[go: up one dir, main page]

JP4807831B2 - Endless belt manufacturing method and image forming apparatus provided with endless belt - Google Patents

Endless belt manufacturing method and image forming apparatus provided with endless belt Download PDF

Info

Publication number
JP4807831B2
JP4807831B2 JP2005367357A JP2005367357A JP4807831B2 JP 4807831 B2 JP4807831 B2 JP 4807831B2 JP 2005367357 A JP2005367357 A JP 2005367357A JP 2005367357 A JP2005367357 A JP 2005367357A JP 4807831 B2 JP4807831 B2 JP 4807831B2
Authority
JP
Japan
Prior art keywords
endless belt
thickness
bending strength
degrees
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005367357A
Other languages
Japanese (ja)
Other versions
JP2007171426A (en
Inventor
朋晴 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2005367357A priority Critical patent/JP4807831B2/en
Publication of JP2007171426A publication Critical patent/JP2007171426A/en
Application granted granted Critical
Publication of JP4807831B2 publication Critical patent/JP4807831B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Electrophotography Configuration And Component (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Moulding By Coating Moulds (AREA)

Description

本発明は無端ベルトの製造方法、および無端ベルトを備えた画像形成装置、詳しくは使用中に破断やクラックの起こらない無端ベルトの製造方法、およびこの無端ベルトを備えた画像形成装置に関する。 The present invention relates to an endless belt manufacturing method and an image forming apparatus including the endless belt , and more particularly to an endless belt manufacturing method that does not break or crack during use, and an image forming apparatus including the endless belt .

レーザプリンタ、複写機、ファクシミリ装置などには、電子写真方式を利用した各種の画像形成装置が採用されている。電子写真方式を利用した画像形成装置は、感光ドラムに記憶された潜像に現像ローラからトナーを供給して現像し、このトナー像を感光ドラム下部で接する無端ベルトに転写し、さらに無端ベルトから印刷用紙などの記録体に転写し、トナーが転写された記録体は加圧ローラおよび定着ローラによって圧着され、転写されたトナーが圧着固定されて記録体上に画像や文字が完全に定着する構造となっている。
このような無端ベルトは駆動ローラ等により高速で無限走行する構造になっている。そして、通常のプリンタ等では10万枚近い印刷用紙等の記録体に印刷する期間中、弛みやずれがないように応力をかけたまま使用できなければならない。そのため、無端ベルトは引張り強度、ヤング率、可撓性、耐折強さ、導電特性などをバランスよく備えていないといけない。そこで、無端ベルトは材料や製造工程などに各種の検討がなされている。特許文献1では、熱可塑性樹脂組成物を成形して得た表面抵抗率、体積抵抗率の均一性に優れ、耐折性、ヤング率など総合的な物性のバランスのよいシームレスベルトを、特許文献2では、導電性フィラーとポリイミド樹脂組成物を成形して得た可撓性と剛性のバランスのよいベルトを、特許文献3では、トナー転写濃度を正確に測定できる無端ベルトを、また特許文献4では、クラックやわれの発生し難いポリイミド製無端ベルトが報告されている。
Various image forming apparatuses using an electrophotographic system are employed in laser printers, copying machines, facsimile machines, and the like. An image forming apparatus using an electrophotographic system develops a latent image stored on a photosensitive drum by supplying toner from a developing roller, transfers the toner image to an endless belt in contact with the lower part of the photosensitive drum, and further from the endless belt. A structure in which toner is transferred to a recording medium such as printing paper, and the recording medium is pressure-bonded by a pressure roller and a fixing roller, and the transferred toner is pressure-bonded and fixed on the recording medium. It has become.
Such an endless belt has a structure that travels infinitely at high speed by a drive roller or the like. In a normal printer or the like, during printing on a recording medium such as nearly 100,000 sheets of printing paper, it must be able to be used with stress applied so as not to loosen or shift. Therefore, the endless belt must have a good balance of tensile strength, Young's modulus, flexibility, bending strength, conductive properties, and the like. Therefore, various studies have been made on endless belts in materials, manufacturing processes, and the like. In Patent Document 1, a seamless belt having excellent surface resistivity and volume resistivity uniformity obtained by molding a thermoplastic resin composition and having a good balance of overall physical properties such as folding resistance and Young's modulus is disclosed in Patent Document 1. In Patent Document 2, a belt having a good balance between flexibility and rigidity obtained by molding a conductive filler and a polyimide resin composition is used. In Patent Document 3, an endless belt capable of accurately measuring toner transfer density is used. Reported an endless belt made of polyimide, which is less prone to cracking and cracking.

特開平10−6411号公報Japanese Patent Laid-Open No. 10-6411 特開2004−99709号公報JP 2004-99709 A 特開2005−10220号公報JP 2005-10220 A 特開2005−31301号公報JP 2005-31301 A

しかし、使用前の無端ベルトの引張り強度やヤング率、耐折強さなどの通常のベルト特性測定や材料の物性試験による評価では、長期使用中の無端ベルトの破断やクラックの発生は判断できない場合があった。
本発明では、使用前の無端ベルトの特定性能を評価することにより、使用中にクラックや破断を起こさない無端ベルトを提供すること、およびそのような無端ベルトの製造方法、並びにこの無端ベルトを利用した画像形成装置の提供を目的としている。
However, when endless belt breakage or cracking during long-term use cannot be determined by normal belt property measurement such as tensile strength, Young's modulus, and bending strength of endless belts before use and evaluation by physical property tests was there.
The present invention provides an endless belt that does not cause cracks or breakage during use by evaluating the specific performance of the endless belt before use, and a method for producing such an endless belt, and uses this endless belt. An object of the present invention is to provide an image forming apparatus.

上述の課題を解決するため本発明者らは、無端ベルトの破断の原因となる長期間の屈曲ストレスを模して耐折強さ試験を検討した。耐折強さ試験(JIS P 8115)で曲げ角度90度における耐折強さが1000回以上で、曲げ角度を変えて測定したときに耐折強さの変化率が一定の範囲内にある無端ベルトが、上記課題を解決できることを見出した。また、ベルト状に形成したフィルムの厚さの変化に対し耐折強さの変化率が一定の範囲内にある無端ベルト材料が好ましい材料であることが分かった。この結果をもとに上記課題を解決するための手段を以下に記す。
(1)耐折強さ試験(JIS P 8115)で曲げ角度90度における耐折強さ(回)が1000回以上で、下式(A)で示される耐折強さ角度係数aが−0.030〜−0.040である無端ベルトを製造する無端ベルトの製造方法であって、トリメリット酸無水物と4,4’−ジフェニルメタンジイソシアネートとを反応して得られるポリアミドイミド樹脂を含有し、ポリアルキレンテレフタレート無含有の導電性樹脂組成物を遠心成形法で成形し、得られた無端ベルトの曲げ角度90度における耐折強さ(回)及び前記耐折強さ角度係数aそれぞれを計測する無端ベルトの製造方法。
式(A) a=(logx−logx)/(135−45)
但し、xは曲げ角度135度における耐折強さ(回)、xは曲げ角度45度における耐折強さ(回)を表す。
(2)前記導電性樹脂組成物は、厚さ0.13mm及び厚さ0.07mmの無端ベルトに成形され、この無端ベルトの下式(B)で示される耐折強さ厚み係数bを測定したときに、耐折強さ厚み係数bが−15〜−35となるように選択される請求項1に記載の無端ベルトの製造方法
式(B) b=(logy−logy)/(0.13−0.07)
但し、yは厚さ0.13mmの無端ベルトの曲げ角度90度における耐折強さ(回)、yは厚さ0.07mmの無端ベルトの曲げ角度90度における耐折強さ(回)を表す。
(3)前記導電性樹脂組成物は、カーボンブラックを含むカーボンブラック含有ポリアミドイミド樹脂組成物である(1)または(2)に記載の無端ベルトの製造方法。
(4)0.03〜0.10mmの厚さに成形する(1)〜(3)のいずれかに記載の無端ベルトの製造方法。
(5)(1)〜(4)のいずれか1項に記載の無端ベルトの製造方法によって製造された無端ベルトを備えた電子写真方式の画像形成装置。

In order to solve the above-mentioned problems, the present inventors examined a bending strength test by imitating a long-term bending stress that causes the endless belt to break. Endless whose bending strength at a bending angle of 90 degrees is 1000 times or more in the bending strength test (JIS P 8115), and the rate of change in bending strength is within a certain range when measured by changing the bending angle. It has been found that a belt can solve the above problems. Further, it has been found that an endless belt material having a rate of change in bending strength within a certain range with respect to a change in the thickness of a film formed in a belt shape is a preferable material. Means for solving the above problems based on the results will be described below.
(1) In the bending strength test (JIS P 8115), the bending strength (turn) at a bending angle of 90 degrees is 1000 times or more, and the bending strength angle coefficient a shown by the following formula (A) is −0. A method for producing an endless belt that is 0.030 to -0.040, comprising a polyamideimide resin obtained by reacting trimellitic anhydride with 4,4'-diphenylmethane diisocyanate, A conductive resin composition containing no polyalkylene terephthalate is molded by centrifugal molding, and the bending strength (times) of the endless belt obtained at a bending angle of 90 degrees and the bending strength angle coefficient a are measured. A method for manufacturing an endless belt.
Formula (A) a = (logx 1 -logx 2) / (135-45)
However, x 1 represents the folding endurance in bending angle 135 degrees (times), folding endurance in x 2 in bending angle 45 degrees (times).
(2) The conductive resin composition is formed into an endless belt having a thickness of 0.13 mm and a thickness of 0.07 mm, and a bending strength thickness coefficient b represented by the lower formula (B) of the endless belt is measured. The endless belt manufacturing method according to claim 1 , wherein the bending strength thickness coefficient b is selected to be -15 to -35.
Formula (B) b = (logy 1 -logy 2) / (0.13-0.07)
However, folding endurance in bending angle 90 degrees of the endless belt of y 1 is the thickness 0.13 mm (times), folding endurance in bending angle 90 degrees of the endless belt of y 2 thickness 0.07 mm (times ).
(3) The method for producing an endless belt according to (1) or (2), wherein the conductive resin composition is a carbon black-containing polyamideimide resin composition containing carbon black.
(4) The method for producing an endless belt according to any one of (1) to (3), wherein the endless belt is formed to a thickness of 0.03 to 0.10 mm.
(5) An electrophotographic image forming apparatus including an endless belt manufactured by the method for manufacturing an endless belt according to any one of (1) to (4).

本発明の無端ベルトは使用中に破断やクラックの発生がなく長期間安定して使用できる。そして、無端ベルトおよびその原料である導電性樹脂組成物を簡便な試験法により評価できるので、本発明の無端ベルトの製造にこの評価方法が利用できる。また、本発明の無端ベルトを遠心成形法で成形するので、厚さ精度に優れ、抵抗値のばらつきを小さくすることができる。さらに、本発明の無端ベルトを使用した画像形成装置は高速で画像を形成することができ、しかも長期間にわたって使用することができる。   The endless belt of the present invention can be used stably for a long period of time without breakage or cracking during use. Since the endless belt and the conductive resin composition that is a raw material thereof can be evaluated by a simple test method, this evaluation method can be used for the production of the endless belt of the present invention. Moreover, since the endless belt of the present invention is formed by the centrifugal molding method, the thickness accuracy is excellent and the variation in resistance value can be reduced. Furthermore, the image forming apparatus using the endless belt of the present invention can form an image at a high speed and can be used for a long period of time.

本発明の無端ベルトは、ポリアルキレンテレフタレート無含有の導電性樹脂組成物(単に「導電性樹脂組成物」と称することがある。)からなり、耐折強さ試験(JIS P 8115)で曲げ角度90度における耐折強さ(回)が1000回以上で、下式(A)で示される耐折強さ角度係数aが−0.030〜−0.040である。
式(A) a=(logx−logx)/(135−45)
但し、xは曲げ角度135度における耐折強さ(回)、xは曲げ角度45度における耐折強さ(回)を表す。
無端ベルトは通常図1に示すような形状をしており、これを転写ベルトとして使用する際、たるみを防止するため、かなりの引張り応力をかけたまま、高速で複数のローラの間を回転させる。さらに、無端ベルトの回転中横ずれが起きそうになると、横から強制的に修正する応力もかかる。このため、ローラとの接触面では引張り応力だけでなく、ねじれや折曲げなど複雑な応力がかかり、使用中に破断することがある。
そこで、本発明の無端ベルトは耐折強さ試験(JIS P 8115)で曲げ角度90度における耐折強さ(回)が1000回以上の強度を必要とする。さらに、本発明の無端ベルトは、曲げ角度を変えて測定した耐折強さ(回)の対数の変化率である耐折強さ角度係数aを上記範囲にすることが必要である。なお、無端ベルト材料としてカーボンブラック含有ポリアミドイミド樹脂組成物を使用した場合は、曲げ角度と耐折強さの対数の関係は、45度から135度の間ではほぼ直線的な変化を示す。耐折強さ角度係数aが上記範囲より大きい(aの絶対値が小さい) 無端ベルト材料は曲げ角度の大小に係らず耐折強さが低いものが多いという不都合があり、aが上記範囲より小さく(aの絶対値が大きく)なると、大きな曲げ角度での耐折強さが低下するという不都合がある。そして転写ベルトとして使用した際、破断やクラックが発生し易い。
通常、無端ベルトとして使用される、導電性樹脂組成物であるカーボンブラック含有ポリアミドイミド樹脂から製造した厚さ0.07〜0.13mmのフィルムで作成した無端ベルトは、上記範囲に入るものが多く、導電性樹脂組成物としてカーボンブラック含有ポリアミドイミド樹脂は、本発明の好ましい無端ベルト材料である。しかし、カーボンブラック含有ポリアミドイミド樹脂製無端ベルトでも、ポリアミドイミド樹脂の重合度やカーボンブラックの種類、添加量などによって必ずしも上記範囲を満足しない。無端ベルト材料の導電性樹脂組成物を選択し、目標とする厚みの無端ベルトまたはフィルムを作成し、これを上記試験法により評価し上記範囲内にあれば、この材料から製造した同じ厚さの無端ベルトは本発明の無端ベルトとなる。
そして、耐折強さ角度係数aは−0.030〜−0.040が好ましく、−0.032〜−0.037がより好ましい。この範囲に制御することにより、無端ベルトの耐折強さが高く、転写ベルトとして使用した際、破断やクラックが発生しにくい。
The endless belt of the present invention is composed of a conductive resin composition containing no polyalkylene terephthalate (sometimes referred to simply as “conductive resin composition” ), and the bending angle in a bending strength test (JIS P 8115). The bending strength (times) at 90 degrees is 1000 times or more, and the bending strength angle coefficient a represented by the following formula (A) is -0.030 to -0.040.
Formula (A) a = (logx 1 -logx 2) / (135-45)
However, x 1 represents the folding endurance in bending angle 135 degrees (times), folding endurance in x 2 in bending angle 45 degrees (times).
The endless belt is usually shaped as shown in FIG. 1, and when used as a transfer belt, the endless belt is rotated between a plurality of rollers at a high speed while applying a considerable tensile stress in order to prevent sagging. . Further, when a lateral deviation is likely to occur during rotation of the endless belt, a stress forcibly correcting from the side is also applied. For this reason, not only the tensile stress but also complex stress such as twisting or bending is applied to the contact surface with the roller, and the roller may break during use.
Therefore, the endless belt of the present invention requires a strength of 1,000 times or more at the bending strength (times) at a bending angle of 90 degrees in the folding strength test (JIS P 8115). Furthermore, the endless belt of the present invention needs to have a bending strength angle coefficient a that is a logarithmic change rate of bending strength (times) measured by changing a bending angle within the above range. When a carbon black-containing polyamideimide resin composition is used as the endless belt material, the logarithmic relationship between the bending angle and the bending strength shows a substantially linear change between 45 degrees and 135 degrees. The bending strength angle coefficient a is larger than the above range (the absolute value of a is small). Endless belt materials have many disadvantages that the bending strength is low regardless of the bending angle. When it is small (the absolute value of a is large), there is a disadvantage that the bending strength at a large bending angle is lowered. When used as a transfer belt, breakage and cracks are likely to occur.
Usually, endless belts made from 0.07 to 0.13 mm thick films made from carbon black-containing polyamideimide resin, which is a conductive resin composition, used as endless belts are often in the above range. The carbon black-containing polyamideimide resin as the conductive resin composition is a preferred endless belt material of the present invention. However, even an endless belt made of a carbon black-containing polyamideimide resin does not necessarily satisfy the above range depending on the degree of polymerization of the polyamideimide resin, the type of carbon black, the amount added, and the like. Select the conductive resin composition of the endless belt material, create an endless belt or film of the target thickness, evaluate this by the above test method, and if it is within the above range, the same thickness produced from this material The endless belt is the endless belt of the present invention.
The folding strength angle coefficient a is preferably -0.030 to -0.040, more preferably -0.032 to -0.037. By controlling within this range, the endless belt has high bending strength, and when used as a transfer belt, breakage and cracks are unlikely to occur.

さらに、本発明の無端ベルトは、導電性樹脂組成物を無端ベルトに成形した際、下式(B)で示される耐折強さ厚み係数bが−15〜−35である導電性樹脂組成物からなることが好ましい。
式(B) b=(logy−logy)/(0.13−0.07)
但し、yは厚さ0.13mmの無端ベルトの曲げ角度90度における耐折強さ(回)、yは厚さ0.07mmの無端ベルトの曲げ角度90度における耐折強さ(回)を表す。
カーボンブラック含有ポリアミドイミド樹脂組成物のような好適な無端ベルト用材料をベルトまたはフィルム状にして、その厚さと曲げ角度90度における耐折強さの対数との関係を調べたところ、厚さ0.07mmから0.13mmの範囲でほぼ直線関係が成り立つことがわかった。そして、本発明の耐折強さ厚み係数bは、その直線の傾斜を表している。この傾斜すなわち、耐折強さ厚み係数bが上記範囲にある導電性樹脂組成物が、好ましい本発明の無端ベルト材料である。
耐折強さ厚み係数bが、上記範囲より大きい(bの絶対値が小さい)とベルトの厚みに関わらず耐折強さが低いという不都合があり、上記範囲より厚み係数bが小さい(bの絶対値が大きい)とベルトの厚みを厚くした時に耐折強さが低下する不都合がある。そして、このような材料で作成したベルトを転写ベルトとして使用した際、破断やクラックが発生し易い。
Furthermore, the endless belt of the present invention has a bending strength thickness coefficient b represented by the following formula (B) of −15 to −35 when the conductive resin composition is molded into an endless belt. Preferably it consists of.
Formula (B) b = (logy 1 -logy 2) / (0.13-0.07)
However, folding endurance in bending angle 90 degrees of the endless belt of y 1 is the thickness 0.13 mm (times), folding endurance in bending angle 90 degrees of the endless belt of y 2 thickness 0.07 mm (times ).
A suitable endless belt material such as a carbon black-containing polyamideimide resin composition was formed into a belt or film shape, and the relationship between the thickness and the logarithm of the bending strength at a bending angle of 90 degrees was examined. It was found that a substantially linear relationship was established in the range of 0.07 mm to 0.13 mm. And the bending strength thickness coefficient b of this invention represents the inclination of the straight line. A conductive resin composition having this inclination, that is, a bending strength thickness coefficient b in the above range, is a preferable endless belt material of the present invention.
If the bending strength thickness coefficient b is larger than the above range (the absolute value of b is small), there is a disadvantage that the folding strength is low regardless of the belt thickness, and the thickness coefficient b is smaller than the above range (of b (The absolute value is large), there is a disadvantage that the bending strength is lowered when the thickness of the belt is increased. When a belt made of such a material is used as a transfer belt, breakage and cracks are likely to occur.

好適な本発明の無端ベルトの製造方法は、導電性樹脂組成物を遠心成形法で成形することである。遠心成形法を利用すれば、導電性樹脂組成物から容易に耐折強さ試験(JIS P 8115)で曲げ角度90度における耐折強さ(回)が1000回以上で、下式(A)で示される耐折強さ角度係数aが−0.030〜−0.040である無端ベルトを成形することができる。
式(A) a=(logx−logx)/(135−45)
但し、xは曲げ角度135度における耐折強さ(回)、xは曲げ角度45度における耐折強さ(回)を表す。
また、さらに好適な本発明の無端ベルトの製造方法は、下式(B)で示される耐折強さ厚み係数bが−15〜−35である導電性樹脂組成物を遠心成形法で成形することである。
式(B) b=(logy−logy)/(0.13−0.07)
但し、yは厚さ0.13mmのベルトの曲げ角度90度における耐折強さ(回)、yは厚さ0.07mmのベルトの曲げ角度90度における耐折強さ(回)を表す。
A preferred method for producing the endless belt of the present invention is to form the conductive resin composition by centrifugal molding. If the centrifugal molding method is used, the folding strength test (JIS) in the bending strength test (JIS P 8115) can be easily performed from the conductive resin composition at a bending angle of 90 degrees or more, and the following formula (A) An endless belt having a bending strength angle coefficient a of −0.030 to −0.040 can be formed.
Formula (A) a = (logx 1 -logx 2) / (135-45)
However, x 1 represents the folding endurance in bending angle 135 degrees (times), folding endurance in x 2 in bending angle 45 degrees (times).
Furthermore, a more preferable method for producing an endless belt of the present invention is to form a conductive resin composition having a bending strength thickness coefficient b of −15 to −35 represented by the following formula (B) by centrifugal molding. That is.
Formula (B) b = (logy 1 -logy 2) / (0.13-0.07)
However, folding endurance in bending angle 90 degrees y 1 is the thickness of 0.13mm belts (times), y 2 is folding endurance in bending angle 90 ° Belt thickness 0.07mm (times) To express.

次に、本発明の無端ベルトの材料について説明する。無端ベルトは、可撓性と弾性に富んだ導電性樹脂組成物から成形される。樹脂としては、例えばポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)等のポリエステル系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリアミド系樹脂、フッ素樹脂、ポリサルフォン、ポリエーテルサルフォン、ポリカーボネート、アラミド樹脂、ポリエーテルエーテルケトン(PEEK)、エポキシ樹脂、架橋型ポリエステル樹脂、メラミン樹脂等があげられる。その中でも、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリアミド系樹脂が好ましく、特にポリアミドイミド樹脂、さらに芳香族ポリアミドイミド樹脂が最も好ましい。
無端ベルトは、ある程度の導電性が要求され、上記導電性樹脂組成物には導電性付与剤が含まれる。このような導電性付与剤としては、ファーネスブラック、アセチレンブラック、ケッチェンブラック等の各種カーボンブラック、天然黒鉛、人造黒鉛、膨張黒鉛等の黒鉛粉末、金属や合金からなる針状、球状、板状、不定形等の粉末、セラミックス粉末、表面が金属メッキされた各種粒子等があげられる。この中でもカーボンブラックが、粒径、導電性、樹脂材料との親和性等のバランスが取れた材料であり使用し易い。この導電性付与剤の形状、サイズは、球状あるいは不定形で、0.01〜10μm程度が好ましい。
導電性付与剤の添加量は、導電性付与剤の導電性や粒径、および無端ベルトに要求される導電性の程度により適宜調整すればよいが、一般には1〜25質量%の範囲が好ましい。1質量%未満の場合には、導電性物質同士の距離が大きくなり導電性の発現が悪くなる。逆に、25質量%を超える場合、無端ベルトの機械的強度が低下するおそれがある。
導電性付与剤を樹脂材料に分散させる方法としては、樹脂材料の性状に適する公知の分散方法が用いられる。例えば、ミキシングロール、加圧式ニーダ、押出機、三本ロール、ホモジナイザー、ボールミル、ピースミル等が用いられる。その他の添加剤として、可塑剤、着色剤、帯電防止剤、老化防止剤、酸化防止剤、補強性フィラー、反応助剤、反応抑制剤等の各種添加剤を必要に応じ、導電性樹脂組成物中に添加してもよい。このようにして作成した導電性樹脂組成物から、下記の成形法により所定の厚さの無端ベルトを作成し、耐折強さ厚み係数bを測定して本発明に用いる導電性樹脂組成物を選択することができる。
Next, the material of the endless belt of the present invention will be described. The endless belt is formed from a conductive resin composition rich in flexibility and elasticity. Examples of the resin include polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN), polyimide resins, polyamideimide resins, polyamide resins, fluororesins, polysulfones, and polyethers. Examples include sulfone, polycarbonate, aramid resin, polyether ether ketone (PEEK), epoxy resin, cross-linked polyester resin, and melamine resin. Of these, polyimide resins, polyamideimide resins, and polyamide resins are preferable, and polyamideimide resins and aromatic polyamideimide resins are most preferable.
The endless belt is required to have a certain degree of conductivity, and the conductive resin composition contains a conductivity imparting agent. Examples of such conductivity imparting agents include various carbon blacks such as furnace black, acetylene black, and ketjen black, graphite powders such as natural graphite, artificial graphite, and expanded graphite, and needles, spheres, and plates made of metals and alloys. And powders of irregular shapes, ceramic powders, and various particles whose surfaces are metal-plated. Among these, carbon black is a material that has a good balance of particle size, conductivity, affinity with resin material, and the like, and is easy to use. The shape and size of the conductivity-imparting agent are spherical or indeterminate and are preferably about 0.01 to 10 μm.
The addition amount of the conductivity-imparting agent may be appropriately adjusted depending on the conductivity and particle size of the conductivity-imparting agent and the degree of conductivity required for the endless belt, but is generally in the range of 1 to 25% by mass. . When the amount is less than 1% by mass, the distance between the conductive substances is increased, and the expression of conductivity is deteriorated. Conversely, if it exceeds 25 mass%, the mechanical strength of the endless belt may be reduced.
As a method of dispersing the conductivity imparting agent in the resin material, a known dispersion method suitable for the properties of the resin material is used. For example, a mixing roll, a pressure kneader, an extruder, a three roll, a homogenizer, a ball mill, a piece mill, and the like are used. As other additives, various additives such as plasticizers, colorants, antistatic agents, anti-aging agents, antioxidants, reinforcing fillers, reaction aids, reaction inhibitors, and the like, if necessary, conductive resin composition It may be added inside. From the conductive resin composition thus prepared, an endless belt having a predetermined thickness is prepared by the following molding method, and the conductive resin composition used in the present invention is measured by measuring the bending strength thickness coefficient b. You can choose.

次に、本発明の無端ベルトの成形方法を説明する。無端ベルトの樹脂材料として熱可塑性樹脂を選択した場合、遠心成形、押出成形、射出成形等によればよい。また、熱硬化性樹脂を選択した場合、遠心成形やRIM成形等を採用すればよい。これらの方法の中でも、材料を問わずに適用可能であること、厚さ精度に優れていること、そして導電性を付与した場合に抵抗値のばらつきが小さいこと等から遠心成形法が好適である。
遠心成形法は、例えば、円筒の金型に流動性の材料を少量注入し、円筒の軸を中心にして金型を回転させて遠心力でその内周面に材料の層を均一に成形する。同じ金型であれば材料の量と無端ベルトの厚さには相関関係があるので、材料の量により厚さを制御できる。溶剤を含む場合は、材料を乾燥、加熱、あるいは過熱水蒸気処理して溶剤を除去し円筒状の成形品を成形し、この成形品を金型から脱型すればよい。金型は各種金属管を用いることができ、内周面は鏡面研磨し、フッ素樹脂やシリコーン樹脂等の離型剤により離型処理し、容易に脱型できるようにするとよい。脱型した円筒状の成形体の両側端部を除去し、所定幅毎に裁断して無端ベルトを得ることができる。この無端ベルトの曲げ角度90度における耐折強さ、および耐折強さ角度係数aを計測して本発明の無端ベルトとすることができる。上記物性値を一度計測して本発明の無端ベルトであることを確認して、同じ導電性樹脂組成物から同じ厚さの無端ベルトを作れば、上記計測をしなくとも本発明の無端ベルトが大量生産できる。
金型で遠心成形する際、準備する流動性の材料は、成形時の粘度が50,000mPa・s以下となるように調整することが好ましい。粘度が50,000mPa・sを超えると、厚さの均一な無端ベルトが作り難くなる。粘度の下限については、特に限定されるものではないが、材料の取り扱い上、10mPa・s以上が好ましい。材料の粘度が上記範囲を外れる場合は、材料に溶媒を加えて溶解・希釈して、粘度を調整して使用すればよい。
Next, the endless belt molding method of the present invention will be described. When a thermoplastic resin is selected as the resin material for the endless belt, centrifugal molding, extrusion molding, injection molding, or the like may be used. Further, when a thermosetting resin is selected, centrifugal molding, RIM molding, or the like may be employed. Among these methods, the centrifugal molding method is suitable because it can be applied regardless of the material, has excellent thickness accuracy, and has a small variation in resistance value when imparted with conductivity. .
Centrifugal molding is, for example, injecting a small amount of a fluid material into a cylindrical mold, rotating the mold around the axis of the cylinder, and uniformly forming a layer of material on the inner peripheral surface by centrifugal force. . Since there is a correlation between the amount of material and the thickness of the endless belt in the same mold, the thickness can be controlled by the amount of material. In the case of containing a solvent, the material may be dried, heated, or treated with superheated steam to remove the solvent to form a cylindrical molded product, and the molded product may be removed from the mold. Various metal pipes can be used for the mold, and the inner peripheral surface is preferably mirror-polished and subjected to a release treatment with a release agent such as a fluororesin or a silicone resin so that the mold can be easily removed. It is possible to obtain endless belts by removing both end portions of the removed cylindrical molded body and cutting each predetermined width. The endless belt of the present invention can be obtained by measuring the bending strength and the bending strength angle coefficient a of the endless belt at a bending angle of 90 degrees. Once the physical property values are measured to confirm the endless belt of the present invention and an endless belt having the same thickness is made from the same conductive resin composition, the endless belt of the present invention can be obtained without performing the above measurement. Mass production is possible.
When centrifugally molding with a mold, the fluid material to be prepared is preferably adjusted so that the viscosity during molding is 50,000 mPa · s or less. When the viscosity exceeds 50,000 mPa · s, it becomes difficult to produce an endless belt having a uniform thickness. The lower limit of the viscosity is not particularly limited, but is preferably 10 mPa · s or more in terms of material handling. When the viscosity of the material is out of the above range, the material may be dissolved and diluted by adding a solvent to adjust the viscosity before use.

無端ベルトの機械的強度と可撓性を考慮すると、その厚さは0.03〜1.0mm、好ましくは0.05〜0.2mm、さらに好ましくは0.07〜0.13mm程度が望ましい。薄すぎれば機械的強度が損なわれ、厚すぎれば可撓性が損なわれる。また、無端ベルトは単層構造に限らず、多層構造としても良い。
無端ベルトの内面には作動中の横ぶれ防止用のガイドとして紐状、或いは帯状の細長いビードを配置する場合もある。ビードの材料は、適度なゴム弾性と耐摩耗性を有する弾性材料、例えばウレタン系エラストマー、シリコーン系エラストマー、フッ素系樹脂エラストマー、スチレン系エラストマー等があげられる。これらの中でも、耐摩耗性に優れるJIS K 6253−1997A硬度30Hs以上95Hs以下のウレタン系エラストマーが好適である。
上述の本発明の無端ベルトは、各種画像形成装置の感光体基体用、現像用、定着用等の用途で使用可能であるが、転写ベルトとして利用すればトラブルの少ない電子写真方式の画像形成装置とすることができる。
Considering the mechanical strength and flexibility of the endless belt, the thickness is desirably 0.03 to 1.0 mm, preferably 0.05 to 0.2 mm, and more preferably about 0.07 to 0.13 mm. If it is too thin, the mechanical strength is impaired, and if it is too thick, the flexibility is impaired. The endless belt is not limited to a single layer structure, and may have a multilayer structure.
In some cases, a string-like or belt-like elongated bead is disposed on the inner surface of the endless belt as a guide for preventing lateral shaking during operation. Examples of the bead material include elastic materials having appropriate rubber elasticity and wear resistance, such as urethane elastomers, silicone elastomers, fluororesin elastomers, and styrene elastomers. Among these, JIS K 6253-1997A, which is excellent in abrasion resistance, is preferably a urethane-based elastomer having a hardness of 30 Hs to 95 Hs.
The above-mentioned endless belt of the present invention can be used for various types of image forming apparatuses such as a photosensitive substrate, a developer, and a fixing, but if used as a transfer belt, an electrophotographic image forming apparatus with less trouble. It can be.

(実施例1)
反応器中でトリメリット酸無水物1モル、4,4’−ジフェニルメタンジイソシアネート1モルからなる反応原料、およびフッ化カリウム0.01モルをN−メチル−2−ピロリドン1600gと混合し、30分間かけて20℃から150℃に昇温後、150℃にて5時間の加熱反応し、固形分濃度(実質的全閉環のポリアミドイミド)20質量%の芳香族ポリアミドイミド溶液を得た。これにN−メチル−2−ピロリドンを加え、固形分濃度15質量%、固形分の比重1.2のポリアミドイミド溶液を調製した。これに導電性付与剤のカーボンブラックとして、#3400(pH5.8 商品名 三菱化学株式会社製)をポリアミドイミド樹脂固形分に対して10質量%となるように配合し、ポットミルで24時間混合分散し混合液を得た。これを1000rpmの速度で回転する金型内周に190g注入した。金型は、内径226mm、外径246mm、長さ400mmの大きさとし、金型内面はポリッシングにより鏡面研磨されている。そして金型両端の開口部にはリング状の蓋(内径170mm、外径250mm)をそれぞれ嵌合して材料漏れを防止することとした。こうして温度80℃の金型に材料を注入したら、1000rpmの速度でレベリングして遠心成形し、熱風乾燥機で雰囲気温度を80℃に保ち、この状態を30分間保持して金型の回転を停止させるとともに、金型ごと180℃のオーブンに挿入し、45分間後に取り出した。取り出した金型を室温で放冷し、金型と導電性樹脂組成物の熱膨張差を利用して導電性樹脂組成物でできたフィルムを脱型した。このフィルムの両端部をそれぞれカットして240mmの幅とし、厚さ0.1mmの無端ベルトを作成した。この無端ベルトの組成であるカーボンブラック含有ポリアミドイミド樹脂組成物を導電性樹脂組成物1とした。
(実施例2)
実施例1において、金型に注入したポリアミドイミドとカーボンブラックとの混合液を190gから146gに替えた以外は、実施例1と同様にして厚さ0.07mmの無端ベルトを作成した。
(実施例3)
実施例1の芳香族ポリアミドイミド製造工程において、反応原料中にフッ化カリウムを添加せず、昇温時間を30分間から60分間に変更した以外は、実施例1と同様にして厚さ0.1mmの無端ベルトを作成した。この無端ベルトの組成であるカーボンブラック含有ポリアミドイミド樹脂組成物を導電性樹脂組成物2とした。
(実施例4)
実施例3において、金型に注入したポリアミドイミドとカーボンとの混合液を190gから146gに替えた以外は、実施例3と同様にして厚さ0.07mmの無端ベルトを作成した。
(Example 1)
In the reactor, 1 mol of trimellitic anhydride, 1 mol of 4,4′-diphenylmethane diisocyanate, and 0.01 mol of potassium fluoride were mixed with 1600 g of N-methyl-2-pyrrolidone and taken for 30 minutes. The temperature was raised from 20 ° C. to 150 ° C., followed by a heating reaction at 150 ° C. for 5 hours to obtain an aromatic polyamideimide solution having a solid content concentration (substantially fully ring-closed polyamideimide) of 20% by mass. N-methyl-2-pyrrolidone was added thereto to prepare a polyamideimide solution having a solid content concentration of 15% by mass and a solid content specific gravity of 1.2. To this, as a carbon black as a conductivity imparting agent, # 3400 (pH 5.8, trade name, manufactured by Mitsubishi Chemical Co., Ltd.) was blended so as to be 10% by mass with respect to the solid content of the polyamideimide resin, and mixed and dispersed in a pot mill for 24 hours To obtain a mixed solution. 190 g of this was injected into the inner periphery of the mold rotating at a speed of 1000 rpm. The mold has an inner diameter of 226 mm, an outer diameter of 246 mm, and a length of 400 mm, and the inner surface of the mold is mirror-polished by polishing. Then, ring-shaped lids (inner diameter 170 mm, outer diameter 250 mm) were fitted into the openings at both ends of the mold to prevent material leakage. Once the material is injected into the mold at a temperature of 80 ° C., leveling is performed at a speed of 1000 rpm, centrifugal molding is performed, the atmospheric temperature is maintained at 80 ° C. with a hot air dryer, and this state is maintained for 30 minutes to stop the rotation of the mold. The mold was inserted into an oven at 180 ° C. and taken out after 45 minutes. The taken out mold was allowed to cool at room temperature, and the film made of the conductive resin composition was demolded using the difference in thermal expansion between the mold and the conductive resin composition. Both ends of this film were cut to a width of 240 mm, and an endless belt having a thickness of 0.1 mm was produced. The carbon black-containing polyamideimide resin composition having the composition of this endless belt was designated as conductive resin composition 1.
(Example 2)
In Example 1, an endless belt having a thickness of 0.07 mm was prepared in the same manner as in Example 1 except that the mixed liquid of polyamideimide and carbon black injected into the mold was changed from 190 g to 146 g.
(Example 3)
In the process for producing the aromatic polyamideimide of Example 1, a thickness of 0. 0 was obtained in the same manner as in Example 1 except that potassium fluoride was not added to the reaction raw material and the temperature raising time was changed from 30 minutes to 60 minutes. A 1 mm endless belt was prepared. The carbon black-containing polyamideimide resin composition that is the composition of this endless belt was designated as conductive resin composition 2.
Example 4
In Example 3, an endless belt having a thickness of 0.07 mm was prepared in the same manner as in Example 3 except that the mixed solution of polyamideimide and carbon injected into the mold was changed from 190 g to 146 g.

(比較例1)
実施例1において、金型に注入したポリアミドイミドとカーボンブラックとの混合液を190gから253gに替えた以外は、実施例1と同様にして厚さ0.13mmの無端ベルトを作成した。
(比較例2)
実施例3において、金型に注入したポリアミドイミドとカーボンブラックとの混合液を190gから253gに替えた以外は、実施例3と同様にして厚さ0.13mmの無端ベルトを作成した。
(比較例3)
実施例1の芳香族ポリアミドイミド製造原料調製工程において、反応原料としてトリメリット酸無水物1モル、ジフェニルメタンジイソシアネート1モル、および水酸基含有ポリエステル変性ポリシロキサン共重合体(ビックケミー社製:Byk370)46.5g(得られるポリアミドイミド樹脂組成物中の含有量5%に相当する。)をN−メチル−2−ピロリドン1600g中に混合した以外は、実施例1と同様にして厚さ0.1mmの無端ベルトを作成した。この無端ベルトの組成であるカーボンブラック含有ポリアミドイミド樹脂組成物を導電性樹脂組成物3とした。
(比較例4)
比較例3において、金型に注入したポリアミドイミドとカーボンブラックとの混合液を190gから146gに替えた以外は、比較例3と同様にして厚さ0.07mmの無端ベルトを作成した。
(比較例5)
比較例3において、金型に注入したポリアミドイミドとカーボンブラックとの混合液を190gから253gに替えた以外は、比較例3と同様にして厚さ0.13mmの無端ベルトを作成した。
(Comparative Example 1)
In Example 1, an endless belt having a thickness of 0.13 mm was prepared in the same manner as in Example 1 except that the mixed liquid of polyamideimide and carbon black injected into the mold was changed from 190 g to 253 g.
(Comparative Example 2)
In Example 3, an endless belt having a thickness of 0.13 mm was prepared in the same manner as in Example 3 except that the mixed solution of polyamideimide and carbon black injected into the mold was changed from 190 g to 253 g.
(Comparative Example 3)
In the aromatic polyamideimide production raw material preparation step of Example 1, 46.5 g of trimellitic anhydride 1 mol, diphenylmethane diisocyanate 1 mol, and a hydroxyl group-containing polyester-modified polysiloxane copolymer (Bikchemy Corporation: Byk370) as reaction raw materials. An endless belt having a thickness of 0.1 mm was obtained in the same manner as in Example 1 except that 1600 g of N-methyl-2-pyrrolidone (corresponding to a content of 5% in the obtained polyamideimide resin composition) was mixed. It was created. The carbon black-containing polyamideimide resin composition that is the composition of this endless belt was designated as conductive resin composition 3.
(Comparative Example 4)
In Comparative Example 3, an endless belt having a thickness of 0.07 mm was prepared in the same manner as in Comparative Example 3, except that the mixed liquid of polyamideimide and carbon black injected into the mold was changed from 190 g to 146 g.
(Comparative Example 5)
In Comparative Example 3, an endless belt having a thickness of 0.13 mm was prepared in the same manner as in Comparative Example 3 except that the mixed liquid of polyamideimide and carbon black injected into the mold was changed from 190 g to 253 g.

(半導電性無端ベルトの物性評価)
JIS P 8115の試験法に準拠して、45度、90度、135度における実施例1〜4、比較例1〜5のそれぞれの耐折回数を測定した。その結果を基に、各実施例、比較例毎の耐折強さ角度係数aを表1に、実施例1、3、比較例3で製造したカーボンブラック含有ポリアミドイミド樹脂組成物の耐折強さ厚み係数bを表2に示した。
(無端ベルトの実用性評価)
実施例1〜4、および比較例1〜5で作成した無端ベルトをそれぞれタンデム方式のカラープリンタ(MicroLine9055c 株式会社沖データ製)に装着して実機テストをした。プリント速度は、上記のプリンタの仕様に合わせ、A4用紙を横21枚/分(A4横210mm+余白50mmとして260mm×21枚で約5.5m/分の移動速度)で10万枚以上印刷を目標に無端ベルトの寿命テストを15万枚まで実施した。結果を表3に示した。
(Physical property evaluation of semi-conductive endless belt)
Based on the test method of JIS P 8115, each folding endurance of Examples 1-4 and Comparative Examples 1-5 at 45 degrees, 90 degrees, and 135 degrees was measured. Based on the results, the folding strength angle coefficient a for each example and comparative example is shown in Table 1, and the folding strength of the carbon black-containing polyamideimide resin compositions produced in Examples 1, 3 and Comparative Example 3 is shown in Table 1. The thickness coefficient b is shown in Table 2.
(Evaluation of practicality of endless belt)
The endless belts created in Examples 1 to 4 and Comparative Examples 1 to 5 were each mounted on a tandem color printer (MicroLine 9055c, manufactured by Oki Data Co., Ltd.), and an actual machine test was performed. The print speed is 21 sheets / min. For A4 paper (A4 width 210mm + margin 50mm, 260mm x 21 sheets, moving speed is about 5.5m / min) according to the above printer specifications. In addition, an endless belt life test was conducted up to 150,000 sheets. The results are shown in Table 3.

Figure 0004807831
Figure 0004807831

Figure 0004807831
Figure 0004807831

Figure 0004807831
Figure 0004807831

表1において、耐折強さ回数、および耐折強さ角度係数aが本発明の範囲内にある無端ベルト(実施例1〜4)は、前記性能の少なくともひとつが本発明の範囲から外れる無端ベルト(比較例1〜5)に較べて、表3の実機テスト結果において明らかに長寿命であることが分かる。また、耐折強さ厚み係数bが第二の本発明の範囲内にある導電性樹脂組成物1または2からなる無端ベルト(実施例1〜4)は、耐折強さ厚み係数bが本発明の範囲から外れる導電性樹脂組成物3からなる無端ベルト(比較例3〜5)に較べて、表3の実機テスト結果において明らかに長寿命であることが分かる。   In Table 1, endless belts (Examples 1 to 4) in which the number of folding strengths and the bending strength angle coefficient a are within the scope of the present invention are endless in which at least one of the above performances is outside the scope of the present invention Compared to the belts (Comparative Examples 1 to 5), it can be seen that the actual machine test results in Table 3 clearly have a longer life. Further, endless belts (Examples 1 to 4) made of the conductive resin composition 1 or 2 having a bending strength thickness coefficient b within the range of the second aspect of the present invention have a folding strength thickness coefficient b of this value. Compared with the endless belts (Comparative Examples 3 to 5) made of the conductive resin composition 3 that is out of the scope of the invention, it can be seen that the actual machine test results in Table 3 clearly have a long life.

本発明の無端ベルトは、破断やクラック発生が起こり難い特長があり、これを転写ベルトとして備えた電子写真方式の画像形成装置は長寿命で、メンテナンスフリーとすることができる。   The endless belt of the present invention has a feature that breakage and cracks are unlikely to occur, and an electrophotographic image forming apparatus provided with this as a transfer belt has a long life and can be maintenance-free.

図1は無端ベルトの斜視図である。FIG. 1 is a perspective view of an endless belt.

符号の説明Explanation of symbols

1:無端ベルト 1: Endless belt

Claims (5)

耐折強さ試験(JIS P 8115)で曲げ角度90度における耐折強さ(回)が1000回以上で、下式(A)で示される耐折強さ角度係数aが−0.030〜−0.040である無端ベルトを製造する無端ベルトの製造方法であって、
トリメリット酸無水物と4,4’−ジフェニルメタンジイソシアネートとを反応して得られるポリアミドイミド樹脂を含有し、ポリアルキレンテレフタレート無含有の導電性樹脂組成物を遠心成形法で成形し、得られた無端ベルトの曲げ角度90度における耐折強さ(回)及び前記耐折強さ角度係数aそれぞれを計測する無端ベルトの製造方法。
式(A) a=(logx−logx)/(135−45)
但し、xは曲げ角度135度における耐折強さ(回)、xは曲げ角度45度における耐折強さ(回)を表す。
In the bending strength test (JIS P 8115), the bending strength (times) at a bending angle of 90 degrees is 1000 times or more, and the bending strength angle coefficient a shown by the following formula (A) is -0.030 to A method for producing an endless belt for producing an endless belt that is -0.040,
A polyamideimide resin obtained by reacting trimellitic anhydride and 4,4′-diphenylmethane diisocyanate is contained, and a polyalkylene terephthalate-free conductive resin composition is molded by centrifugal molding, and the obtained endless A method for producing an endless belt, wherein the bending strength (times) at a bending angle of 90 degrees of the belt and the bending strength angle coefficient a are measured.
Formula (A) a = (logx 1 -logx 2) / (135-45)
However, x 1 represents the folding endurance in bending angle 135 degrees (times), folding endurance in x 2 in bending angle 45 degrees (times).
前記導電性樹脂組成物は、厚さ0.13mm及び厚さ0.07mmの無端ベルトに成形され、この無端ベルトの下式(B)で示される耐折強さ厚み係数bを測定したときに、耐折強さ厚み係数bが−15〜−35となるように選択される請求項1に記載の無端ベルトの製造方法
式(B) b=(logy−logy)/(0.13−0.07)
但し、yは厚さ0.13mmの無端ベルトの曲げ角度90度における耐折強さ(回)、yは厚さ0.07mmの無端ベルトの曲げ角度90度における耐折強さ(回)を表す。
The conductive resin composition is formed into an endless belt having a thickness of 0.13 mm and a thickness of 0.07 mm, and when the bending strength thickness coefficient b represented by the lower formula (B) of the endless belt is measured. The method for producing an endless belt according to claim 1 , wherein the bending strength thickness coefficient b is selected to be −15 to −35.
Formula (B) b = (logy 1 -logy 2) / (0.13-0.07)
However, folding endurance in bending angle 90 degrees of the endless belt of y 1 is the thickness 0.13 mm (times), folding endurance in bending angle 90 degrees of the endless belt of y 2 thickness 0.07 mm (times ).
前記導電性樹脂組成物は、カーボンブラックを含むカーボンブラック含有ポリアミドイミド樹脂組成物である請求項1または2に記載の無端ベルトの製造方法。   The method for producing an endless belt according to claim 1, wherein the conductive resin composition is a carbon black-containing polyamideimide resin composition containing carbon black. 0.03〜0.10mmの厚さに成形する請求項1〜3のいずれか1項に記載の無端ベルトの製造方法。   The manufacturing method of the endless belt of any one of Claims 1-3 shape | molded to the thickness of 0.03-0.10 mm. 請求項1〜4のいずれか1項に記載の無端ベルトの製造方法によって製造された無端ベルトを備えた電子写真方式の画像形成装置。   An electrophotographic image forming apparatus comprising an endless belt manufactured by the endless belt manufacturing method according to claim 1.
JP2005367357A 2005-12-21 2005-12-21 Endless belt manufacturing method and image forming apparatus provided with endless belt Expired - Fee Related JP4807831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005367357A JP4807831B2 (en) 2005-12-21 2005-12-21 Endless belt manufacturing method and image forming apparatus provided with endless belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005367357A JP4807831B2 (en) 2005-12-21 2005-12-21 Endless belt manufacturing method and image forming apparatus provided with endless belt

Publications (2)

Publication Number Publication Date
JP2007171426A JP2007171426A (en) 2007-07-05
JP4807831B2 true JP4807831B2 (en) 2011-11-02

Family

ID=38298096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005367357A Expired - Fee Related JP4807831B2 (en) 2005-12-21 2005-12-21 Endless belt manufacturing method and image forming apparatus provided with endless belt

Country Status (1)

Country Link
JP (1) JP4807831B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3983424B2 (en) * 1999-07-23 2007-09-26 三菱化学株式会社 Seamless belt, belt for image forming apparatus, and image forming apparatus
JP3758500B2 (en) * 2000-02-14 2006-03-22 油化電子株式会社 Endless belt, belt for image forming apparatus, and image forming apparatus
JP2003261768A (en) * 2002-03-12 2003-09-19 Hitachi Chem Co Ltd Semiconductive tubular polyamide-imide film and method for producing the same

Also Published As

Publication number Publication date
JP2007171426A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
KR20130106425A (en) Developing roller, process cartridge and electrophotographic apparatus
CN108345200B (en) Electrophotographic member, method for producing electrophotographic member, and fixing apparatus
JP5326002B2 (en) Developing roll for electrophotographic equipment
JP4761546B2 (en) Developing roller, manufacturing method thereof, electrophotographic process cartridge, and electrophotographic image forming apparatus
JP2008209488A (en) Charging device, process cartridge and image forming apparatus
JP2017173714A (en) Developer carrier, process cartridge, and electronic photograph image formation device
JP2008233538A (en) Conductive roll for electrophotographic apparatus and method for manufacturing the same
US11537073B2 (en) Fixing belt, fixing device, and image forming apparatus
CN115437227A (en) Roller for electrophotography, process cartridge and electrophotographic image forming apparatus
JP5339497B2 (en) Endless belt and image forming apparatus
JP2016224442A (en) Intermediate transfer body and image forming apparatus
JP4807831B2 (en) Endless belt manufacturing method and image forming apparatus provided with endless belt
JP4986214B2 (en) Manufacturing method of conductive roller
US11429046B2 (en) Fixing belt and method of manufacturing the fixing belt
JP6170828B2 (en) Developing roller having an elastic layer made of polyurethane elastomer
JP2005266500A (en) Developing roller, process cartridge, and electrophotographic apparatus
JP5062802B2 (en) Endless belt, manufacturing method thereof, and electrophotographic apparatus provided with the same
JP4636942B2 (en) Roller manufacturing method, roller, developing roller, developing device, electrophotographic process cartridge, and image forming apparatus
JP4906114B2 (en) Roller manufacturing method, molding material selection method, and molding material
JP6363260B2 (en) Polishing method of polyurethane elastomer
CN112596355A (en) Charging roller
JP2016183997A (en) Developing roller, developing device, and image forming apparatus
JP4895445B2 (en) Intermediate transfer belt
JP5246828B2 (en) Endless belt manufacturing method
JP4849356B2 (en) Manufacturing method of composite fixing belt

Legal Events

Date Code Title Description
RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20080303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110125

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110519

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110726

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110812

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4807831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees