[go: up one dir, main page]

JP4738657B2 - Copper, copper-based alloy and method for producing the same - Google Patents

Copper, copper-based alloy and method for producing the same Download PDF

Info

Publication number
JP4738657B2
JP4738657B2 JP2001209109A JP2001209109A JP4738657B2 JP 4738657 B2 JP4738657 B2 JP 4738657B2 JP 2001209109 A JP2001209109 A JP 2001209109A JP 2001209109 A JP2001209109 A JP 2001209109A JP 4738657 B2 JP4738657 B2 JP 4738657B2
Authority
JP
Japan
Prior art keywords
copper
diameter portion
joined
base
small diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001209109A
Other languages
Japanese (ja)
Other versions
JP2003025078A (en
Inventor
康伸 上原
幸雄 石橋
博 園部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2001209109A priority Critical patent/JP4738657B2/en
Publication of JP2003025078A publication Critical patent/JP2003025078A/en
Application granted granted Critical
Publication of JP4738657B2 publication Critical patent/JP4738657B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電気・電子部品用材料として好適な銅、銅基合金に関するものであって、特に、接合により長尺化され、電気・電子部品用材料として好適な銅、銅基合金およびその製造方法に関するものである。
【0002】
【従来の技術】
コネクター、リードフレーム等の電気・電子部品用材料に対するコストダウン要求は年々高まっている状況にあり、素材についてもプレス加工など素材加工時の製造工程の効率化、歩留り向上等の面から長尺素材の提供が求められている。
しかし、現状において、素材メーカーにとってこのような材料の長尺化には鋳造段階を含めた設備の大幅な変更を必要とし、設備投資が大きくなり、そのメンテナンスを含めたコスト上の問題が厳しいという状況にある。
【0003】
また、一般素材の接合による長尺化においては、MIG溶接等の電気溶接をはじめとする様々な接合手段による材料の接合が行われているが、一般的に接合部分は母材部分と比べた場合、組成・組織等の変化に伴う機械特性、物理特性、耐環境性、その他の諸特性の変化が大きく、そのため接合による長尺素材は電気・電子部品用材料等のように、微細な加工に耐えると同時に接合部分においても母材部分と同様の諸特性を発現することが要求される分野では使用できないという状況にある。
【0004】
一方、特表平7−505090号公報により、プラスチック板乃至アルミニウム基合金板を対象とした摩擦撹拌接合が提案されている。この摩擦撹拌接合は、先端部を小径部に形成してその基部に段差面を設けた非消耗性の回転体を使用し、その小径部を両板材の接合すべき境界面の空間に貫通的に挿入して回転させ、その摩擦熱を利用して固相を溶融させることなく塑性変形流動による拡散によって接合を行う固相プロセスであり、塑性流動体の流出を上記段差面部分によって防止して良好な接合面を得るという技術であり、溶接棒を使用するMIG溶接の場合に見られるような異種材料の混入や雰囲気からの不純物成分の混入による組成の変動が抑えられるという特徴を有している。
【0005】
この摩擦撹拌接合手段は、MIG溶接のように非貫通的に表面部にビードを形成させて接合させることも可能であり、主としてアルミニウム基合金による押出し型材を対象とした場合の接合における曲がり防止策、塑性流動体の流出防止策として、接合面を傾斜面に形成する提案(特開平11−90654号公報、「構造体および摩擦撹拌接合方法」)、また、接合部分において表面凹みが生成されることに対処して押出し型材等部材の突合わせ部上下面が台形厚肉状になるように形成し、接合後に切削して平滑仕上げする提案(特開平11−314177号公報、「摩擦撹拌接合による構造体」)もなされている。
【0006】
【発明が解決しようとする課題】
しかしながら、摩擦撹拌接合の従来の適用例では接合後の形状、表面状態、機械強度に着目するに留まっており、接合後の接合部分と母材部分との結晶粒径や電気特性等の諸特性の均一性に関する問題は解決されていなかった。
すなわち、摩擦撹拌接合手段による接合体においては、回転体の段差部の径に等しい幅でかつ接合面に平行な二つの平面で区切られた領域である接合部分と接合体中の接合部分以外の領域である母材部分には特性値の違いがあり、素材製造工程中で製造効率を向上させる目的で用いられる接合の場合には製品としての使用の際には接合部分を除去せざるを得ない場合が多く、機械特性と共に電気特性等の諸特性を母材部分と一体の状態で発現することが要求されるような電気・電子部品用材料等においては接合部分の適用は困難とされている状況にある。
【0007】
上記の状況に鑑み、本発明の目的とするところは、接合部分と母材部分との特性に実質上の差異がなく、コネクターやリードフレーム等の電気・電子部品用材料として好適に利用できる長尺の銅及び銅基合金とその製造方法の提供にある。
【0008】
【課題を解決するための手段】
本発明は、銅、銅基合金材の接合による長尺化において、摩擦撹拌接合手段を用いて接合を行った後、所定の加工を行うことで、接合部分においても母材部分と同等の電気特性等諸特性を持つ長尺の接合材を得ることができるとの知見に基づいてなされたものである。
【0009】
すなわち、本発明は、第1に、摩擦撹拌接合手段を用いて接合された同種の銅または銅基合金材料同士の接合体が加工処理されてなり、接合部分の母材部分に対する特性値の比が、結晶粒径で0.6〜1.4、引張り強さで0.8〜1.2、導電率で0.7〜1.3であることを特徴とする銅または銅基合金であり、第2に、前記摩擦撹拌接合手段が、回転軸方向が共通の小径部と大径部とを有し、該大径部と固接された該小径部の基部に段差面を形成した非消耗性の回転体を用いて、該小径部を前記同種の銅または銅基合金材料同士の接合すべき面の間に挿入して行う摩擦撹拌接合手段である、第1記載の銅または銅基合金であり、第3に、前記加工処理が、加工率10%以上の圧延加工である、第1または2に記載の銅または銅基合金であり、第4に、前記加工処理が、250℃以上の温度での焼鈍処理である、第1または2に記載の銅または銅基合金であり、第5に、前記加工処理が、250℃以上の温度での焼鈍処理後に加工率10%以上の圧延加工を行う加工処理である、第1または2に記載の銅または銅基合金であり、第6に、前記加工処理が、加工率10%以上の圧延加工後に250℃以上の温度での焼鈍処理を行う加工処理である、第1または2に記載の銅または銅基合金であり、第7に、前記銅または銅基合金が、電気または電子部品用材料として用いられる、第1〜6のいずれかに記載の銅または銅基合金であり、第8に、回転軸方向が共通の小径部と大径部とを有し、該大径部と固接された該小径部の基部に段差面を形成した非消耗性の回転体を用いて、該小径部を同種の銅または銅基合金材料同士の接合すべき面の間に挿入して行う摩擦撹拌接合手段によって該同種の銅または銅基合金材料同士を接合した後、得られた接合材を加工処理することにより、接合部分の母材部分に対する特性値の比を、結晶粒径で0.6〜1.4、引張り強さで0.8〜1.2、導電率で0.7〜1.3とすることを特徴とする銅または銅基合金の製造方法であり、第9に、前記加工処理が、加工率10%以上の圧延加工である、第8記載の銅または銅基合金の製造方法であり、第10に、前記加工処理が、250℃以上の温度での焼鈍処理である、第8記載の銅または銅基合金の製造方法であり、第11に、前記加工処理が、250℃以上の温度での焼鈍処理後に加工率10%以上の圧延加工を行う加工処理である、第8記載の銅または銅基合金の製造方法であり、第12に、前記加工処理が、加工率10%以上の圧延加工後に250℃以上の温度での焼鈍処理を行う加工処理である、第8記載の銅または銅基合金材の製造方法であり、第13に、前記銅または銅基合金が、電気または電子部品用材料として用いられる、第8〜12のいずれかに記載の銅または銅基合金の製造方法であり、第14に、第1〜6のいずれかに記載の銅または銅基合金を用いた電気または電子部品である。
