[go: up one dir, main page]

JP4823698B2 - Nitride semiconductor device manufacturing method - Google Patents

Nitride semiconductor device manufacturing method Download PDF

Info

Publication number
JP4823698B2
JP4823698B2 JP2006011289A JP2006011289A JP4823698B2 JP 4823698 B2 JP4823698 B2 JP 4823698B2 JP 2006011289 A JP2006011289 A JP 2006011289A JP 2006011289 A JP2006011289 A JP 2006011289A JP 4823698 B2 JP4823698 B2 JP 4823698B2
Authority
JP
Japan
Prior art keywords
layer
nitride
type
gan
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006011289A
Other languages
Japanese (ja)
Other versions
JP2007194410A (en
Inventor
一陽 堤
範和 伊藤
徹也 藤原
雅之 園部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2006011289A priority Critical patent/JP4823698B2/en
Publication of JP2007194410A publication Critical patent/JP2007194410A/en
Application granted granted Critical
Publication of JP4823698B2 publication Critical patent/JP4823698B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

本発明は、窒化物系半導体素子の製造方法に関する。   The present invention relates to a method for manufacturing a nitride semiconductor device.

青色、又は紫色の光を発する半導体レーザ素子、発光ダイオード等の半導体発光素子として、窒化ガリウム半導体発光素子がある。GaN系半導体素子の製造の際には、GaNからなる基板の製造が困難であるため、サファイア、SiC、Si等からなる基板上にGaN系半導体層をエピタキシャル成長させている。   As a semiconductor light emitting element such as a semiconductor laser element or a light emitting diode emitting blue or violet light, there is a gallium nitride semiconductor light emitting element. When manufacturing a GaN-based semiconductor element, it is difficult to manufacture a substrate made of GaN. Therefore, a GaN-based semiconductor layer is epitaxially grown on a substrate made of sapphire, SiC, Si, or the like.

例えば、サファイア基板の(0001)面上にMOCVD(有機金属気相成長法)を用いて、GaN低温バッファ層、n−GaNコンタクト層、n−AlGaNクラッド層、n−GaN光ガイド層、InGaN多重量子井戸(MQW)活性層等が順に形成され、活性層上には、p−AlGaN層、p−GaNコンタクト層等が順に形成される(例えば、特許文献1参照)。
特開2001−77416号公報
For example, using MOCVD (metal organic chemical vapor deposition) on the (0001) surface of a sapphire substrate, a GaN low-temperature buffer layer, an n-GaN contact layer, an n-AlGaN cladding layer, an n-GaN light guide layer, an InGaN multiple layer A quantum well (MQW) active layer and the like are sequentially formed, and a p-AlGaN layer, a p-GaN contact layer, and the like are sequentially formed on the active layer (see, for example, Patent Document 1).
JP 2001-77416 A

しかしながら、p−AlGaN層とp−GaN層との形成条件は、通常大きく異なっているため、p−AlGaN層を形成した後、一度成膜を中断し、形成条件を切り替える必要があった。この際、表面にAlが存在すると、AlとOやCとが結合してしまい、発光を妨げる要因となっていた。   However, since the formation conditions of the p-AlGaN layer and the p-GaN layer are usually greatly different, after forming the p-AlGaN layer, it is necessary to interrupt the film formation and switch the formation conditions. At this time, if Al is present on the surface, Al is combined with O or C, which is a factor that hinders light emission.

そこで、本発明は、上記の課題に鑑み、Alの結合による発光効率の低下を抑制する窒化物系半導体素子の製造方法を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a method for manufacturing a nitride-based semiconductor element that suppresses a decrease in luminous efficiency due to Al bonding.

上記目的を達成するため、本発明の特徴は、基板上に、少なくとも1層以上の窒化物系半導体層を形成する工程と、前記窒化物系半導体層上に、活性層を形成する工程と、 2 及びN 2 からなるキャリアガスを用い該キャリアガス内の2よりもN2の流量が大きい条件で、Alを供給し、前記活性層上にAlGaN層を形成する工程と、前記AlGaN層上に、前記AlGaN層を形成する条件と同様の条件で、Alの供給のみを停止し、第1のGaN層を形成する工程と、 2 及びN 2 からなるキャリアガスを用い該キャリアガス内の2よりもN2の流量が小さい条件で、前記第1のGaN層上に第2のGaN層を形成する工程とを含む窒化物系半導体素子の製造方法であることを要旨とする。 In order to achieve the above object, the present invention is characterized in that at least one nitride-based semiconductor layer is formed on a substrate, and an active layer is formed on the nitride-based semiconductor layer. A step of supplying Al and forming an AlGaN layer on the active layer using a carrier gas composed of H 2 and N 2 under a condition that the flow rate of N 2 is larger than H 2 in the carrier gas ; On top of this, the step of forming only the first GaN layer by stopping the supply of Al under the same conditions as those for forming the AlGaN layer, and using a carrier gas composed of H 2 and N 2 in the carrier gas The present invention is summarized as a method for manufacturing a nitride-based semiconductor device including a step of forming a second GaN layer on the first GaN layer under a condition that the flow rate of N 2 is smaller than H 2 .

本発明の特徴に係る窒化物系半導体素子の製造方法によると、AlGaN層と同様の条件で、Alの供給のみを停止し、表層を第1のGaN層で覆うことにより、Alの結合による発光効率の低下を抑制することができる。   According to the method for manufacturing a nitride-based semiconductor device according to the features of the present invention, only the supply of Al is stopped under the same conditions as for the AlGaN layer, and the surface layer is covered with the first GaN layer, thereby emitting light by bonding of Al. A decrease in efficiency can be suppressed.

又、本発明の特徴に係る窒化物系半導体素子の製造方法おいて、第1のGaN層を形成する工程におけるAlGaN層を形成する条件と同様の条件には、窒化物系半導体の窒素成分を含む原料ガスとH 2 とN 2 との流量比が含まれていてもよいIn the method for manufacturing a nitride-based semiconductor device according to the feature of the present invention, the nitrogen component of the nitride-based semiconductor is included under the same conditions as those for forming the AlGaN layer in the step of forming the first GaN layer. The flow rate ratio of the raw material gas to be contained and H 2 and N 2 may be included .

本発明によると、Alの結合による発光効率の低下を抑制する、窒化物系半導体素子の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the nitride-type semiconductor element which suppresses the fall of the luminous efficiency by the coupling | bonding of Al can be provided.

次に、図面を参照して、本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。ただし、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることに留意すべきである。従って、具体的な寸法等は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Next, embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic and ratios of dimensions and the like are different from actual ones. Accordingly, specific dimensions and the like should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

(窒化物系発光ダイオード素子の製造方法)
図1は、本発明の実施の形態に係る窒化物系発光ダイオード素子の製造方法を説明するための断面図である。又、図2は、本発明の実施の形態に係る窒化物系発光ダイオード素子の製造方法における成長温度の推移を示し、図3は、図2のA段階における各原料の供給量を示している。
(Nitride light emitting diode device manufacturing method)
FIG. 1 is a cross-sectional view for explaining a method for manufacturing a nitride-based light emitting diode device according to an embodiment of the present invention. FIG. 2 shows the transition of the growth temperature in the method for manufacturing a nitride-based light emitting diode device according to the embodiment of the present invention, and FIG. 3 shows the supply amount of each raw material in the stage A of FIG. .

まず、図1(a)に示すように、MOCVD(Metal Organic Chemical Vapor Deposition)法を用いて、サファイア基板101上に、n型半導体層102、活性層103、p型AlGaN層104を形成する。   First, as shown in FIG. 1A, an n-type semiconductor layer 102, an active layer 103, and a p-type AlGaN layer 104 are formed on a sapphire substrate 101 using a MOCVD (Metal Organic Chemical Vapor Deposition) method.

例えば、サファイア基板101を約400〜700℃の温度に保持した状態で、NH3及びTMG(トリメチルガリウム)からなる原料ガスを用いて、サファイア基板101の(0001)面上に、アンドープの非単結晶のGaNからなるバッファ層を成長させる。 For example, in a state where the sapphire substrate 101 is held at a temperature of about 400 to 700 ° C., a source gas composed of NH 3 and TMG (trimethylgallium) is used to form an undoped non-single layer on the (0001) surface of the sapphire substrate 101. A buffer layer made of crystalline GaN is grown.

次に、サファイア基板101を約900〜1200℃(例えば、1050℃)の成長温度に保持した状態で、NH3及びTMGからなる原料ガスを用いて、バッファ層上に、アンドープの単結晶のGaNからなる下地層を成長させる。 Next, in a state where the sapphire substrate 101 is maintained at a growth temperature of about 900 to 1200 ° C. (for example, 1050 ° C.), an undoped single crystal GaN is formed on the buffer layer using a source gas composed of NH 3 and TMG. A base layer made of is grown.

次に、サファイア基板101を約900〜1200℃(例えば、1050℃)の成長温度に保持した状態で、NH3及びTMGからなる原料ガスと、SiH4からなるドーパントガスとを用いて、下地層上に、Siがドープされた単結晶のGaNからなるn型コンタクト層を成長させる。 Next, in a state where the sapphire substrate 101 is held at a growth temperature of about 900 to 1200 ° C. (for example, 1050 ° C.), a base layer is formed using a source gas composed of NH 3 and TMG and a dopant gas composed of SiH 4. An n-type contact layer made of single-crystal GaN doped with Si is grown thereon.

次に、サファイア基板101を約900〜1200℃(例えば、1050℃)の成長温度に保持した状態で、NH3、TMG及びTMA(トリメチルアルミニウム)からなる原料ガスと、SiH4からなるドーパントガスとを用いて、n型コンタクト層上に、Siがドープされた単結晶のAlGaNからなるn型クラッド層を成長させる。 Next, in a state where the sapphire substrate 101 is maintained at a growth temperature of about 900 to 1200 ° C. (for example, 1050 ° C.), a source gas composed of NH 3 , TMG and TMA (trimethylaluminum), a dopant gas composed of SiH 4 , Then, an n-type cladding layer made of single-crystal AlGaN doped with Si is grown on the n-type contact layer.

このように、n型半導体層102は、バッファ層、下地層、n型コンタクト層、n型クラッド層等から構成される。又、n型半導体層102の厚みは、約5μmであることが好ましい。   As described above, the n-type semiconductor layer 102 includes a buffer layer, a base layer, an n-type contact layer, an n-type cladding layer, and the like. The thickness of the n-type semiconductor layer 102 is preferably about 5 μm.

次に、サファイア基板101を約700〜800℃(例えば、760℃)の成長温度に保持した状態で、NH3、TMGあるいはTMI(トリメチルインジウム)からなる原料ガスを用いて、n型半導体層102上に、アンドープの単結晶のGaN、あるいは、InGaNからなる障壁層と、アンドープの単結晶のInGaNからなる井戸層とを交互に成長させる。これにより、例えば、4つの障壁層及び3つの井戸層を有するMQW構造の活性層103を成長させる(図3の201部分)。又、活性層103の厚みは、約0.1〜0.2μmであることが好ましい。 Next, in a state where the sapphire substrate 101 is held at a growth temperature of about 700 to 800 ° C. (for example, 760 ° C.), a source gas made of NH 3 , TMG, or TMI (trimethylindium) is used to form the n-type semiconductor layer 102. On top, a barrier layer made of undoped single crystal GaN or InGaN and a well layer made of undoped single crystal InGaN are grown alternately. Thereby, for example, an active layer 103 having an MQW structure having four barrier layers and three well layers is grown (201 in FIG. 3). The thickness of the active layer 103 is preferably about 0.1 to 0.2 μm.

次に、サファイア基板101を約900〜1200℃(例えば、1010℃)の成長温度に保持した状態で、H2及びN2からなるキャリアガスと、NH3、TMG及びTMAからなる原料ガスと、CP2Mgからなるドーパントガスとを用いて、活性層103上に、Mgがドープされた単結晶のAlGaNからなるp型AlGaN層104を成長させる(図3の202部分)。このとき、各ガスの流量比は、H2:N2:NH3=4:30:4程度であり、TMGの流量は、約3.83×10-5mol/min、TMAの流量は、約1.72×10-6mol/minであることが好ましい。又、p型AlGaN層104の成長時間としては、4〜8分程度が好ましい。又、p型AlGaN層104の厚みは、約0.2μmであることが好ましい。 Next, with the sapphire substrate 101 held at a growth temperature of about 900 to 1200 ° C. (for example, 1010 ° C.), a carrier gas composed of H 2 and N 2 , a source gas composed of NH 3 , TMG and TMA, A p-type AlGaN layer 104 made of single-crystal AlGaN doped with Mg is grown on the active layer 103 using a dopant gas made of CP 2 Mg (202 portion in FIG. 3). At this time, the flow rate ratio of each gas is about H 2 : N 2 : NH 3 = 4: 30: 4, the flow rate of TMG is about 3.83 × 10 −5 mol / min, and the flow rate of TMA is It is preferably about 1.72 × 10 −6 mol / min. Further, the growth time of the p-type AlGaN layer 104 is preferably about 4 to 8 minutes. The thickness of the p-type AlGaN layer 104 is preferably about 0.2 μm.

次に、図1(b)に示すように、MOCVD(Metal Organic Chemical Vapor Deposition)法を用いて、p型AlGaN層104上に、第1のp型GaN層105を形成する。   Next, as shown in FIG. 1B, a first p-type GaN layer 105 is formed on the p-type AlGaN layer 104 by using a MOCVD (Metal Organic Chemical Vapor Deposition) method.

例えば、サファイア基板101を約900〜1200℃(例えば、1010℃)の成長温度に保持した状態で、H2及びN2からなるキャリアガスと、NH3及びTMGからなる原料ガスと、CP2Mgからなるドーパントガスとを用いて、p型AlGaN層104上に、第1のp型GaN層105を成長させる(図3の203部分)。第1のp型GaN層105の形成条件は、TMAの供給を停止した以外は、p型AlGaN層104の形成条件と同様である。従って、各ガスの流量比は、H2:N2:NH3=4:30:4程度であり、TMGの流量は、約3.83×10-5mol/minであることが好ましい。又、第1のp型GaN層105の成長時間としては、1分程度が好ましい。又、第1のp型GaN層105の厚みは、約0.001〜0.05μmであることが好ましく、0.05μm程度であることが更に好ましい。 For example, with the sapphire substrate 101 held at a growth temperature of about 900 to 1200 ° C. (eg, 1010 ° C.), a carrier gas composed of H 2 and N 2 , a source gas composed of NH 3 and TMG, and CP 2 Mg The first p-type GaN layer 105 is grown on the p-type AlGaN layer 104 using a dopant gas made of (203 in FIG. 3). The formation conditions of the first p-type GaN layer 105 are the same as the formation conditions of the p-type AlGaN layer 104 except that the supply of TMA is stopped. Therefore, the flow rate ratio of each gas is preferably about H 2 : N 2 : NH 3 = 4: 30: 4, and the flow rate of TMG is preferably about 3.83 × 10 −5 mol / min. Further, the growth time of the first p-type GaN layer 105 is preferably about 1 minute. The thickness of the first p-type GaN layer 105 is preferably about 0.001 to 0.05 μm, and more preferably about 0.05 μm.

次に、図1(c)に示すように、MOCVD(Metal Organic Chemical Vapor Deposition)法を用いて、第1のp型GaN層105上に、第2のp型GaN層106を形成する。   Next, as shown in FIG. 1C, a second p-type GaN layer 106 is formed on the first p-type GaN layer 105 by using a MOCVD (Metal Organic Chemical Vapor Deposition) method.

例えば、サファイア基板101を約900〜1200℃(例えば、1010℃)の成長温度に保持した状態で、H2及びN2からなるキャリアガスと、NH3及びTMGからなる原料ガスとを用いて、第1のp型GaN層105上に、第2のp型GaN層106を成長させる(図3の204部分)。このとき、各ガスの流量比は、H2:N2:NH3=4:1:2程度であり、TMGの流量は、約8.93×10-5mol/minであることが好ましい。又、第2のp型GaN層106の成長時間としては、6分程度が好ましい。又、第2のp型GaN層106の厚みは、約0.05〜0.2μmであることが好ましく、0.1μm程度であることが更に好ましい。 For example, in a state where the sapphire substrate 101 is held at a growth temperature of about 900 to 1200 ° C. (for example, 1010 ° C.), a carrier gas composed of H 2 and N 2 and a source gas composed of NH 3 and TMG are used. A second p-type GaN layer 106 is grown on the first p-type GaN layer 105 (204 portion in FIG. 3). At this time, the flow rate ratio of each gas is preferably about H 2 : N 2 : NH 3 = 4: 1: 2, and the flow rate of TMG is preferably about 8.93 × 10 −5 mol / min. The growth time of the second p-type GaN layer 106 is preferably about 6 minutes. The thickness of the second p-type GaN layer 106 is preferably about 0.05 to 0.2 μm, and more preferably about 0.1 μm.

この後、例えば、Ag層と、Pt層と、Au層とからなるp型電極を、真空蒸着法により順次形成する。   Thereafter, for example, a p-type electrode composed of an Ag layer, a Pt layer, and an Au layer is sequentially formed by a vacuum deposition method.

(作用及び効果)
従来、p型AlGaN層104の形成条件は、p型GaN層の形成条件と異なっているため、p型AlGaN層104を形成した後、一度成膜を中断し、形成条件を切り替えていた。この際、表面にAlが存在すると、AlとOやCなどの不純物とが結合してしまい、発光を妨げる要因となっていた。
(Function and effect)
Conventionally, since the formation conditions of the p-type AlGaN layer 104 are different from the formation conditions of the p-type GaN layer, after the p-type AlGaN layer 104 is formed, the film formation is once interrupted and the formation conditions are switched. At this time, if Al is present on the surface, Al and impurities such as O and C are combined to cause light emission.

本実施形態に係る窒化物系半導体素子の製造方法によると、p型AlGaN層104と同様の条件で、Alの供給のみを停止し、表層を第1のp型GaN層105で覆うことにより、Alの結合による発光効率の低下を抑制することができる。   According to the method for manufacturing a nitride-based semiconductor device according to the present embodiment, only the supply of Al is stopped under the same conditions as the p-type AlGaN layer 104, and the surface layer is covered with the first p-type GaN layer 105. A decrease in light emission efficiency due to bonding of Al can be suppressed.

又、このことは、InGaN系LEDにおける、バンド図からのシミュレーションによって、p型GaN層下にAlGaN電子ブロック層を挿入すると、活性層103の再結合が抑制できることが確認されることからも、効果が期待される。   This is also effective because it is confirmed that the recombination of the active layer 103 can be suppressed by inserting an AlGaN electron blocking layer under the p-type GaN layer by simulation from a band diagram in an InGaN-based LED. There is expected.

又、第1のp型GaN層105は、p型AlGaN層104とAlの供給のみで条件が異なり、その他の形成条件(成長温度、各ガスの流量等)は、すべて同じである。このため、p型AlGaN層104形成後に、中断することなく、連続的に第1のp型GaN層105を形成することができる。従って、p型AlGaN層104の表面にAlが存在していても、OやCと結合する可能性が低い。   The first p-type GaN layer 105 is different from the p-type AlGaN layer 104 only in the supply of Al, and other formation conditions (growth temperature, flow rate of each gas, etc.) are all the same. Therefore, the first p-type GaN layer 105 can be formed continuously without interruption after the p-type AlGaN layer 104 is formed. Therefore, even if Al is present on the surface of the p-type AlGaN layer 104, the possibility of bonding with O or C is low.

又、第1のp型GaN層105は、p型AlGaN層104の成長条件で成長させているため、第2のp型GaN層106よりも特性が悪い。このため、第1のp型GaN層105の膜厚は、0.001〜0.05μmと薄くすることが好ましい。   Further, since the first p-type GaN layer 105 is grown under the growth conditions of the p-type AlGaN layer 104, the characteristics are worse than those of the second p-type GaN layer 106. For this reason, the film thickness of the first p-type GaN layer 105 is preferably as thin as 0.001 to 0.05 μm.

(その他の実施形態)
本発明は上記の実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
Although the present invention has been described according to the above-described embodiments, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

例えば、本発明の実施の形態では、主として、窒化物半導体素子層の活性層から放出される光を利用する発光ダイオードの製造方法について例示したが、本発明はこれに限らず、半導体レーザやこれら発光素子からの放出光を励起光とする蛍光体とを組み合わせた発光素子の製造にも利用可能である。又、窒化物系半導体素子層を有するHEMT(High Electron Mobility Transistor)などの電子デバイス、SAW(Surface Acoustic Wave)デバイス、受光素子への応用が可能である。   For example, in the embodiment of the present invention, the method of manufacturing a light emitting diode that mainly uses light emitted from the active layer of the nitride semiconductor element layer is exemplified. However, the present invention is not limited to this, and the present invention is not limited thereto. The present invention can also be used for manufacturing a light-emitting element that combines a phosphor that uses light emitted from the light-emitting element as excitation light. Further, it can be applied to electronic devices such as HEMT (High Electron Mobility Transistor) having a nitride-based semiconductor element layer, SAW (Surface Acoustic Wave) devices, and light receiving elements.

又、本発明の実施の形態では、MOCVD法を用いて、窒化物半導体各層を結晶成長させる説明したが、本発明はこれに限らず、HVPE法やガスソースMBE法などを用いて、窒化物半導体各層を結晶成長させてもよい。又、窒化物系化合物半導体の結晶構造として、ウルツ鉱型であっても閃亜鉛鉱型構造であってもよい。又、成長の面方位は、(0001)に限るものではなく、(11−20)や(1−100)でもよい。   In the embodiments of the present invention, the MOCVD method is used to describe the crystal growth of each nitride semiconductor layer. However, the present invention is not limited to this, and the HVPE method, the gas source MBE method, etc. Each semiconductor layer may be crystal-grown. The crystal structure of the nitride compound semiconductor may be a wurtzite type or a zinc blende type structure. Further, the growth plane orientation is not limited to (0001), and may be (11-20) or (1-100).

又、本発明の実施の形態では、GaN、AlGaN、InGaN及びAlNなどからなる層を含む窒化物系半導体素子層を用いたが、本発明はこれに限らず、GaN、AlGaN、InGaN及びAlNからなる層以外の層を含む窒化物系半導体素子層を用いてもよい。又、半導体素子層の形状は、メサ構造、リッジ構造などの電流狭窄造を有するものでもよい。   In the embodiment of the present invention, a nitride-based semiconductor element layer including a layer made of GaN, AlGaN, InGaN, AlN, or the like is used. However, the present invention is not limited to this, and GaN, AlGaN, InGaN, and AlN A nitride-based semiconductor element layer including a layer other than the layer to be formed may be used. The semiconductor element layer may have a current confinement structure such as a mesa structure or a ridge structure.

又、本発明の実施の形態では、窒化物系半導体素子層の成長用基板として、サファイア基板を用いたが、本発明はこれに限らず、窒化物系半導体の成長の可能な基板、例えば、Si、SiC、GaAs、MgO、ZnO、スピネル、そしてGaN等が使用可能である。   In the embodiment of the present invention, the sapphire substrate is used as the growth substrate for the nitride-based semiconductor element layer, but the present invention is not limited to this, and a substrate capable of growing a nitride-based semiconductor, for example, Si, SiC, GaAs, MgO, ZnO, spinel, GaN, etc. can be used.

又、本発明の実施の形態では、原料ガスのGa源としてTMGを、Al源としてTMAを使用したが、これに限られるわけではない。同様に、ドーパントガスのMg源としてCP2Mgを使用したが、これに限られるわけではない。 In the embodiment of the present invention, TMG is used as the Ga source of the source gas and TMA is used as the Al source. However, the present invention is not limited to this. Similarly, although CP 2 Mg is used as the Mg source of the dopant gas, it is not limited to this.

このように、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。従って、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   As described above, the present invention naturally includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

本発明の実施の形態に係る窒化物系半導体素子の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the nitride type semiconductor element which concerns on embodiment of this invention. 本発明の実施の形態に係る窒化物系半導体素子の製造方法における、成長温度の推移を示すグラフである。It is a graph which shows transition of the growth temperature in the manufacturing method of the nitride type semiconductor device concerning an embodiment of the invention. 図2のA段階における、成長温度及び各原料の供給量の変化を示すタイムチャートである。It is a time chart which shows the change of the growth temperature and the supply amount of each raw material in the A stage of FIG.

符号の説明Explanation of symbols

101…基板
102…n型半導体層
103…活性層
104…AlGaN層
105…第1のGaN層
106…第2のGaN層
DESCRIPTION OF SYMBOLS 101 ... Substrate 102 ... N-type semiconductor layer 103 ... Active layer 104 ... AlGaN layer 105 ... First GaN layer 106 ... Second GaN layer

Claims (2)

基板上に、少なくとも1層以上の窒化物系半導体層を形成する工程と、
前記窒化物系半導体層上に、活性層を形成する工程と、
2 及びN 2 からなるキャリアガスを用い該キャリアガス内の2よりもN2の流量が大きい条件で、Alを供給し、前記活性層上にAlGaN層を形成する工程と、
前記AlGaN層上に、前記AlGaN層を形成する条件と同様の条件で、Alの供給のみを停止し、第1のGaN層を形成する工程と、
2 及びN 2 からなるキャリアガスを用い該キャリアガス内の2よりもN2の流量が小さい条件で、前記第1のGaN層上に第2のGaN層を形成する工程と
を含むことを特徴とする窒化物系半導体素子の製造方法。
Forming at least one nitride-based semiconductor layer on a substrate;
Forming an active layer on the nitride-based semiconductor layer;
Forming AlGaN layer on the active layer by supplying Al using a carrier gas composed of H 2 and N 2 at a flow rate of N 2 larger than H 2 in the carrier gas ;
On the AlGaN layer, under the same conditions as the conditions for forming the AlGaN layer, stopping only the supply of Al and forming the first GaN layer;
Forming a second GaN layer on the first GaN layer using a carrier gas composed of H 2 and N 2 under a condition that the flow rate of N 2 is smaller than H 2 in the carrier gas. A method for producing a nitride-based semiconductor device characterized by the above.
前記第1のGaN層を形成する工程におけるAlGaN層を形成する条件と同様の条件には、窒化物系半導体の窒素成分を含む原料ガスと前記H 2 と前記N 2 との流量比が含まれていることを特徴とする請求項1に記載の窒化物系半導体素子の製造方法。 The conditions similar to the conditions for forming the AlGaN layer in the step of forming the first GaN layer include the flow rate ratio between the source gas containing the nitrogen component of the nitride semiconductor and the H 2 and the N 2. The method for producing a nitride semiconductor device according to claim 1, wherein:
JP2006011289A 2006-01-19 2006-01-19 Nitride semiconductor device manufacturing method Expired - Fee Related JP4823698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006011289A JP4823698B2 (en) 2006-01-19 2006-01-19 Nitride semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006011289A JP4823698B2 (en) 2006-01-19 2006-01-19 Nitride semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JP2007194410A JP2007194410A (en) 2007-08-02
JP4823698B2 true JP4823698B2 (en) 2011-11-24

Family

ID=38449869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006011289A Expired - Fee Related JP4823698B2 (en) 2006-01-19 2006-01-19 Nitride semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP4823698B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110133241A (en) * 2010-06-04 2011-12-12 서울옵토디바이스주식회사 Light emitting diode manufacturing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3341576B2 (en) * 1996-03-27 2002-11-05 豊田合成株式会社 Group III nitride compound semiconductor light emitting device
JPH10215035A (en) * 1997-01-30 1998-08-11 Toshiba Corp Compound semiconductor device and method of manufacturing the same
JP3679914B2 (en) * 1997-02-12 2005-08-03 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
JP3822318B2 (en) * 1997-07-17 2006-09-20 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
JP3322179B2 (en) * 1997-08-25 2002-09-09 松下電器産業株式会社 Gallium nitride based semiconductor light emitting device
JPH11168257A (en) * 1997-12-03 1999-06-22 Sony Corp Semiconductor light emitting device and manufacture thereof
JP2000183466A (en) * 1998-12-21 2000-06-30 Toshiba Corp Compound semiconductor laser and method for manufacturing the same
JP4214859B2 (en) * 2003-08-11 2009-01-28 豊田合成株式会社 Method for manufacturing gallium nitride (GaN) substrate
WO2005122290A1 (en) * 2004-06-14 2005-12-22 Mitsubishi Cable Industries, Ltd. Nitride semiconductor light-emitting device

Also Published As

Publication number Publication date
JP2007194410A (en) 2007-08-02

Similar Documents

Publication Publication Date Title
US8513694B2 (en) Nitride semiconductor device and manufacturing method of the device
CN101373806B (en) Zinc-blende nitride semiconductor free-standing substrate, method for fabricating same, and light-emitting device employing same
JP5322523B2 (en) Light emitting device and manufacturing method thereof
JP2007227671A (en) Light emitting element
US7452789B2 (en) Method for forming underlayer composed of GaN-based compound semiconductor, GaN-based semiconductor light-emitting element, and method for manufacturing GaN-based semiconductor light-emitting element
JP2008288397A (en) Semiconductor light emitting device
JP2002033512A (en) Nitride semiconductor light emitting diode
WO2015146069A1 (en) Light emitting diode element
JP5060732B2 (en) LIGHT EMITTING ELEMENT AND METHOD FOR PRODUCING THE LIGHT EMITTING ELEMENT
JP3773713B2 (en) Method for forming quantum box
JP2007200933A (en) Method of manufacturing nitride-based semiconductor element
JP4698053B2 (en) Method for producing group III nitride compound semiconductor
US20090014839A1 (en) Nitride-Based Semiconductor Device
JP3753948B2 (en) Group III nitride compound semiconductor manufacturing method and group III nitride compound semiconductor device
JP4823698B2 (en) Nitride semiconductor device manufacturing method
KR20100024154A (en) Light emitting diode
JP2008118048A (en) GaN-BASED SEMICONDUCTOR LIGHT EMITTING DEVICE
JP2007214251A (en) Manufacturing method of nitride-based semiconductor element
JP4333092B2 (en) Manufacturing method of nitride semiconductor
JP2003218468A (en) Semiconductor laser element and manufacturing method therefor
JP2007194493A (en) Method of manufacturing nitride semiconductor element
JP4198003B2 (en) Nitride semiconductor light emitting device
KR101423719B1 (en) Light emitting device and method for fabricating the same
JP2001085735A (en) Nitride-based compound semiconductor light emitting device and method of manufacturing the same
JP2017117845A (en) Semiconductor light emitting element and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees