JP4706900B2 - Rare earth permanent magnet manufacturing method - Google Patents
Rare earth permanent magnet manufacturing method Download PDFInfo
- Publication number
- JP4706900B2 JP4706900B2 JP2005041347A JP2005041347A JP4706900B2 JP 4706900 B2 JP4706900 B2 JP 4706900B2 JP 2005041347 A JP2005041347 A JP 2005041347A JP 2005041347 A JP2005041347 A JP 2005041347A JP 4706900 B2 JP4706900 B2 JP 4706900B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- rare earth
- permanent magnet
- earth permanent
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Powder Metallurgy (AREA)
Description
本発明は、希土類Rを含む希土類永久磁石の製造方法に関する。 The present invention relates to a method for producing a rare earth permanent magnet containing rare earth R.
希土類永久磁石、例えばNd−Fe−B系焼結磁石は、磁気特性に優れていること、主成分であるNdが資源的に豊富で比較的安価であること等の利点を有することから、近年、その需要は益々拡大する傾向にある。また、電子機器の高性能化や多機能化も著しく、このような機器に使用されるNd−Fe−B系焼結磁石に対しても、これまで以上に優れた特性が要求されている。 In recent years, rare earth permanent magnets such as Nd—Fe—B sintered magnets have advantages such as excellent magnetic properties, Nd as a main component is abundant in resources, and is relatively inexpensive. The demand is increasing. In addition, the performance and functionality of electronic devices are remarkably increased, and Nd—Fe—B based sintered magnets used in such devices are required to have better characteristics than ever.
このような状況から、Nd−Fe−B系焼結磁石の保磁力や飽和磁束密度等の磁気特性を高めるための研究開発が各方面において活発に進められている。例えば特許文献1においては、R−Fe−B系永久磁石に0.02at%〜0.5at%のCuを添加することにより、R−Fe−B系永久磁石の磁気特性と焼結温度幅を改善する報告がなされている。また、例えば特許文献2では、R−Fe−B系希土類磁石にAl、Cu、Siを必須としてさらにCr、Mn、Niのうち少なくとも1種を添加することにより、保磁力と最大エネルギー積とを改善する報告がなされている。 Under such circumstances, research and development for enhancing magnetic properties such as coercive force and saturation magnetic flux density of Nd—Fe—B based sintered magnets are actively being promoted in various fields. For example, in Patent Document 1, by adding 0.02 at% to 0.5 at% Cu to an R—Fe—B permanent magnet, the magnetic properties and sintering temperature range of the R—Fe—B permanent magnet are reduced. There are reports of improvement. Further, for example, in Patent Document 2, the coercive force and the maximum energy product are obtained by adding Al, Cu, Si to the R—Fe—B rare earth magnet and adding at least one of Cr, Mn, and Ni. There are reports of improvement.
ところで、焼結で得られるR−T−B系希土類永久磁石の磁気特性は、焼結温度に依存するところがある。その一方、工業的な生産規模においては、焼結炉内の全域で加熱温度を均一にすることは困難である。したがって、R−T−B系希土類永久磁石においては、焼結温度が変動しても所望する磁気特性を得ることが要求される。ここで、所望する磁気特性を得ることのできる温度範囲を、焼結温度幅ということにする。 By the way, the magnetic characteristics of the RTB-based rare earth permanent magnet obtained by sintering may depend on the sintering temperature. On the other hand, on an industrial production scale, it is difficult to make the heating temperature uniform throughout the sintering furnace. Therefore, the R-T-B rare earth permanent magnet is required to obtain desired magnetic characteristics even when the sintering temperature varies. Here, the temperature range where desired magnetic characteristics can be obtained is referred to as a sintering temperature range.
焼結温度幅を改善する技術についても様々な検討が行われており、例えば特許文献3において、Co、Al、Cu、それにZr、Nb、又はHfを含有するR−T−B系希土類永久磁石に微細なZrB化合物、NbB化合物、又はHfB化合物を均一に分散して析出させることにより、焼結過程における磁石合金の粒成長を抑制し、磁気特性と焼結温度幅を改善することが提案されている。
しかしながら、高性能磁石に要求されるような高磁気特性、具体的には、高い保磁力(Hcj)及び残留磁束密度(Br)を得るには、特許文献1や特許文献2(特開平1−220803号公報)に記載される発明では未だ不十分である。R−T−B系希土類永久磁石の保磁力及び残留磁束密度のさらなる向上を図るには、合金中の酸素量を低下させることが有効であるが、合金中の酸素量を低下させると、焼結過程において異常粒成長が起こりやすくなり、角形比が低下するという不都合がある。合金中の酸化物が結晶粒の成長を抑制しているためである。 However, in order to obtain the high magnetic characteristics required for high-performance magnets, specifically, high coercive force (Hcj) and residual magnetic flux density (Br), Patent Document 1 and Patent Document 2 (Japanese Patent Laid-Open No. Hei 1). The invention described in 220803) is still insufficient. In order to further improve the coercive force and the residual magnetic flux density of the R-T-B rare earth permanent magnet, it is effective to reduce the oxygen content in the alloy. There is an inconvenience that abnormal grain growth tends to occur during the setting process, and the squareness ratio decreases. This is because the oxide in the alloy suppresses the growth of crystal grains.
特許文献3によれば異常粒成長が改善され焼結温度幅が拡大されているものの、表13から明らかなように、100μm以上の粗大粒子がなおも存在しており、その存在量は0.3%〜数%程度に達している。このような量の粗大粒子が存在すると、通常、希土類永久磁石の角形比は大幅に低下してしまう。これに反して特許文献3の表1〜表12の実施例においては角形比が良好な結果となっているが、この原因としては、特許文献3では角形比の求め方として、高保磁力成分の角形性(減磁曲線の屈曲)を反映しにくい求め方である「4×(BH)max/(Br)2」を採用していることが挙げられる。高保磁力側の角形性をより正確に反映する角形比の求め方(例えば「Hck/HcJ」)によって、特許文献3に記載されるサンプルを評価すれば、表1〜表12に示される値よりも大幅に低い値を示すものと推測される。したがって、特許文献3に記載される発明では焼結過程における異常粒成長の抑制効果は未だ不十分であり、さらなる改善が望まれている。 According to Patent Document 3, although abnormal grain growth is improved and the sintering temperature range is expanded, as is apparent from Table 13, coarse particles of 100 μm or more still exist, and the abundance thereof is set to 0. It has reached about 3% to several percent. If such an amount of coarse particles is present, usually the squareness ratio of the rare earth permanent magnet is significantly reduced. On the contrary, in the examples of Table 1 to Table 12 of Patent Document 3, the squareness ratio is a good result. As a cause of this, in Patent Document 3, as a method for obtaining the squareness ratio, a high coercive force component is obtained. It is mentioned that “4 × (BH) max / (Br) 2 ”, which is a method of obtaining that hardly reflects the squareness (bending of the demagnetization curve), is employed. If the sample described in Patent Document 3 is evaluated by a method of obtaining a squareness ratio that more accurately reflects the squareness on the high coercive force side (for example, “Hck / HcJ”), the values shown in Tables 1 to 12 are obtained. Is estimated to be significantly lower. Therefore, in the invention described in Patent Document 3, the effect of suppressing abnormal grain growth in the sintering process is still insufficient, and further improvement is desired.
本発明は、このような従来の実情に鑑みて提案されたものであり、残留磁束密度及び保磁力等の磁気特性に優れ、焼結過程における粒成長を確実に抑制することができ、且つ焼結温度幅を拡大することができる希土類永久磁石を提供することを目的とする。 The present invention has been proposed in view of such a conventional situation, is excellent in magnetic properties such as residual magnetic flux density and coercive force, can reliably suppress grain growth in the sintering process, and is sintered. An object of the present invention is to provide a rare-earth permanent magnet capable of expanding the sintering temperature range.
前述の課題を解決するために、本発明に係る希土類永久磁石の製造方法は、水素粉砕工程、粉砕工程、磁場中成形工程、及び焼成工程を有するR 2 T 14 B(Rは、希土類元素の1種又は2種以上であり、TはFe、又はCo及びFeである。)を主体とする希土類永久磁石の製造方法であって、前記磁場中成形工程は乾式成形により行い、前記水素粉砕工程から焼成工程までの各工程の雰囲気を100ppm未満の低酸素濃度に抑え、R:28質量%〜33質量%、Co:0〜2質量%(ただし0は含まず。)、B:0.5質量%〜1.5質量%、Cu:0〜0.15質量%(ただし0は含まず。)、Al:0.03質量%〜0.25質量%、Ga:0.05質量%〜0.15質量%、O:0.03質量%〜0.1質量%、C:0.03質量%〜0.1質量%、N:0.02質量%〜0.05質量%、Fe及び不可避不純物:残部からなる組成を有し、粒径50μm以上の粒子が存在しない希土類永久磁石を得ることを特徴とする。
In order to solve the above-described problems, a method for producing a rare earth permanent magnet according to the present invention includes a hydrogen pulverization step, a pulverization step, a forming step in a magnetic field, and a firing step. R 2 T 14 B (R is a rare earth element) 1 or 2 or more, and T is Fe, or Co and Fe.) A rare earth permanent magnet manufacturing method mainly comprising: a forming step in a magnetic field by dry forming, and a hydrogen pulverizing step The atmosphere of each step from the firing step to the firing step is suppressed to a low oxygen concentration of less than 100 ppm, R: 28 mass% to 33 mass%, Co: 0 to 2 mass% (however, 0 is not included), B: 0.5 % By mass to 1.5% by mass, Cu: 0 to 0.15% by mass (excluding 0), Al: 0.03% by mass to 0.25% by mass, Ga: 0.05% by mass to 0% .15 mass%, O: 0.03 mass% to 0.1 mass%, C: 0.03 Mass% to 0.1 mass%, N: 0.02 mass% to 0.05 mass%, Fe and inevitable impurities: A rare earth permanent magnet having a composition composed of the balance and having no particles having a particle size of 50 μm or more is obtained. It is characterized by that.
本発明の希土類永久磁石においては、合金中の酸素含有量を低下させることで、残留磁束密度や保磁力等、優れた磁気特性を実現している。このような低酸素量の希土類永久磁石において、適正な量のGaを添加することで、焼結過程における粒成長の成長が抑制され、また、焼結温度幅も拡大される。 In the rare earth permanent magnet of the present invention, excellent magnetic properties such as residual magnetic flux density and coercive force are realized by reducing the oxygen content in the alloy. In such a rare earth permanent magnet having a low oxygen content, by adding an appropriate amount of Ga, the growth of grain growth in the sintering process is suppressed, and the sintering temperature range is expanded.
なお、前述の特許文献2において、酸素量は6000ppm以下が好ましいことや、Ga添加で保磁力を高める効果が得られることが記載されているものの、酸素量を2000ppm(=0.2質量%)以下のように極めて少なくしたときに異常粒成長が生じることについては認識しておらず、当然ながらGaが異常粒成長を抑制することについても全く認識していない。また、特許文献2においては、Gaの記載はあるものの、実際に検討は行っておらず、単なる列挙にとどまっている。すなわち、Ga添加の効果は不明確である。 In addition, in the above-mentioned patent document 2, although it is described that the oxygen amount is preferably 6000 ppm or less and that the effect of increasing the coercive force can be obtained by adding Ga, the oxygen amount is 2000 ppm (= 0.2 mass%). It does not recognize that abnormal grain growth occurs when it is extremely reduced as follows, and of course, Ga does not recognize at all that Ga suppresses abnormal grain growth. Further, in Patent Document 2, although there is a description of Ga, no actual examination has been made, and it is merely a list. That is, the effect of Ga addition is unclear.
また、特許文献3でのGaは単なる不純物としての扱いであり、他のLa、Ce等の多数の元素とともに列挙されているのみである。すなわち、特許文献3ではGaが異常粒成長を抑制する効果を備えていることを全く認識していない。また、特許文献3に記載される永久磁石は、Zr、Nb及びHfのから選ばれる元素を必須成分として含んでいる。 In addition, Ga in Patent Document 3 is merely treated as an impurity, and is only listed together with many other elements such as La and Ce. That is, Patent Document 3 does not recognize that Ga has an effect of suppressing abnormal grain growth. Moreover, the permanent magnet described in Patent Document 3 contains an element selected from Zr, Nb, and Hf as an essential component.
これに対し本発明は、Zr、Nb及びHfを含有しない組成が前提であり、この組成で酸素量を低減することで残留磁束密度及び保磁力の向上を図りつつ、酸素量低減に付随する異常粒成長の問題をGaの積極的な添加によって解消しようとするものである。つまり本発明は、酸素量の低減とGa添加を組み合わせることにより、特許文献2や特許文献3からは予想し得ないほどの顕著な異常粒成長の抑制効果を実現しており、例えば、粒径100μm以上の粗大粒子の発生をほぼ確実に抑制している。 In contrast, the present invention is premised on a composition that does not contain Zr, Nb, and Hf. By reducing the amount of oxygen with this composition, the residual magnetic flux density and the coercive force are improved, and an anomaly associated with the reduction in the amount of oxygen. The problem of grain growth is to be solved by positive addition of Ga. That is, the present invention realizes a remarkable effect of suppressing abnormal grain growth that cannot be expected from Patent Document 2 and Patent Document 3 by combining reduction of oxygen amount and addition of Ga. Generation of coarse particles of 100 μm or more is almost certainly suppressed.
本発明によれば、高い保磁力及び残留磁束密度を有するとともに、焼結過程における粒成長を確実に抑制することにより、例えば角形比に優れ、焼結温度幅が拡大された希土類永久磁石を提供することができる。 According to the present invention, a rare earth permanent magnet having a high coercive force and a residual magnetic flux density and reliably suppressing grain growth in the sintering process, for example, having an excellent squareness ratio and an expanded sintering temperature range is provided. can do.
以下、本発明を適用した希土類永久磁石について、図面を参照して詳細に説明する。
先ず、本発明を適用した希土類永久磁石の化学組成について説明する。ここで、化学組成とは、焼結後の希土類永久磁石における化学組成をいう。
Hereinafter, a rare earth permanent magnet to which the present invention is applied will be described in detail with reference to the drawings.
First, the chemical composition of the rare earth permanent magnet to which the present invention is applied will be described. Here, the chemical composition refers to the chemical composition in the rare earth permanent magnet after sintering.
本発明を適用した希土類永久磁石は、希土類元素Rを25質量%〜35質量%含有する。ここで、希土類元素Rは、希土類元素の1種又は2種以上である。希土類元素Rは、具体的には、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb及びLuである。希土類元素Rの含有量が25質量%未満であると、希土類永久磁石の主相となるR2T14B1相の生成が十分ではなく軟磁性を持つα−Fe等が析出し、保磁力が著しく低下する。一方、希土類元素Rが35質量%を超えると主相であるR2T14B1相の体積比率が低下し、残留磁束密度が低下する。また、希土類元素Rが酸素と反応し、含有する酸素量が増え、これに伴い保磁力発生に有効なRリッチ相が減少し、保磁力の低下を招く。以上の理由から、希土類元素Rの含有量は25質量%〜35質量%であり、さらに望ましい希土類元素Rの含有量は、28質量%〜33質量%である。 The rare earth permanent magnet to which the present invention is applied contains 25% by mass to 35% by mass of the rare earth element R. Here, the rare earth element R is one or more rare earth elements. Specifically, the rare earth element R is Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, and Lu. When the content of the rare earth element R is less than 25% by mass, the R 2 T 14 B 1 phase that is the main phase of the rare earth permanent magnet is not sufficiently generated, and α-Fe or the like having soft magnetism is precipitated. Is significantly reduced. On the other hand, when the rare earth element R exceeds 35 mass%, the volume ratio of the R 2 T 14 B 1 phase that is the main phase is lowered, and the residual magnetic flux density is lowered. Further, the rare earth element R reacts with oxygen, the amount of oxygen contained increases, and accordingly, the R-rich phase effective for generating the coercive force decreases, leading to a decrease in coercive force. For the above reasons, the rare earth element R content is 25 mass% to 35 mass%, and the more desirable rare earth element R content is 28 mass% to 33 mass%.
Ndは資源的に豊富で比較的安価であることから、希土類元素Rとしての主成分をNdとすることが望ましい。また、Dyは異方性磁界が大きく、保磁力を向上させるうえで有効である。よって、希土類元素RとしてNd及びDyを選択し、Nd及びDyの合計を25質量%〜35質量%とすることが望ましい。そして、この範囲において、Dyを0.1質量%〜8質量%とすることが望ましい。Dyは残留磁束密度及び保磁力のいずれを重視するかによって前記範囲内においてその量を定めることが望ましい。つまり、高い残留磁束密度を得たい場合にはDy量を0.1質量%から3.5質量%とし、高い保磁力を得たい場合にはDy量を3.5質量%〜8質量%とすることが望ましい。 Since Nd is abundant in resources and relatively inexpensive, it is desirable that the main component as the rare earth element R is Nd. Dy has a large anisotropic magnetic field and is effective in improving the coercive force. Therefore, it is desirable that Nd and Dy are selected as the rare earth element R, and the total of Nd and Dy is 25 mass% to 35 mass%. And in this range, it is desirable to make Dy 0.1 mass%-8 mass%. It is desirable to determine the amount of Dy within the above range depending on which of the residual magnetic flux density and the coercive force is important. That is, when it is desired to obtain a high residual magnetic flux density, the Dy amount is 0.1% to 3.5% by mass, and when a high coercive force is desired, the Dy amount is 3.5% to 8% by mass. It is desirable to do.
また、本発明の希土類永久磁石は、Coを0〜2質量%含有することができる。CoはFeと同様の相を形成するが、本発明の希土類永久磁石にCoを含有させると、キュリー温度の向上、粒界相の耐食性向上に効果がある。さらに望ましいCoの含有量は、0〜2質量%(ただし、0を含まず。)である。 Moreover, the rare earth permanent magnet of the present invention can contain 0 to 2% by mass of Co. Co forms the same phase as Fe. However, when Co is contained in the rare earth permanent magnet of the present invention, it is effective in improving the Curie temperature and improving the corrosion resistance of the grain boundary phase. A more desirable Co content is 0 to 2% by mass (however, 0 is not included).
また、本発明の希土類永久磁石は、Bを0.5質量%〜4.5質量%含有する。Bの含有量が0.5質量%未満の場合には高い保磁力を得ることができない。ただし、Bが4.5質量%を超えると残留磁束密度が低下する傾向にある。したがって、Bの含有量の上限を4.5質量%とする。望ましいBの含有量は0.5質量%〜1.5質量%である。 Moreover, the rare earth permanent magnet of the present invention contains 0.5% by mass to 4.5% by mass of B. When the content of B is less than 0.5% by mass, a high coercive force cannot be obtained. However, when B exceeds 4.5 mass%, the residual magnetic flux density tends to decrease. Therefore, the upper limit of the B content is 4.5% by mass. Desirable content of B is 0.5 mass%-1.5 mass%.
また、本発明の希土類永久磁石は、Cu及びAlから選ばれる1種又は2種を0.02質量%〜0.5質量%含有する。この範囲でAl及びCuの1種又は2種を含有させることにより、得られる希土類永久磁石の高保磁力化、高耐食性化、温度特性の改善が可能となる。Alを添加する場合において、望ましいAlの量は0.03質量%〜0.25質量%である。また、Cuを添加する場合において、望ましいCuの量は0〜0.15質量%(ただし0を含まず。)である。 Moreover, the rare earth permanent magnet of this invention contains 0.02 mass%-0.5 mass% of 1 type or 2 types chosen from Cu and Al. By containing one or two of Al and Cu within this range, it is possible to increase the coercive force, corrosion resistance, and temperature characteristics of the obtained rare earth permanent magnet. In the case of adding Al, a desirable amount of Al is 0.03% by mass to 0.25% by mass. Moreover, when adding Cu, the quantity of desirable Cu is 0-0.15 mass% (however, 0 is not included).
本発明の希土類永久磁石は、Gaを0.05質量%〜0.25質量%含有する点に大きな特徴がある。希土類永久磁石の磁気特性向上を図るために酸素含有量を低減する際に、Gaは焼結過程での結晶粒の異常成長を抑制する効果を発揮し、焼結体の組織を均一且つ微細にする。したがって、Gaの添加は、希土類永久磁石における酸素含有量が低い場合に、その効果が顕著となる。また、適正量のGaは、希土類永久磁石の焼結温度幅を拡大する。Gaの量が少なすぎる場合、焼結過程での結晶粒の異常成長抑制効果が不十分となり、希土類永久磁石の角形比が悪化する傾向を示す。また、焼結温度幅の改善効果が不十分となる傾向を示す。したがって、Gaの量の下限を0.05質量%とする。逆にGaの量が過剰となると、希土類永久磁石の残留磁束密度及び保磁力が低下する傾向を示す。したがって、Gaの量の上限を0.25質量%とする。さらに望ましいGaの量は、0.05質量%〜0.15質量%である。 The rare earth permanent magnet of the present invention is greatly characterized in that it contains 0.05 mass% to 0.25 mass% of Ga. When reducing the oxygen content to improve the magnetic properties of rare earth permanent magnets, Ga exerts the effect of suppressing abnormal growth of crystal grains during the sintering process, making the structure of the sintered body uniform and fine. To do. Therefore, the addition of Ga has a remarkable effect when the oxygen content in the rare earth permanent magnet is low. Further, an appropriate amount of Ga increases the sintering temperature range of the rare earth permanent magnet. When the amount of Ga is too small, the effect of suppressing abnormal growth of crystal grains in the sintering process becomes insufficient, and the squareness ratio of the rare earth permanent magnet tends to deteriorate. In addition, the improvement effect of the sintering temperature range tends to be insufficient. Therefore, the lower limit of the amount of Ga is set to 0.05 mass%. Conversely, when the amount of Ga becomes excessive, the residual magnetic flux density and coercive force of the rare earth permanent magnet tend to decrease. Therefore, the upper limit of the amount of Ga is 0.25% by mass. Furthermore, the desirable amount of Ga is 0.05 mass% to 0.15 mass%.
また、本発明の希土類永久磁石は、酸素(O)を0.03質量%〜0.2質量%含有する。酸素量が多いと非磁性成分である酸化物相が増大して磁気特性を低下させる。したがって、酸素量の上限を0.2質量%とする。ただし、希土類永久磁石における酸素量を単純に低下させたのでは、結晶粒成長抑制効果を持つ酸化物相が減少し、焼結時に充分な密度上昇を得る過程で粒成長が容易に起こる。そこで本発明では、前述のように、焼結過程での結晶粒の異常成長を抑制する効果を持つGaを所定量含有させる。酸素含有量が少なすぎると、過焼結しやすくなり、また、角形性が低下するため、酸素の量の下限は0.03質量%とする。さらに望ましい酸素の量は、0.03質量%〜0.1質量%である。 The rare earth permanent magnet of the present invention contains 0.03% by mass to 0.2% by mass of oxygen (O). If the amount of oxygen is large, the oxide phase, which is a nonmagnetic component, increases and the magnetic properties are degraded. Therefore, the upper limit of the oxygen amount is set to 0.2% by mass. However, if the oxygen amount in the rare earth permanent magnet is simply reduced, the oxide phase having the effect of suppressing crystal grain growth is reduced, and grain growth occurs easily in the process of obtaining a sufficient density increase during sintering. Therefore, in the present invention, as described above, a predetermined amount of Ga having an effect of suppressing abnormal growth of crystal grains in the sintering process is contained. If the oxygen content is too small, oversintering is likely to occur, and the squareness is lowered, so the lower limit of the amount of oxygen is 0.03% by mass. A more desirable amount of oxygen is 0.03% by mass to 0.1% by mass.
また、本発明の希土類永久磁石は、Cを含有してもよい。Cの含有量は、0.03質量%〜0.1質量%である。Cの量が0.03質量%未満であると過焼結しやすくなり、また、角形性も低下するおそれがある。Cの量が0.1質量%を超えると、焼結性、角形性がともに低下するおそれがある。 Moreover, the rare earth permanent magnet of the present invention may contain C. Content of C is 0.03 mass%-0.1 mass%. If the amount of C is less than 0.03% by mass, oversintering is likely to occur, and the squareness may be deteriorated. If the amount of C exceeds 0.1% by mass, both sinterability and squareness may be reduced.
また、本発明の希土類永久磁石は、Nを含有してもよい。Nの含有量は、0.02質量%〜0.05質量%である。Nの量が0.02質量%未満であると過焼結しやすくなり、また、角形性も低下するおそれがある。Nの量が0.05質量%を超えると、焼結性、角形性がともに低下するおそれがある。 The rare earth permanent magnet of the present invention may contain N. Content of N is 0.02 mass%-0.05 mass%. If the amount of N is less than 0.02% by mass, oversintering is likely to occur, and the squareness may be lowered. If the amount of N exceeds 0.05% by mass, both sinterability and squareness may be reduced.
したがって、本発明の希土類永久磁石の組成は、以下のように表される。
R:25質量%〜35質量%
Co:0〜2質量%
B:0.5質量%〜4.5質量%
Cu及びAlから選ばれる1種又は2種以上:0.02質量%〜0.5質量%
Ga:0.05質量%〜0.25質量%
O:0.03質量%〜0.2質量%
Fe及び不可避不純物:残部
Therefore, the composition of the rare earth permanent magnet of the present invention is expressed as follows.
R: 25% by mass to 35% by mass
Co: 0 to 2% by mass
B: 0.5% by mass to 4.5% by mass
One or more selected from Cu and Al: 0.02% by mass to 0.5% by mass
Ga: 0.05 mass% to 0.25 mass%
O: 0.03 mass% to 0.2 mass%
Fe and inevitable impurities: balance
また、本発明の希土類永久磁石の望ましい組成は、以下のように表される。
R:28質量%〜33質量%
Co:0〜2質量%(ただし0は含まず。)
B:0.5質量%〜1.5質量%
Cu:0〜0.15質量%(ただし0は含まず。)
Al:0.03質量%〜0.25質量%
Ga:0.05質量%〜0.15質量%
O:0.03質量%〜0.1質量%
Fe及び不可避不純物:残部
The desirable composition of the rare earth permanent magnet of the present invention is expressed as follows.
R: 28% by mass to 33% by mass
Co: 0 to 2% by mass (excluding 0)
B: 0.5% by mass to 1.5% by mass
Cu: 0 to 0.15 mass% (however, 0 is not included)
Al: 0.03 mass% to 0.25 mass%
Ga: 0.05 mass% to 0.15 mass%
O: 0.03 mass% to 0.1 mass%
Fe and inevitable impurities: balance
次に、本発明の希土類永久磁石の好適な製造方法について説明する。
本実施の形態では、R2T14B相を主体とする合金(低R合金)と、低R合金より希土類元素Rを多く含む合金(高R合金)とを用いて本発明に係る希土類永久磁石を製造する方法について説明する。
Next, the suitable manufacturing method of the rare earth permanent magnet of this invention is demonstrated.
In the present embodiment, a rare earth permanent according to the present invention is produced using an alloy mainly composed of R 2 T 14 B phase (low R alloy) and an alloy containing a higher amount of rare earth element R than a low R alloy (high R alloy). A method for manufacturing the magnet will be described.
はじめに、原料金属を真空又は不活性ガス、望ましくはAr雰囲気中でストリップキャスティングすることにより、低R合金及び高R合金を得る。原料金属としては、希土類金属あるいは希土類合金、純鉄、フェロボロン、さらにはこれらの合金等を使用することができる。得られた原料合金は、凝固偏析がある場合は必要に応じて溶体化処理を行う。その条件は真空又はAr雰囲気下、700℃〜1500℃の領域で1時間以上保持すればよい。 First, a low R alloy and a high R alloy are obtained by strip casting the raw metal in a vacuum or an inert gas, preferably in an Ar atmosphere. As the raw material metal, rare earth metals or rare earth alloys, pure iron, ferroboron, and alloys thereof can be used. The obtained raw material alloy is subjected to a solution treatment as necessary when there is solidification segregation. The conditions may be maintained in a region of 700 ° C. to 1500 ° C. for 1 hour or more in a vacuum or Ar atmosphere.
本発明の希土類永久磁石はGaを必須成分として含有するが、このGaは、好ましくは高R合金から供給されることが好ましい。より好ましくは、Ga、Cu及びCoが高R合金から供給される。具体的には、低R合金には、希土類元素R、遷移金属元素T及びBの他にAl等を含有させることができ、低R合金は例えばNd−Dy−B−Al−Fe系の合金である。また、高R合金は、例えばDy−Cu−Co−Al−Fe系の合金、Dy−Cu−Co−Al−Ga−Fe系の合金である。 The rare earth permanent magnet of the present invention contains Ga as an essential component, and this Ga is preferably supplied from a high R alloy. More preferably, Ga, Cu and Co are supplied from a high R alloy. Specifically, the low R alloy can contain Al or the like in addition to the rare earth element R and the transition metal elements T and B. The low R alloy is, for example, an Nd—Dy—B—Al—Fe alloy. It is. The high R alloy is, for example, a Dy—Cu—Co—Al—Fe alloy or a Dy—Cu—Co—Al—Ga—Fe alloy.
低R合金及び高R合金が作製された後、これらの各母合金は別々に又は一緒に粉砕される。粉砕工程には、粗粉砕工程と微粉砕工程とがある。先ず、各母合金をそれぞれ粒径数百μm程度になるまで粗粉砕する。粗粉砕は、スタンプミル、ジョークラッシャー、ブラウンミル等を用い、不活性ガス雰囲気中にて行うことが望ましい。また、水素を吸蔵させた後に粗粉砕を行うことや、水素吸蔵を行った後に水素を放出させることで各合金を粗粉砕することもできる。 After the low R and high R alloys are made, each of these master alloys is ground separately or together. The pulverization process includes a coarse pulverization process and a fine pulverization process. First, each mother alloy is coarsely pulverized until the particle size becomes about several hundred μm. The coarse pulverization is desirably performed in an inert gas atmosphere using a stamp mill, a jaw crusher, a brown mill or the like. Moreover, each alloy can be coarsely pulverized by performing coarse pulverization after occluding hydrogen or releasing hydrogen after occluding hydrogen.
粗粉砕工程後、微粉砕工程に移る。微粉砕は、主にジェットミルが用いられ、粒径数百μm程度の粗粉砕粉末が、平均粒径3〜5μmになるまで粉砕される。ジェットミルは、高圧の不活性ガス(例えば窒素ガス)を狭いノズルより開放して高速のガス流を発生させ、この高速のガス流により粗粉砕粉末を加速し、粗粉砕粉末同士の衝突やターゲット又は容器壁との衝突を発生させて粉砕する方法である。これにより、低R合金粉末及び高R合金粉末を得る。 After the coarse pulverization process, the process proceeds to the fine pulverization process. In the fine pulverization, a jet mill is mainly used, and a coarsely pulverized powder having a particle diameter of about several hundreds of micrometers is pulverized until the average particle diameter becomes 3 to 5 μm. The jet mill opens a high-pressure inert gas (for example, nitrogen gas) from a narrow nozzle to generate a high-speed gas flow, and the high-speed gas flow accelerates the coarsely pulverized powder. Or it is the method of generating and colliding with a container wall. Thereby, a low R alloy powder and a high R alloy powder are obtained.
微粉砕工程において低R合金及び高R合金を別々に粉砕した場合には、微粉砕された低R合金粉末及び高R合金粉末とを窒素雰囲気で混合する。低R合金粉末及び高R合金粉末の混合比率は、重量比で80:20〜97:3程度とすればよい。同様に、低R合金及び高R合金を一緒に粉砕する場合の混合比率も、重量比で80:20〜97:3程度とすればよい。微粉砕時に、ステアリン酸亜鉛等の添加剤を0.01質量%〜0.3質量%程度添加することにより、成形時に配向性の高い微粉を得ることができる。 When the low R alloy and the high R alloy are separately pulverized in the fine pulverization step, the finely pulverized low R alloy powder and high R alloy powder are mixed in a nitrogen atmosphere. The mixing ratio of the low R alloy powder and the high R alloy powder may be about 80:20 to 97: 3 by weight. Similarly, the mixing ratio when the low R alloy and the high R alloy are pulverized together may be about 80:20 to 97: 3 by weight. By adding about 0.01% by mass to 0.3% by mass of an additive such as zinc stearate during pulverization, a fine powder having high orientation can be obtained during molding.
次に、低R合金粉末及び高R合金粉末からなる混合粉末を、電磁石に抱かれた金型内に充填し、磁場印加によってその結晶軸を配向させた状態で磁場中成形する。この磁場中成形は、12kOe〜17kOeの磁場中で、0.7t/cm2から1.5t/cm2前後の圧力で行えばよい。 Next, the mixed powder composed of the low R alloy powder and the high R alloy powder is filled in a mold held by an electromagnet and molded in a magnetic field with its crystal axis oriented by applying a magnetic field. The magnetic field molding, in a magnetic field of 12KOe~17kOe, may be performed from 0.7t / cm 2 1.5t / cm 2 at a pressure of about.
磁場中成形後、その成形体を真空又は不活性ガス雰囲気中で焼結する。焼結温度は、組成、粉砕方法、粒度と粒度分布の違い等、諸条件により調整する必要があるが、1000℃〜1100℃で1時間〜5時間程度焼結すればよい。 After molding in a magnetic field, the compact is sintered in a vacuum or an inert gas atmosphere. Although it is necessary to adjust sintering temperature by various conditions, such as a composition, a grinding | pulverization method, a particle size, and a particle size distribution difference, what is necessary is just to sinter at 1000 to 1100 degreeC for about 1 to 5 hours.
焼結後、得られた焼結体に時効処理を施すことができる。時効処理は、保磁力を制御するうえで重要である。時効処理を2段に分けて行う場合には、800℃近傍、600℃近傍での所定時間の保持が有効である。800℃近傍での熱処理を焼結後に行うと、保磁力が増大するため、混合法においては特に有効である。また、600℃近傍の熱処理で保磁力が大きく増加するため、時効処理を1段で行う場合には、600℃近傍の時効処理を施すとよい。以上のようにして、本発明の希土類永久磁石を得ることができる。 After sintering, the obtained sintered body can be subjected to an aging treatment. The aging treatment is important for controlling the coercive force. In the case where the aging treatment is performed in two stages, it is effective to hold for a predetermined time in the vicinity of 800 ° C. and 600 ° C. When the heat treatment in the vicinity of 800 ° C. is performed after sintering, the coercive force increases, which is particularly effective in the mixing method. In addition, since the coercive force is greatly increased by heat treatment near 600 ° C., when aging treatment is performed in one stage, it is preferable to perform aging treatment near 600 ° C. As described above, the rare earth permanent magnet of the present invention can be obtained.
本発明の希土類永久磁石においては、高い磁気特性を得る目的で酸素の含有量を0.03質量%〜0.2質量%とするが、この酸素含有量は、各製造工程における雰囲気の制御、原料に含有される酸素量の制御等により調節される。特に、水素粉砕処理から焼結までの各工程の雰囲気を100ppm未満の低酸素濃度に抑えることが、酸素の含有量を0.03質量%〜0.2質量%の範囲内に調節するうえで有効である。 In the rare earth permanent magnet of the present invention, the oxygen content is set to 0.03% by mass to 0.2% by mass for the purpose of obtaining high magnetic properties. This oxygen content is controlled by the atmosphere in each manufacturing process, It is adjusted by controlling the amount of oxygen contained in the raw material. In particular, to suppress the atmosphere of each step from hydrogen pulverization treatment to sintering to a low oxygen concentration of less than 100 ppm is to adjust the oxygen content within the range of 0.03% by mass to 0.2% by mass. It is valid.
また、希土類永久磁石に含有されるCの量は、製造工程で用いられる粉砕助剤の種類及び添加量等により調節する。さらに、希土類永久磁石に含有されるNの量は、原料合金の種類及び量や、原料合金を窒素雰囲気で粉砕する場合の粉砕条件等により調節する。 Further, the amount of C contained in the rare earth permanent magnet is adjusted by the type and amount of the grinding aid used in the production process. Further, the amount of N contained in the rare earth permanent magnet is adjusted by the type and amount of the raw material alloy, the pulverizing conditions when the raw material alloy is pulverized in a nitrogen atmosphere, and the like.
以上のようにして得られる本発明の希土類永久磁石においては、酸素の含有量を0.03質量%〜0.2質量%とすることで高い残留磁束密度及び保磁力を実現するとともに、前述のGaを含有する特定の組成範囲内とすることで、焼結過程における異常粒成長の抑制効果が顕著に表れており、例えば100μm以上の粗大粒子が存在していない。さらには、本発明の希土類永久磁石においては、50μm以上100μm未満のやや微細な粗大粒子の発生もなく、異常粒成長が確実に防止されている。 In the rare earth permanent magnet of the present invention obtained as described above, a high residual magnetic flux density and a coercive force are realized by setting the oxygen content to 0.03% by mass to 0.2% by mass. By making it within a specific composition range containing Ga, the effect of suppressing abnormal grain growth in the sintering process is remarkably exhibited. For example, coarse particles of 100 μm or more are not present. Furthermore, in the rare earth permanent magnet of the present invention, there is no generation of slightly fine coarse particles of 50 μm or more and less than 100 μm, and abnormal grain growth is reliably prevented.
以下、本発明を適用した具体的な実施例について、実験結果に基づいて説明する。なお、本発明は以下の実施例の記載に限定されるものではない。 Hereinafter, specific examples to which the present invention is applied will be described based on experimental results. In addition, this invention is not limited to description of a following example.
(1)原料合金
ストリップキャスティング法により、表1に示す3種類の合金を作製した。
(1) Raw material alloys Three types of alloys shown in Table 1 were produced by a strip casting method.
(2)水素粉砕工程
室温にて水素を吸蔵させた後、Ar雰囲気中で600℃×1時間の脱水素を行う、水素粉砕処理を行った。
本実施例では、焼結体酸素量を0.03質量%〜0.2質量%とするために、水素処理(粉砕処理後の回収)から焼結(焼結炉に投入する)までの各工程の雰囲気を、100ppm未満の酸素濃度に抑えてある。以後、これを低酸素プロセスと称する。
(2) Hydrogen pulverization step After occluding hydrogen at room temperature, hydrogen pulverization treatment was performed in which dehydrogenation was performed in an Ar atmosphere at 600 ° C for 1 hour.
In this example, in order to set the sintered body oxygen content to 0.03% by mass to 0.2% by mass, each from hydrogen treatment (recovery after pulverization treatment) to sintering (put into a sintering furnace) The atmosphere of the process is suppressed to an oxygen concentration of less than 100 ppm. Hereinafter, this is referred to as a low oxygen process.
(3)粉砕工程
微粉砕を行う前に粉砕助剤を混合した。なお、水素粉砕工程の次に粗粉砕工程を行う場合があるが、本実施例においては省略した。粉砕助剤は、特に限定はないが、本実施例ではステアリン酸亜鉛を0.05%〜0.1%混合した。粉砕助剤の混合は、例えばナウターミキサー等により5分間〜30分間ほど行う程度でよい。
その後、気流式粉砕機を用いて微粉砕を行う。本実験ではジェットミルを用いて微粉砕を行った。気流式粉砕機により、合金粉末が平均粒径3μm〜6μm程度になるまで微粉砕を行った。本実験では、平均粒径が4μmの粉砕粉を作製した。
当然ながら、粉砕助剤の混合工程及び微粉砕工程は、ともに低酸素プロセスで行った。
(3) Grinding step A grinding aid was mixed before fine grinding. In addition, although the coarse pulverization process may be performed after the hydrogen pulverization process, it is omitted in this embodiment. The grinding aid is not particularly limited, but in this example, zinc stearate was mixed in an amount of 0.05% to 0.1%. The mixing of the grinding aid may be performed for about 5 minutes to 30 minutes using, for example, a Nauter mixer.
Thereafter, fine pulverization is performed using an airflow pulverizer. In this experiment, fine pulverization was performed using a jet mill. Using an airflow pulverizer, fine pulverization was performed until the alloy powder had an average particle size of about 3 μm to 6 μm. In this experiment, pulverized powder having an average particle size of 4 μm was prepared.
Of course, both the mixing step and the fine pulverization step of the pulverization aid were performed by a low oxygen process.
(4)配合工程
実験を効率よく行うために、数種類の微粉砕粉を調合し、所望の組成(特にGa量)となるように混合する場合がある。この場合の混合も、例えばナウターミキサー等により5分間〜30分間ほど行う程度でよい。
配向工程も低酸素プロセスで行うことが望ましいが、焼結体酸素量を微増させる場合は、本工程にて、成形用微粉末の酸素量を調整する。例えば、組成や平均粒径が同一の微粉末を用意し、100ppm以上の含酸素雰囲気に数分〜数時間放置することで、数千ppmの微粉末が得られる。これら2種類の微粉末を低酸素プロセス中で混合することで、酸素量の調整を行っている。
(4) Blending step In order to perform the experiment efficiently, several types of finely pulverized powders may be prepared and mixed so as to have a desired composition (particularly, Ga amount). In this case, the mixing may be performed for about 5 to 30 minutes using, for example, a Nauter mixer.
Although it is desirable to perform the orientation step by a low oxygen process, when the amount of oxygen in the sintered body is slightly increased, the amount of oxygen in the forming fine powder is adjusted in this step. For example, a fine powder having the same composition and average particle diameter is prepared and left in an oxygen-containing atmosphere of 100 ppm or more for several minutes to several hours, whereby a fine powder of several thousand ppm can be obtained. The amount of oxygen is adjusted by mixing these two types of fine powders in a low oxygen process.
(5)成形工程
得られた微粉末を磁場中にて成形する。具体的には、電磁石に抱かれた金型内に微粉末を充填し、磁場印加によってその結晶軸を配向させた状態で磁場中成形する。この磁場中成形は、12kOe〜17kOeの磁場中で、0.7t/cm2〜1.5t/cm2前後の圧力で行えばよい。本実験では、15kOeの磁場中で1.2t/cm2の圧力で成形を行い、成形体を得た。本工程も低酸素プロセスにて行った。
(5) Molding step The obtained fine powder is molded in a magnetic field. Specifically, a fine powder is filled in a mold held by an electromagnet, and molding is performed in a magnetic field in a state where the crystal axis is oriented by applying a magnetic field. The magnetic field molding, in a magnetic field of 12kOe~17kOe, 0.7t / cm 2 ~1.5t / cm 2 may be carried out at a pressure of about. In this experiment, molding was performed in a magnetic field of 15 kOe at a pressure of 1.2 t / cm 2 to obtain a molded body. This step was also performed by a low oxygen process.
(6)焼結・時効工程
この成形体を真空中において1010℃〜1150℃で4時間焼結した後、急冷した。次いで得られた焼結体に800℃で1時間と、550℃で2.5時間(ともにAr雰囲気中)の2段時効処理を施した。
(6) Sintering / aging process This compact was sintered in a vacuum at 1010 ° C to 1150 ° C for 4 hours and then rapidly cooled. Next, the obtained sintered body was subjected to a two-stage aging treatment at 800 ° C. for 1 hour and 550 ° C. for 2.5 hours (both in an Ar atmosphere).
表1に示す組成の合金を表2に示す最終組成となるように配合し、水素粉砕処理を行い、その後ジェットミルにて平均粒径4μmとなるように微粉砕した。なお、用いた原料合金の種類も表2に記載してある。その後磁場中成形した後に、1050℃で焼結し、得られた焼結体に2段時効処理を施した。 An alloy having the composition shown in Table 1 was blended so as to have the final composition shown in Table 2, and subjected to hydrogen pulverization treatment, and then finely pulverized to a mean particle size of 4 μm by a jet mill. Table 2 also shows the types of raw material alloys used. Thereafter, after molding in a magnetic field, sintering was performed at 1050 ° C., and the obtained sintered body was subjected to two-stage aging treatment.
得られた希土類永久磁石について、残留磁束密度(Br)、保磁力(HcJ)及び角形比(Hk/HcJ)をB−Hトレーサにより測定した。なお、Hkはヒステリシスループの第2象限において、磁束密度が残留磁束密度の90%となるときの外部磁界強度である。その結果を表2に併記する。 About the obtained rare earth permanent magnet, residual magnetic flux density (Br), coercive force (HcJ), and squareness ratio (Hk / HcJ) were measured with a BH tracer. Hk is the external magnetic field strength when the magnetic flux density is 90% of the residual magnetic flux density in the second quadrant of the hysteresis loop. The results are also shown in Table 2.
また、焼結温度を1030℃又は1070℃に変更したこと以外は、同様にして希土類永久磁石を作製し、また、磁気特性の評価を行った。その結果を、表2(1050℃)の結果を併せて表3に示す。つまり、表2は、表3中焼結温度を1050℃とした希土類永久磁石(No.2、5、8、11、14、17、20、23)を抜粋したものである。表3中、No.1〜No.21は酸素量が0.03質量%〜0.2質量%の範囲内であり、No.22〜No.24は酸素量が0.2質量%を超えるものである。 Further, except that the sintering temperature was changed to 1030 ° C. or 1070 ° C., a rare earth permanent magnet was produced in the same manner, and the magnetic properties were evaluated. The results are shown in Table 3 together with the results in Table 2 (1050 ° C.). That is, Table 2 is an extract of rare earth permanent magnets (No. 2, 5, 8, 11, 14, 17, 20, 23) whose sintering temperature is 1050 ° C. in Table 3. In Table 3, No. 1-No. No. 21 has an oxygen content in the range of 0.03% by mass to 0.2% by mass. 22-No. No. 24 has an oxygen content exceeding 0.2% by mass.
また、表3中、酸素量が0.03質量%〜0.2質量%の範囲内にある希土類永久磁石について、各焼結温度におけるGa添加量と残留磁束密度(Br)との関係を表すグラフを図1(a)に示す。同様に、各焼結温度におけるGa添加量と保磁力(HcJ)との関係を表すグラフを図1(b)に示す。同様に、各焼結温度におけるGa添加量と角形比(Hk/HcJ)との関係を表すグラフを図1(c)に示す。 In Table 3, the rare earth permanent magnet having an oxygen amount in the range of 0.03% by mass to 0.2% by mass represents the relationship between the Ga addition amount and the residual magnetic flux density (Br) at each sintering temperature. The graph is shown in FIG. Similarly, a graph showing the relationship between the Ga addition amount and the coercive force (HcJ) at each sintering temperature is shown in FIG. Similarly, the graph showing the relationship between the Ga addition amount and the squareness ratio (Hk / HcJ) at each sintering temperature is shown in FIG.
磁気特性の中で角形比(Hk/HcJ)が異常粒成長による低下傾向が最も早く現れる。つまり、角形比(Hk/HcJ)は、異常粒成長の傾向を把握することのできる一指標となる。ここで、図1(c)及び表3を見ると、Ga添加量を0.03質量%未満とした場合、特に焼結温度が1070℃の場合に、角形比(Hk/HcJ)の低下が著しい傾向を示している。90%以上の角形比(Hk/HcJ)が得られた焼結温度域を、焼結温度幅と定義すると、Gaを添加していない希土類永久磁石(No.1〜No.3)は、焼結温度幅が0である。同様に、Gaを0.03質量%添加した場合(No.4〜No.6)も、焼結温度幅が0である。 Among magnetic properties, the squareness ratio (Hk / HcJ) tends to decrease most rapidly due to abnormal grain growth. That is, the squareness ratio (Hk / HcJ) is an index that can grasp the tendency of abnormal grain growth. Here, looking at FIG. 1 (c) and Table 3, when the Ga addition amount is less than 0.03% by mass, particularly when the sintering temperature is 1070 ° C., the squareness ratio (Hk / HcJ) is reduced. It shows a remarkable trend. When the sintering temperature range in which the squareness ratio (Hk / HcJ) of 90% or more is obtained is defined as the sintering temperature range, rare earth permanent magnets (No. 1 to No. 3) to which no Ga is added are sintered. The temperature range is 0. Similarly, when 0.03% by mass of Ga is added (No. 4 to No. 6), the sintering temperature width is zero.
これに対し、Gaの0.08質量%添加(No.7〜No.9)及びGaの0.13質量%添加(No.10〜No.12)の場合、1030℃及び1050℃で角形比(Hk/HcJ)が90%を上回り、焼結温度幅は20℃である。さらに、Gaを0.16質量〜0.24質量%添加した希土類永久磁石(No.13〜No.18)では、全ての焼結温度において角形比(Hk/HcJ)が90%を上回っている。つまり、焼結温度幅は40℃とさらに広くなっている。 On the other hand, in the case of 0.08% by mass addition of Ga (No. 7 to No. 9) and 0.13% by mass addition of Ga (No. 10 to No. 12), the squareness ratio at 1030 ° C. and 1050 ° C. (Hk / HcJ) exceeds 90%, and the sintering temperature width is 20 ° C. Furthermore, in the rare earth permanent magnet (No. 13 to No. 18) to which Ga is added in an amount of 0.16 mass to 0.24 mass%, the squareness ratio (Hk / HcJ) exceeds 90% at all sintering temperatures. . That is, the sintering temperature range is further widened to 40 ° C.
一方、Gaを0.28質量%添加した場合(No.19〜No.21)、焼結温度幅は広いものの、表3及び図1(b)に示すように、保磁力(HcJ)の低下が認められる。 On the other hand, when 0.28% by mass of Ga is added (No. 19 to No. 21), the coercive force (HcJ) decreases as shown in Table 3 and FIG. Is recognized.
なお、酸素量が0.2質量%を超える場合(No.22〜No.24)、焼結温度幅は広いが、保磁力(HcJ)が低い値を示している。 When the oxygen amount exceeds 0.2 mass% (No. 22 to No. 24), the sintering temperature range is wide, but the coercive force (HcJ) is low.
さらに、No.1〜No.24の焼結体を切断し、断面10mm×10mmの領域内に存在する50μm以上100μm未満の粗大粒子、及び100μm以上の粗大粒子の個数を、走査型電子顕微鏡(SEM)を用いて調べた。その結果を表3に併せて示す。Br、HcJに低下が見られず、角形比が90%以上の試料では、50μm以上の粗大粒子は存在していなかった。 Furthermore, no. 1-No. 24 sintered bodies were cut, and the number of coarse particles of 50 μm or more and less than 100 μm and coarse particles of 100 μm or more present in an area having a cross section of 10 mm × 10 mm was examined using a scanning electron microscope (SEM). The results are also shown in Table 3. No decrease was observed in Br and HcJ, and in the sample having a squareness ratio of 90% or more, coarse particles of 50 μm or more were not present.
Claims (1)
前記磁場中成形工程は乾式成形により行い、The molding step in the magnetic field is performed by dry molding,
前記水素粉砕工程から焼成工程までの各工程の雰囲気を100ppm未満の低酸素濃度に抑え、The atmosphere of each step from the hydrogen pulverization step to the firing step is suppressed to a low oxygen concentration of less than 100 ppm,
R:28質量%〜33質量%、Co:0〜2質量%(ただし0は含まず。)、B:0.5質量%〜1.5質量%、Cu:0〜0.15質量%(ただし0は含まず。)、Al:0.03質量%〜0.25質量%、Ga:0.05質量%〜0.15質量%、O:0.03質量%〜0.1質量%、C:0.03質量%〜0.1質量%、N:0.02質量%〜0.05質量%、Fe及び不可避不純物:残部からなる組成を有し、粒径50μm以上の粒子が存在しない希土類永久磁石を得ることを特徴とする希土類永久磁石の製造方法。R: 28 mass% to 33 mass%, Co: 0 to 2 mass% (however, 0 is not included), B: 0.5 mass% to 1.5 mass%, Cu: 0 to 0.15 mass% ( However, 0 is not included.), Al: 0.03% by mass to 0.25% by mass, Ga: 0.05% by mass to 0.15% by mass, O: 0.03% by mass to 0.1% by mass, C: 0.03% by mass to 0.1% by mass, N: 0.02% by mass to 0.05% by mass, Fe and inevitable impurities: having a composition composed of the remainder, and particles having a particle size of 50 μm or more do not exist A method for producing a rare earth permanent magnet, comprising obtaining a rare earth permanent magnet.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2005041347A JP4706900B2 (en) | 2005-02-17 | 2005-02-17 | Rare earth permanent magnet manufacturing method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2005041347A JP4706900B2 (en) | 2005-02-17 | 2005-02-17 | Rare earth permanent magnet manufacturing method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2006228992A JP2006228992A (en) | 2006-08-31 |
| JP4706900B2 true JP4706900B2 (en) | 2011-06-22 |
Family
ID=36990081
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2005041347A Expired - Lifetime JP4706900B2 (en) | 2005-02-17 | 2005-02-17 | Rare earth permanent magnet manufacturing method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4706900B2 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP7596644B2 (en) * | 2020-03-26 | 2024-12-10 | 株式会社プロテリアル | Manufacturing method of RTB based sintered magnet |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3126199B2 (en) * | 1991-12-24 | 2001-01-22 | 信越化学工業株式会社 | Manufacturing method of rare earth permanent magnet |
| JP3724513B2 (en) * | 1993-11-02 | 2005-12-07 | Tdk株式会社 | Method for manufacturing permanent magnet |
| JPH09232173A (en) * | 1996-02-27 | 1997-09-05 | Hitachi Metals Ltd | Manufacture of rare earth magnet, and rare earth magnet |
| JPH10289813A (en) * | 1997-04-16 | 1998-10-27 | Hitachi Metals Ltd | Rare-earth magnet |
| JPH10303008A (en) * | 1997-04-23 | 1998-11-13 | Hitachi Metals Ltd | R-Fe-B based rare earth sintered magnet, method of manufacturing the same, and superconducting magnetic bearing device using the same |
| JPH1154351A (en) * | 1997-07-31 | 1999-02-26 | Hitachi Metals Ltd | Manufacture of r-fe-b rare earth permanent magnet and r-fe-b rare earth permanent magnet |
| JP3846835B2 (en) * | 1998-10-14 | 2006-11-15 | 株式会社Neomax | R-T-B sintered permanent magnet |
| JP3586577B2 (en) * | 1999-02-01 | 2004-11-10 | 株式会社Neomax | Sintered permanent magnet |
| JP4870274B2 (en) * | 2001-03-30 | 2012-02-08 | Tdk株式会社 | Rare earth permanent magnet manufacturing method |
| WO2004081954A1 (en) * | 2003-03-12 | 2004-09-23 | Neomax Co., Ltd. | R-t-b sintered magnet and process for producing the same |
| JP2005268538A (en) * | 2004-03-18 | 2005-09-29 | Neomax Co Ltd | Sintered rare earth permanent magnet and method for producing the same |
-
2005
- 2005-02-17 JP JP2005041347A patent/JP4706900B2/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| JP2006228992A (en) | 2006-08-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5310923B2 (en) | Rare earth magnets | |
| JP4648192B2 (en) | R-T-B rare earth permanent magnet | |
| WO2013191276A1 (en) | Sintered magnet | |
| JP4076177B2 (en) | Method for producing RTB-based rare earth permanent magnet | |
| JPWO2006098204A1 (en) | R-T-B sintered magnet | |
| JP4076175B2 (en) | R-T-B rare earth permanent magnet | |
| JP4766453B2 (en) | Rare earth permanent magnet | |
| JP4076178B2 (en) | R-T-B rare earth permanent magnet | |
| JP4766452B2 (en) | Rare earth permanent magnet | |
| JP4548127B2 (en) | R-T-B sintered magnet | |
| JP4895027B2 (en) | R-T-B sintered magnet and method for producing R-T-B sintered magnet | |
| JP4821128B2 (en) | R-Fe-B rare earth permanent magnet | |
| JP2007250605A (en) | Method for manufacturing r-t-b-based rare-earth permanent magnet | |
| JP6623998B2 (en) | Method for producing RTB based sintered magnet | |
| JP4534553B2 (en) | R-T-B system sintered magnet and manufacturing method thereof | |
| JP4529180B2 (en) | Rare earth permanent magnet | |
| JPWO2018101409A1 (en) | Rare earth sintered magnet | |
| JP4706900B2 (en) | Rare earth permanent magnet manufacturing method | |
| JP2005159053A (en) | Method for manufacturing r-t-b-based permanent magnet | |
| JP2006100434A (en) | Method of manufacturing r-t-b based rare earth permanent magnet | |
| JP4702522B2 (en) | R-T-B system sintered magnet and manufacturing method thereof | |
| JP2005286174A (en) | R-t-b-based sintered magnet | |
| JP2005286173A (en) | R-t-b based sintered magnet | |
| JP2005286176A (en) | R-t-b-based sintered magnet and its manufacturing method | |
| JP2005159052A (en) | R-t-b-based permanent magnet and its manufacturing method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071203 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100427 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100526 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100723 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110217 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110302 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 4706900 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| EXPY | Cancellation because of completion of term |