環させて冷凍サイクルを行う冷凍装置は、空気調和装置等に広く適用されている。この空調調和装置として、複数の室内ユニットが室外ユニットに対して並列に接続される、いわゆるマルチ式空気調和装置がある。   Refrigeration apparatuses that perform a refrigeration cycle by circulating a refrigerant are widely applied to air conditioning apparatuses and the like. As this air conditioner, there is a so-called multi-type air conditioner in which a plurality of indoor units are connected in parallel to an outdoor unit.

例えば特許文献1の空気調和装置は、圧縮機及び室外熱交換器(熱源側熱交換器)を有する1台の室外ユニットと、各々が室内熱交換器(利用側熱交換器)を有する2台の室内ユニットとを備えている。2つの室内熱交換器がそれぞれ接続される2本の分岐配管には、各室内熱交換器に対応するように電動弁がそれぞれ設けられている。   For example, the air conditioner of Patent Document 1 includes one outdoor unit having a compressor and an outdoor heat exchanger (heat source side heat exchanger), and two units each having an indoor heat exchanger (use side heat exchanger). Indoor unit. The two branch pipes to which the two indoor heat exchangers are connected are respectively provided with motor-operated valves so as to correspond to the indoor heat exchangers.

この空気調和装置は、各電動弁の開度を制御することで、各室内ユニットで個別に暖房運転が可能となっている。具体的には、例えば2台の室内ユニットで同時に暖房運転を行う場合、両方の電動弁を所定の開度で開放状態とし、両方の室内熱交換器に冷媒を積極的に送り込むようにしている。その結果、両室内熱交換器を流れる冷媒から室内空気へ熱が放出され、各室内の暖房が行われる。一方、例えば1台の室内ユニットのみで暖房運転を行う場合、運転側の室内ユニットに対応する電動弁を開放させる一方、休止側の室内ユニットに対応する電動弁を閉じるようにしている。その結果、運転側の室内ユニットの室内熱交換器のみに冷媒が送られ、この室内熱交換器内の冷媒が室内空気に放熱する。
特開平8−159590号公報
This air conditioner can perform heating operation individually in each indoor unit by controlling the opening degree of each electric valve. Specifically, for example, when heating operation is performed simultaneously with two indoor units, both motor-operated valves are opened at a predetermined opening degree, and refrigerant is actively sent to both indoor heat exchangers. . As a result, heat is released from the refrigerant flowing through the indoor heat exchangers to the indoor air, and each room is heated. On the other hand, for example, when heating operation is performed with only one indoor unit, the electric valve corresponding to the indoor unit on the operation side is opened, while the electric valve corresponding to the indoor unit on the pause side is closed. As a result, the refrigerant is sent only to the indoor heat exchanger of the indoor unit on the operation side, and the refrigerant in the indoor heat exchanger radiates heat to the indoor air.
JP-A-8-159590

ところで、上述のように1台の室内ユニットのみを継続して運転する場合、休止側の室内熱交換器内の冷媒が凝縮し、冷媒が室内熱交換器内に溜まり込んでしまう、いわゆる冷媒の寝込みが生じてしまうことがある。このように休止側の室内熱交換器内に冷媒が寝込んでいくと、運転側(加熱動作側)の室内熱交換器を流れる冷媒量が不足気味となり、この室内ユニットの暖房能力が低下してしまう。   By the way, when only one indoor unit is operated continuously as described above, the refrigerant in the indoor heat exchanger on the pause side condenses and the refrigerant accumulates in the indoor heat exchanger. Sleep may occur. When the refrigerant stagnates in the indoor heat exchanger on the pause side in this way, the amount of refrigerant flowing through the indoor heat exchanger on the operation side (heating operation side) becomes insufficient, and the heating capacity of the indoor unit decreases. End up.

本発明は、かかる点に鑑みてなされたものであり、その目的は、休止側の利用側熱交換器における冷媒の寝込みを防止することである。   This invention is made | formed in view of this point, The objective is to prevent the stagnation of the refrigerant | coolant in the utilization side heat exchanger of a dormant side.

第1の発明は、圧縮機(22)及び熱源熱交換器(23)を有する熱源側回路(21)に対して、利用側熱交換器(33a,33b)及び該利用側熱交換器(33a,33b)に対応する電動弁(34a,34b)をそれぞれ有する複数の利用側回路(31a,31b)が並列に接続されて構成される冷媒回路(10)を備え、利用側熱交換器(33a,33b)内の冷媒から熱を放出する加熱動作を各利用側熱交換器(33a,33b)で個別に可能とする冷凍装置を前提としている。そして、この冷凍装置は、上記冷媒回路(10)が、圧縮機(22)の吐出冷媒を臨界圧力以上とする冷凍サイクルを行うように構成され、加熱動作を行う利用側熱交換器(33a)と休止状態の利用側熱交換器(33b)とが共存する運転を行う際、休止側の利用側熱交換器(33b)に対応する電動弁(34b)を全閉する制御手段(51)を備え、各利用側熱交換器(33a,33b)を通過した空気がそれぞれ室内に吹き出される吹出口と、該吹出口をそれぞれ開閉自在な開閉機構とを有し、対応する利用側熱交換器(33a,33b)をそれぞれ収容する複数の室内ユニット(30a,30b)を備え、上記各開閉機構は、加熱動作を行う利用側熱交換器(33b)の吹出口を開放する一方、休止側の利用側熱交換器(33a)の吹出口を閉鎖することを特徴とするものである。 The first aspect of the invention relates to a heat source side circuit (21) having a compressor (22) and a heat source heat exchanger (23), with respect to the use side heat exchanger (33a, 33b) and the use side heat exchanger (33a). , 33b) includes a refrigerant circuit (10) formed by connecting a plurality of use side circuits (31a, 31b) each having a motor-operated valve (34a, 34b) corresponding to each other, and a use side heat exchanger (33a , 33b) is premised on a refrigeration system that enables heating operation to release heat from the refrigerant in each of the use side heat exchangers (33a, 33b). In this refrigeration apparatus, the refrigerant circuit (10) is configured to perform a refrigeration cycle in which the refrigerant discharged from the compressor (22) is at a critical pressure or higher, and performs a heating operation on the use side heat exchanger (33a) Control means (51) that fully closes the motor-operated valve (34b) corresponding to the idle-side use-side heat exchanger (33b) when performing operation in which the idle-side use-side heat exchanger (33b) coexists And a corresponding use-side heat exchanger having an air outlet through which air that has passed through each use-side heat exchanger (33a, 33b) is blown into the room, and an opening / closing mechanism that can open and close each of the air-outlets. (33a, 33b) each having a plurality of indoor units (30a, 30b), wherein each of the opening / closing mechanisms opens the outlet of the use side heat exchanger (33b) that performs the heating operation, The air outlet of the use side heat exchanger (33a) is closed .

第2の発明は、圧縮機(22)及び熱源熱交換器(23)を有する熱源側回路(21)に対して、利用側熱交換器(33a,33b)及び該利用側熱交換器(33a,33b)に対応する電動弁(34a,34b)をそれぞれ有する複数の利用側回路(31a,31b)が並列に接続されて構成される冷媒回路(10)を備え、利用側熱交換器(33a,33b)内の冷媒から熱を放出する加熱動作を各利用側熱交換器(33a,33b)で個別に可能とする冷凍装置を前提としている。そして、この冷凍装置は、上記冷媒回路(10)が、圧縮機(22)の吐出冷媒を臨界圧力以上とする冷凍サイクルを行うように構成され、加熱動作を行う利用側熱交換器(33a)と休止状態の利用側熱交換器(33b)とが共存する運転を行う際、休止側の利用側熱交換器(33b)に対応する電動弁(34b)を全閉する制御手段(51)を備え、上記制御手段(51)は、休止側の利用側熱交換器(33b)に対応する電動弁(34b)を全閉してから第1規定時間t1が経過すると、該電動弁(34b)を第2規定時間t2に亘って一時的に開放するように構成され、上記各利用側熱交換器(33a,33b)は、室内に配置されて室内空気へ冷媒の熱を放出するように構成され、各利用側熱交換器(33a,33b)の周囲には、該各利用側熱交換器(33a,33b)に対応する室内の温度を検出する室内温度センサ(44,45)がそれぞれ設けられ、休止側の利用側熱交換器(33b)に対応する室内温度センサ(45)の検出温度に基づいて上記第1規定時間t1及び第2規定時間t2のいずれか一方又は両方を補正する補正手段(52)を備えていることを特徴とする。The second aspect of the invention relates to a heat source side circuit (21) having a compressor (22) and a heat source heat exchanger (23), and a use side heat exchanger (33a, 33b) and the use side heat exchanger (33a). , 33b) includes a refrigerant circuit (10) formed by connecting a plurality of use side circuits (31a, 31b) each having a motor-operated valve (34a, 34b) corresponding to each other, and a use side heat exchanger (33a , 33b) is premised on a refrigeration system that enables heating operation to release heat from the refrigerant in each of the use side heat exchangers (33a, 33b). In this refrigeration apparatus, the refrigerant circuit (10) is configured to perform a refrigeration cycle in which the refrigerant discharged from the compressor (22) is at a critical pressure or higher, and performs a heating operation on the use side heat exchanger (33a) Control means (51) that fully closes the motor-operated valve (34b) corresponding to the idle-side use-side heat exchanger (33b) when performing operation in which the idle-side use-side heat exchanger (33b) coexists The control means (51) includes a motor-operated valve (34b) when the first specified time t1 has elapsed since the motor-operated valve (34b) corresponding to the idle-side use-side heat exchanger (33b) is fully closed. Is configured to be temporarily opened over a second specified time t2, and each of the use side heat exchangers (33a, 33b) is configured to be disposed indoors and release the heat of the refrigerant to the indoor air. The temperature inside the room corresponding to each use side heat exchanger (33a, 33b) is detected around each use side heat exchanger (33a, 33b). Indoor temperature sensors (44, 45) are provided, respectively, and the first specified time t1 and the second specified time based on the detected temperature of the indoor temperature sensor (45) corresponding to the use side heat exchanger (33b) on the pause side. A correction means (52) for correcting one or both of t2 is provided.

第1及び第2の発明の冷凍装置では、全ての利用側熱交換器(33a,33b)で加熱動作を行う運転(以下、全部運転と称する)と、一部の利用側熱交換器(33b)の加熱動作を休止すると同時に残りの利用側熱交換器(33a)で加熱動作を行う運転(以下、一部運転と称する)とが可能となる。 In the refrigeration apparatus according to the first and second aspects of the invention, an operation in which all the use side heat exchangers (33a, 33b) perform a heating operation (hereinafter referred to as an all operation) and a part of the use side heat exchangers (33b) ) Is stopped, and at the same time, the operation (hereinafter referred to as “partial operation”) in which the remaining usage-side heat exchanger (33a) performs the heating operation becomes possible.

具体的に、各利用側熱交換器(33a,33b)に対応する電動弁(34a,34b)をそれぞれ所定開度に開放することで、上記全部運転が可能となる。即ち、全部運転では、圧縮機(22)の吐出冷媒が、各利用側熱交換器(33a,33b)を流れる。その結果、各利用側熱交換器(33a,33b)を流れる冷媒から熱がそれぞれ放出され、各利用側熱交換器(33a,33b)で加熱動作が行われる。その結果、各利用側熱交換器(33a,33b)によって例えば各室内の暖房が行われる。   Specifically, all the above-described operations can be performed by opening the motor-operated valves (34a, 34b) corresponding to the respective use side heat exchangers (33a, 33b) to predetermined opening degrees. That is, in the full operation, the refrigerant discharged from the compressor (22) flows through each use side heat exchanger (33a, 33b). As a result, heat is released from the refrigerant flowing through each use side heat exchanger (33a, 33b), and a heating operation is performed in each use side heat exchanger (33a, 33b). As a result, for example, each room is heated by each use side heat exchanger (33a, 33b).

一方、各利用側熱交換器(33a,33b)のうちの一部の利用側熱交換器(33b)の加熱動作を休止させる場合には、休止させる利用側熱交換器(33b)に対応する電動弁(34b)の開度を微小開度、あるいは全閉とすると同時に、加熱動作させる利用側熱交換器(33a)に対応する電動弁(34a)の開度を所定開度で開放させる。その結果、冷媒は、加熱動作側の利用側熱交換器(33a)のみを実質的に流れることになり、休止側の利用側熱交換器(33b)では加熱動作が行われない。   On the other hand, when the heating operation of some of the usage-side heat exchangers (33a, 33b) is paused, it corresponds to the paused usage-side heat exchanger (33b). The opening degree of the motor-operated valve (34b) is set to a minute opening degree or fully closed, and at the same time, the opening degree of the motor-operated valve (34a) corresponding to the use side heat exchanger (33a) to be heated is opened at a predetermined opening degree. As a result, the refrigerant substantially flows only through the use side heat exchanger (33a) on the heating operation side, and no heating operation is performed in the dormant use side heat exchanger (33b).

ところで、このような一部運転を行う場合には、休止側の電動弁(34b)の開度が小さくなることに伴い、休止側の利用側熱交換器(33b)内に冷媒が溜まり込んでいく。ここで、例えばHFC等の冷媒を用いて圧縮機の吐出圧力を亜臨界圧力とする冷凍サイクルを行う場合、利用側熱交換器(33b)の休止に伴い該利用側熱交換器(33b)の周囲温度も低下すると、休止側の利用側熱交換器(33b)内の冷媒が徐々に凝縮していく。その結果、休止側の利用側熱交換器(33b)内に冷媒が寝込んでしまうため、加熱動作側の利用側熱交換器(33a)を流れる冷媒量が不足してしまうという問題が生じる。   By the way, when performing such partial operation, the refrigerant accumulates in the use side heat exchanger (33b) on the stop side as the opening of the stop side motor operated valve (34b) decreases. Go. Here, for example, when performing a refrigeration cycle in which the discharge pressure of the compressor is a subcritical pressure using a refrigerant such as HFC, the utilization side heat exchanger (33b) When the ambient temperature also decreases, the refrigerant in the use side heat exchanger (33b) on the dormant side gradually condenses. As a result, the refrigerant stagnates in the idle-side use-side heat exchanger (33b), resulting in a problem that the amount of refrigerant flowing through the heating-side use-side heat exchanger (33a) is insufficient.

そこで、本発明では、このような休止側の利用側熱交換器(33b)における冷媒の寝込みを防止するために、圧縮機(22)の吐出冷媒を臨界圧力以上としている。つまり、本発明の冷凍装置の冷媒回路(10)では、冷媒を臨界圧力以上とする冷凍サイクル(いわゆる超臨界サイクル)を行うようにしている。その結果、一部運転時の休止側の利用側熱交換器(33b)には臨界状態の冷媒が貯まるため、この冷媒が利用側熱交換器(33b)内で凝縮することがない。つまり、HFC等の冷媒を用いた冷凍サイクルを行う従来のものと比較すると、本発明の休止側の利用側熱交換器(33b)では、冷媒が相変化しないため、利用側熱交換器(33b)内での冷媒の寝込みの速度が遅くなる Therefore, in the present invention, the refrigerant discharged from the compressor (22) is set to a critical pressure or higher in order to prevent the refrigerant from stagnation in the idle-side use-side heat exchanger (33b). That is, in the refrigerant circuit (10) of the refrigeration apparatus of the present invention, a refrigeration cycle (so-called supercritical cycle) in which the refrigerant is at a critical pressure or higher is performed. As a result, since the refrigerant in the critical state is stored in the use side heat exchanger (33b) on the idle side during partial operation, the refrigerant does not condense in the use side heat exchanger (33b). That is, compared with the conventional one that performs a refrigeration cycle using a refrigerant such as HFC, in the idle side use side heat exchanger (33b) of the present invention, the refrigerant does not change phase, so the use side heat exchanger (33b) ) The stagnation speed of the refrigerant is reduced .

第1及び第2の発明では、上述した一部運転を行う際、制御手段(51)が休止側の利用側熱交換器(33b)に対応する電動弁(34b)を全閉状態とする。その結果、休止側の利用側熱交換器(33b)内には冷媒が溜まり込んでいくことになるが、本発明では、上述の如く超臨界サイクルを行っているため、休止側の利用側熱交換器(33b)内における冷媒の寝込み量は大幅に削減される。 In the first and second inventions, when performing the partial operation described above, the control means (51) fully closes the motor-operated valve (34b) corresponding to the use side heat exchanger (33b). As a result, the refrigerant accumulates in the idle side use side heat exchanger (33b). However, in the present invention, since the supercritical cycle is performed as described above, the idle side use side heat exchanger (33b) is used. The amount of stagnation of the refrigerant in the exchanger (33b) is greatly reduced.

一方、このように電動弁(34b)を完全に閉じた状態とすると、冷媒は加熱動作側の利用側熱交換器(33a)のみを流れることになる。即ち、休止側の利用側熱交換器(33b)を冷媒が流れてこの利用側熱交換器(33b)から無駄な放熱が行われることはない。   On the other hand, when the motor-operated valve (34b) is completely closed as described above, the refrigerant flows only through the use side heat exchanger (33a) on the heating operation side. That is, the refrigerant does not flow through the use side heat exchanger (33b) on the dormant side and wasteful heat radiation is not performed from the use side heat exchanger (33b).

第1の発明の冷凍装置には、各利用側熱交換器(33a,33b)に対応して複数の吹出口が設けられる。また、各吹出口には、該吹出口を開放又は閉鎖する開閉機構が設けられる。ここで、全部運転では、全ての吹出口の開閉機構が開放状態となり、各利用側熱交換器(33a,33b)で加熱された空気は、各吹出口から室内等に吹き出される。一方、一部運転では、加熱側の利用側熱交換器(33a)の吹出口の開閉機構が開放状態となる一方、休止側の利用側熱交換器(33b)の吹出口の開閉機構が閉鎖状態となる。その結果、休止側の利用側熱交換器(33b)では、その内部の冷媒の熱が吹出口を介して室内等の別の空間に逃げてしまうのを防止できる。このため、休止側の利用側熱交換器(33b)の周囲温度の低下を抑制でき、この利用側熱交換器(33b)についての冷媒の寝込みを効果的に回避できる。The refrigeration apparatus of the first invention is provided with a plurality of outlets corresponding to the respective use side heat exchangers (33a, 33b). Each air outlet is provided with an opening / closing mechanism for opening or closing the air outlet. Here, in the full operation, the opening / closing mechanisms of all the air outlets are opened, and the air heated by the respective use side heat exchangers (33a, 33b) is blown out from the air outlets into the room or the like. On the other hand, in some operations, the opening / closing mechanism of the outlet side of the heating-side heat exchanger (33a) is opened, while the opening / closing mechanism of the outlet-side heat exchanger (33b) is closed. It becomes a state. As a result, in the use side heat exchanger (33b) on the dormant side, it is possible to prevent the heat of the refrigerant inside the escape side from escaping to another space such as a room through the outlet. For this reason, the fall of the ambient temperature of the utilization side heat exchanger (33b) of a dormant side can be suppressed, and the stagnation of the refrigerant | coolant about this utilization side heat exchanger (33b) can be avoided effectively.

第2の発明では、上記一部運転を行う際に、休止側の利用側熱交換器(33b)に対応する電動弁(34b)を全閉とした後、所定の第1規定時間t1が経過すると、制御手段(51)が電動弁(34b)を所定開度(比較的微小な開度が好ましい)で開放する。即ち、一部運転を長期間に亘って継続して行う場合には、上述のような超臨界サイクルを行っているとしても、休止側の利用側熱交換器(33b)内に徐々に冷媒が寝込んでしまうことがある。このため、本発明の一部運転では、第1規定時間t1が経過することで電動弁(34b)を強制的に開放し、第2規定時間t2の間だけ休止側の利用側熱交換器(33b)内に冷媒を流すようにしている。その結果、第2規定時間t2の間に休止側の利用側熱交換器(33b)内の冷媒が流れることで、利用側熱交換器(33b)やその周囲の温度が高くなり、冷媒の寝込みが解消される。そして、その後に第2規定時間t2が経過すると再び電動弁(34b)が全閉となる In the second invention, when the partial operation is performed, a predetermined first specified time t1 has elapsed after the motor-operated valve (34b) corresponding to the use-side heat exchanger (33b) on the pause side is fully closed. Then, the control means (51) opens the electric valve (34b) at a predetermined opening (a relatively small opening is preferable). That is, when a part of the operation is continuously performed over a long period of time, even if the supercritical cycle as described above is performed, the refrigerant gradually enters the idle side use side heat exchanger (33b). May fall asleep. For this reason, in the partial operation of the present invention, the motor-operated valve (34b) is forcibly opened when the first specified time t1 elapses, and the idle side use side heat exchanger (for the second specified time t2) 33b) The refrigerant is allowed to flow in the interior. As a result, the refrigerant in the use-side heat exchanger (33b) on the dormant side flows during the second specified time t2, so that the temperature on the use-side heat exchanger (33b) and its surroundings increases, and the refrigerant stagnates. Is resolved. Then, when the second specified time t2 elapses thereafter, the motor-operated valve (34b) is again fully closed .

第2の発明では、補正手段(52)が、休止側の利用側熱交換器(33b)の室内温度センサ(45)で検出した室内温度に基づいて第1規定時間t1及び第2規定時間t2の一方又は両方の補正を行う。 In the second invention, the correction means (52) has the first specified time t1 and the second specified time t2 based on the room temperature detected by the room temperature sensor (45) of the use side heat exchanger (33b) on the dormant side. One or both of the corrections are performed.

具体的に、例えば休止側の利用側熱交換器(33b)の周囲の室内温度が高い場合には、休止側の利用側熱交換器(33b)内に冷媒が寝込みにくくなる。従って、このような場合には、第1規定時間t1を長くしたり、第2規定時間t2を短くしたりする補正を行うことで、電動弁(34b)を全閉する時間を長くとることができる。その結果、休止側の利用側熱交換器(33b)で冷媒が無駄に放熱してしまうことを回避できる。   Specifically, for example, when the room temperature around the use side heat exchanger (33b) on the hibernation side is high, the refrigerant is less likely to stagnate in the use side heat exchanger (33b) on the hibernation side. Therefore, in such a case, it is possible to increase the time for fully closing the motor-operated valve (34b) by performing correction such as increasing the first specified time t1 or shortening the second specified time t2. it can. As a result, it is possible to avoid the refrigerant from dissipating heat wastefully in the idle side use side heat exchanger (33b).

一方、例えば休止側の利用側熱交換器(33b)の周囲の室内温度が低い場合には、休止側の利用側熱交換器(33b)内に冷媒が寝込み易くなる。従って、このような場合には、第1規定時間t1を短くしたり、第2規定時間t2を長くしたりする補正を行うことで、利用側熱交換器(33b)内の冷媒の寝込みを未然に回避することができる On the other hand, for example, when the indoor temperature around the use-side heat exchanger (33b) on the dormant side is low, the refrigerant easily stagnates in the use-side heat exchanger (33b) on the dormant side. Therefore, in such a case, the refrigerant stagnation in the use side heat exchanger (33b) can be prevented by correcting the first specified time t1 or shortening the second specified time t2. Can be avoided .

第3の発明は、第1又は第2の発明において、上記冷媒回路(10)には、冷媒として二酸化炭素が充填されていることを特徴とするものである。 A third invention is characterized in that, in the first or second invention, the refrigerant circuit (10) is filled with carbon dioxide as a refrigerant.

の発明では、冷媒回路(10)で二酸化炭素を用いた超臨界サイクルが行われる In the third invention, a supercritical cycle using carbon dioxide is performed in the refrigerant circuit (10) .

本発明では、複数の利用側熱交換器(33a,33b)で個別に加熱動作を行うことが可能な冷凍装置において、圧縮機(22)の吐出冷媒を臨界圧力以上とする超臨界サイクルを行うようにしている。このため、上述した一部運転時に休止側の電動弁(34b)の開度を微小開度又は全閉としても、休止側の利用側熱交換器(33a,33b)内で冷媒が寝込みにくくなる。従って、本発明によれば、加熱動作側の利用側熱交換器(33a)を流れる冷媒量が不足することを解消でき、加熱動作側の利用側熱交換器(33a)の加熱能力を充分に得ることができる。   In the present invention, a supercritical cycle in which the refrigerant discharged from the compressor (22) is at a critical pressure or higher is performed in a refrigeration apparatus capable of performing heating operations individually with a plurality of use side heat exchangers (33a, 33b). I am doing so. For this reason, even if the opening degree of the rest-side motor-operated valve (34b) is set to a minute opening degree or fully closed during the partial operation described above, it is difficult for the refrigerant to stagnate in the rest-side use-side heat exchanger (33a, 33b). . Therefore, according to the present invention, it is possible to eliminate the shortage of the amount of refrigerant flowing through the use side heat exchanger (33a) on the heating operation side, and to sufficiently increase the heating capacity of the use side heat exchanger (33a) on the heating operation side. Obtainable.

発明では、一部運転を行う際に休止側の電動弁(34b)を全閉にしている。このため、発明によれば、全ての冷媒が加熱動作側の利用側熱交換器(33a)に送られるので、休止側の利用側熱交換器(33b)で無駄な放熱が行われるのを回避できる。従って、本発明によれば、加熱側の利用側熱交換器(33a)の加熱能力の向上を図ることができ、ひいてはこの冷凍装置のCOP(成績係数)の向上を図ることができる。 In the present invention, the rest-side motor operated valve (34b) is fully closed when performing a partial operation. For this reason, according to the present invention, since all the refrigerant is sent to the use side heat exchanger (33a) on the heating operation side, useless heat dissipation is performed in the use side heat exchanger (33b) on the pause side. Can be avoided. Therefore, according to the present invention, it is possible to improve the heating capacity of the use side heat exchanger (33a) on the heating side, and to improve the COP (coefficient of performance) of this refrigeration apparatus.

また、第1の発明によれば、一部運転時において、休止側の利用側熱交換器(33b)の吹出口を開閉機構によって閉鎖するようにしたので、この利用側熱交換器(33b)の周囲温度の低下を抑制でき、利用側熱交換器(33b)内での冷媒の寝込みを一層効果的に回避することができる。In addition, according to the first aspect of the present invention, since the outlet of the use side heat exchanger (33b) on the pause side is closed by the opening / closing mechanism during partial operation, the use side heat exchanger (33b) , And the stagnation of the refrigerant in the use side heat exchanger (33b) can be more effectively avoided.

また、第の発明では、一部運転を行う際に一度全閉状態とした電動弁(34b)を第1規定時間t1経過後に第2規定時間t2の間だけ開放するようにしている。このため、第の発明によれば、一部運転を長期間継続して行う場合において、休止側の利用側熱交換器(33b)内の冷媒の寝込みを確実に解消することができ、この冷凍装置の信頼性を確保することができる In the second invention, the motor-operated valve (34b) that is once fully closed when performing a partial operation is opened only for the second specified time t2 after the first specified time t1 has elapsed. For this reason, according to the second invention, in the case where the partial operation is continuously performed for a long time, the stagnation of the refrigerant in the use side heat exchanger (33b) on the dormant side can be surely eliminated. The reliability of the refrigeration apparatus can be ensured .

第2の発明では、一部運転時において、休止側の利用側熱交換器(33b)の周囲の室内温度に基づいて第1規定時間t1及び第2規定時間t2を補正するようにしている。このため、第の発明によれば、必要以上に電動弁(34b)の全閉時間が長くなってしまい、休止側の利用側熱交換器(33b)内に冷媒が寝込んでしまうのを確実に回避できる。また、第の発明によれば、必要以上に電動弁(34b)の開放時間が長くなってしまい、休止側の利用側熱交換器(33b)で無駄な放熱がなされるのを確実に回避できる。 In the second aspect of the invention, during the partial operation, the first specified time t1 and the second specified time t2 are corrected based on the room temperature around the dormant use side heat exchanger (33b). For this reason, according to the second aspect of the present invention, it is ensured that the fully closed time of the motor-operated valve (34b) becomes longer than necessary, and the refrigerant stagnates in the use side heat exchanger (33b) on the pause side. Can be avoided. In addition, according to the second aspect of the present invention, the open time of the motor-operated valve (34b) is unnecessarily long, and it is ensured that useless heat dissipation is prevented in the use side heat exchanger (33b) on the pause side. it can.

更に、第の発明によれば、冷媒として二酸化炭素を用いることで、比較的臨界温度の低い自然冷媒を用いた超臨界サイクルを行うことが可能となる Furthermore, according to the third invention, by using carbon dioxide as a refrigerant, it is possible to perform a supercritical cycle using a natural refrigerant having a relatively low critical temperature .

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

実施形態に係る冷凍装置は、室内の暖房や冷房が可能な、いわゆるマルチ式の空気調和装置(1)を構成している。図1に示すように、この空気調和装置(1)は、室外に設置される1つの室外ユニット(20)と、異なる室内に設置される第1と第2の室内ユニット(30a,30b)とを備えている。   The refrigeration apparatus according to the embodiment constitutes a so-called multi-type air conditioner (1) capable of heating and cooling a room. As shown in FIG. 1, this air conditioner (1) includes one outdoor unit (20) installed outdoors, and first and second indoor units (30a, 30b) installed in different rooms. It has.

上記室外ユニット(20)には、熱源側回路を構成する室外側回路(21)が設けられている。上記第1室内ユニット(30a)には、利用側回路を構成する第1室内側回路(31a)が、上記第2室内ユニット(30b)には、利用側回路を構成する第2室内側回路(31b)がそれぞれ設けられている。   The outdoor unit (20) is provided with an outdoor circuit (21) constituting a heat source side circuit. The first indoor unit (30a) includes a first indoor circuit (31a) that constitutes a use side circuit, and the second indoor unit (30b) includes a second indoor side circuit ( 31b) is provided.

各室内側回路(31a,31b)は、第1連絡配管(11)及び第2連絡配管(12)を介して室外側回路(21)に並列に接続されている。その結果、この空気調和装置(1)では、冷媒が循環して冷凍サイクルが行われる冷媒回路(10)が構成される。この冷媒回路(10)には、冷媒として二酸化炭素が充填されている。   Each indoor circuit (31a, 31b) is connected in parallel to the outdoor circuit (21) via the first communication pipe (11) and the second communication pipe (12). As a result, in this air conditioner (1), a refrigerant circuit (10) is formed in which the refrigerant circulates and performs a refrigeration cycle. This refrigerant circuit (10) is filled with carbon dioxide as a refrigerant.

室外側回路(21)には、圧縮機(22)、室外熱交換器(23)、室外膨張弁(24)、及び四路切換弁(25)が設けられている。圧縮機(22)は、全密閉型で高圧ドーム型のスクロール圧縮機である。この圧縮機(22)には、インバータを介して電力が供給される。即ち、圧縮機(22)は、インバータの出力周波数を変化させて圧縮機モータの回転速度を変更することによって、その容量が変更可能となっている。室外熱交換器(23)は、クロスフィン式のフィン・アンド・チューブ型熱交換器であって、熱源側熱交換器を構成している。この室外熱交換器(23)では、冷媒と室外空気の間で熱交換が行われる。室外膨張弁(24)は、開度が調節可能な電子膨張弁で構成されている。   The outdoor circuit (21) is provided with a compressor (22), an outdoor heat exchanger (23), an outdoor expansion valve (24), and a four-way switching valve (25). The compressor (22) is a fully sealed high-pressure dome type scroll compressor. Electric power is supplied to the compressor (22) via an inverter. That is, the capacity of the compressor (22) can be changed by changing the rotation speed of the compressor motor by changing the output frequency of the inverter. The outdoor heat exchanger (23) is a cross-fin type fin-and-tube heat exchanger and constitutes a heat source side heat exchanger. In the outdoor heat exchanger (23), heat is exchanged between the refrigerant and the outdoor air. The outdoor expansion valve (24) is an electronic expansion valve whose opening degree can be adjusted.

四路切換弁(25)は、第1から第4までのポートを有している。この四路切換弁(25)は、第1ポートが圧縮機(22)の吐出管(22a)と接続し、第2ポートが室外熱交換器(23)と接続し、第3ポートが圧縮機(22)の吸入管(22b)と接続し、第4ポートが第1連絡配管(11)と接続している。四路切換弁(25)は、第1ポートと第4ポートが互いに連通して第2ポートと第3ポートが互いに連通する状態(図1に実線で示す状態)と、第1ポートと第2ポートが互いに連通して第3ポートと第4ポートが互いに連通する状態(図1に破線で示す状態)とに切り換え可能となっている。   The four-way selector valve (25) has first to fourth ports. The four-way switching valve (25) has a first port connected to the discharge pipe (22a) of the compressor (22), a second port connected to the outdoor heat exchanger (23), and a third port connected to the compressor. The suction port (22b) of (22) is connected, and the fourth port is connected to the first connection pipe (11). The four-way selector valve (25) includes a state in which the first port and the fourth port communicate with each other and a state in which the second port and the third port communicate with each other (a state indicated by a solid line in FIG. 1), a state in which the first port and the second port It is possible to switch between a state in which the ports communicate with each other and a state in which the third port and the fourth port communicate with each other (a state indicated by a broken line in FIG. 1).

第1室内側回路(31a)には、一端が第1連絡配管(11)側と繋がり、他端が第2連絡配管(12)側と繋がる第1分岐配管(32a)が設けられている。この第1分岐配管(32a)には、第1室内熱交換器(33a)及び第1室内膨張弁(34a)が設けられている。第2室内側回路(31b)には、一端が第1連絡配管(11)側と繋がり、他端が第2連絡配管(12)側と繋がる第2分岐配管(32b)が設けられている。この第2分岐配管(32b)には、第2室内熱交換器(33b)及び第2室内膨張弁(34b)が設けられている。   The first indoor circuit (31a) is provided with a first branch pipe (32a) having one end connected to the first connecting pipe (11) side and the other end connected to the second connecting pipe (12) side. The first branch pipe (32a) is provided with a first indoor heat exchanger (33a) and a first indoor expansion valve (34a). The second indoor circuit (31b) is provided with a second branch pipe (32b) having one end connected to the first communication pipe (11) side and the other end connected to the second communication pipe (12) side. The second branch pipe (32b) is provided with a second indoor heat exchanger (33b) and a second indoor expansion valve (34b).

各室内熱交換器(33a,33b)は、クロスフィン式のフィン・アンド・チューブ型熱交換器であって、利用側熱交換器をそれぞれ構成している。各室内熱交換器(33a,33b)では、冷媒と室内空気の間で熱交換が行われる。   Each indoor heat exchanger (33a, 33b) is a cross-fin type fin-and-tube heat exchanger, and constitutes a use side heat exchanger. In each indoor heat exchanger (33a, 33b), heat is exchanged between the refrigerant and the room air.

第1室内膨張弁(34a)及び第2室内膨張弁(34b)は、電動弁であって、開度が調節可能な電子膨張弁をそれぞれ構成している。第1室内膨張弁(34a)は、第1分岐配管(32a)についての第2連絡配管(12)側に設けられている。また、第2室内膨張弁(34b)は、第2分岐配管(32b)についての第2連絡配管(12)側に設けられている。そして、第1室内膨張弁(34a)は第1室内熱交換器(33a)を流れる冷媒の流量を調節可能とし、第2室内膨張弁(34b)は第2室内熱交換器(33b)を流れる冷媒の流量を調節可能としている。   The first indoor expansion valve (34a) and the second indoor expansion valve (34b) are motor-operated valves, and constitute electronic expansion valves whose opening degrees can be adjusted. The first indoor expansion valve (34a) is provided on the second connecting pipe (12) side of the first branch pipe (32a). The second indoor expansion valve (34b) is provided on the second connecting pipe (12) side of the second branch pipe (32b). The first indoor expansion valve (34a) can adjust the flow rate of the refrigerant flowing through the first indoor heat exchanger (33a), and the second indoor expansion valve (34b) flows through the second indoor heat exchanger (33b). The flow rate of the refrigerant can be adjusted.

冷媒回路(10)には、高圧圧力センサ(40)、高圧温度センサ(41)、第1冷媒温度センサ(42)、第2冷媒温度センサ(43)が設けられている。高圧圧力センサ(40)は、圧縮機(22)の吐出冷媒の圧力を検出する。高圧温度センサ(41)は、圧縮機(22)の吐出冷媒の温度を検出する。第1冷媒温度センサ(42)は、第1室内熱交換器(33a)の出口に設けられ、第1室内熱交換器(33a)の流出直後の冷媒の温度を検出する。第2冷媒温度センサ(43)は、第2室内熱交換器(33b)の出口に設けられ、第2室内熱交換器(33b)の流出直後の冷媒の温度を検出する。   The refrigerant circuit (10) includes a high pressure sensor (40), a high pressure temperature sensor (41), a first refrigerant temperature sensor (42), and a second refrigerant temperature sensor (43). The high pressure sensor (40) detects the pressure of the refrigerant discharged from the compressor (22). The high pressure temperature sensor (41) detects the temperature of the refrigerant discharged from the compressor (22). The first refrigerant temperature sensor (42) is provided at the outlet of the first indoor heat exchanger (33a), and detects the temperature of the refrigerant immediately after flowing out of the first indoor heat exchanger (33a). The second refrigerant temperature sensor (43) is provided at the outlet of the second indoor heat exchanger (33b), and detects the temperature of the refrigerant immediately after flowing out of the second indoor heat exchanger (33b).

また、第1室内ユニット(30a)には、第1室内熱交換器(33a)の近傍に第1室内温度センサ(44)が設けられている。この第1室内温度センサ(44)は、第1室内熱交換器(33a)の周囲の空気温度を検出する。第2室内ユニット(30b)には、第2室内熱交換器(33b)の近傍に第2室内温度センサ(45)が設けられている。この第2室内温度センサ(45)は、第2室内熱交換器(33b)の周囲の空気温度を検出する。   The first indoor unit (30a) is provided with a first indoor temperature sensor (44) in the vicinity of the first indoor heat exchanger (33a). The first indoor temperature sensor (44) detects the air temperature around the first indoor heat exchanger (33a). The second indoor unit (30b) is provided with a second indoor temperature sensor (45) in the vicinity of the second indoor heat exchanger (33b). The second indoor temperature sensor (45) detects the air temperature around the second indoor heat exchanger (33b).

本実施形態の空気調和装置(1)の冷媒回路(10)では、圧縮機(22)の吐出冷媒を臨界圧力以上として冷凍サイクル(超臨界サイクル)が行われる。また、この空気調和装置(1)では、第1室内ユニット(30a)及び第2室内ユニット(30b)で個別に運転が可能となっている。即ち、この空気調和装置(1)では、第1室内ユニット(30a)で暖房を行うと同時に第2室内ユニット(30b)を休止状態とする運転(以下、一部暖房運転と称する)や、第1室内ユニット(30a)及び第2室内ユニット(30b)の双方で暖房を行う運転(以下、全部暖房運転と称する)が可能となっている。   In the refrigerant circuit (10) of the air conditioner (1) of the present embodiment, a refrigeration cycle (supercritical cycle) is performed by setting the refrigerant discharged from the compressor (22) to a critical pressure or higher. In the air conditioner (1), the first indoor unit (30a) and the second indoor unit (30b) can be operated individually. That is, in this air conditioner (1), the first indoor unit (30a) performs heating (hereinafter, referred to as “partial heating operation”), An operation (hereinafter referred to as a heating operation) in which heating is performed in both the one indoor unit (30a) and the second indoor unit (30b) is possible.

更に、空気調和装置(1)には、上記一部暖房運転において、各室内膨張弁(34a,34b)の開度を制御するためのコントローラ(50)が設けられている。このコントローラ(50)には、制御手段(51)及び補正手段(52)が設けられている。このコントローラ(50)による各室内膨張弁(34a,34b)の開度制御の詳細は後述するものとする。   Further, the air conditioner (1) is provided with a controller (50) for controlling the opening degree of each indoor expansion valve (34a, 34b) in the partial heating operation. The controller (50) is provided with a control means (51) and a correction means (52). Details of the opening control of each indoor expansion valve (34a, 34b) by the controller (50) will be described later.

−運転動作−
次に本実施形態に係る空気調和装置(1)の運転動作について説明する。この空気調和装置(1)では、各室内ユニット(30a,30b)で暖房を行う運転と、各室内ユニット(30a,30b)で冷房を行う運転とが可能となっている。以下には、この空気調和装置(1)の暖房運転について説明する。なお、この暖房運転では、四路切換弁(25)が図2及び図3に示す状態に設定され、上述した全部暖房運転と一部暖房運転とが切り換えて行われる。
-Driving action-
Next, the operation of the air conditioner (1) according to this embodiment will be described. In this air conditioner (1), it is possible to perform an operation of heating the indoor units (30a, 30b) and an operation of cooling the indoor units (30a, 30b). The heating operation of the air conditioner (1) will be described below. In this heating operation, the four-way switching valve (25) is set to the state shown in FIGS. 2 and 3, and the above-described full heating operation and partial heating operation are switched.

<全部暖房運転>
全部暖房運転では、第1室内膨張弁(34a)及び第2室内膨張弁(34b)が所定開度で開放される。図2に示すように、圧縮機(22)で臨界圧力以上に圧縮された冷媒は、四路切換弁(25)及び第1連絡配管(11)を経由して第1分岐配管(32a)及び第2分岐配管(32b)に分流する。
<All heating operation>
In the all heating operation, the first indoor expansion valve (34a) and the second indoor expansion valve (34b) are opened at a predetermined opening. As shown in FIG. 2, the refrigerant compressed to the critical pressure or higher by the compressor (22) passes through the four-way switching valve (25) and the first connection pipe (11), and the first branch pipe (32a) and The current is diverted to the second branch pipe (32b).

第1分岐配管(32a)に流入した冷媒は、第1室内熱交換器(33a)を流れる。第1室内熱交換器(33a)では、冷媒が室内空気に熱を放出する。つまり、第1室内熱交換器(33a)では、室内空気を加熱する加熱動作が行われ、第1室内ユニット(30a)が設置された室内の暖房が行われる。第1室内熱交換器(33a)を流出した冷媒は、第1室内膨張弁(34a)を通過して第2連絡配管(12)に流入する。   The refrigerant that has flowed into the first branch pipe (32a) flows through the first indoor heat exchanger (33a). In the first indoor heat exchanger (33a), the refrigerant releases heat to the indoor air. That is, in the first indoor heat exchanger (33a), a heating operation for heating the room air is performed, and the room in which the first indoor unit (30a) is installed is heated. The refrigerant that has flowed out of the first indoor heat exchanger (33a) passes through the first indoor expansion valve (34a) and flows into the second connection pipe (12).

一方、第2分岐配管(32b)に流入した冷媒は、第2室内熱交換器(33b)を流れる。第2室内熱交換器(33b)では、冷媒が室内空気に熱を放出する。つまり、第2室内熱交換器(33b)では、室内空気を加熱する加熱動作が行われ、第2室内ユニット(30b)が設置された室内の暖房が行われる。第2室内熱交換器(33b)を流出した冷媒は、第2室内膨張弁(34b)を通過して第2連絡配管(12)に流入する。   On the other hand, the refrigerant flowing into the second branch pipe (32b) flows through the second indoor heat exchanger (33b). In the second indoor heat exchanger (33b), the refrigerant releases heat to the indoor air. That is, in the second indoor heat exchanger (33b), a heating operation for heating the room air is performed, and the room in which the second indoor unit (30b) is installed is heated. The refrigerant that has flowed out of the second indoor heat exchanger (33b) passes through the second indoor expansion valve (34b) and flows into the second communication pipe (12).

第2連絡配管(12)で合流した冷媒は、室外膨張弁(24)を通過する際に減圧されてから室外熱交換器(23)を流れる。室外熱交換器(23)では、冷媒が室外空気から吸熱して蒸発する。室外熱交換器(23)を流出した冷媒は、四路切換弁(25)を経由して圧縮機(22)に吸入される。圧縮機(22)では、この冷媒が臨界圧力以上まで圧縮される。   The refrigerant merged in the second communication pipe (12) flows through the outdoor heat exchanger (23) after being decompressed when passing through the outdoor expansion valve (24). In the outdoor heat exchanger (23), the refrigerant absorbs heat from the outdoor air and evaporates. The refrigerant that has flowed out of the outdoor heat exchanger (23) is sucked into the compressor (22) via the four-way switching valve (25). In the compressor (22), the refrigerant is compressed to a critical pressure or higher.

<一部暖房運転>
一部暖房運転では、第1室内熱交換器(33a)で加熱動作を行うと同時に第2室内熱交換器(33b)の加熱動作を休止させる運転や、第2室内熱交換器(33b)で加熱動作を行うと同時に第1室内熱交換器(33a)の加熱動作を休止させる運転が行われる。ここでは、第1室内熱交換器(33a)のみで加熱動作を行う運転を代表して、図3を参照しながら説明する。
<Partial heating operation>
In the partial heating operation, the heating operation of the second indoor heat exchanger (33b) is stopped simultaneously with the heating operation of the first indoor heat exchanger (33a) or the second indoor heat exchanger (33b). At the same time that the heating operation is performed, an operation for stopping the heating operation of the first indoor heat exchanger (33a) is performed. Here, the operation of performing the heating operation only with the first indoor heat exchanger (33a) will be described as a representative with reference to FIG.

この一部暖房運転では、コントローラ(50)の制御手段(51)によって、第1室内膨張弁(34a)が所定開度で開放される一方、第2室内膨張弁(34b)が全閉状態に設定される。第1室内膨張弁(34a)が開放されると、第1室内熱交換器(33a)では上述のような加熱動作が行われる。一方、第2室内膨張弁(34b)が全閉状態となると、冷媒は第2室内膨張弁(34b)を通過しない。従って、冷媒は、第2室内熱交換器(33b)を流通することなく、第2室内熱交換器(33b)は休止状態となる。   In this partial heating operation, the control means (51) of the controller (50) opens the first indoor expansion valve (34a) at a predetermined opening while the second indoor expansion valve (34b) is fully closed. Is set. When the first indoor expansion valve (34a) is opened, the heating operation as described above is performed in the first indoor heat exchanger (33a). On the other hand, when the second indoor expansion valve (34b) is fully closed, the refrigerant does not pass through the second indoor expansion valve (34b). Therefore, the refrigerant does not flow through the second indoor heat exchanger (33b), and the second indoor heat exchanger (33b) is in a dormant state.

このように第2室内熱交換器(33b)を休止させると、第2室内熱交換器(33b)には徐々に冷媒が溜まり込んでいくことになる。しかしながら、本実施形態の空気調和装置(1)では、この一部暖房運転においても、圧縮機(22)の吐出冷媒を臨界圧力以上とする、超臨界サイクルを行うようにしている。このため、第2室内熱交換器(33b)の休止に伴い第2室内熱交換器(33b)の周囲温度が低くなっても、第2室内熱交換器(33b)内の冷媒が凝縮しない。従って、第2室内熱交換器(33b)で冷媒が寝込んでいく速度は、例えばHFC等を用いて亜臨界での冷凍サイクルを行うものよりも大幅に遅くなる。   When the second indoor heat exchanger (33b) is suspended as described above, the refrigerant gradually accumulates in the second indoor heat exchanger (33b). However, in the air conditioner (1) of the present embodiment, a supercritical cycle in which the refrigerant discharged from the compressor (22) is equal to or higher than the critical pressure is performed even in the partial heating operation. For this reason, even if the ambient temperature of the second indoor heat exchanger (33b) is lowered due to the suspension of the second indoor heat exchanger (33b), the refrigerant in the second indoor heat exchanger (33b) is not condensed. Therefore, the speed at which the refrigerant stagnates in the second indoor heat exchanger (33b) is significantly slower than that in which a subcritical refrigeration cycle is performed using, for example, HFC.

このことについて、図4及び図5を参照しながらより詳細に説明する。なお、図4は、本実施形態の二酸化炭素を用いた超臨界サイクルのP−H線図を、図5は従来のHFCを用いた亜臨界での冷凍サイクルのP−H線図をそれぞれ示すものである。   This will be described in more detail with reference to FIGS. 4 shows a PH chart of a supercritical cycle using carbon dioxide of the present embodiment, and FIG. 5 shows a PH chart of a subcritical refrigeration cycle using conventional HFC. Is.

図5に示す従来のものでは、圧縮機の吐出冷媒の圧力が臨界圧力より小さくなる。具体的に、この冷凍サイクルの圧縮後の冷媒は、例えばその圧力が2.7MPa、その温度が80℃、冷媒密度ρが85kg/mとなる。一方、この冷媒が室内熱交換器で凝縮すると、凝縮後の冷媒は、その圧力が2.7MPa、その温度が37℃、冷媒密度ρが996kg/mとなる。つまり、従来の冷凍サイクルでは、室内熱交換器の出口側の冷媒密度ρと入口側の冷媒密度ρとの密度比(ρ/ρ)が11.72となる。 In the conventional system shown in FIG. 5, the pressure of the refrigerant discharged from the compressor is smaller than the critical pressure. Specifically, the compressed refrigerant of this refrigeration cycle has, for example, a pressure of 2.7 MPa, a temperature of 80 ° C., and a refrigerant density ρ 1 of 85 kg / m 3 . On the other hand, when this refrigerant is condensed in the indoor heat exchanger, the condensed refrigerant has a pressure of 2.7 MPa, a temperature of 37 ° C., and a refrigerant density ρ 2 of 996 kg / m 3 . That is, in the conventional refrigeration cycle, the density ratio (ρ 2 / ρ 1 ) between the refrigerant density ρ 2 on the outlet side of the indoor heat exchanger and the refrigerant density ρ 1 on the inlet side is 11.72.

一方、図4に示す本実施形態では、圧縮機の吐出冷媒の圧力が臨界圧力以上となる。具体的に、このサイクルの圧縮後の冷媒は、例えばその圧力が10MPa、その温度が80℃、冷媒密度ρが221kg/mとなる。一方、この冷媒が室内熱交換器で放熱すると、放熱後の冷媒は、その圧力が10MPa、その温度が35℃、冷媒密度ρが713kg/mとなる。つまり、本実施形態の超臨界サイクルでは、室内熱交換器の出口側の冷媒密度ρと入口側の冷媒密度ρとの密度比(ρ/ρ)が3.23となる。 On the other hand, in the present embodiment shown in FIG. 4, the pressure of the refrigerant discharged from the compressor is equal to or higher than the critical pressure. Specifically, the refrigerant after compression in this cycle has a pressure of 10 MPa, a temperature of 80 ° C., and a refrigerant density ρ 1 of 221 kg / m 3 , for example. On the other hand, when this refrigerant dissipates heat in the indoor heat exchanger, the refrigerant after heat dissipation has a pressure of 10 MPa, a temperature of 35 ° C., and a refrigerant density ρ 2 of 713 kg / m 3 . That is, in the supercritical cycle of the present embodiment, the density ratio (ρ 2 / ρ 1 ) between the refrigerant density ρ 2 on the outlet side of the indoor heat exchanger and the refrigerant density ρ 1 on the inlet side is 3.23.

以上のように、従来のものと本実施形態とで室内熱交換器前後の密度比(ρ/ρ)を比較すると、従来のものは本実施形態よりも密度比が3倍以上大きくなる。つまり、従来の冷凍サイクルでは、休止側の室内熱交換器内で冷媒が凝縮すると、その冷媒は高密度となって体積が小さくなるので、室内熱交換器へは次々と冷媒が送り込まれることになる。従って、従来のものでは、休止側の室内熱交換器で冷媒が寝込んでいく速度が比較的速いものとなる。 As described above, when the density ratio (ρ 2 / ρ 1 ) before and after the indoor heat exchanger is compared between the conventional one and the present embodiment, the conventional one has a density ratio three times or more larger than that of the present embodiment. . In other words, in the conventional refrigeration cycle, when the refrigerant condenses in the indoor heat exchanger on the pause side, the refrigerant becomes high density and the volume is reduced, so that the refrigerant is successively sent to the indoor heat exchanger. Become. Therefore, in the conventional one, the speed at which the refrigerant stagnates in the indoor heat exchanger on the pause side is relatively fast.

これに対して本実施形態では、休止側の室内熱交換器内で冷媒が放熱しても、その冷媒は比較的低密度であるため、その体積もあまり小さくならない。従って、室内熱交換器へは冷媒がさほど送り込まれず、その結果、休止側の室内熱交換器で冷媒が寝込んでいく速度も比較的遅いものとなる。   On the other hand, in the present embodiment, even if the refrigerant dissipates heat in the pause-side indoor heat exchanger, the volume of the refrigerant is not so small because the refrigerant has a relatively low density. Therefore, the refrigerant is not sent so much into the indoor heat exchanger, and as a result, the rate at which the refrigerant stagnates in the indoor heat exchanger on the pause side is relatively slow.

一方、このような一部暖房運転を長期間に亘って継続して行うと、やはり第2室内熱交換器(33b)内の冷媒の寝込み量が増大していく。そこで、本実施形態の制御手段(51)は、一部暖房運転を開始して第2室内膨張弁(34b)を全閉状態としてから、第1規定時間t1が経過すると、第2室内膨張弁(34b)の開度を第2規定時間t2の間だけ微小開度で開放するようにしている。このようにすると、冷媒は第2室内熱交換器(33b)を微小流量で流れることになり、第2室内熱交換器(33b)及びその周囲の温度が上昇する。その結果、第2室内熱交換器(33b)内での冷媒の寝込みが解消される。その後、第2規定時間t2が経過すると、制御手段(51)は、再び第2室内膨張弁(34b)を全閉状態とする。   On the other hand, when such a partial heating operation is continuously performed over a long period of time, the amount of refrigerant stagnation in the second indoor heat exchanger (33b) also increases. Therefore, the control means (51) of the present embodiment starts the partial heating operation and turns the second indoor expansion valve (34b) into the fully closed state, and when the first specified time t1 has elapsed, the second indoor expansion valve. The opening of (34b) is opened with a minute opening only during the second specified time t2. If it does in this way, a refrigerant will flow in the 2nd indoor heat exchanger (33b) with a minute flow, and the temperature of the 2nd indoor heat exchanger (33b) and its circumference rises. As a result, the stagnation of the refrigerant in the second indoor heat exchanger (33b) is eliminated. Thereafter, when the second specified time t2 has elapsed, the control means (51) again causes the second indoor expansion valve (34b) to be fully closed.

また、一部暖房運転を開始してから第2室内膨張弁(34b)を全閉状態としてから、第2室内熱交換器(33b)内に冷媒が寝込む量は、第2室内熱交換器(33b)の周囲温度に依存する。つまり、第2室内熱交換器(33b)が設置された室内の温度が比較的低い場合には、第2室内熱交換器(33b)内で冷媒が寝込んでいく速度も速くなり、この室内の温度が比較的高い場合には、冷媒が寝込んでいく速度も遅くなる。このため、本実施形態のコントローラ(50)の補正手段(52)は、休止側の室内熱交換器(33b)の周囲の室内温度を室内温度センサ(45)で検出し、この室内温度に基づいて、上述の第1規定時間t1及び第2規定時間t2を補正するようにしている。   Moreover, after the partial heating operation is started and the second indoor expansion valve (34b) is fully closed, the amount of the refrigerant that stagnates in the second indoor heat exchanger (33b) is the second indoor heat exchanger ( It depends on the ambient temperature of 33b). That is, when the temperature of the room in which the second indoor heat exchanger (33b) is installed is relatively low, the rate at which the refrigerant stagnates in the second indoor heat exchanger (33b) is also increased. When the temperature is relatively high, the rate at which the refrigerant stagnates also becomes slow. Therefore, the correction means (52) of the controller (50) of the present embodiment detects the room temperature around the pause-side indoor heat exchanger (33b) by the room temperature sensor (45), and based on this room temperature. Thus, the first specified time t1 and the second specified time t2 are corrected.

具体的には、一部暖房運転の開始時に第2室内温度センサ(45)の検出室内温度が比較的低い場合、補正手段(52)は、第1規定時間t1を短くする補正を行う。また、第1規定時間t1経過時の第2室内温度センサ(45)の検出室内温度が比較的低い場合、補正手段(52)は、第2規定時間t2を長くする補正を行う。その結果、一部暖房運転時において第2室内膨張弁(34b)を全閉状態とする時間が短くなるので、第2室内熱交換器(33b)内に冷媒が寝込んでしまうのを未然に解消できる。なお、このような第1規定時間t1及び第2規定時間t2の補正は、いずれか一方でも良いし両方であっても良い。   Specifically, when the detected indoor temperature of the second indoor temperature sensor (45) is relatively low at the start of the partial heating operation, the correcting means (52) performs correction to shorten the first specified time t1. Further, when the detected room temperature of the second room temperature sensor (45) is relatively low when the first specified time t1 has elapsed, the correction means (52) performs a correction to increase the second specified time t2. As a result, since the time for which the second indoor expansion valve (34b) is fully closed during the partial heating operation is shortened, it is possible to eliminate the occurrence of refrigerant in the second indoor heat exchanger (33b). it can. Note that either one or both of the corrections of the first specified time t1 and the second specified time t2 may be performed.

一方、一部暖房運転の開始時に第2室内温度センサ(45)の検出室内温度が比較的高い場合、補正手段(52)は、第1規定時間t1を長くする補正を行う。また、第1規定時間t1経過時の第2室内温度センサ(45)の検出室内温度が比較的高い場合、補正手段(52)は、第2規定時間t2を短くする補正を行う。その結果、一部暖房運転時において第2室内膨張弁(34b)を開放状態とする時間が短くなるので、休止側の第2室内熱交換器(33b)で無駄な放熱が行われない。   On the other hand, when the detected indoor temperature of the second indoor temperature sensor (45) is relatively high at the start of the partial heating operation, the correcting means (52) performs correction to increase the first specified time t1. Further, when the detected room temperature of the second room temperature sensor (45) is relatively high when the first specified time t1 has elapsed, the correction means (52) performs correction to shorten the second specified time t2. As a result, since the time during which the second indoor expansion valve (34b) is opened during the partial heating operation is shortened, wasteful heat radiation is not performed in the second indoor heat exchanger (33b) on the pause side.

−実施形態の効果−
上記実施形態では、複数の室内熱交換器(33a,33b)で個別に加熱動作を行うことが可能な空気調和装置(1)において、圧縮機(22)の吐出冷媒を臨界圧力以上とする超臨界サイクルを行うようにしている。このため、一部暖房運転時に休止側の室内膨張弁(34b)の開度を全閉としても、休止側の室内熱交換器(33b)内で冷媒が凝縮することはない。従って、上記実施形態によれば、休止側の室内熱交換器(33b)で冷媒が寝込んでいく速度を大幅に小さくすることができる。その結果、加熱動作中の室内熱交換器(33a)における冷媒不足を回避でき、加熱動作側の室内熱交換器(33a)の暖房能力を充分に得ることができる。
-Effect of the embodiment-
In the above embodiment, in the air conditioner (1) that can be individually heated by the plurality of indoor heat exchangers (33a, 33b), the refrigerant discharged from the compressor (22) exceeds the critical pressure. A critical cycle is performed. For this reason, even if the opening degree of the inactive indoor expansion valve (34b) is fully closed during partial heating operation, the refrigerant does not condense in the inactive indoor heat exchanger (33b). Therefore, according to the above embodiment, the speed at which the refrigerant stagnates in the pause-side indoor heat exchanger (33b) can be greatly reduced. As a result, the shortage of refrigerant in the indoor heat exchanger (33a) during the heating operation can be avoided, and the heating capacity of the indoor heat exchanger (33a) on the heating operation side can be sufficiently obtained.

また、上記実施形態では、一部暖房運転を行う際に休止側の室内膨張弁(34b)を全閉にしている。このため、上記実施形態によれば、休止側の室内熱交換器(33b)における無駄な放熱を防ぐことができる。従って、この空気調和装置(1)のCOP(成績係数)の向上を図ることができる。   Moreover, in the said embodiment, when performing partial heating operation, the indoor expansion valve (34b) by the side of a pause is fully closed. For this reason, according to the said embodiment, useless heat dissipation in the indoor heat exchanger (33b) by the side of a pause can be prevented. Therefore, the COP (coefficient of performance) of the air conditioner (1) can be improved.

更に、上記実施形態では、一部暖房運転を行う際に一度全閉状態とした室内膨張弁(34b)を第1規定時間t1経過後に第2規定時間t2の間だけ開放するようにしている。このため、上記実施形態によれば、一部暖房運転を長期間継続して行う場合においても、休止側の室内熱交換器(33b)内の冷媒の寝込みを確実に解消することができ、加熱動作中の室内熱交換器(33a)における冷媒量不足を確実に防止することができる。   Further, in the above embodiment, the indoor expansion valve (34b) that is once fully closed when performing a partial heating operation is opened only during the second specified time t2 after the first specified time t1 has elapsed. For this reason, according to the above-described embodiment, even when partial heating operation is continuously performed for a long period of time, the stagnation of the refrigerant in the indoor heat exchanger (33b) on the pause side can be reliably eliminated, Insufficient amount of refrigerant in the indoor heat exchanger (33a) in operation can be reliably prevented.

また、上記実施形態では、一部暖房運転時において、休止側の室内熱交換器(33b)の周囲の室内温度に基づいて第1規定時間t1及び第2規定時間t2を補正するようにしている。このため、上記実施形態によれば、必要以上に室内膨張弁(34b)の全閉時間が長くなってしまい、休止側の室内熱交換器(33b)内に冷媒が寝込んでしまうのを回避できる。また、上記実施形態によれば、必要以上に室内膨張弁(34b)の開放時間が長くなってしまい、休止側の室内熱交換器(33b)で冷媒から無駄に熱が放出されてしまうのを回避できる。従って、この空気調和装置(1)のCOPを更に向上させることができる。   Further, in the above embodiment, during the partial heating operation, the first specified time t1 and the second specified time t2 are corrected based on the room temperature around the inactive indoor heat exchanger (33b). . For this reason, according to the said embodiment, it can avoid that the full closure time of an indoor expansion valve (34b) becomes longer than necessary, and a refrigerant | coolant stagnates in the indoor heat exchanger (33b) by the side of a pause. . In addition, according to the above embodiment, the open time of the indoor expansion valve (34b) becomes longer than necessary, and heat is wasted from the refrigerant in the pause-side indoor heat exchanger (33b). Can be avoided. Therefore, the COP of the air conditioner (1) can be further improved.

−室内膨張弁の開度制御の参考例−
上記実施形態では、一部暖房運転時において、休止側の室内膨張弁(33a,33b)を全閉状態とした後、第1規定時間t1及び第2規定時間t2に基づいてこの室内膨張弁(34b)を開閉するようにしている。しかしながら、このような室内膨張弁(34b)の開度制御に代わって、図6に示すように室内膨張弁(34b)の開度制御を行うようにしても良い。
-Reference example for opening control of indoor expansion valve-
In the above embodiment, during partial heating operation, after the indoor expansion valves (33a, 33b) on the pause side are fully closed, the indoor expansion valves (33a, 33b) are set based on the first specified time t1 and the second specified time t2. 34b) is opened and closed. However, instead of such opening control of the indoor expansion valve (34b), the opening control of the indoor expansion valve (34b) may be performed as shown in FIG.

この参考例の一部暖房運転では、高圧圧力センサ(40)の検出冷媒圧力と、高圧温度センサ(41)の検出冷媒温度と、第1冷媒温度センサ(42)の検出冷媒温度と、第2冷媒温度センサ(43)の検出冷媒温度とがコントローラ(50)に出力される。そして、このコントローラ(50)では、一部暖房運転における休止側の室内熱交換器(33b)を流れる冷媒密度を、これらの各センサ(40,41,42,43)の検出値に基づいて求めるようにしている。つまり、上記各センサ(40,41,42,43)は、休止側の室内熱交換器(33b)の冷媒密度を検出するための冷媒密度検出手段を構成している。 In the partial heating operation of this reference example, the detected refrigerant pressure of the high pressure sensor (40), the detected refrigerant temperature of the high pressure temperature sensor (41), the detected refrigerant temperature of the first refrigerant temperature sensor (42), and the second The refrigerant temperature detected by the refrigerant temperature sensor (43) is output to the controller (50). And in this controller (50), the density of the refrigerant | coolant which flows through the indoor heat exchanger (33b) by the side of a pause in partial heating operation is calculated | required based on the detected value of each of these sensors (40, 41, 42, 43) I am doing so. In other words, each of the sensors (40, 41, 42, 43) constitutes a refrigerant density detecting means for detecting the refrigerant density of the indoor heat exchanger (33b) on the pause side.

具体的には、例えば上記実施形態と同様の一部暖房運転を行う際、制御手段(51)は、まず第2室内膨張弁(34b)の開度を全閉状態とする。一方、この一部暖房運転が長期間に亘って継続して行われると、第2室内熱交換器(33b)内には次第に冷媒が寝込んでいくことになる。   Specifically, for example, when performing a partial heating operation similar to the above embodiment, the control means (51) first sets the opening of the second indoor expansion valve (34b) to a fully closed state. On the other hand, when this partial heating operation is continuously performed over a long period of time, the refrigerant gradually stagnates in the second indoor heat exchanger (33b).

ここで、この参考例の制御手段(51)では、休止側の第2室内熱交換器(33b)内の冷媒密度を、冷媒圧力及び冷媒温度から求めるようにしている。具体的に、例えば第2室内熱交換器(33b)が休止側となる場合には、コントローラ(50)が、高圧圧力センサ(40)で検出した冷媒圧力と、高圧温度センサ(41)で検出した冷媒温度と、休止側となる第2冷媒温度センサ(43)で検出した冷媒温度とに基づいて、第2室内熱交換器(33b)内の冷媒密度を求める。即ち、高圧圧力センサ(40)の検出冷媒圧力は、第2室内熱交換器(33b)内の冷媒圧力と実質的には同じとなる。一方、高圧温度センサ(41)で検出した冷媒温度は、第2室内熱交換器(33b)に流入する冷媒温度とみなすことができ、また、第2冷媒温度センサ(43)で検出した冷媒温度は、第2室内熱交換器(33b)から流出した冷媒温度となる。従って、これらの流入及び流出冷媒温度とから、室内熱交換器(33b)内の冷媒の平均的な温度を求めることができる。そして、この平均冷媒温度と上記冷媒圧力とから、第2室内熱交換器(33b)内の冷媒の平均的な冷媒密度を求めることができる。 Here, in the control means (51) of this reference example, the refrigerant density in the second indoor heat exchanger (33b) on the pause side is obtained from the refrigerant pressure and the refrigerant temperature. Specifically, for example, when the second indoor heat exchanger (33b) is on the idle side, the controller (50) detects the refrigerant pressure detected by the high pressure sensor (40) and the high pressure sensor (41). The refrigerant density in the second indoor heat exchanger (33b) is obtained based on the refrigerant temperature thus obtained and the refrigerant temperature detected by the second refrigerant temperature sensor (43) on the pause side. That is, the refrigerant pressure detected by the high pressure sensor (40) is substantially the same as the refrigerant pressure in the second indoor heat exchanger (33b). On the other hand, the refrigerant temperature detected by the high pressure temperature sensor (41) can be regarded as the refrigerant temperature flowing into the second indoor heat exchanger (33b), and the refrigerant temperature detected by the second refrigerant temperature sensor (43). Is the refrigerant temperature flowing out of the second indoor heat exchanger (33b). Therefore, the average temperature of the refrigerant in the indoor heat exchanger (33b) can be obtained from these inflow and outflow refrigerant temperatures. The average refrigerant density of the refrigerant in the second indoor heat exchanger (33b) can be obtained from the average refrigerant temperature and the refrigerant pressure.

以上のようにして求めた冷媒密度は、第2室内熱交換器(33b)内に貯まった冷媒量を表す指標となる。そして、この参考例の制御手段(51)は、一部暖房運転を開始して第2室内膨張弁(34b)を全閉としてから、各センサ(40,41,43)の検出値から求めた冷媒密度が、規定冷媒密度よりも大きくなると、第2室内熱交換器(33b)内に冷媒が多く貯まっていると判断して第2室内膨張弁(34b)を一時的に開放させる。その結果、第2室内熱交換器(33b)内における冷媒の寝込みが確実に解消される。 The refrigerant density obtained as described above serves as an index representing the amount of refrigerant stored in the second indoor heat exchanger (33b). And the control means (51) of this reference example calculated | required from the detected value of each sensor (40,41,43), after starting a partial heating operation and fully closing the 2nd indoor expansion valve (34b). When the refrigerant density becomes larger than the specified refrigerant density, it is determined that a large amount of refrigerant is stored in the second indoor heat exchanger (33b), and the second indoor expansion valve (34b) is temporarily opened. As a result, the stagnation of the refrigerant in the second indoor heat exchanger (33b) is reliably eliminated.

なお、第1室内熱交換器(33a)を休止させ、第2室内熱交換器(33b)で加熱動作を行う一部暖房運転においては、高圧圧力センサ(40)、高圧温度センサ(41)、及び休止側となる第1冷媒温度センサ(42)の検出値に基づいて第1室内熱交換器(33a)内の冷媒密度が求められる。この場合、この冷媒密度が規定冷媒密度よりも大きくなると、第1室内膨張弁(34a)が開放され、第1室内熱交換器(33a)内の冷媒の寝込みが解消される。   In the partial heating operation in which the first indoor heat exchanger (33a) is stopped and the second indoor heat exchanger (33b) performs the heating operation, the high pressure sensor (40), the high pressure temperature sensor (41), And the refrigerant | coolant density in a 1st indoor heat exchanger (33a) is calculated | required based on the detected value of the 1st refrigerant | coolant temperature sensor (42) used as a dormant side. In this case, when the refrigerant density becomes larger than the specified refrigerant density, the first indoor expansion valve (34a) is opened, and the stagnation of the refrigerant in the first indoor heat exchanger (33a) is eliminated.

参考例の効果−
この参考例では、一部暖房運転時において、休止側の室内熱交換器(33b)内の冷媒密度を検出し、この冷媒密度が規定冷媒密度よりも大きくなると、全閉状態であった室内膨張弁(34b)を一時的に開放するようにしている。即ち、この参考例では、休止側の室内熱交換器(33b)内に貯まった冷媒量を間接的に求め、この冷媒量が多くなると室内膨張弁(34b)を開放するようにしている。従って、休止側の室内熱交換器(33b)内の冷媒の寝込みを確実に回避することができる。
-Effect of reference example-
In this reference example, during partial heating operation, the refrigerant density in the inactive indoor heat exchanger (33b) is detected, and when this refrigerant density becomes greater than the specified refrigerant density, the indoor expansion that has been fully closed The valve (34b) is temporarily opened. That is, in this reference example, the amount of refrigerant stored in the inactive indoor heat exchanger (33b) is indirectly obtained, and the indoor expansion valve (34b) is opened when the amount of refrigerant increases. Therefore, the stagnation of the refrigerant in the indoor heat exchanger (33b) on the pause side can be surely avoided.

また、この参考例においても、一部暖房運転時に冷媒回路(10)で超臨界サイクルを行うことで、休止側となる各室内熱交換器(33a,33b)での冷媒が寝込む速度を大幅に遅くすることができる。 Also, in this reference example, the supercritical cycle is performed in the refrigerant circuit (10) during partial heating operation, thereby greatly increasing the rate at which the refrigerant stagnates in each indoor heat exchanger (33a, 33b) on the idle side. Can be late.

更に、このように冷媒回路(10)で超臨界サイクルを行うと、休止側の室内熱交換器(33b)の平均的な冷媒密度をより正確に把握することもできる。具体的には、例えば図8に示すように、従来のもの(高圧が亜臨界圧力となる冷凍サイクルを行うもの)の休止側の室内熱交換器について、その入口から出口に至るまでの冷媒密度(冷媒温度)の変化を見ると、その変化の挙動は線形性が弱いものとなる。なぜなら、従来のものでは、休止側の室内熱交換器内で冷媒が凝縮して相変化するからである。従って、室内熱交換器内に貯まった冷媒量を正確に把握しようとすると、複数箇所(例えば3点以上)における冷媒密度(冷媒温度)を検出する必要があり、温度センサの数量も多くなってしまう。   Furthermore, when the supercritical cycle is performed in the refrigerant circuit (10) in this way, the average refrigerant density of the inactive indoor heat exchanger (33b) can be grasped more accurately. Specifically, for example, as shown in FIG. 8, the refrigerant density from the inlet to the outlet of a conventional indoor heat exchanger (which performs a refrigeration cycle in which high pressure becomes subcritical pressure) is measured. Looking at the change in (refrigerant temperature), the behavior of the change is weakly linear. This is because in the conventional system, the refrigerant condenses and changes phase in the indoor heat exchanger on the pause side. Therefore, to accurately grasp the amount of refrigerant stored in the indoor heat exchanger, it is necessary to detect the refrigerant density (refrigerant temperature) at a plurality of locations (for example, three or more points), and the number of temperature sensors increases. End up.

一方、図7に示すように、本実施形態の休止側の室内熱交換器(33b)について、その入口から出口に至るまでの冷媒密度(冷媒温度)の変化を見ると、その変化の挙動は比較的線形性が強いものとなる。なぜなら、本実施形態では、室内熱交換器(33b)内に臨界圧力以上の冷媒が貯まるため、室内熱交換器(33b)内の冷媒が入口から出口に至るまで相変化しないためである。従って、本実施形態では、上述の参考例のようにして入口及び出口の冷媒密度を求めることで、予めコントローラ(50)内に記憶されたデータテーブル(冷媒密度や冷媒温度の変化の挙動に関するデータ等)に基づき、室内熱交換器(33b)の入口から出口までの冷媒密度の挙動を正確に予測することができる。そして、このように求めた冷媒密度に基づいて、室内膨張弁(34a,34b)を開放させるタイミングを判定することで、休止側の室内熱交換器(33b)における冷媒の寝込みを一層確実に回避することができる。 On the other hand, as shown in FIG. 7, when the change in the refrigerant density (refrigerant temperature) from the inlet to the outlet of the pause-side indoor heat exchanger (33b) of this embodiment is seen, the behavior of the change is The linearity is relatively strong. This is because in the present embodiment, refrigerant having a critical pressure or higher is stored in the indoor heat exchanger (33b), so that the refrigerant in the indoor heat exchanger (33b) does not change in phase from the inlet to the outlet. Therefore, in this embodiment, the refrigerant density at the inlet and outlet is obtained as in the above-described reference example, so that the data table (data relating to the behavior of the refrigerant density and the refrigerant temperature change) stored in the controller (50) in advance. Etc.), the behavior of the refrigerant density from the inlet to the outlet of the indoor heat exchanger (33b) can be accurately predicted. Then, based on the refrigerant density thus obtained, the timing for opening the indoor expansion valves (34a, 34b) is determined, so that the refrigerant stagnation in the pause-side indoor heat exchanger (33b) can be more reliably avoided. can do.

《その他の実施形態》
上記実施形態に係る空気調和装置(1)について、各利用側熱交換器(33a,33b)を通過した空気がそれぞれ吹出される各吹出口に、該各吹出口を開閉自在なルーバー等の開閉機構をそれぞれ設けるようにしてもよい。そして、上述のような一部運転時において、休止側の利用側熱交換器(33b)に対応する吹出口のみを開閉機構によって閉鎖するようにしても良い。この場合には、休止側の利用側熱交換器(33b)内に溜まった冷媒の熱が、吹出口を介して室内空間へ逃げてしまうことを抑制できる。従って、利用側熱交換器(33b)の周囲温度の低下を抑制でき、利用側熱交換器(33b)内の冷媒の寝込みを一層効果的に回避することができる。なお、ルーバー等の開閉機構には、吹出口を封止した際のシール性を高めるため、パッキン等のシール材をルーバーの周囲に設けると好適である。
<< Other Embodiments >>
In the air conditioner (1) according to the above-described embodiment, the louvers and the like that freely open and close the air outlets are opened and closed at the air outlets through which the air that has passed through the use side heat exchangers (33a and 33b) is blown out. Each mechanism may be provided. In the partial operation as described above, only the air outlet corresponding to the use side heat exchanger (33b) on the pause side may be closed by the opening / closing mechanism. In this case, it is possible to suppress the heat of the refrigerant accumulated in the use side heat exchanger (33b) on the dormant side from escaping into the indoor space through the outlet. Therefore, the fall of the ambient temperature of the use side heat exchanger (33b) can be suppressed, and the stagnation of the refrigerant in the use side heat exchanger (33b) can be more effectively avoided. In addition, in order to improve the sealing performance at the time of sealing an air outlet, it is suitable to provide sealing materials, such as packing, in the circumference | surroundings of a louver in opening / closing mechanisms, such as a louver.

なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。   In addition, the above embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.

以上説明したように、本発明は、複数の利用側熱交換器で個別に加熱動作を可能とする冷凍装置において、休止側の利用側熱交換器の冷媒の寝込み対策として有用である。   As described above, the present invention is useful as a countermeasure for the stagnation of the refrigerant in the idle-side use-side heat exchanger in the refrigeration apparatus that enables individual heating operations with a plurality of use-side heat exchangers.

実施形態に係る空気調和装置の冷媒回路の配管系統図である。It is a piping system diagram of the refrigerant circuit of the air harmony device concerning an embodiment. 全部暖房運転時の冷媒回路の冷媒の流れを示す配管系統図である。It is a piping system diagram which shows the flow of the refrigerant | coolant of the refrigerant circuit at the time of all heating operation. 一部暖房運転時の冷媒回路の冷媒の流れを示す配管系統図である。It is a piping system diagram which shows the flow of the refrigerant | coolant of the refrigerant circuit at the time of partial heating operation. 実施形態に係る超臨界サイクルのP−H線図(モリエル線図)である。It is a PH diagram (Mollier diagram) of the supercritical cycle according to the embodiment. 従来例に係る冷凍サイクルのP−H線図(モリエル線図)である。It is a PH diagram (Mollier diagram) of a refrigeration cycle according to a conventional example. 参考例に係る空気調和装置の一部暖房運転時の冷媒回路の冷媒の流れを示す配管系統図である。It is a piping system diagram which shows the flow of the refrigerant | coolant of the refrigerant circuit at the time of the partial heating operation of the air conditioning apparatus which concerns on a reference example. 実施形態における休止側の室内熱交換器について、その入口から出口までの冷媒密度及び冷媒温度の変化の挙動を示すグラフである。It is a graph which shows the behavior of the change of the refrigerant density and refrigerant temperature from the entrance to the exit about the pause-side indoor heat exchanger in an embodiment. 従来例における休止側の室内熱交換器について、その入口から出口までの冷媒密度及び冷媒温度の変化の挙動を示すグラフである。It is a graph which shows the behavior of the refrigerant | coolant density and refrigerant | coolant temperature change from the inlet_port | entrance to an exit about the idle-side indoor heat exchanger in a conventional example.

1 空気調和装置(冷凍装置)
10 冷媒回路
21 室外側回路(熱源側回路)
22 圧縮機
23 室外熱交換器(熱源側熱交換器)
33a 第1室内熱交換器(利用側熱交換器)
33b 第2室内熱交換器(利用側熱交換器)
34a 第1室内膨張弁(電動弁)
34b 第2室内膨張弁(電動弁)
44 第1室内温度センサ(室内温度センサ)
45 第2室内温度センサ(室内温度センサ)
51 制御手段
52 補正手段
1 Air conditioner (refrigeration equipment)
10 Refrigerant circuit
21 Outdoor circuit (heat source side circuit)
22 Compressor
23 Outdoor heat exchanger (heat source side heat exchanger)
33a 1st indoor heat exchanger (use side heat exchanger)
33b Second indoor heat exchanger (use side heat exchanger)
34a First indoor expansion valve (motorized valve)
34b Second indoor expansion valve (motorized valve)
44 First room temperature sensor (room temperature sensor)
45 Second room temperature sensor (room temperature sensor)
51 Control means
52 Correction method

Claims (3)

圧縮機(22)及び熱源熱交換器(23)を有する熱源側回路(21)に対して、利用側熱交換器(33a,33b)及び該利用側熱交換器(33a,33b)に対応する電動弁(34a,34b)をそれぞれ有する複数の利用側回路(31a,31b)が並列に接続されて構成される冷媒回路(10)を備え、利用側熱交換器(33a,33b)内の冷媒から熱を放出する加熱動作を各利用側熱交換器(33a,33b)で個別に可能とする冷凍装置であって、
上記冷媒回路(10)は、圧縮機(22)の吐出冷媒を臨界圧力以上とする冷凍サイクルを行うように構成され
加熱動作を行う利用側熱交換器(33a)と休止状態の利用側熱交換器(33b)とが共存する運転を行う際、休止側の利用側熱交換器(33b)に対応する電動弁(34b)を全閉する制御手段(51)を備え、
各利用側熱交換器(33a,33b)を通過した空気がそれぞれ室内に吹き出される吹出口と、該吹出口をそれぞれ開閉自在な開閉機構とを有し、対応する利用側熱交換器(33a,33b)をそれぞれ収容する複数の室内ユニット(30a,30b)を備え、
上記各開閉機構は、加熱動作を行う利用側熱交換器(33b)の吹出口を開放する一方、休止側の利用側熱交換器(33a)の吹出口を閉鎖するように構成されていることを特徴とする冷凍装置。
The heat source side circuit (21) having the compressor (22) and the heat source heat exchanger (23) corresponds to the use side heat exchanger (33a, 33b) and the use side heat exchanger (33a, 33b). Refrigerant in the use side heat exchanger (33a, 33b) having a refrigerant circuit (10) configured by connecting a plurality of use side circuits (31a, 31b) each having a motorized valve (34a, 34b) in parallel A refrigerating apparatus that enables heating operation to release heat from each of the heat exchangers (33a, 33b) individually,
The refrigerant circuit (10) is configured to perform a refrigeration cycle in which the refrigerant discharged from the compressor (22) is at a critical pressure or higher .
When performing the operation where the use side heat exchanger (33a) that performs heating operation and the dormant use side heat exchanger (33b) coexist, the motorized valve corresponding to the dormant use side heat exchanger (33b) ( A control means (51) for fully closing 34b),
Each of the use side heat exchangers (33a, 33b) has a blow-out port through which the air is blown into the room, and an open / close mechanism that can open and close each of the blow-out ports, and the corresponding use-side heat exchanger (33a , 33b) each having a plurality of indoor units (30a, 30b)
Each of the above open / close mechanisms is configured to open the outlet of the use side heat exchanger (33b) that performs the heating operation, while closing the outlet of the idle side use side heat exchanger (33a) . A refrigeration apparatus characterized by.
圧縮機(22)及び熱源熱交換器(23)を有する熱源側回路(21)に対して、利用側熱交換器(33a,33b)及び該利用側熱交換器(33a,33b)に対応する電動弁(34a,34b)をそれぞれ有する複数の利用側回路(31a,31b)が並列に接続されて構成される冷媒回路(10)を備え、利用側熱交換器(33a,33b)内の冷媒から熱を放出する加熱動作を各利用側熱交換器(33a,33b)で個別に可能とする冷凍装置であって、
上記冷媒回路(10)は、圧縮機(22)の吐出冷媒を臨界圧力以上とする冷凍サイクルを行うように構成され、
加熱動作を行う利用側熱交換器(33a)と休止状態の利用側熱交換器(33b)とが共存する運転を行う際、休止側の利用側熱交換器(33b)に対応する電動弁(34b)を全閉する制御手段(51)を備え
上記制御手段(51)は、休止側の利用側熱交換器(33b)に対応する電動弁(34b)を全閉してから第1規定時間t1が経過すると、該電動弁(34b)を第2規定時間t2に亘って一時的に開放するように構成され、
上記各利用側熱交換器(33a,33b)は、室内に配置されて室内空気へ冷媒の熱を放出するように構成され、
各利用側熱交換器(33a,33b)の周囲には、該各利用側熱交換器(33a,33b)に対応する室内の温度を検出する室内温度センサ(44,45)がそれぞれ設けられ、
休止側の利用側熱交換器(33b)に対応する室内温度センサ(45)の検出温度に基づいて上記第1規定時間t1及び第2規定時間t2のいずれか一方又は両方を補正する補正手段(52)を備えていることを特徴とする冷凍装置。
The heat source side circuit (21) having the compressor (22) and the heat source heat exchanger (23) corresponds to the use side heat exchanger (33a, 33b) and the use side heat exchanger (33a, 33b). Refrigerant in the use side heat exchanger (33a, 33b) having a refrigerant circuit (10) configured by connecting a plurality of use side circuits (31a, 31b) each having a motorized valve (34a, 34b) in parallel A refrigerating apparatus that enables heating operation to release heat from each of the heat exchangers (33a, 33b) individually,
The refrigerant circuit (10) is configured to perform a refrigeration cycle in which the refrigerant discharged from the compressor (22) is at a critical pressure or higher.
When performing the operation where the use side heat exchanger (33a) that performs heating operation and the dormant use side heat exchanger (33b) coexist, the motorized valve corresponding to the dormant use side heat exchanger (33b) ( A control means (51) for fully closing 34b) ,
When the first specified time t1 has elapsed since the control means (51) has fully closed the motor-operated valve (34b) corresponding to the use-side heat exchanger (33b) on the suspension side, the motor-operated valve (34b) is 2 It is configured to be temporarily opened over a specified time t2,
Each of the use side heat exchangers (33a, 33b) is arranged indoors and is configured to release the heat of the refrigerant to the indoor air.
Around each use side heat exchanger (33a, 33b), an indoor temperature sensor (44, 45) for detecting the indoor temperature corresponding to each use side heat exchanger (33a, 33b) is provided,
Correction means for correcting one or both of the first specified time t1 and the second specified time t2 based on the detected temperature of the indoor temperature sensor (45) corresponding to the use side heat exchanger (33b) on the dormant side ( have refrigeration apparatus according to claim Rukoto equipped with 52).
請求項1又は2において、
上記冷媒回路(10)には、冷媒として二酸化炭素が充填されていることを特徴とする冷凍装置。
In claim 1 or 2 ,
A refrigerating apparatus in which the refrigerant circuit (10) is filled with carbon dioxide as a refrigerant.
JP2006078157A 2006-03-22 2006-03-22 Refrigeration equipment Expired - Fee Related JP4797727B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2006078157A JP4797727B2 (en) 2006-03-22 2006-03-22 Refrigeration equipment
PCT/JP2007/054405 WO2007108319A1 (en) 2006-03-22 2007-03-07 Refrigerating apparatus
EP07737919.6A EP1998123B1 (en) 2006-03-22 2007-03-07 Refrigerating apparatus
CN2007800081990A CN101395435B (en) 2006-03-22 2007-03-07 refrigeration unit
CN201010263292XA CN101907366B (en) 2006-03-22 2007-03-07 Refrigerating apparatus
AU2007228237A AU2007228237B2 (en) 2006-03-22 2007-03-07 Refrigeration system
US12/224,720 US20090019879A1 (en) 2006-03-22 2007-03-07 Refrigeration System
KR1020087021871A KR100988712B1 (en) 2006-03-22 2007-03-07 Freezer
TR2018/07246T TR201807246T4 (en) 2006-03-22 2007-03-07 Cooling apparatus.
ES07737919.6T ES2671446T3 (en) 2006-03-22 2007-03-07 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006078157A JP4797727B2 (en) 2006-03-22 2006-03-22 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2007255750A JP2007255750A (en) 2007-10-04
JP4797727B2 true JP4797727B2 (en) 2011-10-19

Family

ID=38522352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006078157A Expired - Fee Related JP4797727B2 (en) 2006-03-22 2006-03-22 Refrigeration equipment

Country Status (9)

Country Link
US (1) US20090019879A1 (en)
EP (1) EP1998123B1 (en)
JP (1) JP4797727B2 (en)
KR (1) KR100988712B1 (en)
CN (2) CN101395435B (en)
AU (1) AU2007228237B2 (en)
ES (1) ES2671446T3 (en)
TR (1) TR201807246T4 (en)
WO (1) WO2007108319A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101413738A (en) * 2007-10-17 2009-04-22 开利公司 Middle and low temperature integrated type refrigerated storage / refrigerating system
JP5187373B2 (en) * 2010-10-20 2013-04-24 ダイキン工業株式会社 Air conditioner
JP5789754B2 (en) * 2010-11-30 2015-10-07 パナソニックIpマネジメント株式会社 Refrigeration equipment
JP5789755B2 (en) * 2010-11-30 2015-10-07 パナソニックIpマネジメント株式会社 Refrigeration equipment
JP5789756B2 (en) * 2010-11-30 2015-10-07 パナソニックIpマネジメント株式会社 Refrigeration equipment
US20160001634A1 (en) * 2013-03-06 2016-01-07 Panasonic intellectual property Management co., Ltd Vehicle air conditioning device
JP6155824B2 (en) * 2013-05-08 2017-07-05 ダイキン工業株式会社 Air conditioner
CN104764097A (en) * 2015-04-08 2015-07-08 珠海格力电器股份有限公司 air conditioning system, air conditioner and control method thereof
US10684051B2 (en) * 2015-04-23 2020-06-16 Mitsubishi Electric Corporation Refrigeration cycle apparatus determining refrigerant condenser amount
CN106871385B (en) * 2017-04-13 2020-08-25 青岛海尔空调器有限总公司 Air conditioner and control method
CN107560214A (en) * 2017-08-02 2018-01-09 青岛海尔空调电子有限公司 A control method and device for an expansion valve
KR102789599B1 (en) * 2019-04-09 2025-04-03 엘지전자 주식회사 Air conditioning apparatus
JP7630946B2 (en) * 2020-10-01 2025-02-18 住友重機械工業株式会社 Cryogenic refrigerator and method for controlling the same
CN114234301B (en) * 2021-12-13 2023-02-21 广东芬尼克兹节能设备有限公司 Dehumidifier and accumulated liquid prevention control method thereof

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3934797A (en) * 1974-05-28 1976-01-27 Neal Robert Perlmutter Individual room temperature control system
CA1247385A (en) * 1984-07-02 1988-12-28 Kosaku Sayo Apparatus for measuring refrigerant flow rate in refrigeration cycle
JPS62125265A (en) * 1985-11-25 1987-06-06 株式会社東芝 air conditioner
EP0482629B1 (en) * 1990-10-25 1995-12-13 Kabushiki Kaisha Toshiba Air-conditioning apparatus
JPH05149605A (en) * 1991-11-30 1993-06-15 Toshiba Corp Air conditioner
JP3331620B2 (en) * 1992-05-11 2002-10-07 ダイキン工業株式会社 Operation control device for air conditioner
SG65545A1 (en) * 1993-11-12 1999-06-22 Sanyo Electric Co Air conditioner
US5860473A (en) * 1994-07-12 1999-01-19 Trol-A-Temp Division Of Trolex Corp. Multi-zone automatic changeover heating, cooling and ventilating control system
JP3377632B2 (en) 1994-12-06 2003-02-17 東芝キヤリア株式会社 Air conditioner
JP3378712B2 (en) * 1995-11-17 2003-02-17 三洋電機株式会社 Air conditioner
FR2752611B1 (en) * 1996-08-22 2000-10-13 Samsung Electronics Co Ltd ROOM AIR CONDITIONER AND CORRESPONDING METHODS OF IMPLEMENTATION
JPH11201572A (en) * 1998-01-13 1999-07-30 Matsushita Refrig Co Ltd Multiroom air conditioner
JP2002022635A (en) * 2000-07-10 2002-01-23 Kaijo Corp Oscillatory density meter
JP4151219B2 (en) * 2001-01-10 2008-09-17 松下電器産業株式会社 Multi-chamber air conditioner
JP4165049B2 (en) * 2001-10-15 2008-10-15 ダイキン工業株式会社 Refrigeration equipment
KR100504498B1 (en) * 2003-01-13 2005-08-03 엘지전자 주식회사 Air conditioner
JP2004232905A (en) * 2003-01-29 2004-08-19 Sanyo Electric Co Ltd Refrigerator
EP1471316A1 (en) * 2003-04-22 2004-10-27 Delphi Technologies, Inc. Reversible heat pump system
JP2004340568A (en) * 2003-04-22 2004-12-02 Sanyo Electric Co Ltd Multi-type air-conditioner
US6898941B2 (en) * 2003-06-16 2005-05-31 Carrier Corporation Supercritical pressure regulation of vapor compression system by regulation of expansion machine flowrate
KR100546616B1 (en) * 2004-01-19 2006-01-26 엘지전자 주식회사 Control method of multi air conditioner
KR20060012837A (en) * 2004-08-04 2006-02-09 삼성전자주식회사 Operation method of multi air conditioner system and multi air conditioner system

Also Published As

Publication number Publication date
CN101395435A (en) 2009-03-25
TR201807246T4 (en) 2018-06-21
CN101395435B (en) 2012-07-18
CN101907366B (en) 2012-11-21
EP1998123B1 (en) 2018-05-02
WO2007108319A1 (en) 2007-09-27
KR100988712B1 (en) 2010-10-18
EP1998123A1 (en) 2008-12-03
US20090019879A1 (en) 2009-01-22
JP2007255750A (en) 2007-10-04
AU2007228237B2 (en) 2010-08-05
KR20080091853A (en) 2008-10-14
EP1998123A4 (en) 2011-03-02
AU2007228237A1 (en) 2007-09-27
ES2671446T3 (en) 2018-06-06
CN101907366A (en) 2010-12-08

Similar Documents

Publication Publication Date Title
JP4797727B2 (en) Refrigeration equipment
JP6935720B2 (en) Refrigeration equipment
CN104024764B (en) Refrigeration apparatus
US20220065506A1 (en) Refrigerant cycle apparatus
WO2019069422A1 (en) Air conditioning device
JP2009243793A (en) Heat pump type hot water supply outdoor unit
WO2008032558A1 (en) Refrigeration device
JP5375904B2 (en) Air conditioner
WO2016194098A1 (en) Air-conditioning device and operation control device
JP2017142038A (en) Refrigeration cycle device
JP2009041845A (en) Operation control method for multi-room air conditioner
JP4274236B2 (en) Air conditioner
JP5515568B2 (en) Heat pump cycle equipment
US7921670B2 (en) Refrigeration apparatus
JP5900464B2 (en) Refrigeration apparatus and control method of refrigeration apparatus
JPH09236332A (en) Heat pump apparatus for air conditioning
JP5098987B2 (en) Air conditioner
JP7496938B2 (en) Air Conditioning Equipment
WO2022249437A1 (en) Heat pump device and hot water supply device
JP2008209021A (en) Multi-air conditioner
JP7709065B2 (en) Refrigeration Cycle Equipment
JP2020101297A (en) Air conditioner
JP4774858B2 (en) Air conditioner
JP2005037003A (en) Air conditioner
WO2023135630A1 (en) Air conditioner

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070307

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4797727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees