JP4831800B2 - Dimethyl ether reforming catalyst and dimethyl ether reforming method - Google Patents
Dimethyl ether reforming catalyst and dimethyl ether reforming method Download PDFInfo
- Publication number
- JP4831800B2 JP4831800B2 JP2001238658A JP2001238658A JP4831800B2 JP 4831800 B2 JP4831800 B2 JP 4831800B2 JP 2001238658 A JP2001238658 A JP 2001238658A JP 2001238658 A JP2001238658 A JP 2001238658A JP 4831800 B2 JP4831800 B2 JP 4831800B2
- Authority
- JP
- Japan
- Prior art keywords
- dimethyl ether
- catalyst
- reforming
- reaction
- ether reforming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 title claims description 106
- 239000003054 catalyst Substances 0.000 title claims description 83
- 238000000034 method Methods 0.000 title claims description 29
- 238000002407 reforming Methods 0.000 title claims description 26
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 238000006243 chemical reaction Methods 0.000 claims description 16
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 15
- 239000011973 solid acid Substances 0.000 claims description 15
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 11
- 229910052697 platinum Inorganic materials 0.000 claims description 11
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 10
- 238000007254 oxidation reaction Methods 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 5
- 238000006057 reforming reaction Methods 0.000 claims description 5
- 229910021536 Zeolite Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 238000001179 sorption measurement Methods 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 239000010457 zeolite Substances 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 35
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 18
- 229910052739 hydrogen Inorganic materials 0.000 description 18
- 239000001257 hydrogen Substances 0.000 description 18
- 238000002360 preparation method Methods 0.000 description 17
- 239000000843 powder Substances 0.000 description 9
- 229910004298 SiO 2 Inorganic materials 0.000 description 8
- 239000002131 composite material Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000000446 fuel Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000006227 byproduct Substances 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000005470 impregnation Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000000629 steam reforming Methods 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 229910021486 amorphous silicon dioxide Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- DQYBDCGIPTYXML-UHFFFAOYSA-N ethoxyethane;hydrate Chemical compound O.CCOCC DQYBDCGIPTYXML-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000036647 reaction Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- SONJTKJMTWTJCT-UHFFFAOYSA-K rhodium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Rh+3] SONJTKJMTWTJCT-UHFFFAOYSA-K 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ジメチルエーテルから効率的に水素を製造するためのジメチルエーテル改質触媒およびジメチルエーテル改質方法に関するものである。
【0002】
【従来の技術】
燃料電池は、水素と酸素から水を得る電池反応によって起電力を得ている。原料の水素は、原燃料と水を改質触媒の存在下に反応させて得られる。このような燃料電池のうち、固体高分子型燃料電池(PEFC:Polymer Electrolyte Fuel Cell)が優れた性能を発揮できるものとして注目されている。このような固体高分子型燃料電池では、水素を燃料とし、アノード(燃料極)、カソード(空気極)における電極反応によって起電力を得ている。
【0003】
上記原燃料としては、メタノール、エタノールが用いられていたが、ジメチルエーテルも採用の選択枝として採用されつつある。ジエチルエーテルと水(水蒸気)から、以下の反応によって、水素と一酸化炭素を生成する。
CH3OCH3+H2O→2CO+4H2 ・・・・・(1)
このようなジメチルエーテルの改質は、従来、700℃以上の高温でRuまたはNiを触媒にして改質を行なっていた。上記触媒では、副反応であるメタネーション反応が併発し、水素の生成量が少ないため、700℃以上の高温にすることで、平衡的にメタンの副生を抑制していた。
CH3OCH3+H2O→(2CO+4H2)→2CH4+2H2O・・・(2)
しかし、ジメチルエーテルを700℃以上の高温にするのには、大規模な装置を設ける必要があり、PEFC装置の大きさをコンパクト化するにあたって改善が望まれていた。
【0004】
【発明が解決しようとする課題】
本発明は上記事情に対してなされたもので、ジメチルエーテルの改質反応を700℃以下の低温でも行うことを可能とし、かつ高濃度の水素を効率良く生成することができるジメチルエーテル改質触媒およびジメチルエーテルの改質方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するため、本発明に係るジメチルエーテル改質触媒は、固体酸作用を有する担体に、少なくともPtを含む活性金属を担持させたことを特徴とする。
このように、固体酸作用を有する担体が以下の逐次反応式(3)を促進し、また、Ptを含む活性金属が以下の逐次反応式(4)を促進するとともに、メタネーション活性も低いため、約450℃の低温でも、高濃度の水素を効率良く生成することができる。
CH3OCH3+H2O→2CH3OH ・・・・・(3)
CH3OH→CO+2H2 ・・・・・(4)
ジメチルエーテル改質反応は、上記逐次反応式で進行すると推定できる。式(3)は平衡上転化率が高くないが、式(3)と式(4)が逐次で進行することによって効率的に高濃度の水素を生成することができる。
【0006】
上記固体酸作用を有する担体としては、θアルミナ、アナターゼ型チタニア、H型ペンタシル型ゼオライト、H型メタロシリケート、TiO 2 −Al 2 O 3 、Al 2 O 3 −ZrO 2 、TiO 2 −ZrO 2 から成るグループから選ばれた少なくとも1種を用いる。固体酸作用を有する担体の固体酸量は、ピリジン吸着量で0.1mmol/gを超えることが好適である。
上記Ptを含む活性金属としては、Ptと、Fe、Mn、Zn、Cu、W、P、S、Co、CrおよびSnから成るグループから選ばれた少なくとも1種との組み合わせが好適である。
【0007】
また、本発明は、別の側面において、上記したジメチルエーテル改質触媒を用いたジメチルエーテルの改質方法である。このようなジメチルエーテル改質方法では、ジメチルエーテルに対し、水と酸素を加え、部分酸化反応も生じさせるようにすることが好適である。このように酸素を加えることによって、ジメチルエーテル改質反応と上記部分酸化反応とを併発させ、オートサーマル反応を行うようにすることができる。
【0008】
【発明の実施の形態】
以下、本発明に係るジメチルエーテル改質触媒とジメチルエーテル改質方法をその実施の形態等についてさらに詳細に説明する。
本発明に係るジメチルエーテル改質触媒は、固体酸作用を有する担体に、少なくともPtを含む活性金属を担持させたことを特徴とする。
このような担体としては、θアルミナ、アナターゼ型チタニア、H型ペンタシル型ゼオライト、H型メタロシリケート、TiO 2 −Al 2 O 3 、Al 2 O 3 −ZrO 2 、TiO 2 −ZrO 2 を用いる。複合酸化物は主に共沈法等によって調製される。これらの固体酸作用を有する担体の固体酸量は、ピリジン吸着量で0.1mmol/gを超えるものが好適である。
【0009】
上記担体に担持される金属としては、少なくともPtを含む活性金属を用いる。Ptはメタネーション活性が低いため、700℃以下の低温でも、高収量の水素を生成することができる。さらに、Ptは水蒸気改質反応と部分酸化反応を促進するため、酸素を加えることにより、高収量の水素を生成することができる。Ptは含浸法またはイオン交換法によって担体に担持できる。Ptの助触媒として、Fe、Mn、Zn、Cu、W、P、S、Co、CrおよびSnから成るグループから選ばれた少なくとも1種を用いることができる。Ptを担体に担持した後、助触媒を主に含浸法等によって担体に担持できる。
【0010】
さらに、本発明に係るジメチルエーテル改質方法は、上記によって得られたジメチルエーテル改質触媒を用いることを特徴とする。また、ジメチルエーテルに対し、水(水蒸気)と酸素(空気)を加え、部分酸化反応も生じさせるようにすることができる。部分酸化反応をさらに適量に併発することによりオートサーマル反応として実施することができる。これにより、約450℃の低温でも、ジメチルエーテルの転化率を向上させることができる。このとき、ジメチルエーテルに対して、空気と水蒸気は、空気/ジメチルエーテル(C1ベース)=0〜3(モル比)で、水蒸気/ジメチルエーテル(C1ベース)=0〜5(モル比)で混合することが好ましいが、特にこれに限定されない。
【0011】
【実施例】
実施例1(触媒の調製)
(触媒1の調製)
担体として比表面積150m2/gのγ型アルミナ粉末(以下γ−Al2O3(γアルミナ)ともいう)を蒸発皿に入れ、塩化白金酸水溶液をγ−Al2O3に滴下し、100℃のホットプレート上にて滴下した水分を蒸発させた。粉末を攪拌させながら均一に白金が担持されるようにし、このような含浸法にて担体に対して1重量%の白金(Pt)を担持した。
上記γ−Al2O3担持Pt触媒粉末を120℃で12時間乾燥させた後、550℃で5時間空気雰囲気下にて焼成を行った。次に、本触媒粉末にアルミナゾルバインダー2%を添加して、3mmφの粒状触媒を成型した後、500℃で5時間焼成した。本粒状触媒を触媒1とした。
【0012】
(触媒2〜6の調製)
上記触媒1の調製法において、γアルミナの代わりに,比表面積120m2/gのθアルミナ、比表面積80m2/gのアナターゼ型チタニア、ジルコニア、H型のペンタシル型ゼオライト(SiO2/Al2O3モル比40)、H型のメタロシリケート(SiO2/Al2O3モル比30、SiO2/Fe2O3モル比600、SiO2/Co2O3モル比500)を用いて、触媒1と同様な方法にて白金を担持して、粉末触媒2〜6を調製した。さらに、触媒1と同様な方法により、3mmφの粒状触媒を調製した後、500℃で5時間焼成して、触媒2〜6を得た。
【0013】
(触媒7〜11の調製)
上記触媒1の調製法において、γアルミナの代わりとして、TiO2・SiO2複合酸化物(TiO2:SiO2=80:20(重量比)、比表面積150m2/g)、TiO2・Al2O3複合酸化物(TiO2・Al2O3=50:50(重量比)、比表面積160m2/g)、Al2O3・ZrO2複合酸化物(Al2O3:ZrO2=90:10(重量比)、比表面積200m2/g)、TiO2・ZrO2複合酸化物(TiO2:ZrO2=50:50(重量比)、比表面積100m2/g)、SiO2・Al2O3複合酸化物(SiO2:Al2O3=90:10(重量比)、比表面積150m2/g)を調製した。調製方法は、各々の金属の硝酸塩又は塩化物の水溶液に対してアンモニアを滴下し、pH=7付近にて共沈法により複合酸化物を得た。この複合酸化物を乾燥した後、焼成を600℃で5時間行った。そして、触媒1と同様な方法にて白金を担持して、粉末触媒7〜11を調製した。さらに、触媒1と同様な方法により、3mmφの粒状触媒を調製した後、500℃で5時間焼成して、触媒7〜11を得た。
【0014】
(触媒12〜21の調製)
上記触媒1の調製法において、γ−Al2O3担持Pt触媒粉末に対して、助触媒としてFe、Mn、Zn、Cu、W、P、S、Co、Cr、Snを担持するため、各金属のアンモニウム塩又は硝酸塩の水溶液にγ−Al2O3担持Pt触媒粉末を浸漬して、各々の金属で0.5%担持させ、乾燥させた後、600℃で5時間焼成を行った。さらに、触媒1と同様な方法により3mmφの粒状触媒を調製した後、500℃で5時間焼成して、触媒12〜21を得た。
【0015】
(触媒22の調製)
上記触媒1の調製法において、γアルミナに担持する白金の担持法として、含浸法の代わりにイオン交換法を用いた。白金原料としてジニトロジアミン白金水溶液(0.1M溶液)100mlを用いて、これにγアルミナを10g添加し、40℃で3時間攪拌し、陽イオン交換を行った。そして濾過した後、イオン交換水で水洗し、触媒1と同様な方法にて乾燥焼成し、3mmφに調製した後、500℃で5時間焼成して、触媒22を得た。なお、本触媒22の白金担持量は1.2重量%であった。
【0016】
(触媒23、24の調製)
上記触媒1の調製法において、γアルミナに担持する白金として0.3%、2%をそれぞれ担持した触媒を調製した。触媒1と同様な方法にて乾燥焼成し、3mmφに調製した後、500℃で5時間焼成して、触媒23、24を得た。
【0017】
(比較触媒1〜3の調製)
上記触媒1の調製法において、γアルミナに担持する触媒として、塩化白金酸の代わりに、塩化ルテニウム、塩化ニッケル、塩化ロジウムの各水溶液を各々含浸して粉末触媒化し、各々金属でRu:1%、Ni:13%、Rh:1%を担持させた。さらに、触媒1と同様な方法にて乾燥焼成し、3mmφに調製した後、500℃で5時間焼成して、比較触媒1〜3を得た。
【0018】
(比較触媒4、5の調製)
上記触媒1の調製法において、γアルミナの代わりに、αアルミナ(比表面積3m2/g)、非晶質SiO2(比表面積30m2/g)を用いてPtを担持させた。さらに、触媒1と同様な方法にて乾燥焼成し、3mmφに調製した後、500℃で5時間焼成して、比較触媒4、5を得た。
【0019】
実施例2(酸量測定方法)
触媒担体の主要な物性値である固体酸量の測定を触媒学会方法に準じて、以下の方法により行った。方法はパルス反応器を用いた。ピリジン昇温脱離法により行った。昇温脱離法はサンプル12.5mg、キャリヤーガスHe流量45ml/minの条件でサンプルの前処理をHe気流中、450℃で30分間行った後、サンプルを150℃に保持して、ピリジンを0.2μl、繰り返し5回パルス供給した。次に、150の吸着温度から750℃まで昇温速度30℃/minで昇温し、脱離したピリジン量を水素炎イオン検出器で測定して、固体酸量を求めた。上記触媒1〜24、比較触媒1〜4で用いた触媒の固体酸量を以下の表1に示す。
【0020】
【表1】
【0021】
実施例3
(ジメチルエーテル水蒸気改質試験:反応条件1)
上記触媒1〜24、比較触媒1〜5を用いて、以下の条件においてジメチルエーテルの水蒸気改質試験を行った。原料はジメチルエーテル(CH3OCH3)と水蒸気と空気を[水蒸気/ジメチルエーテル(C1ベース)]=4.0(モル比)の条件で混合させ、20cc充填した触媒層(3mmφペレット充填:円筒形:径26mmφ、長さ25mm)を触媒層平均温度450℃、550℃、650℃に保持し、上記原料をGHSV5000h-1(流量100L/h)で供給した。
【0022】
反応管出口ガス組成の炭化水素はガスクロマトグラムで分析した。ジメチルエーテル転化率(η)は=[1−出口ジメチルエーテル/入口ジメチルエーテル(C1ベース)]×100にて求めた。また、生成物の水素濃度、副生するCH4濃度(いずれもドライベース)もガスクロマトグラフ法にて求めた。上記触媒の活性評価試験結果を表2に示す。
【0023】
【表2】
【0024】
上記結果より、参考となる触媒1及び12〜24並びに本発明に係る触媒2〜11はいずれの反応温度においてもジメチルエーテル転化率90%以上、水素濃度60%以上、CH4副生率5%以下となり、低温で高効率にて水素を製造できることを確認した。しかし、比較触媒1〜5は何れも550℃以下においてCH4の副生が多く、水素濃度が低かった。よって、高濃度の水素を製造するためには、650℃付近の高温が必要であることがわかる。
なお、参考となる触媒1及び12〜24並びに本発明に係る触媒2〜11において、十分な水素製造活性を有し、かつCH4が少ない理由として、メタネーション作用が低いPtを活性金属に用いたことと、水とジメチルエーテルの吸着力が強く、加水分解作用を有する0.1mmol/g以上の固体酸量を持つ担体を用いたこととによると考えられる。
【0025】
実施例4
上記触媒1を用いて、実施例3で行った水蒸気改質条件において、空気/ジメチルエーテル(C1ベース):1.5、2.5(モル比)の空気を供給し、オートサーマル条件において活性評価を行った。さらに、水蒸気/ジメチルエーテル(C1ベース)モル比の影響についても検討を行った。表3に触媒温度450℃、550℃の試験条件と活性評価結果を示す(Run番号30〜34)。
【0026】
【表3】
【0027】
表3に示す試験結果より、参考となる触媒1を用いて、空気を添加したオートサーマル条件や部分酸化条件、および種々の空気、水蒸気分圧条件においても450℃程度で十分なジメチルエーテル分解活性を有し、さらにCH4の副生も無いことを確認した。
【0028】
【発明の効果】
上記したところから明らかなように、本発明によれば、ジメチルエーテルの改質反応を700℃以下の低温でも行うことを可能とし、かつ高濃度の水素を効率良く生成することができるジメチルエーテル改質触媒およびジメチルエーテルの改質方法が提供される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dimethyl ether reforming catalyst and a dimethyl ether reforming method for efficiently producing hydrogen from dimethyl ether.
[0002]
[Prior art]
A fuel cell obtains an electromotive force by a cell reaction that obtains water from hydrogen and oxygen. The raw material hydrogen is obtained by reacting raw fuel and water in the presence of a reforming catalyst. Among such fuel cells, a polymer electrolyte fuel cell (PEFC) has been attracting attention as being able to exhibit excellent performance. In such a polymer electrolyte fuel cell, hydrogen is used as a fuel, and an electromotive force is obtained by an electrode reaction at an anode (fuel electrode) and a cathode (air electrode).
[0003]
As the raw fuel, methanol and ethanol are used, but dimethyl ether is also being adopted as an option. Hydrogen and carbon monoxide are produced from diethyl ether and water (water vapor) by the following reaction.
CH 3 OCH 3 + H 2 O → 2CO + 4H 2 (1)
Such reforming of dimethyl ether has been conventionally performed using Ru or Ni as a catalyst at a high temperature of 700 ° C. or higher. In the above catalyst, the methanation reaction, which is a side reaction, occurs simultaneously and the amount of hydrogen produced is small, so that by raising the temperature to 700 ° C. or higher, the by-product of methane was suppressed in an equilibrium manner.
CH 3 OCH 3 + H 2 O → (2CO + 4H 2 ) → 2CH 4 + 2H 2 O (2)
However, in order to increase the temperature of dimethyl ether to 700 ° C. or higher, it is necessary to provide a large-scale apparatus, and improvement has been desired in reducing the size of the PEFC apparatus.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and a dimethyl ether reforming catalyst and a dimethyl ether capable of performing a reforming reaction of dimethyl ether even at a low temperature of 700 ° C. or less and capable of efficiently producing a high concentration of hydrogen. An object of the present invention is to provide a reforming method.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the dimethyl ether reforming catalyst according to the present invention is characterized in that an active metal containing at least Pt is supported on a carrier having a solid acid action.
Thus, the carrier having a solid acid action promotes the following sequential reaction formula (3), and the active metal containing Pt promotes the following sequential reaction formula (4) and also has a low methanation activity. Even at a low temperature of about 450 ° C., high-concentration hydrogen can be efficiently generated.
CH 3 OCH 3 + H 2 O → 2CH 3 OH (3)
CH 3 OH → CO + 2H 2 (4)
It can be estimated that the dimethyl ether reforming reaction proceeds according to the above sequential reaction formula. Although Formula (3) does not have a high conversion rate due to equilibrium, high concentrations of hydrogen can be efficiently generated by the sequential progression of Formula (3) and Formula (4).
[0006]
Examples of the carrier having a solid acid action include θ alumina, anatase type titania, H type pentasil type zeolite, H type metallosilicate, TiO 2 -Al 2 O 3 , Al 2 O 3 -ZrO 2 , and TiO 2 -ZrO 2. at least one member selected from the group consisting used. The solid acid amount of the carrier having a solid acid action is preferably more than 0.1 mmol / g in terms of pyridine adsorption.
The active metal containing Pt is preferably a combination of Pt and at least one selected from the group consisting of Fe, Mn, Zn, Cu, W, P, S, Co, Cr and Sn.
[0007]
In another aspect, the present invention is a method for reforming dimethyl ether using the dimethyl ether reforming catalyst described above. In such a dimethyl ether reforming method, it is preferable to add water and oxygen to dimethyl ether to cause a partial oxidation reaction. By adding oxygen in this manner, the dimethyl ether reforming reaction and the partial oxidation reaction can be performed simultaneously to perform an autothermal reaction.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the dimethyl ether reforming catalyst and the dimethyl ether reforming method according to the present invention will be described in more detail with respect to embodiments thereof.
The dimethyl ether reforming catalyst according to the present invention is characterized in that an active metal containing at least Pt is supported on a carrier having a solid acid action.
As such a carrier, θ alumina, anatase type titania, H type pentasil type zeolite, H type metallosilicate, TiO 2 —Al 2 O 3 , Al 2 O 3 —ZrO 2 , TiO 2 —ZrO 2 are used. The composite oxide is prepared mainly by a coprecipitation method or the like. The solid acid amount of the carrier having a solid acid action is preferably a pyridine adsorption amount exceeding 0.1 mmol / g.
[0009]
As the metal supported on the carrier, an active metal containing at least Pt is used. Since Pt has low methanation activity, high yields of hydrogen can be generated even at a low temperature of 700 ° C. or lower. Furthermore, since Pt promotes steam reforming reaction and partial oxidation reaction, high yield of hydrogen can be generated by adding oxygen. Pt can be supported on the support by an impregnation method or an ion exchange method. As the Pt cocatalyst, at least one selected from the group consisting of Fe, Mn, Zn, Cu, W, P, S, Co, Cr and Sn can be used. After Pt is supported on the support, the promoter can be supported on the support mainly by an impregnation method or the like.
[0010]
Furthermore, the dimethyl ether reforming method according to the present invention is characterized by using the dimethyl ether reforming catalyst obtained as described above. Further, water (water vapor) and oxygen (air) can be added to dimethyl ether to cause partial oxidation reaction. It can be carried out as an autothermal reaction by further combining the partial oxidation reaction in an appropriate amount. Thereby, the conversion rate of dimethyl ether can be improved even at a low temperature of about 450 ° C. At this time, air and water vapor may be mixed with air / dimethyl ether (C1 base) = 0 to 3 (molar ratio) and water vapor / dimethyl ether (C1 base) = 0 to 5 (molar ratio) with respect to dimethyl ether. Although it is preferable, it is not limited to this.
[0011]
【Example】
Example 1 (Preparation of catalyst)
(Preparation of catalyst 1)
A γ-type alumina powder (hereinafter also referred to as γ-Al 2 O 3 (γ-alumina)) having a specific surface area of 150 m 2 / g as a carrier is placed in an evaporating dish, an aqueous chloroplatinic acid solution is dropped into γ-Al 2 O 3 , and 100 The dripped water was evaporated on a hot plate at 0 ° C. While stirring the powder, platinum was uniformly supported, and 1% by weight of platinum (Pt) was supported on the support by such an impregnation method.
The γ-Al 2 O 3 supported Pt catalyst powder was dried at 120 ° C. for 12 hours and then calcined at 550 ° C. for 5 hours in an air atmosphere. Next, 2% alumina sol binder was added to the catalyst powder to form a granular catalyst of 3 mmφ, and then calcined at 500 ° C. for 5 hours. This granular catalyst was designated as Catalyst 1.
[0012]
(Preparation of catalysts 2-6)
In preparation of the catalyst 1, in place of γ-alumina, theta-alumina having a specific surface area of 120 m 2 / g, an anatase type titania having a specific surface area of 80 m 2 / g, zirconia, H type pentasil type zeolite (SiO 2 / Al 2 O 3 molar ratio 40), H-type metallosilicate (SiO 2 / Al 2 O 3 molar ratio 30, SiO 2 / Fe 2 O 3 molar ratio 600, SiO 2 / Co 2 O 3 molar ratio 500) In the same manner as in Example 1, powder catalysts 2 to 6 were prepared by supporting platinum. Further, a 3 mmφ granular catalyst was prepared by the same method as for catalyst 1, and then calcined at 500 ° C. for 5 hours to obtain catalysts 2 to 6.
[0013]
(Preparation of catalysts 7-11)
In the preparation method of the catalyst 1, in place of γ-alumina, TiO 2 · SiO 2 composite oxide (TiO 2 : SiO 2 = 80: 20 (weight ratio), specific surface area 150 m 2 / g), TiO 2 · Al 2 O 3 composite oxide (TiO 2 · Al 2 O 3 = 50: 50 (weight ratio), specific surface area 160 m 2 / g), Al 2 O 3 · ZrO 2 composite oxide (Al 2 O 3 : ZrO 2 = 90) : 10 (weight ratio), specific surface area 200 m 2 / g), TiO 2 · ZrO 2 composite oxide (TiO 2 : ZrO 2 = 50: 50 (weight ratio), specific surface area 100 m 2 / g), SiO 2 · Al 2 O 3 composite oxide (SiO 2 : Al 2 O 3 = 90: 10 (weight ratio), specific surface area 150 m 2 / g) was prepared. In the preparation method, ammonia was added dropwise to an aqueous solution of nitrate or chloride of each metal, and a composite oxide was obtained by coprecipitation at around pH = 7. After this composite oxide was dried, calcination was performed at 600 ° C. for 5 hours. And platinum was carry | supported by the method similar to the catalyst 1, and the powder catalysts 7-11 were prepared. Further, a 3 mmφ granular catalyst was prepared by the same method as that for catalyst 1, and then calcined at 500 ° C. for 5 hours to obtain catalysts 7 to 11.
[0014]
(Preparation of catalysts 12 to 21)
In the preparation method of the catalyst 1, Fe, Mn, Zn, Cu, W, P, S, Co, Cr, Sn are supported as promoters on the γ-Al 2 O 3 supported Pt catalyst powder. A γ-Al 2 O 3 supported Pt catalyst powder was immersed in an aqueous solution of a metal ammonium salt or nitrate, supported by 0.5% of each metal, dried, and then fired at 600 ° C. for 5 hours. Furthermore, after preparing a 3 mmφ granular catalyst by the same method as Catalyst 1, it was calcined at 500 ° C. for 5 hours to obtain Catalysts 12 to 21.
[0015]
(Preparation of catalyst 22)
In the preparation method of the catalyst 1, an ion exchange method was used instead of the impregnation method as a method for supporting platinum supported on γ-alumina. Using 100 ml of dinitrodiamine platinum aqueous solution (0.1 M solution) as a platinum raw material, 10 g of γ-alumina was added thereto, and the mixture was stirred at 40 ° C. for 3 hours to perform cation exchange. Then, after filtration, washed with ion-exchanged water, dried and calcined in the same manner as Catalyst 1, adjusted to 3 mmφ, and calcined at 500 ° C. for 5 hours to obtain Catalyst 22. The amount of platinum supported by the catalyst 22 was 1.2% by weight.
[0016]
(Preparation of catalysts 23 and 24)
In the preparation method of the catalyst 1, catalysts each supporting 0.3% and 2% as platinum supported on γ-alumina were prepared. The catalyst was dried and calcined in the same manner as in Catalyst 1, adjusted to 3 mmφ, and calcined at 500 ° C. for 5 hours to obtain Catalysts 23 and 24.
[0017]
(Preparation of comparative catalysts 1 to 3)
In the preparation method of the catalyst 1, the catalyst supported on γ-alumina is impregnated with an aqueous solution of ruthenium chloride, nickel chloride and rhodium chloride instead of chloroplatinic acid to form a powder catalyst. Ni: 13% and Rh: 1% were supported. Further, the catalyst was dried and calcined in the same manner as in Catalyst 1, adjusted to 3 mmφ, and calcined at 500 ° C. for 5 hours to obtain Comparative Catalysts 1 to 3.
[0018]
(Preparation of comparative catalysts 4 and 5)
In the preparation method of the catalyst 1, Pt was supported using α alumina (specific surface area 3 m 2 / g) and amorphous SiO 2 (specific surface area 30 m 2 / g) instead of γ alumina. Further, the catalyst was dried and calcined in the same manner as in Catalyst 1, adjusted to 3 mmφ, and calcined at 500 ° C. for 5 hours to obtain Comparative Catalysts 4 and 5.
[0019]
Example 2 (Method for measuring acid amount)
The amount of solid acid, which is the main physical property value of the catalyst carrier, was measured by the following method according to the method of the Catalysis Society of Japan. The method used a pulse reactor. The pyridine temperature programmed desorption method was used. In the temperature programmed desorption method, sample pretreatment was performed at 450 ° C. for 30 minutes in a He stream under conditions of 12.5 mg of sample and carrier gas He flow rate of 45 ml / min, and then the sample was held at 150 ° C. 0.2 μl, pulsed repeatedly 5 times. Next, the temperature was raised from an adsorption temperature of 150 to 750 ° C. at a heating rate of 30 ° C./min, and the amount of desorbed pyridine was measured with a flame ion detector to determine the amount of solid acid. The solid acid amounts of the catalysts used in the above catalysts 1 to 24 and comparative catalysts 1 to 4 are shown in Table 1 below.
[0020]
[Table 1]
[0021]
Example 3
(Dimethyl ether steam reforming test: reaction condition 1)
Using the above catalysts 1 to 24 and comparative catalysts 1 to 5, a steam reforming test of dimethyl ether was performed under the following conditions. The raw material was dimethyl ether (CH 3 OCH 3 ), water vapor and air mixed under the conditions of [water vapor / dimethyl ether (C1 base)] = 4.0 (molar ratio), and 20 cc packed catalyst layer (3 mmφ pellet packed: cylindrical: The catalyst layer average temperature was 450 ° C., 550 ° C., and 650 ° C., and the raw materials were supplied at GHSV 5000 h −1 (flow rate 100 L / h).
[0022]
The hydrocarbons having the reaction tube outlet gas composition were analyzed by gas chromatogram. The dimethyl ether conversion rate (η) was determined by = [1-exit dimethyl ether / inlet dimethyl ether (C1 base)] × 100. Further, the hydrogen concentration of the product and the CH 4 concentration by-product (both dry bases) were also determined by gas chromatography. The results of the activity evaluation test of the catalyst are shown in Table 2.
[0023]
[Table 2]
[0024]
From the above results, the reference catalysts 1 and 12 to 24 and the catalysts 2 to 11 according to the present invention have a dimethyl ether conversion of 90% or more, a hydrogen concentration of 60% or more, and a CH 4 by -product ratio of 5% or less at any reaction temperature. Thus, it was confirmed that hydrogen can be produced with high efficiency at low temperatures. However, all of Comparative Catalysts 1 to 5 had many by-products of CH 4 at a temperature of 550 ° C. or lower and the hydrogen concentration was low. Therefore, it can be seen that a high temperature around 650 ° C. is necessary to produce high-concentration hydrogen.
In addition, in the catalysts 1 and 12 to 24 to be referred to and the catalysts 2 to 11 according to the present invention, Pt having a low methanation action is used as an active metal as a reason for having sufficient hydrogen production activity and low CH 4 . This is considered to be due to the fact that the adsorbing power of water and dimethyl ether was strong and a carrier having a hydrolyzing action and having a solid acid amount of 0.1 mmol / g or more was used.
[0025]
Example 4
Using the above catalyst 1, air / dimethyl ether (C1 base): 1.5, 2.5 (molar ratio) air was supplied under the steam reforming conditions performed in Example 3, and the activity was evaluated under autothermal conditions. Went. Furthermore, the influence of the water vapor / dimethyl ether (C1 base) molar ratio was also examined. Table 3 shows test conditions and activity evaluation results at catalyst temperatures of 450 ° C. and 550 ° C. (Run numbers 30 to 34).
[0026]
[Table 3]
[0027]
From the test results shown in Table 3, the catalyst 1 used as a reference shows sufficient dimethyl ether decomposition activity at about 450 ° C. under autothermal conditions and partial oxidation conditions with addition of air, and various air and water vapor partial pressure conditions. In addition, it was confirmed that there was no by-product of CH 4 .
[0028]
【The invention's effect】
As is apparent from the above, according to the present invention, a dimethyl ether reforming catalyst that can perform a reforming reaction of dimethyl ether even at a low temperature of 700 ° C. or less and can efficiently generate a high concentration of hydrogen. And methods for modifying dimethyl ether are provided.
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001238658A JP4831800B2 (en) | 2001-08-07 | 2001-08-07 | Dimethyl ether reforming catalyst and dimethyl ether reforming method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001238658A JP4831800B2 (en) | 2001-08-07 | 2001-08-07 | Dimethyl ether reforming catalyst and dimethyl ether reforming method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2003047846A JP2003047846A (en) | 2003-02-18 |
| JP4831800B2 true JP4831800B2 (en) | 2011-12-07 |
Family
ID=19069536
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2001238658A Expired - Lifetime JP4831800B2 (en) | 2001-08-07 | 2001-08-07 | Dimethyl ether reforming catalyst and dimethyl ether reforming method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4831800B2 (en) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005095738A (en) * | 2003-09-24 | 2005-04-14 | Mitsubishi Gas Chem Co Inc | Catalyst for steam reforming of dimethyl ether having a coating layer containing solid acid |
| RU2280612C2 (en) * | 2004-04-12 | 2006-07-27 | Иркутский государственный университет (ГОУ ВПО ИГУ) | Synthesis gas generation process via palladium-rhenium membrane-assisted steam reforming of dimethyl ether |
| JP4801939B2 (en) * | 2005-06-22 | 2011-10-26 | 関西電力株式会社 | Dimethyl ether reforming system and operating method thereof |
| JP5086599B2 (en) * | 2005-10-14 | 2012-11-28 | 大阪瓦斯株式会社 | Method for producing hydrogen-containing gas |
| JP6198032B2 (en) * | 2012-11-21 | 2017-09-20 | 日産自動車株式会社 | HYDROGEN GENERATION CATALYST AND SYSTEM USING HYDROGEN GENERATION CATALYST |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH06165936A (en) * | 1992-09-03 | 1994-06-14 | Chisso Corp | Platinum catalyst supported on alumina |
| TW474895B (en) * | 1998-01-21 | 2002-02-01 | Haldor Topsoe As | Process for preparation of hydrogen-rich gas |
| GB9806198D0 (en) * | 1998-03-24 | 1998-05-20 | Johnson Matthey Plc | Ctalytic generation of hydrogen |
| JP4488321B2 (en) * | 1998-04-17 | 2010-06-23 | Jfeスチール株式会社 | Synthesis gas production catalyst and synthesis gas production method |
| JP2001096159A (en) * | 1999-09-29 | 2001-04-10 | Daihatsu Motor Co Ltd | Dimethyl ether reforming catalyst and fuel cell device |
-
2001
- 2001-08-07 JP JP2001238658A patent/JP4831800B2/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| JP2003047846A (en) | 2003-02-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101631613B (en) | Metal-doped nickel oxide as a catalyst for the methanation of carbon monoxide | |
| WO2002038268A1 (en) | Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same | |
| US8609577B2 (en) | Catalyst for steam reforming of methanol | |
| TWI294413B (en) | Method for converting co and hydrogen into methane and water | |
| CN1053596A (en) | Catalytic system and method for converting light hydrocarbons with CO2 to produce synthesis gas | |
| KR100858924B1 (en) | Supported catalyst for producing hydrogen gas by steam reforming of liquefied natural gas, method for producing same and method for producing hydrogen gas using said supported catalyst | |
| JP4211900B2 (en) | Metal fine particle supported hydrocarbon reforming catalyst and method for producing the same | |
| JP4226684B2 (en) | Method for producing synthesis gas by partial oxidation method | |
| JP4831800B2 (en) | Dimethyl ether reforming catalyst and dimethyl ether reforming method | |
| JPS5929633B2 (en) | Low-temperature steam reforming method for hydrocarbons | |
| WO2014182020A1 (en) | Monolith catalyst for carbon dioxide reforming reaction, production method for same, and production method for synthesis gas using same | |
| Rosso et al. | Preferential CO oxidation over Pt/3A zeolite catalysts in H2-rich gas for fuel cell application | |
| JP4175452B2 (en) | Dimethyl ether reforming catalyst and dimethyl ether reforming method | |
| EP1844855A1 (en) | Catalyst for a catalytic process which is used to obtain hydrogen from bioethanol and/or ethanol, catalyst-preparation method and use thereof in said catalytic process | |
| JP2001054734A (en) | Catalyst for selectively oxidizing carbon monoxide, selective removal of carbon monoxide and catalyst and method for purifying hydrogen | |
| JP2019195783A (en) | Steam modification catalyst, and steam modification method | |
| KR20050079567A (en) | Catalyst for water-gas shift reaction of carbon monoxide | |
| JP2000345175A (en) | Selective removal of carbon monoxide | |
| US20060111457A1 (en) | Process for the production of a hydrogen-rich reformate gas by methanol autothermal reforming reaction | |
| Zhang et al. | Development and performance of a K–Pt/γ-Al2O3 catalyst for the preferential oxidation of CO in hydrogen-rich synthesis gas | |
| JP4226685B2 (en) | Method for producing hydrogen | |
| JP4335505B2 (en) | Dimethyl ether reforming catalyst and dimethyl ether reforming system | |
| JP2003146615A (en) | Method for manufacturing hydrogen | |
| JP4890057B2 (en) | Hydrocarbon partial oxidation catalyst and method and apparatus for producing hydrogen-containing gas using the same | |
| JP2664997B2 (en) | Methanol reforming method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080716 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100722 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100730 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100928 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110204 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110405 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110902 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110919 |
|
| R151 | Written notification of patent or utility model registration |
Ref document number: 4831800 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140930 Year of fee payment: 3 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
| R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
| R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| EXPY | Cancellation because of completion of term |