JP4859081B2 - Manufacturing method of composite material - Google Patents
Manufacturing method of composite material Download PDFInfo
- Publication number
- JP4859081B2 JP4859081B2 JP2000121162A JP2000121162A JP4859081B2 JP 4859081 B2 JP4859081 B2 JP 4859081B2 JP 2000121162 A JP2000121162 A JP 2000121162A JP 2000121162 A JP2000121162 A JP 2000121162A JP 4859081 B2 JP4859081 B2 JP 4859081B2
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- cured
- curing
- temperature
- curing agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Reinforced Plastic Materials (AREA)
- Epoxy Resins (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、100℃以下の温度で短時間で1次硬化でき、次に1次硬化温度より高温で2次硬化することで耐熱性の高い硬化物が得られるエポキシ樹脂組成物に関する。
【0002】
【従来の技術】
繊維強化複合材料(以下FRPと記す)は、スポーツレジャーから航空機、産業用途まで広く用いられるに至っている。一般的なFRPの成形法として成形型を使用して成形する方法がある。例えば、クロス等の強化繊維材を成形型に添って樹脂を含浸しながら貼り付け、これを繰り返し、次に硬化し、型から脱型して成形物を得る、或いは予め強化繊維材に樹脂を含浸したいわゆるプリプレグを成形型に添って貼り付け、これを繰り返し次に硬化し、型から脱型して成型物を得るハンドレイアップ法や、成形型にクロス等の強化繊維材をセットし、型に樹脂を注入した後硬化し、脱型して成型物を得るレジントランスファーモールディング(RTM)法、あるいは強化繊維を短繊維にカットし、樹脂と混ぜ合わせたモールディングコンパウンドを成形型に注入し硬化して成形物を得る方法等が知られている。
【0003】
成形型にはさまざまな材質のものが使用されている。金属製の成形型は耐熱性、耐久性には優れるが、型の作製に手間と労力を要し高価である。一方樹脂製の成形型は耐熱性、耐久性には劣るが、安価である。近年の多様なニーズに対応するため、少量多品種生産が増えてきており、樹脂製の成形型を使用するケースも多い。ところが樹脂製の成形型を使用した場合は、成形型自体の耐熱性が十分でないため、これを用いた高温でのFRPの成形が困難であり、耐熱性の高い成形品の成形には適用できないといった問題がある。
【0004】
又、FRP製の成形型を作製する場合では、実物からマスター型をおこし、マスター型の上にプリプレグ等を積層し硬化してFRP型を作製するが、耐熱性の高い成形品を得るためには、高温での成形する必要があり、耐熱性の高いFRP型が必要である。耐熱性の高いFRP型を成形するにはマスター型も耐熱性が求められることになり、その結果これまでマスター型の作製には多大の費用と労力を要していた。
【0005】
そこで樹脂製等の耐熱性の低い成形型を使用して耐熱性の高いFRP成形品を得る方法として、樹脂製等耐熱性の低い成形型を用いて比較的低温(100℃以下)で1次硬化して、型から脱型可能で、形状を十分保持出来るほどに硬化し、その後、型から脱型して更に高い温度で加熱放置して2次硬化させて耐熱性の高いFRP成形品を得る方法が注目されている。耐熱性の低いマスター型を用いて耐熱性の高いFRP型を作製する場合も同様である。
【0006】
近年、室温で比較的安定で70〜100℃の比較的低温で硬化する樹脂の技術が、例えば特開平11−302412号公報に開示されているが、いずれの技術も低温で硬化し、優れた機械物性が得られるものの、その後、高温で2次硬化しても十分な耐熱性が得られない。
一方耐熱性が良好な硬化物を与える樹脂は、100℃以下の比較的低温での硬化で脱型可能なまでに硬化させるのに長時間を要するといった課題があった。
【0007】
【発明が解決しようとする課題】
室温で安定で比較的低温(100℃以下)で短時間(10時間以内)で1次硬化でき、且つ高温(130℃以上)での2次硬化で耐熱性の高い硬化物(Tgが150℃以上)が得られ、高温での機械物性に優れたエポキシ樹脂組成物を提供することであり、特に繊維強化複合材料用のマトリックス樹脂として用いることの出来るエポキシ樹脂組成物を提供するものである。
【0008】
【課題を解決するための手段】
すなわち、本発明の要旨は、
(a)3官能以上のエポキシ樹脂を含むエポキシ樹脂100重量部及び
(b)70〜100℃で活性化する加熱硬化型の潜在性硬化剤3〜40重量部を主成分とするエポキシ樹脂組成物であって、次の(1)から(3)を満足するエポキシ樹脂組成物を強化繊維材料に含浸してなるプリプレグを100℃以下の温度で真空バッグ中で一次硬化したのち、130〜180℃の熱風炉中でフリースタンド状態で二次硬化する、複合材料の成形方法である。
(1)調製後25℃で3週間放置後の粘度上昇が調製直後の2倍以下である。
(2)100℃で5時間の1次硬化で、硬化度が70%以上又はJIS−K−6848、6850準拠の引張せん断強度(接着強さ)が10MPa以上である。
(3)130℃以上での2次硬化で硬化物のガラス転移温度が150℃以上である。
【0009】
特に、成分(a)の3官能以上のエポキシ樹脂を含むエポキシ樹脂が、構造式(1)のノボラック型エポキシ樹脂及び/又はテトラグリシジルジアミノジフェニルメタンを含むエポキシ樹脂であり、成分(b)の70〜100℃で活性化する加熱硬化型の潜在性硬化剤として、アミンアダクト型或いはマイクロカプセル型の潜在性硬化剤であるエポキシ樹脂組成物を使用することが好ましい。
【0010】
本発明のエポキシ樹脂組成物は、室温での安定性に優れ、100℃以下の温度での10時間以内の1次硬化で脱型可能な程度に硬化するものである。100℃以下の温度で5時間以内であれば成形サイクルが短縮でき更に好ましい。
【0011】
室温で安定であるとは、樹脂を調製後25℃で3週間放置後の粘度上昇が、調製直後の2倍以下であるということである。25℃で3週間放置後の粘度上昇が1.5倍以下の場合はワーキングライフが更に長くなりより好ましい。粘度上昇率は、以下の方法で導かれる。調製直後の樹脂の40℃での粘度ηiをレオメトリック社製DSR−200又は同等の性能を有する装置を用いて、周波数10ラジアン/秒、パラレルプレートで測定する。次に該樹脂を25℃の恒温器中に3週間放置し、その後同様にして40℃での粘度ηを測定し、η/ηiにより粘度上昇倍率を求める。
【0012】
1次硬化で脱型可能な程度に硬化するとは、樹脂調製直後の樹脂の硬化発熱量(Ei)及び一次硬化させた樹脂の硬化発熱量(E1)をそれぞれ示差走査熱量計(DSC)で測定し、
硬化度(%)=(Ei−E1)/Ei×100
により硬化度を出し、この硬化度が、70%以上であることが1つに指標にできる。
【0013】
あるいは、1次硬化させた樹脂のJIS−K−6848、6850で定める方法で求めた引張せん断強度(接着強さ)が10MPa以上であることが指標とできる。
【0014】
測定用サンプルとしては、まず25×100×1.5mmのアルミニウム板(JIS H4000に規定するA2024P)の12.5mmラップ部分をサンドペーパー(#240)により研磨し、アセトンで脱脂する。次にラップ部分に樹脂を均一に塗布し、同様に処理したアルミニウム板のラップ部分を重ね合わせる。最後に1kgf/cm2の圧力で固定して1次硬化させた後、室温まで徐冷して作製する。
【0015】
更に本発明のエポキシ樹脂組成物は2次硬化により高い耐熱性の成形物が得るものであり、130℃以上の硬化温度で2次硬化して得られる硬化物のガラス転移温度が150℃以上であるものである。特に150℃以上(例えば180℃)での2次硬化によりガラス転移温度が180℃以上である場合には更に耐熱性に優れるために好ましい。2次硬化の時間は、特に制限ないが、10時間以内が好ましく、5時間以内がより好ましい。
【0016】
硬化物のガラス転移温度は以下の方法で測定する。
レオメトリック社製RDA−700又は同等の性能を有する粘弾性測定装置を用いて、温度を段階的にステップ状で上げていったときの貯蔵弾性率(G')を各温度において測定する。昇温は5℃/ステップで行い、各ステップでは温度安定後1分間その温度で保持してから測定する。周波数は10ラジアン/秒で測定する。温度に対してG'の対数値をプロットし、得られたG'曲線の各接線の交点での温度をガラス転移温度とする。(図1参照)
【0017】
本発明のエポキシ樹脂組成物では成分(a)として3官能以上のエポキシ樹脂を含むエポキシ樹脂が用いられる。これによって、2次硬化後に耐熱性に優れた成形硬化物が得られるのである。特に成分(a)中に3官能以上のエポキシ樹脂が40重量%以上より好ましくは60重量%以上含まれる場合がより好ましい。このような3官能以上のエポキシ樹脂としてはテトラグリシジルジアミノジフェニルメタン、アミノフェノール型エポキシ樹脂、アミノクレゾール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、下記構造式(1)で示されるエポキシ樹脂等を例示できる。
【0018】
【化2】
【0019】
構造式中nは0以上の整数である。
【0020】
特に、構造式(1)で示されるノボラック型エポキシ樹脂及び/又はテトラグリシジルジアミノジフェニルメタンを含むエポキシ樹脂を好適に用いることができる。
又、3官能未満のエポキシ樹脂を含んでいても良く、例えばビスフェノール型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂等があげられる。耐熱性をできるだけ確保したい場合は、3官能未満のエポキシ樹脂としても、ビフェノール型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂等比較的剛直な骨格構造を有するエポキシを使用すれば、好適な結果をもたらすことができる。
【0021】
SO2 構造を有する例えばビスフェノールS型エポキシ樹脂や芳香族ジアミンとビスフェノール型エポキシ樹脂の予備反応物を用いた場合には、比較的高い耐熱性と靱性の硬化物が得られるメリットがあり好ましい。
【0022】
成分(b)の70〜100℃で活性化する加熱硬化型の潜在性硬化剤としては、ジシアンジアミド等のシアノ化合物、シアノ化合物とジクロルフェニルジメチル尿素やフェニルジメチル尿素等のウレア化合物の併用系の他、アミンアダクト型の硬化剤があげられる。アミンアダクト型の硬化剤としては味の素(株)より“アミキュア”の商標で市販されており、例えばアミキュアPN−23、MY−24をあげることができる。
【0023】
更に、マイクロカプセル型硬化剤があげられ旭チバ(株)より“ノバキュア”の商標で市販されている。例えばノバキュアHX3721、HX3722をあげることができる。
【0024】
又、分子内に活性水素部と触媒部位とをもつものとして富士化成工業(株)製のフジキュアーFXE−1000、FXR―1030、エー・シー・アール(株)社製のACRハードナーH−3615、H−4070、H−3293、H−3366、H−3849、H―3670、四国化成工業(株)社製のキュアダクトP−0505、キュアゾール2E4MZ−CNS、C11Z−CNS、C11Z−A、等が例示できる。
【0025】
アミンアダクト型の硬化剤やマイクロカプセル型硬化剤はエポキシ樹脂と混合しても、室温〜50℃付近では比較的安定でほとんど反応しないが、70〜100℃で活性化し反応が始まるものであり、特に好ましく使用できる。
【0026】
これらの潜在性硬化剤の添加量としては、成分(a)のエポキシ樹脂100重量部に対して3〜40重量部が適当であり、3重量部より少ないと1次硬化が不十分となる場合が多く、40重量部を越えると室温での樹脂の安定性が低下し好ましくない。
【0027】
これらの潜在性硬化剤は単独で用いて良いし、あるいはこれらの潜在性硬化剤とウレア化合物、シアノ化合物、ジヒドラジド化合物、酸無水物等を併用して用いても良い。
特に芳香族系ウレア化合物が好ましく、下記の構造式(2)で表される化合物が好ましい。
【0028】
【化3】
【0029】
X1、X2はH又はClを示し、同一であっても異なっていてもよい。
【0030】
又、本発明のエポキシ樹脂組成物には、本発明の特性を損なうことのない範囲で添加剤を添加することができる。例えば熱可塑性樹脂を溶解して添加することは、樹脂のべたつきを抑えたり、プリプレグのタックを適正レベルに調整したりタックの経時変化を抑制する働きが得られ好ましい。このような熱可塑性樹脂としてはフェノキシ樹脂、ポリビニルフォルマール、ポリエーテルスルホン、等が例示できる。
【0031】
又、硬化物の靱性を向上する目的で微粒子状や短繊維状の熱可塑性樹脂やゴム成分を添加してもよく、添加剤としてポリアミド、ポリイミド、ポリウレタン、ポリエーテルスルホン、等の熱可塑性樹脂やアクリルゴム、ブタジエンゴム、ブチルゴム等のゴム成分やその分子末端変性品等が例示できる。さらにまた、硬化物の剛性向上を目的としてタルクやシリカ、スチール等の金属等の無機成分の微粒子等を添加してもよい。
【0032】
本発明のエポキシ樹脂組成物の用途としては、特に制限はなく、本エポキシ樹脂組成物の特性が活かせるところであればいかなるところにも使用可能であるが、繊維強化複合材料用のマトリックス樹脂として好適に使用できる。この場合強化繊維としては、特に制限はなく、炭素繊維、ガラス繊維、高強度有機繊維、金属繊維、無機繊維等、一般に繊維強化複合材料の強化繊維として用いられるもの全てが使用できる。
【0033】
特に本発明のエポキシ樹脂組成物において60℃での粘度が10Pa・sec以上で700Pa・sec以下である場合には、強化繊維にマトリックス樹脂を含浸してシート状にしたいわゆるプリプレグ用のマトリックス樹脂として好適に用いることができる。
【0034】
60℃の粘度が10Pa・secを下回る場合には、プリプレグのタック、べたつきが強くなりすぎて好ましくない。一方60℃での粘度が700Pa・secを越える場合は、プリプレグのドレープ性が乏しく、堅くなり過ぎて好ましくない。プリプレグ用のマトリックス樹脂としては60℃での粘度が、30Pa・sec以上で500Pa・sec以下の範囲であることがより好ましい。粘度の測定方法は、測定温度が60℃である以外は、先に述べた通りである。
【0035】
又、フィルム状にして、樹脂フローを抑え目に設定したり、又ガラスクロス等に樹脂を含浸するなどすれば、シート状の接着剤として使用することも可能である。更には添加剤としてマイクロバルーンや発泡剤を加えて、軽量化副資材として使用することも可能である。
【0036】
【実施例】
以下実施例により本発明をさらに詳しく説明する。
実施例及び比較例中の化合物の略号は、以下の通りである。
【0037】
Ep604:油化シェル社製、テトラグリシジルジアミノジフェニルメタン「エピコート604」
Tactix742:ダウケミカル社製、固形3官能エポキシ樹脂「TACTIX742」構造式(1)でn=0であるエポキシ樹脂
Ep1032:油化シェル社製、特殊ノボラック型エポキシ樹脂「エピコート1032S50」構造式(1)のエポキシ樹脂
N740:大日本インキ社製、フェノールノボラック型エポキシ樹脂「エピクロンN−740」
Ep828:油化シェル社製、液状ビスフェノールA型エポキシ樹脂「エピコート828」
Ep1001:油化シェル社製、半固形ビスフェノールA型エポキシ樹脂「エピコート1001」
EXA1514:大日本インキ社製、ビスフェノールS型エポキシ樹脂「エピクロンEXA−1514」
HX3722:旭チバ社製、潜在性硬化剤「ノバキュア HX3722」
FXE1000:富士化成社製、潜在性硬化剤「フジキュアー FXE−1000」
PN23:味の素社製、潜在性硬化剤「アミキュア PN−23」
Dicy:油化シェル社製、ジシアンジアミド「Dicy7」
PDMU:ビー・ティー・アールジャパン社製、フェニルジメチルウレア「オミキュア94」
PES:住友化学社製、ポリエーテルスルホン「スミカエクセルPES 3600P」
DDS:和歌山精化社製、ジアミノジフェニルスルホン「セイカキュアS」
アエロジル300:日本アエロジル社製、「アエロジル300」
BF3MEA:橋本化成工業社製 三フッ化ホウ素モノメチルアミン
【0038】
(実施例1〜11)
表1、2に示した組成(数値は重量部)で、まず成分(a)を150℃で均一に混合した。熱可塑性樹脂などの添加剤がある場合には、この時に添加し、溶解或いは混合した。次ぎに50〜60℃まで冷却し、成分(b)を添加し、均一に混合し、本発明のエポキシ樹脂組成物を調製した。樹脂組成物の安定性を前述した方法で評価した。
【0039】
樹脂組成物を60℃に加熱脱胞後、2mmの厚みで離型処理を施したガラス板上にキャストし、同様の処理を施したガラス板で挟みこみ、各1次硬化条件で硬化した。1次硬化後の硬化度を前述の方法で測定した。一方、1次硬化後の樹脂の引張せん断強度(接着強さ)を前述の方法で測定した。
【0040】
更に各2次硬化条件でフリースタンドで熱風炉中で硬化し、その後、ガラス転移温度を前述した方法で測定した。更に高温での樹脂物性発現の目安として、高温(150℃、180℃)でのG’の値を求めた。これは複合材料としたときの高温での物性発現の目安になるものである。
【0041】
(比較例1)
表3の組成で130℃でEp604にDDSを溶解混合し、すぐに70℃に温度を下げ、BF3MEAを溶解混合し、樹脂組成物を調製した。
本樹脂組成物は、室温では安定であり、180℃、2時間での硬化ではガラス転移温度が205℃で良好な耐熱性を有していたが、100℃×10時間の1次硬化では、硬化不良であった。
【0042】
(比較例2)
表3の組成でEp828、Ep1001を120℃で均一に混合した。その後60℃でHX3722とPDMUを混合し、樹脂組成物を得た。
実施例1と同様にして、樹脂及び樹脂板を評価した。評価結果を表3に示した。2次硬化後、十分な耐熱性を有していなかった。
【0043】
(比較例3)
表3の組成でEp1032、Ep828、Ep1001を120℃で均一に混合した。その後、70℃でPDMU、Dicyを添加し、分散混合した。
実施例1と同様にして、樹脂及び樹脂板を評価した。評価結果を表3に示した。2次硬化後、十分な耐熱性を有していなかった。
【0044】
(実施例12、13)
実施例2、5と同様にしてそれぞれ樹脂組成物を調製した。60℃での樹脂粘度は、それぞれ80Pa・sec及び40Pa・secであった。
これらの樹脂組成物を60℃で離型工程紙上に均一に塗工し、目付80g/m2の樹脂フィルムをそれぞれ作製した。次に樹脂フィルム上に三菱レイヨン(株)製炭素繊維 TR50S−12Lを炭素繊維目付が150g/m2となるように一方向に引き揃え、並べて、更に加熱、圧力をかけることで樹脂を炭素繊維に含浸させてそれぞれ一方向プリプレグを得た。これらのプリプレグは良好なタックとドレープ性を有していた。
【0045】
これらのプリプレグを25℃で3週間放置し、プリプレグのタック、ドレープ性の経時変化を触感で評価した。3週間放置後もタック。ドレープ性の変化は少なく、良好なライフを有していた。
【0046】
これらプリプレグを一方向に14プライ積層し、真空バッグ成形で1次硬化した。1次硬化の温度条件としては、室温から100℃まで1時間で昇温し100℃で4時間放置とした。1次硬化後、成形板は、脱型が十分可能な程度に、且つダイヤモンド湿式カッターで切断しても割れが生じない程度に十分硬化していた。G’を測定してガラス転移温度を測定したところ、それぞれ115℃、102℃であった。1次成形板を更に熱風炉中に放置(フリースタンド)して、2次硬化を実施した。2次硬化の温度条件は、室温から180℃まで3時間で昇温し、180℃で4時間維持し更に室温まで3時間かけて冷却する条件とした。得られた約2mm厚みの硬化成形板の超音波探傷を実施したところ前者ではボイドがほとんどなく、後者では多少ボイド発生が認められたが、これらのプリプレグは良好な成形性を有していることが分かった。硬化板から試験体を切り出し、G’を測定してガラス転移温度を測定したところ、それぞれ185℃、186℃であった。ASTM D 2344に準拠して室温(23℃)、100℃、160℃、180℃で層間せん断強度を測定した。その結果を表4に示した。
【0047】
【表1】
【0048】
【表2】
【0049】
【表3】
【0050】
【表4】
【発明の効果】
本発明のエポキシ樹脂組成物は、室温で安定であって100℃以下の比較的低温(70〜100℃)で短時間(10時間以内)で1次硬化でき、且つ1次硬化温度以上の高温(130℃以上)での2次硬化で得られた硬化物は、ガラス転移温度が高く(150℃以上)、更に高温での機械物性に優れている。特に耐熱性が要求される用途での繊維強化複合材料のマトリックス樹脂として好適に用いることが出来る。
【図面の簡単な説明】
【図1】 温度と貯蔵弾性率の関係を示す概略図である。
【符号の説明】
G‘:貯蔵弾性率[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin composition that can be primary-cured in a short time at a temperature of 100 ° C. or lower, and then secondarily cured at a temperature higher than the primary curing temperature to obtain a cured product having high heat resistance.
[0002]
[Prior art]
Fiber reinforced composite materials (hereinafter referred to as FRP) have been widely used from sports leisure to aircraft and industrial applications. As a general FRP molding method, there is a method of molding using a molding die. For example, a reinforcing fiber material such as cloth is attached to the mold while impregnating the resin, and this is repeated, then cured, and removed from the mold to obtain a molded product, or the resin is applied to the reinforcing fiber material in advance. A so-called impregnated prepreg is affixed to the mold, and then repeatedly cured, and then a hand lay-up method in which the molded product is obtained by demolding from the mold, and a reinforcing fiber material such as cloth is set in the mold, Resin molding (RTM) method, in which a resin is injected into a mold and cured, and then demolded to obtain a molded product, or a molding compound mixed with a resin is cut into reinforcing fibers, and the molding compound is mixed with the resin and cured. Thus, a method for obtaining a molded product is known.
[0003]
Molds of various materials are used. Metal molds are excellent in heat resistance and durability, but are expensive because they require labor and labor to produce the mold. On the other hand, a resin mold is inferior in heat resistance and durability, but is inexpensive. In order to respond to various needs in recent years, the production of a small variety of products has been increasing, and there are many cases in which a resin mold is used. However, when a resin mold is used, the heat resistance of the mold itself is not sufficient, so it is difficult to mold FRP at a high temperature using this mold, and it cannot be applied to molding a molded product with high heat resistance. There is a problem.
[0004]
In the case of manufacturing a mold made of FRP, a master mold is made from the actual product, and a prepreg or the like is laminated on the master mold and cured to prepare an FRP mold. In order to obtain a molded product having high heat resistance. Needs to be molded at a high temperature, and requires an FRP mold having high heat resistance. In order to mold an FRP mold having high heat resistance, the master mold is also required to have heat resistance. As a result, the production of the master mold has so far required a great deal of cost and labor.
[0005]
Therefore, as a method of obtaining an FRP molded product having high heat resistance using a resin mold or the like having low heat resistance, primary molding is performed at a relatively low temperature (100 ° C. or less) using a resin mold or the like having low heat resistance. Cured and can be removed from the mold, and cured enough to retain the shape, then removed from the mold and left to heat at a higher temperature for secondary curing to produce a highly heat-resistant FRP molded product. Attention has been focused on how to obtain. The same applies when an FRP mold having a high heat resistance is produced using a master mold having a low heat resistance.
[0006]
In recent years, a technique of a resin that is relatively stable at room temperature and is cured at a relatively low temperature of 70 to 100 ° C. has been disclosed in, for example, Japanese Patent Application Laid-Open No. 11-302212. Although mechanical properties can be obtained, sufficient heat resistance cannot be obtained even after secondary curing at a high temperature.
On the other hand, a resin that gives a cured product having good heat resistance has a problem that it takes a long time to be cured before it can be demolded by curing at a relatively low temperature of 100 ° C. or lower.
[0007]
[Problems to be solved by the invention]
A cured product that is stable at room temperature and can be primary-cured in a relatively short time (within 10 hours) at a relatively low temperature (less than 100 ° C) and highly heat-resistant by secondary curing at a high temperature (over 130 ° C) (Tg of 150 ° C) The above is to provide an epoxy resin composition having excellent mechanical properties at high temperatures, and particularly to provide an epoxy resin composition that can be used as a matrix resin for fiber-reinforced composite materials.
[0008]
[Means for Solving the Problems]
That is, the gist of the present invention is as follows.
(A) An epoxy resin composition comprising as a main component 100 parts by weight of an epoxy resin containing a tri- or higher functional epoxy resin and (b) 3 to 40 parts by weight of a thermosetting latent curing agent activated at 70 to 100 ° C. The prepreg obtained by impregnating the reinforcing fiber material with the epoxy resin composition satisfying the following (1) to (3) is first cured in a vacuum bag at a temperature of 100 ° C. or lower, and then 130 to 180 ° C. This is a method of forming a composite material that is secondarily cured in a free-standing state in a hot air oven.
(1) After the preparation, the viscosity increase after standing at 25 ° C. for 3 weeks is 2 times or less immediately after the preparation.
(2) The primary curing at 100 ° C. for 5 hours has a curing degree of 70% or more or a tensile shear strength (adhesion strength) in accordance with JIS-K-6848 and 6850 of 10 MPa or more.
(3) The glass transition temperature of the cured product by secondary curing at 130 ° C. or higher is 150 ° C. or higher.
[0009]
In particular, the epoxy resin containing a trifunctional or higher functional epoxy resin of component (a) is an epoxy resin containing a novolac type epoxy resin of structural formula (1) and / or tetraglycidyldiaminodiphenylmethane, and 70 to 70 of component (b) It is preferable to use an epoxy resin composition which is an amine adduct type or microcapsule type latent curing agent as a heat curing type latent curing agent activated at 100 ° C.
[0010]
The epoxy resin composition of the present invention is excellent in stability at room temperature and is cured to such an extent that it can be demolded by primary curing within 10 hours at a temperature of 100 ° C. or lower. If it is within 5 hours at a temperature of 100 ° C. or lower, the molding cycle can be shortened, which is more preferable.
[0011]
“Stable at room temperature” means that the viscosity increase after leaving the resin at 25 ° C. for 3 weeks is not more than twice that immediately after preparation. When the increase in viscosity after standing at 25 ° C. for 3 weeks is 1.5 times or less, the working life is further increased, which is more preferable. The viscosity increase rate is derived by the following method. The viscosity ηi of the resin immediately after preparation at 40 ° C. is measured with a parallel plate using a DSR-200 manufactured by Rheometric Co. or an apparatus having equivalent performance at a frequency of 10 radians / second. Next, the resin is allowed to stand in a thermostat at 25 ° C. for 3 weeks, and thereafter the viscosity η at 40 ° C. is measured in the same manner, and the viscosity increase ratio is determined by η / ηi.
[0012]
Curing to the extent that it can be demolded by primary curing means that the curing heat value (Ei) of the resin immediately after resin preparation and the curing heat value (E1) of the first cured resin are measured with a differential scanning calorimeter (DSC), respectively. And
Curing degree (%) = (Ei−E1) / Ei × 100
The degree of cure can be obtained by the above, and one indication can be that this degree of cure is 70% or more.
[0013]
Alternatively, it can be used as an index that the tensile shear strength (adhesive strength) obtained by the method defined in JIS-K-6848, 6850 of the primary cured resin is 10 MPa or more.
[0014]
As a measurement sample, first, a 12.5 mm lap portion of a 25 × 100 × 1.5 mm aluminum plate (A2024P defined in JIS H4000) is polished with sandpaper (# 240) and degreased with acetone. Next, the resin is uniformly applied to the lap portion, and the lap portions of the aluminum plate processed in the same manner are overlapped. Finally, it is fixed at a pressure of 1 kgf / cm 2 and first hardened, and then slowly cooled to room temperature.
[0015]
Furthermore, the epoxy resin composition of the present invention is obtained by secondary curing to obtain a molded product having high heat resistance. The cured product obtained by secondary curing at a curing temperature of 130 ° C. or higher has a glass transition temperature of 150 ° C. or higher. There is something. In particular, when the glass transition temperature is 180 ° C. or higher by secondary curing at 150 ° C. or higher (for example, 180 ° C.), it is preferable because the heat resistance is further improved. The time for secondary curing is not particularly limited, but is preferably within 10 hours, and more preferably within 5 hours.
[0016]
The glass transition temperature of the cured product is measured by the following method.
Using a Rheometric RDA-700 or a viscoelasticity measuring device having equivalent performance, the storage elastic modulus (G ′) when the temperature is increased stepwise is measured at each temperature. The temperature is raised at 5 ° C./step. In each step, the temperature is held for 1 minute after the temperature is stabilized and then measured. The frequency is measured at 10 radians / second. The logarithmic value of G ′ is plotted against the temperature, and the temperature at the intersection of each tangent of the obtained G ′ curve is defined as the glass transition temperature. (See Figure 1)
[0017]
In the epoxy resin composition of the present invention, an epoxy resin containing a trifunctional or higher functional epoxy resin is used as the component (a). Thus, a molded cured product having excellent heat resistance after secondary curing can be obtained. In particular, it is more preferable that the component (a) contains a trifunctional or higher functional epoxy resin in an amount of 40 wt% or more, more preferably 60 wt% or more. Examples of such a tri- or higher functional epoxy resin include tetraglycidyl diaminodiphenylmethane, aminophenol type epoxy resin, aminocresol type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, and an epoxy represented by the following structural formula (1). Resin etc. can be illustrated.
[0018]
[Chemical formula 2]
[0019]
In the structural formula, n is an integer of 0 or more.
[0020]
In particular, a novolac-type epoxy resin represented by the structural formula (1) and / or an epoxy resin containing tetraglycidyldiaminodiphenylmethane can be preferably used.
In addition, a trifunctional epoxy resin may be included, and examples thereof include a bisphenol type epoxy resin, a hydrogenated bisphenol type epoxy resin, a biphenol type epoxy resin, and a naphthalene diol type epoxy resin. If you want to ensure heat resistance as much as possible, even if you use epoxy with a relatively rigid skeleton structure such as biphenol type epoxy resin, naphthalene diol type epoxy resin, etc., even if it is less than trifunctional epoxy resin, it will bring good results it can.
[0021]
The use of, for example, a bisphenol S-type epoxy resin having an SO 2 structure or a pre-reacted product of an aromatic diamine and a bisphenol-type epoxy resin is preferable because there is a merit that a cured product having relatively high heat resistance and toughness can be obtained.
[0022]
As the thermosetting latent curing agent that is activated at 70 to 100 ° C. as the component (b), a cyano compound such as dicyandiamide, or a combination system of a cyano compound and a urea compound such as dichlorophenyldimethylurea or phenyldimethylurea is used. Other examples include amine adduct type curing agents. Amine adduct-type curing agents are commercially available from Ajinomoto Co., Inc. under the trademark “Amicure”, and examples thereof include Amicure PN-23 and MY-24.
[0023]
Further, a microcapsule type curing agent is mentioned and is commercially available from Asahi Ciba Co., Ltd. under the trademark “Novacure”. For example, NovaCure HX3721 and HX3722 can be mentioned.
[0024]
Further, as those having an active hydrogen part and a catalytic site in the molecule, Fuji Cure FXE-1000, FXR-1030 manufactured by Fuji Kasei Kogyo Co., Ltd., ACR Hardener H-3615 manufactured by AC R Corporation, H-4070, H-3293, H-3366, H-3849, H-3670, Cure Duct P-0505, Curesol 2E4MZ-CNS, C11Z-CNS, C11Z-A, etc. manufactured by Shikoku Kasei Kogyo Co., Ltd. It can be illustrated.
[0025]
Even if the amine adduct type curing agent and the microcapsule type curing agent are mixed with an epoxy resin, they are relatively stable at room temperature to 50 ° C. and hardly react, but are activated at 70 to 100 ° C. and the reaction starts. It can be particularly preferably used.
[0026]
The amount of these latent curing agents added is suitably 3 to 40 parts by weight with respect to 100 parts by weight of the epoxy resin of component (a), and if the amount is less than 3 parts by weight, the primary curing is insufficient. If the amount exceeds 40 parts by weight, the stability of the resin at room temperature decreases, which is not preferable.
[0027]
These latent curing agents may be used alone, or these latent curing agents may be used in combination with a urea compound, a cyano compound, a dihydrazide compound, an acid anhydride, and the like.
In particular, an aromatic urea compound is preferable, and a compound represented by the following structural formula (2) is preferable.
[0028]
[Chemical 3]
[0029]
X1 and X2 represent H or Cl and may be the same or different.
[0030]
Moreover, an additive can be added to the epoxy resin composition of the present invention within a range that does not impair the characteristics of the present invention. For example, it is preferable to add a thermoplastic resin after dissolving it so that the stickiness of the resin can be suppressed, the tack of the prepreg can be adjusted to an appropriate level, or the tack can be prevented from changing over time. Examples of such thermoplastic resins include phenoxy resin, polyvinyl formal, polyethersulfone, and the like.
[0031]
In addition, for the purpose of improving the toughness of the cured product, a particulate or short fiber thermoplastic resin or a rubber component may be added. As an additive, a thermoplastic resin such as polyamide, polyimide, polyurethane, polyethersulfone, etc. Examples thereof include rubber components such as acrylic rubber, butadiene rubber and butyl rubber, and molecular end-modified products thereof. Furthermore, fine particles of inorganic components such as metals such as talc, silica and steel may be added for the purpose of improving the rigidity of the cured product.
[0032]
The use of the epoxy resin composition of the present invention is not particularly limited and can be used anywhere as long as the characteristics of the epoxy resin composition can be utilized, but is suitable as a matrix resin for fiber-reinforced composite materials. Can be used for In this case, the reinforcing fiber is not particularly limited, and any carbon fiber, glass fiber, high-strength organic fiber, metal fiber, inorganic fiber, or the like generally used as a reinforcing fiber for a fiber-reinforced composite material can be used.
[0033]
In particular, when the viscosity at 60 ° C. is 10 Pa · sec or more and 700 Pa · sec or less in the epoxy resin composition of the present invention, a matrix resin for so-called prepreg in which a reinforcing fiber is impregnated with a matrix resin to form a sheet. It can be used suitably.
[0034]
When the viscosity at 60 ° C. is less than 10 Pa · sec, tackiness and stickiness of the prepreg become too strong, which is not preferable. On the other hand, when the viscosity at 60 ° C. exceeds 700 Pa · sec, the prepreg drapability is poor and becomes too hard, which is not preferable. More preferably, the matrix resin for prepreg has a viscosity at 60 ° C. in the range of 30 Pa · sec to 500 Pa · sec. The method for measuring the viscosity is as described above except that the measurement temperature is 60 ° C.
[0035]
Further, if it is made into a film and the resin flow is suppressed and set to the eye, or glass cloth or the like is impregnated with resin, it can be used as a sheet-like adhesive. Furthermore, it is possible to add a microballoon or a foaming agent as an additive and use it as a light weight auxiliary material.
[0036]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
Abbreviations of compounds in Examples and Comparative Examples are as follows.
[0037]
Ep604: Tetraglycidyldiaminodiphenylmethane “Epicoat 604” manufactured by Yuka Shell
Tactix 742: manufactured by Dow Chemical Co., solid trifunctional epoxy resin “TACTIX 742”, structural formula (1), n = 0, epoxy resin Ep 1032: Yuka Shell, special novolac type epoxy resin “Epicoat 1032S50” structural formula (1) Epoxy Resin N740: Phenol Novolac Epoxy Resin “Epicron N-740” manufactured by Dainippon Ink
Ep828: Yuka Shell Co., Ltd., liquid bisphenol A type epoxy resin “Epicoat 828”
Ep1001: Semi-solid bisphenol A type epoxy resin “Epicoat 1001” manufactured by Yuka Shell
EXA1514: Dainippon Ink & Chemicals, bisphenol S type epoxy resin “Epiclon EXA-1514”
HX3722: Asahi Ciba Co., Ltd., latent curing agent "Novacure HX3722"
FXE1000: manufactured by Fuji Kasei Co., Ltd., latent curing agent “Fujicure FXE-1000”
PN23: latent curing agent “Amicure PN-23” manufactured by Ajinomoto Co., Inc.
Dicy: Dicyandiamide “Dicy7” manufactured by Yuka Shell
PDMU: PhT dimethylurea “OMICURE 94” manufactured by BTR Japan
PES: manufactured by Sumitomo Chemical Co., Ltd., polyethersulfone "Sumika Excel PES 3600P"
DDS: Diaminodiphenyl sulfone “Seika Cure S” manufactured by Wakayama Seika Co., Ltd.
Aerosil 300: “Aerosil 300” manufactured by Nippon Aerosil Co., Ltd.
BF3MEA: Boron trifluoride monomethylamine manufactured by Hashimoto Kasei Kogyo Co., Ltd.
(Examples 1 to 11)
First, component (a) was uniformly mixed at 150 ° C. with the compositions shown in Tables 1 and 2 (numerical values are parts by weight). When there was an additive such as a thermoplastic resin, it was added at this time and dissolved or mixed. Next, it cooled to 50-60 degreeC, the component (b) was added, and it mixed uniformly, and prepared the epoxy resin composition of this invention. The stability of the resin composition was evaluated by the method described above.
[0039]
The resin composition was heated to 60 ° C., casted onto a glass plate having been subjected to a release treatment with a thickness of 2 mm, sandwiched between glass plates having been subjected to the same treatment, and cured under each primary curing condition. The degree of cure after primary curing was measured by the method described above. On the other hand, the tensile shear strength (adhesion strength) of the resin after primary curing was measured by the method described above.
[0040]
Furthermore, it hardened | cured in the hot stove with the free stand on each secondary hardening condition, and measured the glass transition temperature by the method mentioned above after that. Furthermore, the value of G ′ at high temperatures (150 ° C. and 180 ° C.) was determined as a standard for developing the physical properties of the resin at high temperatures. This is a measure of the physical properties at a high temperature when a composite material is used.
[0041]
(Comparative Example 1)
DDS was dissolved and mixed in Ep604 at 130 ° C. with the composition shown in Table 3, and the temperature was immediately lowered to 70 ° C., and BF3MEA was dissolved and mixed to prepare a resin composition.
The resin composition is stable at room temperature, and has a good heat resistance at a glass transition temperature of 205 ° C. when cured at 180 ° C. for 2 hours. However, in the primary curing at 100 ° C. × 10 hours, The curing was poor.
[0042]
(Comparative Example 2)
Ep828 and Ep1001 having the compositions shown in Table 3 were uniformly mixed at 120 ° C. Thereafter, HX3722 and PDMU were mixed at 60 ° C. to obtain a resin composition.
In the same manner as in Example 1, the resin and the resin plate were evaluated. The evaluation results are shown in Table 3. After secondary curing, it did not have sufficient heat resistance.
[0043]
(Comparative Example 3)
Ep1032, Ep828, and Ep1001 having the compositions shown in Table 3 were uniformly mixed at 120 ° C. Thereafter, PDMU and Dicy were added at 70 ° C. and dispersed and mixed.
In the same manner as in Example 1, the resin and the resin plate were evaluated. The evaluation results are shown in Table 3. After secondary curing, it did not have sufficient heat resistance.
[0044]
(Examples 12 and 13)
Resin compositions were prepared in the same manner as in Examples 2 and 5, respectively. The resin viscosities at 60 ° C. were 80 Pa · sec and 40 Pa · sec, respectively.
These resin compositions were uniformly coated on a release process paper at 60 ° C. to prepare resin films having a basis weight of 80 g / m 2 . Next, carbon fiber TR50S-12L manufactured by Mitsubishi Rayon Co., Ltd. is aligned and aligned in one direction so that the carbon fiber basis weight is 150 g / m 2 on the resin film. To obtain unidirectional prepregs. These prepregs had good tack and drape properties.
[0045]
These prepregs were allowed to stand at 25 ° C. for 3 weeks, and the prepreg tack and drape properties were evaluated by tactile sensation. Tack even after 3 weeks. There was little change in drapability and the product had a good life.
[0046]
14 plies of these prepregs were laminated in one direction, and were primarily cured by vacuum bag molding. As temperature conditions for primary curing, the temperature was raised from room temperature to 100 ° C. over 1 hour and left at 100 ° C. for 4 hours. After the primary curing, the molded plate was sufficiently cured to such an extent that it could be removed from the mold and not to crack even when cut with a diamond wet cutter. When G ′ was measured and the glass transition temperature was measured, they were 115 ° C. and 102 ° C., respectively. The primary molded plate was further left in a hot air oven (free stand) to perform secondary curing. The temperature condition of the secondary curing was such that the temperature was raised from room temperature to 180 ° C. in 3 hours, maintained at 180 ° C. for 4 hours, and further cooled to room temperature over 3 hours. When ultrasonic flaw detection was performed on the obtained cured molded plate having a thickness of about 2 mm, there were almost no voids in the former and some voids were observed in the latter, but these prepregs had good moldability. I understood. When the test body was cut out from the cured plate and G ′ was measured to measure the glass transition temperature, they were 185 ° C. and 186 ° C., respectively. Interlaminar shear strength was measured at room temperature (23 ° C.), 100 ° C., 160 ° C., and 180 ° C. in accordance with ASTM D 2344. The results are shown in Table 4.
[0047]
[Table 1]
[0048]
[Table 2]
[0049]
[Table 3]
[0050]
[Table 4]
【Effect of the invention】
The epoxy resin composition of the present invention is stable at room temperature, can be primary-cured in a relatively short time (within 10 hours) at a relatively low temperature of 100 ° C. or lower (70 to 100 ° C.), and high temperature higher than the primary curing temperature The cured product obtained by secondary curing at (130 ° C. or higher) has a high glass transition temperature (150 ° C. or higher) and is excellent in mechanical properties at high temperatures. In particular, it can be suitably used as a matrix resin for fiber-reinforced composite materials in applications requiring heat resistance.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the relationship between temperature and storage modulus.
[Explanation of symbols]
G ': storage elastic modulus
Claims (4)
(b)70〜100℃で活性化する加熱硬化型の潜在性硬化剤3〜40重量部を主成分とするエポキシ樹脂組成物であって、次の(1)から(3)を満足するエポキシ樹脂組成物を強化繊維材料に含浸してなるプリプレグを100℃以下の温度で真空バッグ中で一次硬化したのち、130〜180℃の熱風炉中でフリースタンド状態で二次硬化する、複合材料の成形方法。
(1)調製後25℃で3週間放置後の粘度上昇が調製直後の2倍以下である。
(2)100℃で5時間の1次硬化で、硬化度が70%以上又はJIS−K−6848、6850準拠の引張せん断強度(接着強さ)が10MPa以上である。
(3)130℃以上での2次硬化で硬化物のガラス転移温度が150℃以上である。(A) An epoxy resin composition comprising as a main component 100 parts by weight of an epoxy resin containing a tri- or higher functional epoxy resin and (b) 3 to 40 parts by weight of a thermosetting latent curing agent activated at 70 to 100 ° C. The prepreg obtained by impregnating the reinforcing fiber material with the epoxy resin composition satisfying the following (1) to (3) is first cured in a vacuum bag at a temperature of 100 ° C. or lower, and then 130 to 180 ° C. A method of forming a composite material, which is secondarily cured in a free-standing state in a hot air oven.
(1) After the preparation, the viscosity increase after standing at 25 ° C. for 3 weeks is 2 times or less immediately after the preparation.
(2) The primary curing at 100 ° C. for 5 hours has a curing degree of 70% or more or a tensile shear strength (adhesion strength) in accordance with JIS-K-6848 and 6850 of 10 MPa or more.
(3) The glass transition temperature of the cured product by secondary curing at 130 ° C. or higher is 150 ° C. or higher.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000121162A JP4859081B2 (en) | 2000-04-21 | 2000-04-21 | Manufacturing method of composite material |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000121162A JP4859081B2 (en) | 2000-04-21 | 2000-04-21 | Manufacturing method of composite material |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2001302760A JP2001302760A (en) | 2001-10-31 |
| JP2001302760A5 JP2001302760A5 (en) | 2007-05-31 |
| JP4859081B2 true JP4859081B2 (en) | 2012-01-18 |
Family
ID=18631856
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2000121162A Expired - Fee Related JP4859081B2 (en) | 2000-04-21 | 2000-04-21 | Manufacturing method of composite material |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4859081B2 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104672431A (en) * | 2015-02-10 | 2015-06-03 | 北京化工大学 | Novel tetra-functionality epoxy resin as well as preparation method and application thereof |
| CN108863988A (en) * | 2017-05-10 | 2018-11-23 | 北京化工大学 | One kind epoxy of tetra functional containing sulfuryl and its preparation method and application |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4418182B2 (en) * | 2003-06-25 | 2010-02-17 | ソマール株式会社 | HEAT EXCHANGER FORMING MATERIAL, HEAT EXCHANGER MANUFACTURING METHOD USING THE SAME, AND HEAT EXCHANGER |
| JP5245790B2 (en) * | 2007-12-12 | 2013-07-24 | 日立化成株式会社 | One-part epoxy resin composition |
| US7910667B1 (en) * | 2009-09-11 | 2011-03-22 | Air Products And Chemicals, Inc. | Low temperature curable epoxy compositions containing phenolic-blocked urea curatives |
| CN101962436B (en) * | 2010-08-27 | 2013-06-05 | 东华大学 | High-temperature-resistant modified polyfunctional epoxy matrix resin for advanced composite material and preparation thereof |
| EP2691433A1 (en) | 2011-03-31 | 2014-02-05 | OCV Intellectual Capital, LLC | Microencapsulated curing agent |
| CN104066775B (en) | 2011-12-08 | 2016-06-01 | Ocv智识资本有限责任公司 | Fibre-reinforced resin mold plastics and manufacture the method for fibre-reinforced molded resin by it |
| JP7074053B2 (en) * | 2016-04-12 | 2022-05-24 | 三菱瓦斯化学株式会社 | Epoxy resin curing agent, epoxy resin composition, carbon fiber reinforced composite material |
| JP6697711B2 (en) * | 2016-05-13 | 2020-05-27 | 三菱ケミカル株式会社 | Epoxy resin composition, prepreg, fiber-reinforced composite material and method for producing the same |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0812861A (en) * | 1994-06-30 | 1996-01-16 | Mitsubishi Chem Corp | Epoxy resin composition and prepreg |
| WO1996017006A1 (en) * | 1994-12-02 | 1996-06-06 | Toray Industries, Inc. | Prepreg and fiber-reinforced composite material |
| JPH09100358A (en) * | 1995-10-04 | 1997-04-15 | Mitsubishi Rayon Co Ltd | Epoxy resin composition for carbon fiber reinforced composite material |
| JPH09227700A (en) * | 1996-02-21 | 1997-09-02 | Toray Ind Inc | Preparation of fiber-reinforced composite material |
| JPH11302507A (en) * | 1998-02-17 | 1999-11-02 | Toray Ind Inc | Epoxy resin composition for fiber-reinforced composite material, intermediate substrate for fiber-reinforced composite material and fiber-reinforced composite material |
-
2000
- 2000-04-21 JP JP2000121162A patent/JP4859081B2/en not_active Expired - Fee Related
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104672431A (en) * | 2015-02-10 | 2015-06-03 | 北京化工大学 | Novel tetra-functionality epoxy resin as well as preparation method and application thereof |
| CN108863988A (en) * | 2017-05-10 | 2018-11-23 | 北京化工大学 | One kind epoxy of tetra functional containing sulfuryl and its preparation method and application |
| CN108863988B (en) * | 2017-05-10 | 2020-07-24 | 北京化工大学 | Sulfone group-containing four-functional epoxy, and preparation method and application thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2001302760A (en) | 2001-10-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3796176B2 (en) | Epoxy resin composition and prepreg using the epoxy resin composition | |
| AU2001266730B2 (en) | Low moisture absorption epoxy resin systems | |
| JP2006131920A (en) | Epoxy resin composition and prepreg using the epoxy resin composition | |
| EP2794735B1 (en) | Improvements in or relating to fibre reinforced composites | |
| US20040247882A1 (en) | Epoxy resin compositions for fiber-reinforced composite materials, process for production of the materials and fiber-reinforced composite materials | |
| US20110313080A1 (en) | Benzoxazine resin composition | |
| CN104583310A (en) | Epoxy resin composition, film, prepreg, fiber reinforced plastic using same | |
| JP6710972B2 (en) | Epoxy resin composition, prepreg, cured resin and fiber reinforced composite material | |
| JPH10330513A (en) | Prepreg and fiber-reinforced composite material | |
| JP4859081B2 (en) | Manufacturing method of composite material | |
| JPWO2018043490A1 (en) | Thermosetting resin composition, prepreg, fiber-reinforced plastic molded article and method for producing the same | |
| KR20200125579A (en) | Thermosetting resin composition, prepreg and fiber reinforced composite material | |
| JP2006265458A (en) | Resin composition for prepregs, and prepreg | |
| JP2002145986A (en) | Epoxy resin composition and prepreg using the epoxy resin composition | |
| JPH06166742A (en) | Epoxy resin composition | |
| JP5078208B2 (en) | Epoxy resin composition and prepreg using the epoxy resin composition | |
| JP2018012797A (en) | Epoxy resin composition, prepreg, resin cured product and fiber-reinforced composite material | |
| WO2006046534A1 (en) | Heat-resistant composite material | |
| JP2003073456A (en) | Epoxy resin composition and prepreg using the epoxy resin composition | |
| JP2004292594A (en) | Epoxy resin composition, prepreg and fiber reinforced composite material | |
| JPS6236421A (en) | Epoxy resin composition for prepreg | |
| JP4480854B2 (en) | Prepreg and manufacturing method thereof | |
| JP2006104403A (en) | Epoxy resin composition | |
| JPH072975A (en) | Epoxy resin composition and prepreg | |
| JPH05310890A (en) | Epoxy resin composition and prepreg for composite material therefrom |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20000529 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070410 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070410 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100708 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100903 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100903 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110707 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110829 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111027 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111028 |
|
| R151 | Written notification of patent or utility model registration |
Ref document number: 4859081 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141111 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141111 Year of fee payment: 3 |
|
| S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141111 Year of fee payment: 3 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141111 Year of fee payment: 3 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| LAPS | Cancellation because of no payment of annual fees |