【0010】
【発明の実施の形態】
摩擦撹拌接合は、上記のように、先端部を小径部に形成し、該小径部の基部を段差面に形成した大径部の回転体を使用し、該小径部を接合すべき両面間に挿入して移動させ、その回転摩擦熱を利用し、接合材固相の塑性流動拡散により接合を行うもので、流動体の流出は大径部の段差面で抑止される。
【0011】
本発明においては、塑性流動する銅または銅基合金に反応しない非消耗性の回転体としてWC超硬材、工具鋼等を用いることができる。
接合しようとする同種の銅または銅基合金材料同士を突合わせて固定し、その接合すべき両面間に貫通的に上記回転体の小径部を30〜2000 rpm、好ましくは200〜1300rpmの範囲の回転速度で回転させながら挿入し10〜1000mm/min、好ましくは50〜500mm/ minの速度で移動させることにより、または非貫通的にその上および/または下表面において接合すべき両面間に上記小径部を挿入して同様に回転移動させることにより、両部材を接合することができる。
【0012】
本発明においては、得られた接合体に対して、さらに所定の加工処理を行う。
加工処理は、摩擦撹拌接合手段により同種の銅、銅基合金の材料同士を接合したのち、接合体に対して加工率10%以上の圧延、または250℃以上の温度での焼鈍処理を行う。好ましくは、加工率10%以上の圧延後250℃以上の温度での焼鈍処理を行うこと、または250℃以上の温度での焼鈍処理を行った後加工率10%以上の圧延を行うことが望ましい。
接合後の材料について、上記の処理を施すことにより、摩擦撹拌接合による接合部分を実質的に母材部分と同等に扱える特性値比として、結晶粒径で0.6〜1.4、引張り強さで0.8〜1.2、導電率で0.7〜1.3の範囲内におさめることが可能になる。
【0013】
接合後の圧延加工率は、低いと母材部分と接合部分の結晶組織の違いが大きくなるため、接合時の材料の板厚に対して加工率10%以上、好ましくは20%以上の圧延を行うことが必要である。また、焼鈍温度は、低いと回復、再結晶、結晶成長が十分に進行せず、母材部分と接合部分の電気特性等諸特性の差が大きくなるため、250℃以上、好ましくは350℃以上の温度での焼鈍を行う必要がある。なお、接合体に対して加工率10%以上の圧延と250℃以上の温度での焼鈍の双方を行うことが上記諸特性の発現のために望ましい。この場合、圧延加工を行った後に焼鈍処理してもよく、焼鈍処理を行った後圧延してもよい。
【0014】
摩擦撹拌接合は、溶融を伴わない固相プロセスであり、かつ溶接棒が不要であるために異種材料の混入や雰囲気からの混入による組成の変動を抑えられる等の特徴を持ち、本発明においてはさらに所定の加工処理を行うことにより、母材部分と接合部分の特性差を抑えることを可能としたものである。
本発明は、上記のように、コネクター、リードフレーム等の電気または電子部品用素材として接合部分を含めて、長尺化された接合体全体を使用可能とする銅、銅基合金とその製造方法に関するものであり、素材の長尺化が可能であるために素材加工工程、すなわちコネクター、リードフレーム等の電気または電子部品の製造工程において製造効率及びコストの改善が可能となるものである。
【0015】
【実施例】
以下に接合すべき銅基合金材料としてC2600材を用いた実施例を示すが、本発明はこれら実施例に限定されるものではない。
〔実施例〕
板厚2.0mm、幅300mm、長さ300mmのC2600材(JIS規格、Cu70%−Zn30%合金)による板材同士を長さ方向の端部を接合面として突き合わせてベッドに固定し、摩擦撹拌接合を行った。摩擦撹拌接合は、小径部の径が10mm、長さが1.9mmで、大径部の径が20mmで材質がWC超硬材からなる回転体を用い、回転速度1000rpm、移動速度200mm/minで非貫通状態に挿入して行った。この摩擦撹拌接合されただけの板材における接合部分の母材部分に対する特性値の比は、表2のNo.12に示すように、結晶粒径で5.8、引張り強さで0.52、導電率で0.89であった。
摩擦撹拌接合によって得られた上記の接合板材について、さらに加工率10〜50%の冷間圧延、または250℃〜550℃での焼鈍、または加工率25%の冷間圧延後300℃での焼鈍、または450℃での焼鈍後加工率30%の冷間加工を行った。
得られた処理板材を試料No.1〜8として、それぞれ、接合部分と母材部分における結晶粒径、引張り強さ、導電率を測定し、接合部分の値の母材部分の値に対する比率を算出した。結果を表1に示した。
【0016】
【表1】

Figure 0004738657
【0017】
なお、使用した素材C2600材の平均結晶粒径は20μm、引張り強さは390 N/mm2 、導電率は35%IACSであった。
表1に見られるように、接合部分と母材部分の特性値の比は、結晶粒径で0.6〜1.02、引張り強さで0.85〜0.99、導電率で0.9〜1の範囲にあり、その他の諸特性においても接合部分と母材部分との間に実質的に相違は認めらず、電気または電子部品用材料として使用し得ることが確かめられた。
【0018】
〔比較例〕
次に比較例として、上記実施例の工程中で得られた摩擦撹拌接合されただけの接合板材について、加工率5%の冷間圧延、または200℃での焼鈍、また、加工率5%の冷間圧延後200℃での焼鈍を行った。
得られた処理板材を試料No.9〜11として、それぞれ、接合部分と母材部分における結晶粒径、引張り強さ及び導電率を測定し、接合部分の値の母材部分の値に対する比を算出した。これらの結果を表2に示した。
【0019】
【表2】
Figure 0004738657
【0020】
すなわち、表2に示されるように比較例においては、接合部分と母材部分の特性値の比は、導電率については0.9〜0.95と高いものの、結晶粒径で0.3〜0.6、引張り強さで0.7〜0.75といずれも低く、電気または電子部品用材料としては不十分なものであることが確かめられた。
【0021】
【発明の効果】
本発明は、上記のように構成されているので、銅及び銅基合金全般にわたって適用可能であり、コネクター、リードフレームをはじめとする電気・電子部品用材料として、十分な諸特性を兼ね備えた長尺の接合部材が得られる。すなわち、本発明の接合部材によれば、接合部分と母材部分の特性に実質的に差異がなく、従って接合部材から接合部分を取り除く必要がなく、接合部分をそのまま母材部分と同様に使用することが可能であり、均質で低コストの電気または電子部品を提供することができる。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to copper and copper-based alloys suitable as materials for electric / electronic parts, and in particular, copper, copper-based alloys which are elongated by joining and are suitable as materials for electric / electronic parts, and methods for producing the same. It is about.
[0002]
[Prior art]
Cost reduction requirements for materials for electrical and electronic parts such as connectors and lead frames are increasing year by year. For materials, long materials are used from the standpoints of improving the efficiency of manufacturing processes during material processing such as pressing and improving yield. Is required.
However, at present, material manufacturers need to make major changes to the equipment including the casting stage to lengthen such materials, which increases capital investment and severe cost problems including maintenance. Is in the situation.
[0003]
Moreover, in lengthening by joining of general materials, materials are joined by various joining means including electric welding such as MIG welding, but generally the joining portion is compared with the base material portion. In this case, the mechanical properties, physical properties, environmental resistance, and other characteristics change greatly due to changes in composition and structure. Therefore, long materials by joining are processed finely like materials for electrical and electronic parts. At the same time, it cannot be used in a field where it is required to develop various properties similar to those of the base material portion at the joint portion.
[0004]
On the other hand, Japanese Patent Publication No. 7-505090 proposes friction stir welding for plastic plates or aluminum-based alloy plates. This friction stir welding uses a non-consumable rotating body having a tip portion formed in a small diameter portion and a stepped surface provided at the base portion, and the small diameter portion is penetrated into the space of the boundary surface where both plate members are to be joined. This is a solid-phase process where the frictional heat is used to join, and the solid phase is joined by diffusion by plastic deformation flow without melting the solid phase, and the stepped surface portion prevents the plastic fluid from flowing out. It is a technology for obtaining a good joint surface, and it has the feature that fluctuations in composition due to mixing of different materials and mixing of impurity components from the atmosphere, as seen in MIG welding using a welding rod, can be suppressed. Yes.
[0005]
This friction stir welding means can be joined by forming a bead on the surface portion non-penetrated like MIG welding, and is a measure for preventing bending in joining mainly for extruded molds made of aluminum-based alloys. As a measure to prevent the plastic fluid from flowing out, a proposal for forming the joint surface as an inclined surface (Japanese Patent Laid-Open No. 11-90654, “Structure and Friction Stir Welding Method”), and surface dents are generated at the joint portion. In response to this, a proposal is made so that the upper and lower surfaces of the abutting portion of the extruded mold member and the like have a trapezoidal thick shape and are cut and smoothed after joining (Japanese Patent Laid-Open No. 11-314177, “By friction stir welding” Structures ") are also made.
[0006]
[Problems to be solved by the invention]
However, in the conventional application example of friction stir welding, the focus is on the shape, surface state, and mechanical strength after joining, and various characteristics such as the crystal grain size and electrical characteristics of the joined part and base material part after joining. The problem of uniformity of the problem has not been solved.
That is, in the joined body by the friction stir welding means, a joint portion that is a region divided by two planes having a width equal to the diameter of the stepped portion of the rotating body and parallel to the joined surface, and a joined portion in the joined body. There is a difference in the characteristic value of the base material part, which is an area, and in the case of joining used for the purpose of improving manufacturing efficiency in the material manufacturing process, it is necessary to remove the joining part when used as a product. In many cases, it is difficult to apply joint parts in materials for electrical and electronic parts that require mechanical properties and various characteristics such as electrical characteristics to be integrated with the base material. Is in a situation.
[0007]
In view of the above situation, the object of the present invention is that there is no substantial difference in characteristics between the joint portion and the base material portion, and it can be suitably used as a material for electrical and electronic parts such as connectors and lead frames. The present invention provides a copper and copper-base alloy and a method for producing the same.
[0008]
[Means for Solving the Problems]
In the present invention, in the lengthening by joining of copper and copper base alloy material, after joining using friction stir welding means, predetermined processing is performed, so that the same electric power as that of the base material part can be obtained in the joined part. This is based on the knowledge that a long joining material having various characteristics such as characteristics can be obtained.
[0009]
That is, according to the present invention, firstly, a joined body of the same kind of copper or copper-base alloy materials joined using the friction stir welding means is processed, and the ratio of the characteristic value of the joined portion to the base material portion is processed. Is a copper or copper-based alloy characterized in that the crystal grain size is 0.6 to 1.4, the tensile strength is 0.8 to 1.2, and the conductivity is 0.7 to 1.3. Second, the friction stir welding means has a small diameter portion and a large diameter portion having a common rotation axis direction, and a step surface is formed on the base portion of the small diameter portion that is in solid contact with the large diameter portion. The copper or copper base according to the first aspect, which is friction stir welding means that uses a consumable rotating body and inserts the small diameter portion between the surfaces of the same kind of copper or copper base alloy materials to be joined. Third, the copper or copper-based alloy according to the first or second embodiment, wherein the processing is rolling with a processing rate of 10% or more. 4thly, it is the copper or copper base alloy according to 1 or 2, wherein the processing is annealing at a temperature of 250 ° C. or higher, and fifth, the processing is 250 ° C. or higher. The copper or copper-based alloy according to 1 or 2, which is a processing for performing a rolling process with a processing rate of 10% or more after the annealing treatment at a temperature of 6th, and sixthly, the processing treatment has a processing rate of 10%. The copper or copper base alloy according to the first or second embodiment, which is a processing treatment for performing an annealing process at a temperature of 250 ° C. or higher after the above rolling process. Seventh, the copper or copper base alloy is electrically or The copper or copper-based alloy according to any one of 1 to 6, which is used as a material for electronic parts, and eighthly, the rotation axis direction has a common small diameter part and a large diameter part, and the large diameter Using a non-consumable rotating body having a stepped surface formed at the base of the small diameter portion fixedly contacted with the portion, After joining the same kind of copper or copper base alloy materials by the friction stir welding means performed by inserting the diameter portion between the surfaces of the same kind of copper or copper base alloy materials to be joined, the obtained joining material is By processing, the ratio of the characteristic value of the joint part to the base material part is 0.6 to 1.4 in terms of crystal grain size, 0.8 to 1.2 in terms of tensile strength, and 0.7 to 0.7 in terms of conductivity. It is a manufacturing method of copper or a copper base alloy characterized by being 1.3, 9thly, the copper or copper base alloy according to the eighth aspect, wherein the processing is rolling with a processing rate of 10% or more 10th is the method for producing copper or copper-based alloy according to the eighth aspect, wherein the processing is annealing at a temperature of 250 ° C. or higher, and eleventh, the processing is , A processing for performing a rolling process with a processing rate of 10% or more after an annealing process at a temperature of 250 ° C. or higher. The method for producing copper or a copper-based alloy according to the eighth aspect, twelfth, the processing is a processing for performing annealing at a temperature of 250 ° C. or higher after rolling with a processing rate of 10% or more. It is a manufacturing method of the copper or copper base alloy material according to the eighth, thirteenth, the copper or copper according to any one of the eighth to twelfth, wherein the copper or copper base alloy is used as a material for electric or electronic parts. It is a manufacturing method of a copper base alloy, 14th is an electric or electronic component using the copper or copper base alloy according to any one of the first to sixth aspects.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
As described above, the friction stir welding uses a rotating body having a large diameter portion in which a tip portion is formed in a small diameter portion and a base portion of the small diameter portion is formed on a stepped surface, and the small diameter portion is bonded between both surfaces to be bonded. It is inserted and moved, and its rotational frictional heat is used to perform bonding by plastic flow diffusion of the bonding material solid phase. Outflow of the fluid is suppressed at the step surface of the large diameter portion.
[0011]
In the present invention, WC cemented carbide, tool steel, or the like can be used as a non-consumable rotating body that does not react with plastic flowing copper or copper-based alloy.
The same kind of copper or copper base alloy materials to be joined are abutted and fixed, and the small diameter portion of the rotating body is penetrated between both surfaces to be joined in a range of 30 to 2000 rpm, preferably 200 to 1300 rpm. The small diameter is inserted between both surfaces to be joined by rotating and rotating at a rotational speed of 10 to 1000 mm / min, preferably 50 to 500 mm / min, or non-penetratingly on the upper and / or lower surface. Both members can be joined by inserting the part and rotating it in the same manner.
[0012]
In the present invention, a predetermined processing is further performed on the obtained bonded body.
In the processing, after joining the same kind of copper and copper-based alloy materials by friction stir welding means, the bonded body is subjected to rolling at a processing rate of 10% or more, or annealing at a temperature of 250 ° C. or higher. Preferably, it is desirable to perform annealing at a temperature of 250 ° C. or higher after rolling at a processing rate of 10% or higher, or to perform rolling at a processing rate of 10% or higher after annealing at a temperature of 250 ° C. or higher. .
By applying the above treatment to the material after joining, the characteristic value ratio that can handle the joint part by friction stir welding substantially equivalent to the base material part is 0.6 to 1.4 in terms of crystal grain size, tensile strength Thus, it is possible to keep the conductivity within the range of 0.8 to 1.2 and the conductivity within the range of 0.7 to 1.3.
[0013]
If the rolling processing rate after joining is low, the difference in crystal structure between the base material portion and the joining portion becomes large. Therefore, rolling at a working rate of 10% or more, preferably 20% or more, with respect to the plate thickness of the material at the time of joining. It is necessary to do. In addition, if the annealing temperature is low, recovery, recrystallization, and crystal growth do not proceed sufficiently, and the difference in various characteristics such as the electrical properties of the base material portion and the joint portion becomes large, so 250 ° C. or higher, preferably 350 ° C. or higher. It is necessary to perform annealing at a temperature of. In addition, it is desirable to perform both rolling with a processing rate of 10% or more and annealing at a temperature of 250 ° C. or more on the joined body in order to exhibit the above various characteristics. In this case, the annealing process may be performed after the rolling process, or the rolling process may be performed after the annealing process.
[0014]
Friction stir welding is a solid-phase process that does not involve melting, and since it does not require a welding rod, it has features such as suppressing variation in composition due to mixing of different materials and mixing from the atmosphere. Further, by performing a predetermined processing, it is possible to suppress a difference in characteristics between the base material portion and the joint portion.
As described above, the present invention provides copper, a copper-based alloy, and a method for producing the same, which enable use of the entire lengthened bonded body including a bonded portion as a material for electrical or electronic components such as connectors and lead frames. Since the length of the material can be increased, manufacturing efficiency and cost can be improved in the material processing step, that is, the manufacturing process of electrical or electronic components such as connectors and lead frames.
[0015]
【Example】
Although the Example using C2600 material as a copper base alloy material which should be joined below is shown, this invention is not limited to these Examples.
〔Example〕
Plates made of C2600 material (JIS standard, Cu70% -Zn30% alloy) with a plate thickness of 2.0mm, width of 300mm, and length of 300mm are fixed to the bed with the ends in the lengthwise direction being joined to the bed, and friction stir welding Went. Friction stir welding uses a rotating body made of a WC cemented carbide material having a diameter of a small diameter portion of 10 mm, a length of 1.9 mm, a diameter of a large diameter portion of 20 mm, and a material made of WC cemented carbide, and a rotational speed of 1000 rpm and a moving speed of 200 mm / min. And inserted in a non-penetrating state. The ratio of the characteristic value of the joint portion to the base material portion in the plate material that has been just friction stir welded is No. 1 in Table 2. As shown in FIG. 12, the crystal grain size was 5.8, the tensile strength was 0.52, and the conductivity was 0.89.
About said joining board | plate material obtained by friction stir welding, it further cold-rolls with a processing rate of 10-50%, or anneals at 250 to 550 degreeC, or anneals at 300 degreeC after cold rolling with a processing rate of 25%. Alternatively, cold working was performed at a processing rate of 30% after annealing at 450 ° C.
The obtained treated plate material was sample No. As 1 to 8, the crystal grain size, the tensile strength, and the electrical conductivity in the joint portion and the base material portion were measured, and the ratio of the value of the joint portion to the value of the base material portion was calculated. The results are shown in Table 1.
[0016]
[Table 1]
Figure 0004738657
[0017]
The material C2600 used had an average crystal grain size of 20 μm, a tensile strength of 390 N / mm 2 , and a conductivity of 35% IACS.
As can be seen from Table 1, the ratio of the characteristic values of the joint portion and the base material portion is 0.6 to 1.02 for the crystal grain size, 0.85 to 0.99 for the tensile strength, and 0.00 for the conductivity. It was in the range of 9 to 1, and in other characteristics, substantially no difference was recognized between the joint portion and the base material portion, and it was confirmed that it could be used as a material for electric or electronic parts.
[0018]
[Comparative Example]
Next, as a comparative example, for the joined plate material obtained by the friction stir welding obtained in the process of the above example, cold rolling with a processing rate of 5%, or annealing at 200 ° C., and a processing rate of 5% After cold rolling, annealing at 200 ° C. was performed.
The obtained treated plate material was sample No. As 9 to 11, the crystal grain size, the tensile strength, and the electrical conductivity in the joint portion and the base material portion were measured, respectively, and the ratio of the value of the joint portion to the value of the base material portion was calculated. These results are shown in Table 2.
[0019]
[Table 2]
Figure 0004738657
[0020]
That is, as shown in Table 2, in the comparative example, the ratio of the characteristic value of the joint portion and the base material portion is as high as 0.9 to 0.95 for the conductivity, but 0.3 to 0.3 as the crystal grain size. 0.6 and tensile strength were both low, 0.7 to 0.75, and it was confirmed that the material was insufficient as a material for electric or electronic parts.
[0021]
【The invention's effect】
Since the present invention is configured as described above, the present invention can be applied to all copper and copper-based alloys, and as a material for electrical and electronic parts such as connectors and lead frames, it has long enough characteristics. A joining member having a scale is obtained. That is, according to the joining member of the present invention, there is substantially no difference between the properties of the joining part and the base material part, and therefore, there is no need to remove the joining part from the joining member, and the joining part is used as it is as the base material part. It is possible to provide a homogeneous and low-cost electrical or electronic component.

Claims (6)

摩擦撹拌接合手段を用いて接合された同種の銅または銅基合金材料同士の接合体が加工処理されてなり、接合部分の母材部分に対する特性値の比が、結晶粒径で0.6〜1.4、引張り強さで0.8〜1.2、導電率で0.7〜1.3であって、前記加工処理が250℃以上の温度での焼鈍処理後に加工率10%以上の圧延加工を行う加工処理であることを特徴とする銅または銅基合金。A joined body of the same kind of copper or copper-based alloy materials joined using the friction stir welding means is processed, and the ratio of the characteristic value of the joined portion to the base material portion is 0.6 to 1.4, 0.8 to 1.2 in tensile strength, 0.7 to 1.3 in electrical conductivity, and the processing rate is 10% or higher after annealing at a temperature of 250 ° C. or higher. A copper or copper-based alloy, which is a processing for performing a rolling process . 前記摩擦撹拌接合手段が、回転軸方向が共通の小径部と大径部とを有し、該大径部と固接された該小径部の基部に段差面を形成した非消耗性の回転体を用いて、該小径部を前記同種の銅または銅基合金材料同士の接合すべき面の間に挿入して行う摩擦撹拌接合手段である、請求項1記載の銅または銅基合金。  Non-consumable rotating body in which the friction stir welding means has a small diameter portion and a large diameter portion having a common rotation axis direction, and a step surface is formed at a base portion of the small diameter portion fixedly contacted with the large diameter portion. 2. The copper or copper base alloy according to claim 1, which is a friction stir welding means for inserting the small diameter portion between the surfaces of the same kind of copper or copper base alloy materials to be joined. 前記銅または銅基合金が、電気または電子部品用材料として用いられる、請求項1または2に記載の銅または銅基合金。The copper or copper base alloy according to claim 1 or 2, wherein the copper or copper base alloy is used as a material for electric or electronic parts. 回転軸方向が共通の小径部と大径部とを有し、該大径部と固接された該小径部の基部に段差面を形成した非消耗性の回転体を用いて、該小径部を同種の銅または銅基合金材料同士の接合すべき面の間に挿入して行う摩擦撹拌接合手段によって該同種の銅または銅基合金材料同士を接合した後、得られた接合体を加工処理することにより、接合部分の母材部分に対する特性値の比を、結晶粒径で0.6〜1.4、引張り強さで0.8〜1.2、導電率で0.7〜1.3とし、前記加工処理が250℃以上の温度での焼鈍処理後に加工率10%以上の圧延加工を行う加工処理であることを特徴とする銅または銅基合金の製造方法。Using a non-consumable rotating body having a small diameter portion and a large diameter portion having a common rotation axis direction, and forming a stepped surface at a base portion of the small diameter portion fixedly contacted with the large diameter portion, the small diameter portion After joining the same kind of copper or copper-base alloy materials by friction stir welding means that is performed by inserting between the surfaces of the same kind of copper or copper-base alloy materials to be joined, the obtained joined body is processed Thus, the ratio of the characteristic value of the bonded portion to the base material portion is 0.6 to 1.4 in terms of crystal grain size, 0.8 to 1.2 in terms of tensile strength, and 0.7 to 1 in terms of conductivity. 3. A method for producing copper or a copper-based alloy, wherein the processing is a processing for performing a rolling process with a processing rate of 10% or more after an annealing process at a temperature of 250 ° C. or higher . 前記銅または銅基合金が、電気または電子部品用材料として用いられる、請求項4に記載の銅または銅基合金の製造方法。The manufacturing method of the copper or copper base alloy of Claim 4 with which the said copper or copper base alloy is used as an electrical or electronic component material. 請求項1または2に記載の銅または銅基合金を用いた電気または電子部品。An electrical or electronic component using the copper or copper-based alloy according to claim 1 .
JP2001209109A 2001-07-10 2001-07-10 Copper, copper-based alloy and method for producing the same Expired - Fee Related JP4738657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001209109A JP4738657B2 (en) 2001-07-10 2001-07-10 Copper, copper-based alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001209109A JP4738657B2 (en) 2001-07-10 2001-07-10 Copper, copper-based alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003025078A JP2003025078A (en) 2003-01-28
JP4738657B2 true JP4738657B2 (en) 2011-08-03

Family

ID=19044811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001209109A Expired - Fee Related JP4738657B2 (en) 2001-07-10 2001-07-10 Copper, copper-based alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP4738657B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4422975B2 (en) * 2003-04-03 2010-03-03 株式会社コベルコ科研 Sputtering target and manufacturing method thereof
US7032800B2 (en) * 2003-05-30 2006-04-25 General Electric Company Apparatus and method for friction stir welding of high strength materials, and articles made therefrom
JP4842693B2 (en) * 2006-04-26 2011-12-21 Dowaホールディングス株式会社 Copper member joining method and friction stir welding apparatus
CN114107851B (en) * 2021-12-16 2022-06-17 江苏海洋大学 Distribution optimization method for processing white copper alloy grain boundary characteristics based on stirring friction
CN115178851A (en) * 2022-07-15 2022-10-14 浙江谷蓝电子科技有限公司 Lead frame welding method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987814A (en) * 1995-09-27 1997-03-31 Nikko Kinzoku Kk Production of copper alloy for electronic equipment
JPH10152736A (en) * 1996-11-25 1998-06-09 Hitachi Cable Ltd Copper alloy material and method of manufacturing the same
JPH10230320A (en) * 1997-02-19 1998-09-02 Showa Alum Corp Manufacturing method of large diameter coil for rolling
JPH10305372A (en) * 1997-05-07 1998-11-17 Amada Co Ltd Welding device
JP3390689B2 (en) * 1997-07-23 2003-03-24 株式会社日立製作所 Structure by friction stir welding
JP3589863B2 (en) * 1997-07-23 2004-11-17 株式会社日立製作所 Structure and friction stir welding method
JPH1147960A (en) * 1997-08-04 1999-02-23 Showa Alum Corp Heat exchanger
GB9808607D0 (en) * 1998-04-22 1998-06-24 Welding Inst Corrosion resistant enclosure and methods for its manufacture
JP3835004B2 (en) * 1998-07-22 2006-10-18 日立電線株式会社 Copper alloy processing method
JP4232339B2 (en) * 2001-02-06 2009-03-04 日立電線株式会社 Butt welding method of metal by friction stir welding

Also Published As

Publication number Publication date
JP2003025078A (en) 2003-01-28

Similar Documents

Publication Publication Date Title
JP4961512B2 (en) Aluminum copper clad material
US7967182B2 (en) Dissimilar metal joint product and joining method therefor
CN108778602B (en) Low-temperature bonding method for metal materials and bonded structure
CN114206535B (en) Dissimilar material solid phase bonding method and dissimilar material solid phase bonding structure
JP2004358556A5 (en)
CN106346128A (en) Aluminum copper dissimilar metal rotation friction welding method added with middle layer
JP2003170280A (en) Dissimilar metal materials joining method
CN112894123A (en) Friction stir welding method for aluminum-copper dissimilar metal
KR20130027469A (en) Electrode wire for electrical discharge machining
JP4842693B2 (en) Copper member joining method and friction stir welding apparatus
JP2009074125A (en) Copper alloy for electric and electronic parts having excellent plating properties and method for producing the same
JP4738657B2 (en) Copper, copper-based alloy and method for producing the same
JP6016095B2 (en) Joining method and joining parts
JP7433663B2 (en) Dissimilar material solid phase joining method, dissimilar material solid phase joining structure, and dissimilar material solid phase joining device
EP0587307A1 (en) Aluminium alloys
JP4183177B2 (en) Heat treated aluminum alloy bonding material with excellent ductility
JP5408589B2 (en) Solder alloy and manufacturing method thereof
JP6426883B2 (en) Method of manufacturing joined body excellent in corrosion resistance
US20240293888A1 (en) Dissimilar material solid-phase bonding method and dissimilar material solid-phase bonded structure
JP4410514B2 (en) Aluminum alloy bonding material excellent in formability and manufacturing method thereof
JP3358680B2 (en) Method for producing wire rod of Ni-Ti alloy
JP4068486B2 (en) Electrode material for resistance welding and manufacturing method thereof
JP2004176149A (en) Method for local modification of processing member and use thereof
JP2001262330A (en) Diffusion-joined sputtering target assembly and its producing method
WO2023145620A1 (en) Heat treatment method for dissimilar metal joint material and resulting dissimilar metal joint material

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040217

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080717

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees