[go: up one dir, main page]

JP4827909B2 - Plate heat exchanger - Google Patents

Plate heat exchanger Download PDF

Info

Publication number
JP4827909B2
JP4827909B2 JP2008291896A JP2008291896A JP4827909B2 JP 4827909 B2 JP4827909 B2 JP 4827909B2 JP 2008291896 A JP2008291896 A JP 2008291896A JP 2008291896 A JP2008291896 A JP 2008291896A JP 4827909 B2 JP4827909 B2 JP 4827909B2
Authority
JP
Japan
Prior art keywords
plate
heat transfer
heat
flow path
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008291896A
Other languages
Japanese (ja)
Other versions
JP2010117101A (en
Inventor
悟 梁池
大輔 伊東
信 齊藤
毅浩 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008291896A priority Critical patent/JP4827909B2/en
Publication of JP2010117101A publication Critical patent/JP2010117101A/en
Application granted granted Critical
Publication of JP4827909B2 publication Critical patent/JP4827909B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、流体からなる熱媒体と流体からなる被熱媒体との間で熱交換を行う熱交換器、特に複数枚の伝熱プレートが積層され、各伝熱プレートを境にして、熱媒体を流通させる第一空間と被熱媒体が流通する第二空間を交互に形成したプレート式熱交換器に関する。   The present invention relates to a heat exchanger for exchanging heat between a heat medium made of fluid and a heat-medium made of fluid, and in particular, a plurality of heat transfer plates are laminated, and each heat transfer plate serves as a boundary. The present invention relates to a plate-type heat exchanger in which a first space for circulating a heat exchanger and a second space for circulating a heat-receiving medium are alternately formed.

この種のプレート式熱交換器、すなわち複数枚の伝熱プレートを積層して、第一流路と第二流路を形成するプレート式熱交換器は、熱交換効率が高く、流体相互の熱交換を行う目的で広く利用されている。   This type of plate heat exchanger, that is, a plate heat exchanger in which a plurality of heat transfer plates are stacked to form the first flow path and the second flow path, has high heat exchange efficiency and heat exchange between fluids. Widely used for the purpose of

特に、空調分野では、伝熱プレートにその中心線との間に角度をもつ凸条または凹条の波形状を成形して、互いの波形状の角度による向きが逆向きとなるように交互に積層し、互いの波形状が交差して当接する部分をロウ付けにより恒久的に接合したプレート式熱交換器が広く用いられている(例えば、特許文献1参照)。   In particular, in the air conditioning field, the corrugated ridges or ridges having an angle with the center line are formed on the heat transfer plate, and the directions according to the angles of the corrugations are alternately reversed. Plate-type heat exchangers that are stacked and permanently joined by brazing at portions where the wave shapes intersect and abut each other are widely used (see, for example, Patent Document 1).

特開2005−326074号公報(図6)Japanese Patent Laying-Open No. 2005-326074 (FIG. 6)

しかしながら、積層される波形状の伝熱プレート相互がロウ付けにより恒久的に接合されるものにあっては、波形状が交差して当接する本来の接合部の周りに、波形状の稜線に沿って滞留したロウ材が固まってできるフィレットと呼ばれる歓迎されない接合部が生じ、このフィレットにより、流路が閉塞される。このため、第一空間と第二空間を流れる熱媒体および被熱媒体の実際の流路幅がフィレットの生成幅だけ狭くなる。   However, in the case where laminated wave-shaped heat transfer plates are permanently joined together by brazing, around the original joint where the wave shapes intersect and abut, along the wave-shaped ridgeline An unwelcome joint called a fillet is formed, which is formed by the brazing material that has accumulated, and the flow path is blocked by the fillet. For this reason, the actual flow path width of the heat medium and the heat-receiving medium flowing through the first space and the second space is narrowed by the fillet generation width.

そして、熱媒体および被熱媒体は、フィレットを避けるように流れるため、局所的に流れが集中し、局所的に流速が上昇する。その結果、圧力の損失が増大する。   And since a heat medium and a to-be-heated medium flow so that a fillet may be avoided, a flow concentrates locally and a flow velocity rises locally. As a result, pressure loss increases.

また、伝熱プレートに成形された凸条または凹条の波形状の角度が大きく(70°〜80°)なると、互いの波形状が交差して当接する本来の接合部の接触距離が長くなるため、その周りのフィレットの幅も広くなり、熱媒体および被熱媒体が流通する実際の流路幅が一層縮小し、局所的な流速の増大に繋がり、圧力損失が一層増大する。   Moreover, when the angle of the corrugation of the ridges or ridges formed on the heat transfer plate is large (70 ° to 80 °), the contact distance of the original joint where the corrugations intersect and contact each other becomes long. For this reason, the width of the surrounding fillet is also widened, the actual flow path width through which the heat medium and the heated medium are circulated is further reduced, leading to an increase in local flow velocity, and pressure loss is further increased.

更に、フィレットの面積の増大から伝熱面積が縮小し、またフィレットの後流部では熱媒体および被熱媒体の淀みが生じやすくなって伝熱面積を有効に利用できず、プレート式熱交換器の熱交換性能が低下する。   Furthermore, the heat transfer area is reduced due to the increase in the area of the fillet, and the heat transfer area and the heat-receiving medium tend to stagnate in the downstream part of the fillet, making it impossible to effectively use the heat transfer area. The heat exchange performance of the is reduced.

ところで、伝熱プレートの各フィレット間の波形状を平坦にすることで、熱媒体および被熱媒体が流通する流路面積を広くすることも考えられるが、この場合には伝熱面積が縮小し、プレート式熱交換器の熱交換性能を低下させるという新たな問題が発生する。
すなわち、接合部は、その存在によって流路幅が狭まり圧力損失の増大や伝熱面の縮小が起こる反面、隣接する伝熱プレート相互をつなぐ補強部分でもあり、内部流体の流れを乱して伝熱を促進する役割も果たしている。つまり、接合部が全く存在しないと強度不足、流れの攪拌効果の減少が起こる。
By the way, it is conceivable to widen the flow path area through which the heat medium and the heat-receiving medium flow by flattening the wave shape between the fillets of the heat transfer plate. In this case, however, the heat transfer area is reduced. As a result, a new problem of lowering the heat exchange performance of the plate heat exchanger occurs.
In other words, the joint portion narrows the flow path width and increases the pressure loss and shrinks the heat transfer surface, but is also a reinforcing portion that connects adjacent heat transfer plates, and disturbs the flow of internal fluid. It also plays a role in promoting heat. That is, if there is no joint at all, the strength is insufficient and the flow stirring effect is reduced.

いずれにせよ、これまでは歓迎されない接合部であるフィレットの幅の増大による圧力損失の増加や熱交換性能の低下に対する問題解決法の提案はされていないのが実情である。   In any case, there has been no proposal for a solution to the problem of an increase in pressure loss and a decrease in heat exchange performance due to an increase in the width of the fillet, which is an unwelcome joint.

本発明の技術的課題は、熱交換性能の低下を抑えつつ、圧力損失の低減を可能ならしめるようにすることにある。   The technical problem of the present invention is to make it possible to reduce pressure loss while suppressing deterioration in heat exchange performance.

本発明に係るプレート式熱交換器は、下記の構成からなるものである。すなわち、プレートの両端部に開口部を有し、これら開口部が複数組並列に設置されて第一開口部と第二開口部に形成されるとともに、プレートの中心線から両側端にかけてこの中心線に対し所定の角度を有する凸条または凹条の波形状が横切るように成形された複数枚の伝熱プレートを備え、これら伝熱プレートが、互いの波形状の前記角度による向きが逆向きとなるように交互に積層されて、積層方向から見て互いの波形状が交差して当接する部分が互いにロウ付けにより接合され、また各伝熱プレート外周縁部においてもロウ付けにより接合されることで、流体からなる熱媒体が流通する第一空間と被熱媒体が流通する第二空間とが各伝熱プレートを境に画成され、さらに積層された伝熱プレートの第一開口部の縁部が一つおきに接合されることで、それらの間に第一開口部を介して第一空間と連通し熱媒体が流通する第一流路が形成され、また積層された伝熱プレートの第二開口部の縁部が、第一開口部の縁部の接合部とは積層方向で異なるように一つおきに接合されることで、それらの間に第二開口部を介して第二空間と連通し被熱媒体が流通する第二流路が形成され、これら第一流路と第二流路とで伝熱プレートを通して熱交換を行うプレート式熱交換器であって、積層方向で隣り合う伝熱プレートの少なくとも一方における波形状が交差して当接する接合部の中心から波形状の稜線に沿った両側に所定間隔を置いて、該接合部の当接面より凹陥する凹陥部を設けて、該凹陥部にロウ材を溜めてフィレットの発生を抑制するものである。 The plate heat exchanger according to the present invention has the following configuration. In other words, there are openings at both ends of the plate, a plurality of these openings are installed in parallel to form the first opening and the second opening, and the center line extends from the center line of the plate to both side edges. A plurality of heat transfer plates formed so that the corrugations of the ridges or grooves having a predetermined angle cross each other, and these heat transfer plates are opposite to each other according to the angle of the corrugation. The portions that are alternately laminated so that the wave shapes intersect and contact each other when viewed from the lamination direction are joined to each other by brazing, and the outer peripheral edge portions of the heat transfer plates are also joined by brazing. Thus, the first space through which the heat medium made of fluid flows and the second space through which the medium to be heated flow are defined by each heat transfer plate as a boundary, and the edge of the first opening of the stacked heat transfer plates Join every other part The first flow path through which the heat medium flows in communication with the first space via the first opening is formed between them, and the edge of the second opening of the laminated heat transfer plate is By joining every other so as to be different from each other in the stacking direction with the joining portion at the edge of the first opening, the heat-receiving medium communicates with the second space via the second opening between them. A plate-type heat exchanger that exchanges heat through the heat transfer plate between the first flow path and the second flow path, the wave in at least one of the heat transfer plates adjacent in the stacking direction. Provided with a predetermined interval on both sides along the corrugated ridge line from the center of the joint where the shapes intersect and abut, and provided with a recess that is recessed from the abutment surface of the joint , brazing material to the recess It accumulates and suppresses the generation of fillets .

本発明のプレート式熱交換器によれば、積層方向で隣り合う伝熱プレートの少なくとも一方における波形状が交差して当接する接合部の中心から波形状の稜線に沿った両側に所定間隔を置いて、該接合部の当接面より凹陥する凹陥部を設けて、該凹陥部にロウ材を溜めてフィレットの発生を抑制するので、ロウ材が凹陥部に流れ込んで溜まり、フィレットの発生が抑制され、従来に比しフィレットの幅が縮小し、全流路幅に占めるフィレットの面積が減少する。このため、フィレット以外の流路に集中していた熱媒体および被熱媒体が分散、局所的な流速が減少し、圧力損失を低減させることができる。また、全流路幅に占めるフィレットの面積の減少により、伝熱面積の縮小を最小限に抑えることができ、熱交換性能の低下を抑えることができる。更に、フィレットの後流部で熱媒体および被熱媒体の淀みを生じにくくすることができ、伝熱面積を有効に利用することができる。つまり、熱交換性能の低下を抑えながら、圧力損失を低減することができ、省エネ効果が得られる。
According to the plate heat exchanger of the present invention , a predetermined interval is placed on both sides along the corrugated ridge line from the center of the joint where the corrugations intersect at least one of the heat transfer plates adjacent in the stacking direction. In addition , a concave portion that is recessed from the contact surface of the joint portion is provided , and brazing material is accumulated in the concave portion to suppress the generation of fillets. Therefore, the width of the fillet is reduced as compared with the conventional case, and the area of the fillet occupying the entire flow path width is reduced. For this reason, the heat medium and the heat-receiving medium concentrated in the flow path other than the fillet are dispersed, the local flow velocity is reduced, and the pressure loss can be reduced. Further, the reduction of the area of the fillet in the entire flow path width can minimize the reduction of the heat transfer area, thereby suppressing the deterioration of the heat exchange performance. Furthermore, it is possible to make it difficult for the heat medium and the heat-receiving medium to stagnate at the downstream portion of the fillet, and the heat transfer area can be used effectively. That is, pressure loss can be reduced while suppressing a decrease in heat exchange performance, and an energy saving effect can be obtained.

実施形態1.
以下、図示実施形態により本発明を説明する。
図1は本発明の実施形態1に係るプレート式熱交換器を構成する伝熱プレートの波形状の接合部を示す斜視図、図2はその伝熱プレートの全体構成を示す平面図、図3はその積層された伝熱プレートをその接合部が分かるように積層方向より透過的に示す模式図、図4はその熱媒体および被熱媒体の出入口周辺を示す縦断面図である。
Embodiment 1. FIG.
The present invention will be described below with reference to illustrated embodiments.
1 is a perspective view showing a wave-shaped joint portion of a heat transfer plate constituting a plate heat exchanger according to Embodiment 1 of the present invention, FIG. 2 is a plan view showing the entire structure of the heat transfer plate, FIG. FIG. 4 is a schematic view showing the laminated heat transfer plate transparently from the lamination direction so that the joint portion can be seen, and FIG.

本実施形態のプレート式熱交換器は、図4のように複数枚の伝熱プレート100が積層され、各伝熱プレート100を境にして、熱媒体を流通させる第一空間12と被熱媒体を流通させる第二空間13が交互に形成されている。   In the plate heat exchanger of the present embodiment, a plurality of heat transfer plates 100 are stacked as shown in FIG. 4, and the first space 12 through which the heat medium is circulated with each heat transfer plate 100 as a boundary, and the heated medium Are formed alternately.

これを更に詳述すると、伝熱プレート100は、図1乃至図3のように両端部に開口部を有し、これら開口部が複数組並列に設置されて第一開口部1a,1bと第二開口部2a,2bに形成されるとともに、その中心線50から両側端にかけてこの中心線50との角度θが70°〜80°に設定された凸条7a又は凹条7bの波形状が横切るように成形されている。つまり、凸条7a又は凹条7bの波形状は、中心線50上に屈曲部分が位置するようにくの字状に形成されており、中心線50を境に両側の領域が鏡像関係となるように形成されている。そして、これら伝熱プレート100が、互いの波形状の前記角度θによる向きが逆向きとなるように、面内での向きを交互に180°異ならせて積層され、積層方向から見て互いの波形状が交差して当接する部分がロウ付けによる本来の接合部80となって互いに接合され、また各伝熱プレート外周縁部5においてもロウ付けにより接合されることで、流体からなる熱媒体が流通する第一空間12と被熱媒体が流通する第二空間13とが各伝熱プレート100を境に画成されるようになっている。   More specifically, the heat transfer plate 100 has openings at both ends as shown in FIGS. 1 to 3, and a plurality of these openings are installed in parallel to form the first openings 1a and 1b and the first openings 1a and 1b. The wave shape of the ridge 7a or the ridge 7b is formed in the two openings 2a and 2b, and the angle θ with the center line 50 is set to 70 ° to 80 ° from the center line 50 to both side ends. It is shaped as follows. That is, the wave shape of the ridges 7a or the ridges 7b is formed in a dogleg shape so that the bent portion is positioned on the center line 50, and the regions on both sides of the center line 50 are in a mirror image relationship. It is formed as follows. The heat transfer plates 100 are laminated with the in-plane directions alternately different by 180 ° so that the directions of the wave shapes of the waves are opposite to each other. The portions where the wave shapes intersect and contact each other become the original joints 80 by brazing and are joined to each other, and each heat transfer plate outer peripheral edge 5 is also joined by brazing, so that the heat medium made of fluid The first space 12 through which the heat medium flows and the second space 13 through which the heat-receiving medium circulates are defined by the heat transfer plates 100 as boundaries.

また、図4のように積層された伝熱プレート100の第一開口部1a,1bの縁部3a,3bが一つおきに接合されることで、それらの間に第一開口部1a,1bを介して第一空間12と連通し、熱媒体が流通する第一流路が形成されるようになっている。すなわち、第一開口部1a,1bは第一流路のヘッダ11Aとして機能する。   Also, every other edge 3a, 3b of the first openings 1a, 1b of the heat transfer plate 100 laminated as shown in FIG. 4 is joined, so that the first openings 1a, 1b are between them. A first flow path through which the heat medium flows is formed so as to communicate with the first space 12 via the. That is, the first openings 1a and 1b function as the header 11A of the first flow path.

また、積層された伝熱プレート100の第二開口部2a,2bの縁部4a,4bが、前記第一開口部1a,1bの縁部3a,3bの接合部とは積層方向で異なるように一つおきに接合されることで、それらの間に第二開口部2a,2bを介して第二空間13と連通し被熱媒体が流通する第二流路が形成されるようになっている。すなわち、第二開口部2a,2bは第二流路のヘッダ11Bとして機能する。なお、図4では説明の都合上、ヘッダ11A,11Bがいずれも第一空間12に連なる第一流路に連通しているかのように示してあるが、実際には、奥行き方向(紙面直交方向)で位置の異なるヘッダ11Bは第二空間13に連なる第二流路とのみ連通していることは既述した通りである。   Also, the edges 4a, 4b of the second openings 2a, 2b of the laminated heat transfer plate 100 are different from the joints of the edges 3a, 3b of the first openings 1a, 1b in the stacking direction. By joining every other, a second flow path is formed between them, which communicates with the second space 13 via the second openings 2a and 2b and through which the heat-receiving medium flows. . That is, the second openings 2a and 2b function as the header 11B of the second flow path. In FIG. 4, for convenience of explanation, the headers 11 </ b> A and 11 </ b> B are shown as communicating with the first flow path that is continuous with the first space 12. As described above, the headers 11 </ b> B having different positions communicate with only the second flow path continuous with the second space 13.

以上は、第一流路と第二流路とで伝熱プレート100を通して熱交換を行うプレート式熱交換器の基本構成を示すものである。本実施形態では、さらに以下の構成を有している。すなわち、積層方向で隣り合う伝熱プレート100の双方における波形状が交差して当接する部分に形成された接合部80の中心8から0.5mm〜1.5mm間隔を置いた部分に、1.0mm〜3.0mmの幅で、接合部80の当接面より0.2mm〜0.4mm凹陥する凹陥部10を設けたものである。   The above shows the basic configuration of the plate heat exchanger that performs heat exchange through the heat transfer plate 100 between the first flow path and the second flow path. The present embodiment further has the following configuration. That is, in a portion at a distance of 0.5 mm to 1.5 mm from the center 8 of the joint 80 formed in a portion where the wave shapes of the heat transfer plates 100 adjacent to each other in the stacking direction intersect and contact each other. A recessed portion 10 having a width of 0 mm to 3.0 mm and a depth of 0.2 mm to 0.4 mm from the contact surface of the joint 80 is provided.

波形状の稜線に沿って滞留したロウ材が固まってできる歓迎されない接合部であるフィレット9は、積層方向で隣接する伝熱プレート100の波形状が交差して当接する本来の接合部80の隙間の間隔が0.2mm以下となる場合に生じる。このため、本来の接合部80の周りにフィレットを生じさせないためには、本来の接合部80の周りの隣接伝熱プレート間の間隔を0.2mm以上に保つ必要がある。   The fillet 9, which is an unwelcome joint where the brazing material staying along the corrugated ridges is solidified, is a gap between the original joint 80 where the corrugations of adjacent heat transfer plates 100 intersect and abut in the stacking direction. This occurs when the distance between the two becomes 0.2 mm or less. For this reason, in order not to produce a fillet around the original joint 80, it is necessary to keep the interval between adjacent heat transfer plates around the original joint 80 at 0.2 mm or more.

本実施形態のプレート式熱交換器において、凹陥部10の凹陥深さの下限値を0.2mmとしたのは、前述のように0.2mmよりも浅い凹陥部10では、滞留したロウ材によって、積層方向で隣接する伝熱プレート100相互が本来接合すべきでない部位で接合するフィレット9が発生するからである。また、凹陥部10の凹陥深さの上限値を0.4mmとしたのは、製造上の限界からである。つまり、伝熱プレート100の波形状はプレス成形されるが、波形状の凸条部に0.4mmよりも深い凹陥部10を成形すると、伝熱プレート100に割れが発生する可能性があるからである。   In the plate heat exchanger of the present embodiment, the lower limit value of the concave depth of the concave portion 10 is set to 0.2 mm because, as described above, the concave portion 10 shallower than 0.2 mm is caused by the staying brazing material. This is because a fillet 9 is generated that is bonded at a portion where the heat transfer plates 100 adjacent to each other in the stacking direction should not be bonded. Further, the reason why the upper limit value of the concave depth of the concave portion 10 is set to 0.4 mm is due to manufacturing limitations. That is, the wave shape of the heat transfer plate 100 is press-molded, but if the concave portion 10 deeper than 0.4 mm is formed in the wave-shaped convex stripe portion, the heat transfer plate 100 may be cracked. It is.

ところで、波形状の角度が70°〜80°では、凹陥部を設けない場合で、接合してしまうフィレットの生成幅は5〜7mmとなる。凹陥部10の幅の上限値を3mmとしたのは、本来の接合部80の幅が1mmの時、両サイドに3mmずつ凹陥部を設けないと、波角度が80°の場合に両サイドに余分なフィレット9を生じてしまうからである。また、凹陥部10の幅の下限値を1mmとしたのは、製造上の制約と、本来の接合部80の幅が3mmの時、両サイドに1mmずつ凹陥部を設けないと、波角度が70°の場合に両サイドに余分なフィレット9を生じてしまうからである。なお、本来の接合部80の幅は、1mm程度あれば十分な強度(20MPa 程度)を得られることが本発明者等による実験の結果判明している。   By the way, when the angle of the wave shape is 70 ° to 80 °, the generation width of the fillet to be joined is 5 to 7 mm when the concave portion is not provided. The upper limit of the width of the recessed portion 10 is set to 3 mm because when the original joint 80 has a width of 1 mm, if not provided with a recessed portion of 3 mm on both sides, the wave angle is 80 ° on both sides. This is because an extra fillet 9 is produced. In addition, the lower limit of the width of the recessed portion 10 is set to 1 mm because of manufacturing restrictions and when the width of the original joint portion 80 is 3 mm, if the recessed portions are not provided 1 mm on both sides, the wave angle is This is because an extra fillet 9 is produced on both sides in the case of 70 °. As a result of experiments by the present inventors, it is found that a sufficient strength (about 20 MPa) can be obtained if the width of the original joint 80 is about 1 mm.

このように本実施形態においては、接合部80の中心8から0.5mm〜1.5mm間隔を置いた部分に、接合部80の当接面より0.2mm〜0.4mm凹陥する凹陥部10を設けているので、ロウ材が凹陥部10に流れ込んで溜まり、フィレット9の発生が抑制される。このため、フィレット9が発生してもその幅が縮小し、全流路幅に占めるフィレット9の面積が減少して、フィレット9以外の流路に集中していた熱媒体および被熱媒体が分散され、局所的な流速が減少し、圧力損失を低減させることができる。   As described above, in the present embodiment, the recessed portion 10 is recessed by 0.2 mm to 0.4 mm from the contact surface of the bonding portion 80 at a portion spaced 0.5 mm to 1.5 mm from the center 8 of the bonding portion 80. Since brazing material is provided, the brazing material flows into the recessed portion 10 and accumulates, and the occurrence of the fillet 9 is suppressed. For this reason, even if the fillet 9 is generated, its width is reduced, the area of the fillet 9 occupying the entire flow path width is reduced, and the heat medium and the heat-receiving medium concentrated in the flow path other than the fillet 9 are dispersed. As a result, the local flow rate is reduced, and the pressure loss can be reduced.

また、全流路幅に占めるフィレット9の面積の減少により、伝熱面積の縮小を最小限に抑えることができ、熱交換性能の低下を抑えることができる。   Moreover, the reduction of the area of the fillet 9 occupying the entire flow path width can minimize the reduction of the heat transfer area, and the deterioration of the heat exchange performance can be suppressed.

更に、フィレット9の面積の減少により、フィレット9の後流部で熱媒体および被熱媒体の淀みを生じにくくすることができ、伝熱面積を有効に利用することができる。つまり、熱交換性能の低下を抑えながら、圧力損失を低減することができ、省エネ効果が得られる。   Furthermore, the reduction of the area of the fillet 9 can make it difficult for the heat medium and the heat-receiving medium to stagnate in the downstream portion of the fillet 9, and the heat transfer area can be used effectively. That is, pressure loss can be reduced while suppressing a decrease in heat exchange performance, and an energy saving effect can be obtained.

ところで、フィレット9の生じる幅は、既述したように伝熱プレート100の中心線50に対する波形状の角度θに依存する。このため、フィレットの発生を抑制するには、凹陥部10の幅を角度θ(70°〜80°)に応じて調整できるようにすればよい。   By the way, the width at which the fillet 9 is generated depends on the corrugated angle θ with respect to the center line 50 of the heat transfer plate 100 as described above. For this reason, in order to suppress the occurrence of fillets, the width of the recessed portion 10 may be adjusted according to the angle θ (70 ° to 80 °).

本実施形態においては、凹陥部10の幅を、1.0mm〜3.0mmに設定して、角度θ(70°〜80°)に応じて調整するようにしているので、フィレット9の幅を自在に調節することができる。   In the present embodiment, the width of the recessed portion 10 is set to 1.0 mm to 3.0 mm and is adjusted according to the angle θ (70 ° to 80 °). It can be adjusted freely.

実施形態2.
図5は本発明の実施形態2に係るプレート式熱交換器の積層された伝熱プレートをその接合部が分かるように積層方向より透過的に示す模式図であり、図中、前述の実施形態1のものに相当する部分には同一符号を付してある。なお、説明にあたっては前述の図1及び図4を参照するものとする。
Embodiment 2. FIG.
FIG. 5 is a schematic view showing the laminated heat transfer plate of the plate heat exchanger according to the second embodiment of the present invention transparently from the lamination direction so that the joint portion can be seen. Parts corresponding to those of 1 are denoted by the same reference numerals. In the description, reference is made to FIG. 1 and FIG. 4 described above.

本実施形態のプレート式熱交換器は、前述の実施形態1で説明した凹陥部10を、積層方向で隣り合う伝熱プレート200の一方にのみ設けたものである。すなわち、積層方向で隣り合う伝熱プレート200の一方における波形状が交差して当接する本来の接合部80の中心8から0.5mm〜1.5mm間隔を置いた部分に、接合部80の当接面より0.2mm〜0.4mm凹陥する凹陥部10を設けたものである。それ以外の構成は、全て前述の実施形態1と同一である。   In the plate heat exchanger of the present embodiment, the recessed portion 10 described in the first embodiment is provided only on one of the heat transfer plates 200 adjacent in the stacking direction. That is, the contact of the joint 80 is placed at a portion spaced 0.5 mm to 1.5 mm from the center 8 of the original joint 80 where the wave shapes on one of the heat transfer plates 200 adjacent in the stacking direction intersect and contact each other. A recessed portion 10 that is recessed 0.2 mm to 0.4 mm from the contact surface is provided. All other configurations are the same as those of the first embodiment.

本実施形態のプレート式熱交換器は、凹陥部10を積層方向で隣り合う伝熱プレート200の一方にのみ設けたものであるため、フィレット9の幅の縮小効果が前述の実施形態1のものより劣るものの、ほぼ同等の効果が得られる。このため、全流路幅に占めるフィレット9の面積が減少して、フィレット9以外の流路に集中していた熱媒体および被熱媒体が分散され、局所的な流速が減少し、圧力損失を低減させることができる。   Since the plate heat exchanger of the present embodiment is provided with the recessed portion 10 only on one of the heat transfer plates 200 adjacent in the stacking direction, the effect of reducing the width of the fillet 9 is that of the first embodiment. Although inferior, almost the same effect can be obtained. For this reason, the area of the fillet 9 occupying the entire flow path width is reduced, the heat medium and the heated medium concentrated in the flow path other than the fillet 9 are dispersed, the local flow velocity is reduced, and the pressure loss is reduced. Can be reduced.

また、全流路幅に占めるフィレット9の面積の減少により、前述の実施形態1のものと同様に伝熱面積の縮小を最小限に抑えることができ、熱交換性能の低下を抑えることができる。   Further, by reducing the area of the fillet 9 occupying the entire flow path width, the reduction of the heat transfer area can be minimized as in the case of the first embodiment, and the deterioration of the heat exchange performance can be suppressed. .

更に、フィレット9の面積の減少により、前述の実施形態1のものと同様にフィレット9の後流部で熱媒体および被熱媒体の淀みを生じにくくすることができ、伝熱面積を有効に利用することができる。つまり、熱交換性能の低下を抑えながら、圧力損失を低減することができる。   Further, by reducing the area of the fillet 9, it is possible to make it difficult for the heat medium and the heat-receiving medium to stagnate in the downstream portion of the fillet 9, as in the first embodiment, and to effectively use the heat transfer area. can do. That is, it is possible to reduce pressure loss while suppressing a decrease in heat exchange performance.

本発明の実施の形態1に係るプレート式熱交換器を構成する伝熱プレートの波形状の接合部を示す斜視図である。It is a perspective view which shows the wave-shaped junction part of the heat exchanger plate which comprises the plate type heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るプレート式熱交換器の伝熱プレートの全体構成を示す平面図である。It is a top view which shows the whole structure of the heat exchanger plate of the plate type heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るプレート式熱交換器の積層された伝熱プレートをその接合部が分かるように積層方向より透過的に示す模式図である。It is a schematic diagram which shows transparently the laminated heat-transfer plate of the plate-type heat exchanger which concerns on Embodiment 1 of this invention from the lamination direction so that the junction part can be understood. 本発明の実施の形態1に係るプレート式熱交換器の熱媒体および被熱媒体の出入口周辺を示す縦断面図である。It is a longitudinal cross-sectional view which shows the entrance / exit periphery of the heat medium and to-be-heated medium of the plate-type heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係るプレート式熱交換器の積層された伝熱プレートをその接合部が分かるように積層方向より透過的に示す模式図である。It is a schematic diagram which shows transparently the laminated heat-transfer plate of the plate-type heat exchanger which concerns on Embodiment 2 of this invention from a lamination direction so that the junction part can be understood.

符号の説明Explanation of symbols

1a,1b 第一開口部、2a,2b 第二開口部、3a,3b 第一開口部の縁部、4a,4b 第二開口部の縁部、5 外周縁部、7a 凸条、7b 凹条、8 接合部の中心、10 凹陥部、12 第一空間、13 第二空間、50 中心線、80 接合部、100,200 伝熱プレート。   1a, 1b first opening, 2a, 2b second opening, 3a, 3b edge of first opening, 4a, 4b edge of second opening, 5 outer peripheral edge, 7a ridge, 7b groove , 8 center of joint, 10 recessed portion, 12 first space, 13 second space, 50 center line, 80 joint, 100, 200 heat transfer plate.

Claims (4)

プレートの両端部に開口部が形成され、これら開口部が複数組並列に設置されて第一開口部と第二開口部に形成されるとともに、プレートの中心線から両側端にかけて該中心線に対し所定の角度を有する凸条または凹条の波形状が横切るように成形された複数枚の伝熱プレートを備え、
これら伝熱プレートが、互いの波形状の前記角度による向きが逆向きとなるように交互に積層されて、積層方向から見て互いの波形状が交差して当接する部分が互いにロウ付けにより接合され、また各伝熱プレート外周縁部においてもロウ付けにより接合されることで、流体からなる熱媒体が流通する第一空間と被熱媒体が流通する第二空間とが各伝熱プレートを境に画成され、
さらに積層された伝熱プレートの前記第一開口部の縁部が一つおきに接合されることで、それらの間に該第一開口部を介して前記第一空間と連通し前記熱媒体が流通する第一流路が形成され、
また積層された伝熱プレートの前記第二開口部の縁部が、前記第一開口部の縁部の接合部とは積層方向で異なるように一つおきに接合されることで、それらの間に該第二開口部を介して前記第二空間と連通し前記被熱媒体が流通する第二流路が形成され、
これら第一流路と第二流路とで伝熱プレートを通して熱交換を行うプレート式熱交換器であって、
前記積層方向で隣り合う伝熱プレートの少なくとも一方における前記波形状が交差して当接する接合部の中心から前記波形状の稜線に沿った両側に所定間隔を置いて、該接合部の当接面より凹陥する凹陥部を設けて、該凹陥部にロウ材を溜めてフィレットの発生を抑制することを特徴とするプレート式熱交換器。
Openings are formed at both ends of the plate, a plurality of sets of these openings are installed in parallel to form the first opening and the second opening, and with respect to the centerline from the centerline of the plate to both ends A plurality of heat transfer plates formed so as to cross the wave shape of the ridges or grooves having a predetermined angle,
These heat transfer plates are alternately stacked so that the directions of the wave shapes are opposite to each other, and the portions where the wave shapes intersect and contact each other when viewed from the stacking direction are joined together by brazing. Also, the outer peripheral edge of each heat transfer plate is joined by brazing, so that the first space through which the heat medium made of fluid flows and the second space through which the heat medium flows circulates each heat transfer plate. Defined in
Furthermore, every other edge of the first opening of the laminated heat transfer plate is joined, so that the heat medium communicates with the first space via the first opening between them. A first flow path is formed,
Further, the edges of the second openings of the laminated heat transfer plates are joined alternately so that they are different in the lamination direction from the joints of the edges of the first openings. A second flow path is formed through which the heat-receiving medium flows and communicates with the second space through the second opening,
A plate-type heat exchanger that performs heat exchange between the first flow path and the second flow path through the heat transfer plate,
Contact surfaces of the joints at predetermined intervals on both sides along the ridge line of the wave shape from the center of the joints where the wave shapes intersect and contact each other in at least one of the heat transfer plates adjacent in the stacking direction. A plate-type heat exchanger characterized in that a recessed portion that is further recessed is provided , and brazing material is accumulated in the recessed portion to suppress the occurrence of fillets .
前記プレートの中心線に対する前記凸条または前記凹条の波形状の角度が70°〜80°に設定され、前記凹陥部は、前記接合部の中心から0.5mm〜1.5mm間隔を置いた部分に、前記接合部の当接面よりの凹陥深さが0.2mm〜0.4mmとなるように設定されてなることを特徴とする請求項1記載のプレート式熱交換器。   The angle of the wave shape of the ridges or the recesses with respect to the center line of the plate is set to 70 ° to 80 °, and the recesses are spaced from the center of the joint by 0.5 mm to 1.5 mm. 2. The plate heat exchanger according to claim 1, wherein the depth of the recessed portion from the contact surface of the joint portion is set to be 0.2 mm to 0.4 mm in the portion. 前記凹陥部の幅を、1.0mm〜3.0mmに設定したことを特徴とする請求項2記載のプレート式熱交換器。   The plate-type heat exchanger according to claim 2, wherein a width of the recessed portion is set to 1.0 mm to 3.0 mm. 前記凹陥部を、前記積層方向で隣り合う伝熱プレートの双方に形成したことを特徴とする請求項1乃至請求項3のいずれかに記載のプレート式熱交換器。   The plate-type heat exchanger according to any one of claims 1 to 3, wherein the recessed portion is formed on both of the heat transfer plates adjacent in the stacking direction.
JP2008291896A 2008-11-14 2008-11-14 Plate heat exchanger Expired - Fee Related JP4827909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008291896A JP4827909B2 (en) 2008-11-14 2008-11-14 Plate heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008291896A JP4827909B2 (en) 2008-11-14 2008-11-14 Plate heat exchanger

Publications (2)

Publication Number Publication Date
JP2010117101A JP2010117101A (en) 2010-05-27
JP4827909B2 true JP4827909B2 (en) 2011-11-30

Family

ID=42304884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008291896A Expired - Fee Related JP4827909B2 (en) 2008-11-14 2008-11-14 Plate heat exchanger

Country Status (1)

Country Link
JP (1) JP4827909B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE2250767A1 (en) * 2022-06-22 2023-12-23 Alfa Laval Corp Ab Plate heat exchanger

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080256A1 (en) * 2011-11-30 2013-06-06 三菱電機株式会社 Plate-type heat exchanger and refrigeration cycle equipment including this heat exchanger
JP2018179340A (en) * 2017-04-06 2018-11-15 東京電力ホールディングス株式会社 Plate type heat exchanger

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2219130C2 (en) * 1972-04-19 1974-06-20 Ulrich Dr.-Ing. 5100 Aachen Regehr CONTACT BODY FOR HEAT AND / OR SUBSTANCE EXCHANGE
JPS63140294A (en) * 1986-12-02 1988-06-11 Nippon Denso Co Ltd Laminate-type heat exchanger
JP2000088491A (en) * 1998-09-17 2000-03-31 Hisaka Works Ltd Plate type heat exchanger
JP3448265B2 (en) * 2000-07-27 2003-09-22 昭 藤山 Manufacturing method of titanium plate heat exchanger
JP4504092B2 (en) * 2004-05-13 2010-07-14 株式会社日阪製作所 Plate heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE2250767A1 (en) * 2022-06-22 2023-12-23 Alfa Laval Corp Ab Plate heat exchanger
SE546498C2 (en) * 2022-06-22 2024-11-19 Alfa Laval Corp Ab Plate heat exchanger

Also Published As

Publication number Publication date
JP2010117101A (en) 2010-05-27

Similar Documents

Publication Publication Date Title
KR101445474B1 (en) A heat exchanger plate and a plate heat exchanger
CN102770735B (en) Corrugated fin and possess its heat exchanger
JP6567097B2 (en) Plate heat exchanger and heat pump heating / hot water system equipped with the same
US9212854B2 (en) Plate and gasket for a plate heat exchanger
JP2008511811A (en) Plate heat exchanger
JP2010114174A (en) Core structure for heat sink
TWI752723B (en) Heat transfer plate
JP4827909B2 (en) Plate heat exchanger
JP4857074B2 (en) Plate type heat exchanger
JP4504092B2 (en) Plate heat exchanger
JP2003185375A (en) Plate heat exchanger
JP2011171569A (en) Cooler
JP2010121925A (en) Heat exchanger
JP4519437B2 (en) Joined plate heat exchanger
KR20110086995A (en) Plate Stacked Oil Heat Exchanger
JP2019219091A (en) Laminated heat exchanger
JP5419719B2 (en) Plate heat exchanger and heat pump device
JP4317983B2 (en) Plate type heat exchanger
CN112146484B (en) Plate Heat Exchanger
JP5284062B2 (en) Plate heat exchanger
WO2014077084A1 (en) Laminated heat exchanger
JP4448377B2 (en) Plate heat exchanger
CN117824412A (en) Heat exchange plate and plate heat exchanger using same
CN117678111A (en) Heat exchanger for cooling battery
JP4225744B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4827909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees