[go: up one dir, main page]

JP4987640B2 - Titanium alloy bar wire for machine parts or decorative parts suitable for manufacturing cold-worked parts and method for manufacturing the same - Google Patents

Titanium alloy bar wire for machine parts or decorative parts suitable for manufacturing cold-worked parts and method for manufacturing the same Download PDF

Info

Publication number
JP4987640B2
JP4987640B2 JP2007234201A JP2007234201A JP4987640B2 JP 4987640 B2 JP4987640 B2 JP 4987640B2 JP 2007234201 A JP2007234201 A JP 2007234201A JP 2007234201 A JP2007234201 A JP 2007234201A JP 4987640 B2 JP4987640 B2 JP 4987640B2
Authority
JP
Japan
Prior art keywords
parts
cold
manufacturing
shear cutting
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007234201A
Other languages
Japanese (ja)
Other versions
JP2009068025A (en
Inventor
哲 川上
秀樹 藤井
達夫 山崎
広明 大塚
一浩 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007234201A priority Critical patent/JP4987640B2/en
Publication of JP2009068025A publication Critical patent/JP2009068025A/en
Application granted granted Critical
Publication of JP4987640B2 publication Critical patent/JP4987640B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、ボルト、ナットなどのネジ類や、自動車部品、装飾品等で主に冷間鍛造やシャー切断により製造される、冷間加工性に優れた機械部品用または装飾部品用チタン合金棒線製品およびその製造法に関する。   The present invention is a titanium alloy rod for machine parts or decorative parts, which is excellent in cold workability, manufactured by cold forging or shear cutting mainly for screws such as bolts and nuts, automobile parts, ornaments, etc. The present invention relates to a wire product and a manufacturing method thereof.

近年、ボルト、ナットなどのネジ、自動車部品や、時計、カメラ、メガネ等の装飾品用部品などで、チタン製品が使用されるようになってきた。これらは、チタンの優れた耐食性や、人体・生体への無害性、軽量であることを利用した用途で主に使用されている。この中で、特に高い強度が要求されず、低い製造コストと高い冷間加工性が重視される場合には、純チタンが使用され、例えば、JIS H4650(2001)「チタン及びチタン合金の棒」に記載される1種材(TB270H(熱間仕上)、TB270C(冷間仕上))、あるいは2種材(TB340H(熱間仕上)、TB340C(冷間仕上))が使用されることが多い。さらにコストを低く抑える場合、ボルト頭部を冷間鍛造成型し、ボルトを製造する方法として、ヘッダー加工が採用される。これは、あらかじめ所定長さに切断しておいた素材を用いて、冷間で連続的にボルト頭部を鍛造加工し、効率良くボルトを製造する方法である。従来、このヘッダー加工に2種材相当以上の強度を持つチタン材を使用する場合、加工部に断熱せん断変形帯が生成し、それに沿ってクラックが発生することが多く、極端な歩留ロスをもたらすという問題があった。また、β合金を除くチタン材で2種材相当以上の強度を有する場合、C断面内に材質異方性を有することが多く、その影響により、ヘッダー加工時に加工性の劣る方向に沿ってクラックが伸展しやすく、ボルトに成型できないという問題がある。これらの理由から、一部のβ合金を除いて、2種材相当以上の強度を示すチタン材は、ヘッダー加工によるボルト製造には適していないことが判明した。したがって、低製造コストが重視される場合、ヘッダー加工してもクラックが発生せず、C断面内での材質異方性の小さい1種材が限定的に使用されてきた。   In recent years, titanium products have come to be used in screws such as bolts and nuts, automobile parts, and decorative parts such as watches, cameras, and glasses. These are mainly used for applications utilizing the excellent corrosion resistance of titanium, harmlessness to human bodies and living bodies, and light weight. Among these, when particularly high strength is not required and low manufacturing cost and high cold workability are important, pure titanium is used. For example, JIS H4650 (2001) “bar of titanium and titanium alloy” 1 materials (TB270H (hot finish), TB270C (cold finish)), or 2 materials (TB340H (hot finish), TB340C (cold finish)) are often used. In order to further reduce the cost, header processing is adopted as a method of cold forging the bolt head to manufacture the bolt. This is a method for producing bolts efficiently by continuously forging the bolt heads in the cold using a material that has been cut to a predetermined length in advance. Conventionally, when using a titanium material with strength equal to or greater than two kinds of materials for this header processing, an adiabatic shear deformation band is generated in the processed part, and cracks are often generated along it, resulting in an extreme yield loss. There was a problem of bringing. In addition, when the titanium material excluding the β alloy has strength equal to or greater than the two kinds of materials, it often has material anisotropy in the C cross section, and as a result, cracks occur along the direction of inferior workability during header processing. Is easy to extend and cannot be formed into bolts. For these reasons, it was found that a titanium material that exhibits a strength equal to or higher than the two kinds of materials, except for some β alloys, is not suitable for bolt manufacturing by header processing. Therefore, when low manufacturing cost is important, cracks do not occur even when header processing is performed, and one type material having a small material anisotropy in the C cross section has been used in a limited manner.

したがって、1種材なみの加工性を有し低コストで製造できる、より強度の高い材料へのニーズは高い。また、1種材をこの製造プロセスに使用する場合、ヘッダー加工直前に、線材コイルからヘッダー加工用素材の長さに調整するためのシャー切断工程にて、切断面にバリ・カエリが発生したり、切断部近傍が変形したりするなどの問題があった。これは、1種材の強度が低く延性が高いため、シャーにより付与されるせん断加工で即破断に至らずに、少量の塑性変形を伴ってしまうためである。   Therefore, there is a high need for a material having higher strength that can be manufactured at a low cost with processability similar to that of a single material. In addition, when using one type of material for this manufacturing process, burrs and burrs are generated on the cut surface in the shear cutting process for adjusting the length of the wire processing coil to the length of the header processing material immediately before header processing. There is a problem that the vicinity of the cut portion is deformed. This is because the strength of the first kind material is low and the ductility is high, so that the shearing process applied by the shear does not cause an immediate break, but involves a small amount of plastic deformation.

また、1種材にて、シャー切断時にバリ・カエリ等の発生を抑えるため、減面率5〜15%程度の軽伸線を行う場合が多い。冷間加工強化によって延性をやや低くして、切断性を向上させるためである。しかし、それでもバリやカエリはなくならず、必ずしも抜本的な対策とは成りえていない。   Moreover, in order to suppress the occurrence of burrs, burrs and the like when cutting a shear with one kind of material, light drawing with a surface reduction rate of about 5 to 15% is often performed. This is because the ductility is lowered slightly by strengthening the cold work and the cutting performance is improved. However, there are still no burrs and burrs, and they are not necessarily fundamental measures.

一方、ヘッダー加工性を向上させるために、Cuをチタンに添加して冷間加工性を向上させることが有効である可能性がある。これまでにCuを添加したチタン合金として、特許文献1、特許文献2等が開示されている。前者はTi−Cu合金の二相温度域への加熱により組織を均一微細化して、マクロ模様を低減するというものであり、ヘッダー加工を含む冷間加工性の改善についての記載はない。また、後者はTi2Cuなどを積極的に析出させて高強度化を図るとともに、抗菌性を利用するというものであるが、当合金の強度を支配するO量の制限がなく、ヘッダー加工できない強度領域のものも含まれる。実際に、特許文献2中の実施例には、最大引張強度で750MPa以上の合金しか例示されておらず、高い冷間加工性を要求するヘッダー加工性まで追及した合金を示していないことは明らかである。 On the other hand, in order to improve header workability, it may be effective to improve cold workability by adding Cu to titanium. Patent Literature 1, Patent Literature 2, and the like have been disclosed as titanium alloys to which Cu has been added so far. The former is to refine the structure uniformly by heating to the two-phase temperature range of the Ti—Cu alloy to reduce the macro pattern, and there is no description about improvement of cold workability including header processing. The latter is intended to increase the strength by actively precipitating Ti 2 Cu, etc., and to utilize antibacterial properties, but there is no limit on the amount of O that governs the strength of the alloy, and header processing is not possible. Intensity regions are also included. Actually, in the examples in Patent Document 2, only an alloy having a maximum tensile strength of 750 MPa or more is illustrated, and it is clear that the alloy does not show an alloy that pursues header workability requiring high cold workability. It is.

特開2004−2953号公報JP 2004-2953 A 特開平11−80867号公報Japanese Patent Laid-Open No. 11-80867

JIS1、2種純チタンよりもヘッダー加工、シャー切断などの冷間加工性に優れた機械部品用または装飾部品用チタン合金棒線およびその製造方法を提供する。   Provided is a titanium alloy bar wire for machine parts or decorative parts, which is more excellent in cold workability such as header processing and shear cutting than JIS 1 and 2 type pure titanium, and a method for producing the same.

本発明は、以上の事情を背景としてなされたものであり、JIS1種純チタンと同等以上のヘッダー加工、シャー切断性などの冷間加工性を有し、2種材同等以上の強度を有する、冷間加工部品として最適なチタン合金棒線およびその製造方法を提供することを目的とするものである。   The present invention is made on the background of the above circumstances, has a header processing equivalent to or better than JIS Class 1 pure titanium, has a cold workability such as shear cutting ability, and has a strength equivalent to or higher than two kinds of materials. An object of the present invention is to provide an optimum titanium alloy bar wire as a cold-worked part and a method for producing the same.

上記課題を解決するために、本発明は以下の手段を骨子とする。
(1)質量%で0.3〜1.8%のCu、0.18%以下のO、0.30%以下のFe、残部Tiおよび0.3%未満の不純物元素からなり、長径10〜1000nmの、Ti2Cuおよび不可避的析出相を体積分率で0.05〜3.5%含むことを特徴とする、シャー切断性および冷間鍛造性に優れる機械部品用または装飾部品用チタン合金棒線。
(2)前記(1)に記載のチタン合金棒線の製造において、最終焼鈍を480〜750℃の温度域にて行うことを特徴とする、シャー切断性および冷間鍛造性に優れる機械部品用または装飾部品用チタン合金棒線の製造方法。
(3)さらに、前記最終焼鈍後に、減面率15%以下の冷間伸線を行うことを特徴とする、前記(2)に記載のシャー切断性および冷間鍛造性に優れる機械部品用または装飾部品用チタン合金棒線の製造方法。
(4)前記(1)に記載のチタン合金棒線を用い、シャー切断を行い、その後ヘッダー加工を行うことを特徴とするチタン製品の製造方法。
In order to solve the above problems, the present invention is based on the following means.
(1) 0.3% to 1.8% Cu by mass, 0.18% or less O, 0.30% or less Fe, the balance Ti and less than 0.3% impurity elements, Titanium alloy for mechanical parts or decorative parts having excellent shear cutting property and cold forgeability, comprising 1000 nm of Ti 2 Cu and unavoidable precipitated phase in a volume fraction of 0.05 to 3.5% Bar wire.
(2) In the manufacture of the titanium alloy bar wire according to (1), the final annealing is performed in a temperature range of 480 to 750 ° C., and for mechanical parts having excellent shear cutting ability and cold forgeability Or the manufacturing method of the titanium alloy bar wire for decoration parts.
(3) Furthermore, after the final annealing, cold drawing with a surface reduction rate of 15% or less is performed. For mechanical parts having excellent shear cutting ability and cold forgeability according to (2), Manufacturing method of titanium alloy bar wire for decorative parts.
(4) A method for producing a titanium product, characterized by performing shear cutting using the titanium alloy rod described in (1) and then performing header processing.

JIS1、2種純チタンよりもヘッダー加工、シャー切断などの冷間加工性に優れた機械部品用または装飾部品用チタン合金棒線およびその製造方法を提供できる。   It is possible to provide a titanium alloy bar wire for machine parts or decorative parts and a method for producing the same, which is more excellent in cold workability such as header processing and shear cutting than JIS 1 and 2 type pure titanium.

本発明者らは上記課題を解決すべく、チタンの冷間加工性におよぼす成分元素の影響を詳しく調査した結果、チタンに一定量のCuを添加して、Ti2Cuおよび不可避的析出相(以下、Ti2Cu等の析出相と略称)を微細に析出させるとともに、O量を適正に調整することにより、JIS1種純チタンよりもヘッダー加工、シャー切断工程での加工性を向上させることが可能であることを見出した。 In order to solve the above-mentioned problems, the present inventors have investigated in detail the influence of component elements on the cold workability of titanium. As a result, a certain amount of Cu was added to titanium, and Ti 2 Cu and inevitable precipitation phase ( Hereinafter, it is possible to improve the workability in the header processing and shear cutting process as compared with JIS Class 1 pure titanium by finely precipitating the precipitation phase such as Ti 2 Cu) and adjusting the amount of O appropriately. I found it possible.

本発明はこの知見に基づいてなされたものである。以下に、前記(1)に記載の本発明(以下、本発明(1)と略称)に示した各種添加元素を選択した理由と、その添加量範囲を限定した理由を示す。   The present invention has been made based on this finding. The reason why various additive elements shown in the present invention described in the above (1) (hereinafter, abbreviated as the present invention (1)) are selected and the reason why the addition amount range is limited are shown below.

Cuはチタンα相中に質量%で最大1.5%まで固溶する。固溶状態のCuは、固溶体強化により高温強度を高めるとともに、双晶変形発生を損なわずに強化する作用があることが知られており、その効果は特開2005−298970号公報等により公開されている。当該公報では、固溶Cuによる冷間加工性向上と高温強度上昇効果を見出し、利用しているのが特徴である。一方、Ti−Cu合金でα相中にTi2Cu等の析出相を適正量生成させると、析出強化により強度が上昇するとともに、α粒界へのピニング効果によりα相の粒成長を抑制する作用がある。本発明者らは、Ti2Cu等の析出相の生成量を制御すると、ヘッダー加工時に断熱せん断変形帯の生成をもたらさない程の強化量となるとともに、固溶Cuが冷間加工性を向上させ、ヘッダー加工性改善に寄与することを新たに見出した。さらに、適正量の微細なTi2Cu等の析出相生成により、α粒が微細化されるとともに、適度の析出強化がもたらされ、シャー切断時にバリ・カエリが発生しない強度に調整されることも明らかとした。 Cu is solid-dissolved in the titanium α phase up to 1.5% by mass. It is known that Cu in a solid solution has an effect of enhancing the high temperature strength by strengthening the solid solution and strengthening without impairing the occurrence of twin deformation, and the effect is disclosed in Japanese Patent Application Laid-Open No. 2005-298970 and the like. ing. This publication is characterized by finding and utilizing the effect of improving the cold workability and increasing the high-temperature strength by solute Cu. On the other hand, when an appropriate amount of precipitated phase such as Ti 2 Cu is generated in the α phase in the Ti—Cu alloy, the strength is increased by precipitation strengthening and the α phase grain growth is suppressed by the pinning effect on the α grain boundary. There is an effect. When the inventors control the amount of precipitation phase such as Ti 2 Cu, the amount of strengthening is such that it does not cause the generation of adiabatic shear deformation zone during header processing, and solid solution Cu improves cold workability. And found a new contribution to improving header processability. In addition, the formation of a proper amount of fine Ti 2 Cu and other precipitated phases refines the α grains and provides moderate precipitation strengthening, and the strength is adjusted so as not to generate burrs and burrs during shear cutting. It was also clear.

この時、Ti2Cu等の析出相の長径が10nm未満の超微細な大きさであると析出強化に寄与せず、一方、長径が1000nmを超えるとα粒のピニング効果が小さくなるために結晶粒径の微細化に寄与せず、いずれもシャー切断性の向上に役立たない。したがって、長径が10〜1000nmのTi2Cu等の析出相の体積分率を、所定の量とする必要がある。この長径範囲外のTi2Cu等の析出相量を抑えるとより好ましい。 At this time, if the major axis of the precipitation phase such as Ti 2 Cu is an ultrafine size of less than 10 nm, it does not contribute to precipitation strengthening. It does not contribute to the refinement of the particle size, and none of them is useful for improving shear cutting performance. Therefore, the volume fraction of the precipitated phase such as Ti 2 Cu having a major axis of 10 to 1000 nm needs to be a predetermined amount. It is more preferable to suppress the amount of precipitated phase such as Ti 2 Cu outside the major axis range.

また、長径10〜1000nmのTi2Cu等の析出相の体積分率が0.05%未満では析出強化能が十分でなく、シャー切断でバリ、カエリが発生してしまう。一方、Ti2Cu等の析出相の体積分率が3.5%を超えると、逆に析出強化能が高くなり過ぎて、ヘッダー加工時に断熱せん断変形帯が生成して加工できなくなってしまう。そのため、長径10〜1000nmのTi2Cu等の析出相は体積分率で0.05〜3.5%析出していることが必要である。さらに、精密部品など、高いヘッダー加工性と精密なシャー切断性の両立が要求される用途においては、長径10〜1000nmのTi2Cu等の析出相は、体積分率で0.50〜3.0%析出していることが望ましい。 Further, if the volume fraction of the precipitated phase such as Ti 2 Cu having a major axis of 10 to 1000 nm is less than 0.05%, the precipitation strengthening ability is not sufficient, and burrs and burrs are generated by shear cutting. On the other hand, if the volume fraction of the precipitated phase such as Ti 2 Cu exceeds 3.5%, the precipitation strengthening ability becomes too high, and adiabatic shear deformation band is generated at the time of header processing, which makes it impossible to process. Therefore, the precipitation phase of Ti 2 Cu or the like having a major axis of 10 to 1000 nm needs to be precipitated by 0.05 to 3.5% by volume fraction. Furthermore, in applications where high header workability and precise shear cutting properties are required, such as precision parts, the precipitated phase of Ti 2 Cu having a major axis of 10 to 1000 nm has a volume fraction of 0.50 to 3. It is desirable that 0% is deposited.

Cu添加量の上限を1.8%としたのは、これを超えて添加するとTi2Cu相が体積分率で3.5%を超えて生成するために析出強化量が大きくなり過ぎてしまい、ヘッダー加工での断熱せん断変形をもたらすと同時に、析出粒子が1000nmを超えて粗大化し粒界へのピニング効果が小さくなってα粒が粗大化し、シャー切断時のバリ・カエリが大きくなるからである。また、合金中に均一に、Ti2Cu等の析出相を分散析出させ、α粒界へのピニング効果を均一にもたらしてα粒径を微細化できるCuの最低添加量は0.3%であるため、Cuは0.3%以上添加する必要がある。 The upper limit of the Cu addition amount is set to 1.8%. If the Cu content exceeds this limit, the Ti 2 Cu phase is generated with a volume fraction exceeding 3.5%, so that the precipitation strengthening amount becomes too large. In addition, it causes adiabatic shear deformation in header processing, and at the same time, the precipitated particles become larger than 1000 nm and the pinning effect on the grain boundary is reduced, the α grains are coarsened, and the burr and burrs at the time of shear cutting increase. is there. Moreover, the minimum addition amount of Cu that can uniformly precipitate the precipitation phase such as Ti 2 Cu in the alloy and uniformly bring about the pinning effect to the α grain boundary to refine the α particle size is 0.3%. Therefore, it is necessary to add 0.3% or more of Cu.

Oはα相中に固溶し固溶体強化する作用を有するため、過度に添加するとヘッダー加工時に断熱せん断変形帯生成をもたらすこととなる。純チタンおよび軽合金チタンのα相は、すべり変形と双晶変形の競合により高い塑性変形能を有するが、O量が0.18%を超えると双晶変形が抑制されて、ヘッダー加工に最低限必要とされる冷間加工性が損なわれるため、O量の上限を0.18%とした。この時、精密なヘッダー加工性が必要となる場合は、O量の上限を0.13%とすることが望ましい。   Since O has an action of solid solution in the α phase and strengthening of the solid solution, if added excessively, adiabatic shear deformation band is generated during header processing. The α phase of pure titanium and light alloy titanium has high plastic deformability due to competition between slip deformation and twin deformation, but if O content exceeds 0.18%, twin deformation is suppressed and it is the minimum for header processing. Since the required cold workability is impaired, the upper limit of the O amount is set to 0.18%. At this time, if precise header workability is required, it is desirable that the upper limit of the O amount be 0.13%.

Feはβ安定化元素であり、室温から高温域にかけてβ相を発現させる。Fe含有量が0.30%以下であれば、β相発生はわずかであるが、これを超えて添加されると、β相の量が増え、β相に濃化しやすいCuがβ相に集中する。こうしてCuの濃化したβ相中に、Ti2Cu等の析出相が集中して析出するため析出相は粗大化しやすくなり、均一な分布状態が得られないこととなる。その結果、局所的にα粒界へのピニング効果を発揮できない領域が発生し、その部分ではα粒の粗大化をもたらすこととなり、シャー切断性が低下してしまう。したがって、Feの含有量は0.30%以下である必要がある。 Fe is a β-stabilizing element and expresses a β-phase from room temperature to a high temperature range. If the Fe content is 0.30% or less, β phase generation is slight, but if added over this, the amount of β phase increases, and Cu that tends to concentrate in the β phase concentrates in the β phase. To do. Thus, since the precipitated phase such as Ti 2 Cu concentrates and precipitates in the β phase enriched with Cu, the precipitated phase is easily coarsened, and a uniform distribution state cannot be obtained. As a result, a region in which the pinning effect on the α grain boundary cannot be exhibited locally occurs, and the α grain becomes coarse in that portion, and shear cutting performance is deteriorated. Therefore, the Fe content needs to be 0.30% or less.

前記(2)に記載の発明(以下、本発明(2)と略称)は、特に、ボルト・ナット等のネジ類に使用される棒線の製造方法に関するものである。すなわち、本発明(2)は、溶解、熱延、皮剥き等の表面処理等の工程を経て製造される、本発明(1)のチタン合金成分を有する棒線の製造方法において、最終焼鈍を480〜750℃の温度域にて行うことを特徴とする、本発明(1)の、シャー切断性および冷間鍛造性に優れたチタン合金棒線の製造方法である。   The invention described in (2) above (hereinafter abbreviated as the present invention (2)) particularly relates to a method of manufacturing a bar wire used for screws such as bolts and nuts. That is, the present invention (2) is a method for producing a bar wire having a titanium alloy component according to the present invention (1), which is manufactured through a process such as surface treatment such as melting, hot rolling, and peeling. It is the manufacturing method of the titanium alloy bar wire excellent in shear cutting property and cold forgeability of this invention (1) characterized by performing in the temperature range of 480-750 degreeC.

これは、シャー切断およびヘッダー加工工程での加工性を確保するために、Ti2Cuを主とする、微細な析出相を適正な量だけ得ることを狙った条件である。 This is a condition aimed at obtaining an appropriate amount of a fine precipitated phase mainly composed of Ti 2 Cu in order to ensure workability in the shear cutting and header processing steps.

すなわち、480〜750℃はTi2Cu等の析出相が長径10〜1000nm程の微細なサイズで、かつ、0.05〜3.5%の体積分率で均一に析出しやすい温度範囲であり、この温度域で焼鈍することにより、棒線の冷間加工性を高めることができる。 That is, 480 to 750 ° C. is a temperature range in which a precipitated phase such as Ti 2 Cu is a fine size having a major axis of about 10 to 1000 nm and is easily precipitated uniformly with a volume fraction of 0.05 to 3.5%. By annealing in this temperature range, the cold workability of the bar wire can be improved.

なお、Ti2Cu析出が生じる温度Tp(℃)は、Cu量に依存し、Ti−Cu平衡状態図から近似的に、以下のTi2Cu析出曲線式で表すことができる。
Tp(℃)=730[%Cu]0.126
ここで、[%Cu]はCuの質量%である。
The temperature Tp (° C.) at which Ti 2 Cu precipitation occurs depends on the amount of Cu, and can be approximately expressed by the following Ti 2 Cu precipitation curve equation from the Ti—Cu equilibrium diagram.
Tp (° C.) = 730 [% Cu] 0.126
Here, [% Cu] is the mass% of Cu.

したがって、最終焼鈍温度は、480〜750℃の範囲内でかつ、Tpよりも低い温度であることがのぞましい。   Therefore, the final annealing temperature is preferably in the range of 480 to 750 ° C. and lower than Tp.

最終焼鈍温度480℃未満ではTi2Cu等の析出相の効果が十分に発揮される程度の析出量を得るまでに必要な焼鈍時間が長くなり、工業的な生産に適さない。一方、最終焼鈍温度が750℃を超えると、Ti2Cu等の析出相の過度な粗大化が短時間うちに生じてしまい、工業生産上、Ti2Cu等の析出相の大きさを最適に制御することができなくなる。 If the final annealing temperature is less than 480 ° C., the annealing time required to obtain a precipitation amount sufficient to exert the effect of the precipitation phase such as Ti 2 Cu is long, which is not suitable for industrial production. On the other hand, if the final annealing temperature exceeds 750 ° C., excessive coarsening of the precipitated phase such as Ti 2 Cu occurs within a short time, and the size of the precipitated phase such as Ti 2 Cu is optimal for industrial production. It becomes impossible to control.

最終焼鈍時間は、480〜750℃の範囲内の温度によって、最適時間が変化するが、30分〜16時間程度が望ましく、この温度範囲内で温度が低いほど、最適焼鈍時間は長くなる。   The optimum annealing time varies depending on the temperature within the range of 480 to 750 ° C., but is preferably about 30 minutes to 16 hours. The lower the temperature within this temperature range, the longer the optimum annealing time.

請求項3に記載の発明(以下、本発明(3)と略称)は、最終焼鈍後、さらに、減面率15%以下の冷間伸線を行うことを特徴とした本発明(1)を製造する方法である。減面率15%以下の冷間伸線を行うことにより、適度な加工硬化が棒線全長に生じ、冷間鍛造性、シャー切断性などの冷間加工性の均質度が向上する。したがって、線材製品の全長にわたる品質安定化を重視する場合は、減面率15%以下の冷間伸線を行うことがのぞましい。ただし、減面率15%を超える冷間伸線を行なうと、加工硬化が大きくなりすぎ、ヘッダー加工時に、実用上は問題ないが、シワ状の模様を誘発する場合が生じる。したがって、冷間伸線を減面率15%以下で行うこととした。   The invention according to claim 3 (hereinafter abbreviated as the present invention (3)) further comprises the present invention (1) characterized in that after the final annealing, cold drawing with a surface reduction rate of 15% or less is further performed. It is a manufacturing method. By performing cold drawing with a surface reduction rate of 15% or less, moderate work hardening occurs in the entire length of the rod and wire, and the homogeneity of cold workability such as cold forgeability and shear cutting ability is improved. Therefore, when emphasizing quality stabilization over the entire length of the wire product, it is preferable to perform cold drawing with a surface reduction rate of 15% or less. However, if cold drawing exceeding a surface reduction rate of 15% is performed, the work hardening becomes too large, and there is no problem in practice at the time of header processing, but a wrinkled pattern may be induced. Therefore, the cold wire drawing is performed at a surface reduction rate of 15% or less.

<実施例1>
真空アーク溶解法により表1に示す組成のチタン材を溶解し、これを熱間鍛造してビレットとし、860℃に加熱した後、熱間圧延により直径13mmの線材とした。
<Example 1>
A titanium material having the composition shown in Table 1 was melted by a vacuum arc melting method, this was hot-forged into a billet, heated to 860 ° C., and then hot-rolled to a wire having a diameter of 13 mm.

この熱間圧延した線材を皮剥きおよび酸洗して酸化スケールを除去した後、冷間伸線により直径10mmの線材とした後、最終熱処理として、680℃、5時間、炉冷の真空焼鈍を施した。   After stripping and pickling the hot-rolled wire to remove the oxide scale, the wire was made into a wire having a diameter of 10 mm by cold drawing, and then subjected to vacuum annealing at 680 ° C. for 5 hours as a final heat treatment. gave.

試験番号4、5および6は、最終熱処理後、潤滑剤を塗布し、それぞれ減面率14.8、12.0および10.0%で軽伸線し、試験材としたが、それぞれ線材の端部2mほどを軽伸線せずに、最終熱処理ままとして残し、それぞれ試験番号51、52および53として、試験材に加えた。一方、試験番号1〜3および7〜20では、最終熱処理後、潤滑剤を塗布した後に減面率8.5〜13.5%で軽伸線し、試験材として供した。   Test Nos. 4, 5 and 6 were coated with a lubricant after the final heat treatment and lightly drawn at a surface area reduction ratio of 14.8, 12.0 and 10.0%, respectively. About 2 m of the end portion was not lightly drawn but left as the final heat treatment, and added to the test material as test numbers 51, 52 and 53, respectively. On the other hand, in the test numbers 1 to 3 and 7 to 20, after the final heat treatment, after applying the lubricant, the wire was lightly drawn at an area reduction rate of 8.5 to 13.5% and used as a test material.

これらの試験材をシャー切断およびヘッダー加工し、加工性を評価した。シャー切断性試験ではクリアランス0.1mmのシャー切断機にて、切断後、切断面におけるカエリ高さを測定し、ヘッダー加工性試験ではヘッダー加工機により、試験片端部に直径15mmの半球形状のヘッドを冷間成形させ、目視検査による割れ発生有無を評価した。さらに、焼鈍後のサンプルより引張試験片を採取して引張特性も調べた。また、金属組織観察用試験片を採取し、長手方向断面を2%弗酸水溶液でエッチングして、エネルギー分散型X線分析器付きで電解放射型電子銃装備の走査型電子顕微鏡(FE−SEM)を用いてTi2Cu等の析出相を観察し、観察断面内で長径10〜1000nmの析出相の体積分率を調査した。すなわち、析出相の大きさに合わせて倍率3000倍〜10万倍で観察し、Cu濃度が一様に高い領域を占める析出相をTi2Cu等の析出相と認識し、そのうち長径10〜1000nmの析出相を選択し、その面積占有率を測定して、この値をそのままTi2Cu等の析出相の体積分率とした。後述のように長径10〜1000nmの析出相の大部分が、TiCuであると確認され、それら析出相は、ほぼ等方的な形状を持ち、その分布状態も異方性が認められなかったためである。 These test materials were subjected to shear cutting and header processing to evaluate workability. In the shear cutting test, the cut height is measured after cutting with a shear cutting machine with a clearance of 0.1 mm. In the header processing test, a hemispherical head with a diameter of 15 mm is used at the end of the test piece by the header processing machine. Was subjected to cold forming, and the presence or absence of cracking by visual inspection was evaluated. Furthermore, a tensile test piece was collected from the sample after annealing, and the tensile characteristics were also examined. In addition, a specimen for metallographic observation was collected, the longitudinal section was etched with a 2% aqueous hydrofluoric acid solution, a scanning electron microscope (FE-SEM) equipped with an electrolysis electron gun with an energy dispersive X-ray analyzer. ) Was used to observe the precipitation phase of Ti 2 Cu and the like, and the volume fraction of the precipitation phase having a major axis of 10 to 1000 nm was examined within the observation cross section. That is, observation was performed at a magnification of 3000 times to 100,000 times in accordance with the size of the precipitated phase, and the precipitated phase occupying a region where the Cu concentration was uniformly high was recognized as a precipitated phase such as Ti 2 Cu. Then, the area occupancy was measured, and this value was directly used as the volume fraction of the precipitated phase such as Ti 2 Cu. As will be described later, most of the precipitated phases having a major axis of 10 to 1000 nm are confirmed to be Ti 2 Cu, and these precipitated phases have a substantially isotropic shape, and anisotropy is not recognized in the distribution state. This is because.

なお、FE−SEM観察では表面に露出した1μm未満の析出相のCu濃度を正確に測定できないが、半定量的にTi:Cuの原子比がほぼ2:1であることを確認でき、あるいは母相よりも高濃度のCuを含有していることの確認ができ、ここでは、母相よりも高濃度のCuが検出された析出相はTi2Cuおよび不可避的析出相とみなしている。その理由は、試験番号4〜20および51〜53の試料に対し、薄膜試料によるエネルギー分散型X線分析器を装備した透過電子顕微鏡による観察、分析、電子線回折を実施した結果、長径10〜1000nm範囲内の析出相50個のうち、48個がTi2Cuと同定されたためである。なお、残りの2個はCu濃度が、相対的にTi2Cuよりも母相に近いβ相であった。 In addition, although the FE-SEM observation cannot accurately measure the Cu concentration of the deposited phase of less than 1 μm exposed on the surface, it can be confirmed semi-quantitatively that the atomic ratio of Ti: Cu is approximately 2: 1, or the mother It can be confirmed that Cu is contained in a higher concentration than the phase. Here, the precipitated phase in which the higher concentration of Cu is detected than the parent phase is regarded as Ti 2 Cu and inevitable precipitated phase. The reason is that, as a result of conducting observation, analysis, and electron diffraction by a transmission electron microscope equipped with an energy dispersive X-ray analyzer using a thin film sample, the samples of test numbers 4 to 20 and 51 to 53 were obtained. This is because 48 of the 50 precipitated phases within the range of 1000 nm were identified as Ti 2 Cu. The remaining two were β phases having a Cu concentration relatively closer to the parent phase than Ti 2 Cu.

各試験片の主要化学成分、室温引張り試験結果、析出相分率、シャー切断性、ヘッダー加工性を評価した。ここで、シャー切断性試験では試験片を、シャー切断した後の切断面におけるカエリ高さを評価し、その高さが0.05mm未満を合格として丸印、その高さが、0.05mm以上0.1mm未満のとき、三角印、0.1mm超で×印を付けた。さらに、ヘッダー加工性試験では、ヘッダー加工後のヘッド部を目視観察し、割れが認められない場合は丸印、割れが認められた場合に×印を付けた。これらの評価結果を併せて表1に示す。   The main chemical components, room temperature tensile test results, precipitation phase fraction, shear cutting ability, and header workability of each specimen were evaluated. Here, in the shear cutting property test, the test piece was evaluated for the height of burrs in the cut surface after shear cutting, and the height was less than 0.05 mm as a pass, and the height was 0.05 mm or more. When it was less than 0.1 mm, a triangle mark was given, and a cross mark of more than 0.1 mm. Furthermore, in the header workability test, the head part after header processing was visually observed, and a circle was marked when no crack was observed, and an x was marked when crack was observed. These evaluation results are shown together in Table 1.

Figure 0004987640
Figure 0004987640

表1において、試験番号1はJIS2種純チタンであり、試験番号2はAlを1〜2%程度添加した合金の例である。試験番号1、2ともにヘッダー加工で割れが発生し、ボルトに加工できていない。これは、前者では材質異方性による断熱せん断変形帯生成によるものであり、後者では双晶変形が抑制されることによる冷間加工性低下によるものである。これらの材料では、Ti2Cu等の析出相生成は認められない。 In Table 1, Test No. 1 is JIS type 2 pure titanium, and Test No. 2 is an example of an alloy to which about 1 to 2% of Al is added. Both test numbers 1 and 2 were cracked by header processing and could not be processed into bolts. This is due to the generation of adiabatic shear deformation band due to material anisotropy in the former, and to the cold workability degradation due to the suppression of twin deformation in the latter. In these materials, the formation of precipitated phases such as Ti 2 Cu is not observed.

これに対し、本発明(2)に記載した方法で製造された本発明(1)の実施例である試験番号4、5、6、8、9、11、12、13、14、16、17、18、19、20は、JIS2種相当の強度レベルを示すとともに、いずれも高い全伸びを示していた。これらはヘッダー加工時に割れは目視で確認できず、加工性は良好であった。同時に、シャー切断でも、切断面に0.05mmを超える高さのバリ、カエリなどは発生せず、良好な切断性を有し、かつ、試験番号ごとに複数回実施した試験において、それぞれ再現性の良い切断面形状が得られ、品質が安定していた。なお、これらはいずれも、長径10〜1000nmのTi2Cu等の析出相を体積分率で0.05〜3.5%含んでおり、その析出量が適正な範囲にあることは明らかである。 In contrast, test numbers 4, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17 which are examples of the present invention (1) manufactured by the method described in the present invention (2). , 18, 19 and 20 showed strength levels corresponding to JIS class 2, and all showed high total elongation. No cracks could be visually confirmed during header processing, and the workability was good. At the same time, even with shear cutting, burrs and burrs with a height exceeding 0.05 mm do not occur on the cut surface, it has good cutting properties, and it is reproducible in tests conducted multiple times for each test number. A good cut surface shape was obtained, and the quality was stable. In addition, all of these contain a precipitation phase such as Ti 2 Cu having a major axis of 10 to 1000 nm in a volume fraction of 0.05 to 3.5%, and it is clear that the amount of precipitation is in an appropriate range. .

一方、試験番号3、10では、シャー切断時に0.1mmを超えるカエリが発生し切断性は不十分であった。このうち、試験番号3は、Cu添加量が本発明の下限値である0.3%を下回っており、Ti2Cu等の析出相の生成量も0.05%未満である。この材料では、焼鈍中の粒成長を抑制するだけの十分な析出相が得られなかったため、部分的に粗粒となり、切断時に不均一な変形が生じたためカエリが生成した。一方、試験番号10では、一部に1000nmを超える粗大なTi2Cu等の析出相が生成していた。これは、β安定化元素であるFeの含有量が、本発明の上限である0.30%を越えて添加されたためβ相の量が増え、Cuがそこに集中的に濃縮して粗大な析出相が生成し、これらは粒成長を抑制することができないため、局所的にカエリが発生したものである。 On the other hand, in Test Nos. 3 and 10, burrs exceeding 0.1 mm were generated at the time of shear cutting, and cutting performance was insufficient. Among these, in test number 3, the amount of Cu added is below the lower limit of 0.3% of the present invention, and the amount of precipitated phases such as Ti 2 Cu produced is also less than 0.05%. In this material, a precipitation phase sufficient to suppress grain growth during annealing could not be obtained, and thus partially coarsened, resulting in uneven deformation during cutting, resulting in burrs. On the other hand, in Test No. 10, coarse precipitate phases such as coarse Ti 2 Cu exceeding 1000 nm were generated in part. This is because the content of Fe, which is a β-stabilizing element, was added in excess of 0.30% which is the upper limit of the present invention, so the amount of β-phase increased, and Cu was concentrated and concentrated there. Precipitated phases are formed, and these cannot suppress grain growth, so that burrs are generated locally.

また、試験番号7、15では、ヘッダー加工時に割れが発生して十分な加工性が得られなかった。その理由は、試験番号7は、Cu添加量が本発明の上限値である1.8%を越えて添加されたため、Ti2Cu等の析出相が体積分率で3.5%を超えて多量に析出して、冷間での延性が損なわれたためである。また、試験番号15では、酸素含有量が本発明の上限である0.18%を超えて添加されたため、双晶変形が抑えられ、ヘッダー加工性に必要な冷間加工性が得られなかったためである。 In Test Nos. 7 and 15, cracks occurred during header processing, and sufficient workability was not obtained. The reason for this is that in Test No. 7, since the Cu addition amount exceeded 1.8% which is the upper limit of the present invention, the precipitated phase of Ti 2 Cu and the like exceeded 3.5% in volume fraction. This is because a large amount precipitated and the cold ductility was impaired. In Test No. 15, since the oxygen content was added exceeding 0.18% which is the upper limit of the present invention, twin deformation was suppressed, and cold workability required for header workability was not obtained. It is.

なお、本発明による試験番号14、18、20の素材では、ヘッダー加工時に0.05mm以下のシワ状の表面模様が発生した。これは実用上問題にならない程度の表面欠陥であり一般には合格レベルであるが、精密加工を必要とされる用途などでは、このような表面模様も発生しない方が望ましい。これらの素材は、O量が0.15〜0.16%と比較的高くなっており、より低いO含有量のものに比べ、双晶変形が僅かに起こりにくくなっているためである。したがって、用途によっては、O量上限を0.13%とするのが望ましい。   In the materials of test numbers 14, 18, and 20 according to the present invention, a wrinkle-like surface pattern of 0.05 mm or less occurred during header processing. This is a surface defect that does not cause a problem in practice and is generally acceptable. However, in applications that require precision machining, it is desirable that such a surface pattern does not occur. This is because these materials have a relatively high O content of 0.15 to 0.16%, and twin deformation is slightly less likely to occur than those with a lower O content. Therefore, depending on the application, it is desirable to set the upper limit of O amount to 0.13%.

以上のように、本発明に規定された元素含有量および、長径10〜1000nmのTi2Cu等の析出相の体積分率を有するチタン合金棒線は、シャー加工性および冷間鍛造性に優れ、JIS2種相当以上の強度を有しているが、本発明に規定された合金元素量ならびに、Ti2Cu等の析出相の体積分率を外れると、冷間加工性と強度の両特性を満足することはできない。 As described above, a titanium alloy bar wire having an element content defined in the present invention and a volume fraction of a precipitated phase such as Ti 2 Cu having a major axis of 10 to 1000 nm is excellent in shear workability and cold forgeability. However, if the amount of alloying elements specified in the present invention and the volume fraction of the precipitated phase such as Ti 2 Cu are deviated, both cold workability and strength are obtained. I can't be satisfied.

なお、試験番号51〜53は、真空焼鈍後に軽伸線をしていないが、シャー切断性、ヘッダー加工性ともに良好な結果であった。ただし、試験片番号ごとに複数回実施したシャー切断性試験では、切断面に0.01〜0.04mmの高さバリ、カエリが現れ、その大きさには、ばらつきが見られた。一方、10%軽伸線をした試験番号4〜6は、試験片番号51〜53とそれぞれ化学成分が同じであるが、切断面に現れたバリ、カエリは、0.03mm以下の高さで、ばらつきが少なく、品質安定性が高かった。   Test Nos. 51 to 53 were not drawn lightly after vacuum annealing, but both shear cutting performance and header workability were good results. However, in the shear cutting performance test conducted several times for each test piece number, 0.01 to 0.04 mm height burrs and burrs appeared on the cut surface, and the sizes thereof showed variations. On the other hand, test Nos. 4 to 6 with 10% light wire drawing have the same chemical components as test pieces Nos. 51 to 53, but burrs and burrs appearing on the cut surface are 0.03 mm or less in height. There was little variation and quality stability was high.

<実施例2>
表1の試験番号6、11、18の素材を製造する際の中間製品である直径13mmの熱間圧延線材を使用して、皮剥きおよび酸洗して酸化スケールを除去した後、冷間伸線により直径10mmの線材とした。それに表2〜4に示す条件にて真空焼鈍を施した後、潤滑剤を塗布した後に減面率10%で軽伸線した。この線材をシャー切断およびヘッダー加工し、加工性を評価した。特に、シャー切断性試験ではカエリ高さを精査した。さらに、焼鈍後のサンプルより引張試験片を採取し、引張特性を調べるとともに、金属組織観察試験片を2%弗酸水溶液によりエッチングしFE−SEMを用いて、実施例1に記載の方法で、長径10〜1000nmのTi2Cu等の析出相を観察し、体積分率を測定した。これらの評価結果も併せて表2〜4に示す。
<Example 2>
Using a hot rolled wire with a diameter of 13 mm, which is an intermediate product when producing materials of test numbers 6, 11, and 18 in Table 1, stripping and pickling to remove the oxide scale, followed by cold drawing A wire with a diameter of 10 mm was used. Then, after vacuum annealing under the conditions shown in Tables 2 to 4, after applying a lubricant, light drawing was performed at a surface reduction rate of 10%. This wire was subjected to shear cutting and header processing to evaluate workability. In particular, in the shear cutting ability test, the height of the burrs was scrutinized. Further, a tensile test piece was collected from the sample after annealing, and the tensile characteristics were examined. The metal structure observation test piece was etched with a 2% aqueous hydrofluoric acid solution and used in the method described in Example 1 using FE-SEM. A precipitated phase such as Ti 2 Cu having a major axis of 10 to 1000 nm was observed, and the volume fraction was measured. These evaluation results are also shown in Tables 2 to 4.

Figure 0004987640
Figure 0004987640

Figure 0004987640
Figure 0004987640

Figure 0004987640
Figure 0004987640

表2、3、4はそれぞれ、試験番号6、試験番号11、試験番号18に示す組成の線材における結果である。いずれも高い延性を有し、シャー切断性、ヘッダー加工性も実用的に全く問題ないことが分る。特に、最終焼鈍を500〜730℃の温度域で実施した、試験番号22、23、24、27、28、29、30、32、33、34はシャー切断でのカエリが目視で確認できず良好な切断性を示した。一方、試験番号21、25、26、31、35は、いずれも高い延性とヘッダー加工性を有していたが、試験番号21、26、31ではヘッダー加工時には実用上問題のない薄いシワ模様が生成し、試験番号25、35では実用上問題のない0.05mm未満の高さのカエリが発生した。これは、焼鈍温度が500℃未満である試験番号21、26、31では、Ti2Cu等の析出相の生成により強度がやや上昇するためである。一方、焼鈍温度が730℃を超える、試験番号25、35では、Ti2Cu等の析出相が一部再固溶して析出相生成量が低くなる上、一部は粒径が粗くなって粒界のピニング効果がやや低くなるからである。これらの結果は、ヘッダー加工性とシャー切断性において実用的に問題のないレベルが要求される場合、焼鈍温度は、480〜750℃が適しているが、この温度範囲を外れると、ヘッダー加工性とシャー切断性に問題が生じる可能性が高いことを示しており、さらに、高いヘッダー加工性と精密なシャー切断性を同時に要求される部品においては、焼鈍を500〜730℃で行うことにより、Ti2Cu等の析出相を均一微細に分散させた方がより好ましいことは明らかである。 Tables 2, 3, and 4 show the results of the wire materials having the compositions shown in Test No. 6, Test No. 11, and Test No. 18, respectively. It can be seen that both have high ductility, and there is no practical problem with shear cutting performance and header workability. In particular, test numbers 22, 23, 24, 27, 28, 29, 30, 32, 33, and 34, in which the final annealing was performed in the temperature range of 500 to 730 ° C., were not good because the burrs in shear cutting could not be visually confirmed. Showed good cutting properties. On the other hand, test numbers 21, 25, 26, 31, and 35 all had high ductility and header workability. However, test numbers 21, 26, and 31 had a thin wrinkle pattern that had no practical problems during header processing. In the test numbers 25 and 35, burrs having a height of less than 0.05 mm that were not problematic in practice occurred. This is because in the test numbers 21, 26, and 31 where the annealing temperature is less than 500 ° C., the strength slightly increases due to the formation of a precipitated phase such as Ti 2 Cu. On the other hand, in the test numbers 25 and 35 where the annealing temperature exceeds 730 ° C., a part of the precipitated phase such as Ti 2 Cu is re-dissolved to reduce the amount of precipitated phase, and partly the grain size becomes coarse This is because the grain boundary pinning effect is slightly reduced. These results show that when a level that does not cause a practical problem in header workability and shear cutting performance is required, an annealing temperature of 480 to 750 ° C. is suitable. In parts that require high header workability and precise shear cutability at the same time, by performing annealing at 500 to 730 ° C. It is clear that it is more preferable to disperse the precipitated phase such as Ti 2 Cu uniformly and finely.

<実施例3>
表1の試験番号5、6、13の素材を製造する際の中間製品である直径13mmの熱間圧延線材を使用して、皮剥きおよび酸洗して酸化スケールを除去した後、冷間伸線により直径10mmの線材とした。それに650℃、4時間、炉冷の真空焼鈍を施し、潤滑剤を塗布した後に、表5〜7に示す減面率で伸線した。この線材をシャー切断およびヘッダー加工し、加工性を評価した。特に、シャー切断性試験ではカエリ高さを精査した。さらに、焼鈍後のサンプルより引張試験片を採取し、引張特性を調べるとともに、金属組織観察試験片を2%弗酸水溶液によりエッチングしFE−SEMを用いて、実施例1に記載の方法で、長径10〜1000nmのTi2Cu等の析出相を観察し、体積分率を測定した。これらの評価結果も併せて表5〜7に示す。
<Example 3>
Using a hot rolled wire with a diameter of 13 mm, which is an intermediate product when producing the materials of test numbers 5, 6, and 13 in Table 1, stripping and pickling to remove the oxide scale, and then cold drawing A wire with a diameter of 10 mm was used. It was subjected to furnace-cooled vacuum annealing at 650 ° C. for 4 hours, and after applying a lubricant, it was drawn at a surface reduction ratio shown in Tables 5-7. This wire was subjected to shear cutting and header processing to evaluate workability. In particular, in the shear cutting property test, the height of the burrs was examined. Further, a tensile test piece was collected from the sample after annealing, and the tensile characteristics were examined. The metal structure observation test piece was etched with a 2% aqueous hydrofluoric acid solution and used in the method described in Example 1 using FE-SEM. A precipitated phase such as Ti 2 Cu having a major axis of 10 to 1000 nm was observed, and the volume fraction was measured. These evaluation results are also shown in Tables 5 to 7.

Figure 0004987640
Figure 0004987640

Figure 0004987640
Figure 0004987640

Figure 0004987640
Figure 0004987640

表5、6、7はそれぞれ、試験番号5、試験番号6、試験番号13に示す組成の線材における結果である。いずれも高い延性を有し、シャー切断性、ヘッダー加工性も実用的に全く問題ないことが分る。特に、最終伸線を減面率15%以下で実施した、試験番号36、37、38、41、42、43、45、46、47のヘッダー加工性、シャー切断性はいずれも極めて良好であった。一方、試験番号39、40、44、48は、いずれも高い延性とヘッダー加工性を有していたが、ヘッダー加工後に実用上問題のないレベルの薄いシワ模様が生成していた。これは伸線減面率が15%を超えており、冷間加工により強度がやや上昇し延性が僅かに低下したためである。これらの結果は、実用的に問題のないレベルであるが、高いヘッダー加工性と精密なシャー切断性を同時に要求される部品においては、最終製品での冷間伸線を15%以下の減面率で行うことにより、加工硬化量を適正に管理した方がより好ましいことは明らかである。   Tables 5, 6, and 7 show the results of the wire materials having the compositions shown in Test No. 5, Test No. 6, and Test No. 13, respectively. It can be seen that both have high ductility, and there is no practical problem with shear cutting performance and header workability. In particular, the testability of test numbers 36, 37, 38, 41, 42, 43, 45, 46, and 47, in which the final wire drawing was performed at a surface reduction rate of 15% or less, both had extremely good header workability and shear cutting performance. It was. On the other hand, all of test numbers 39, 40, 44, and 48 had high ductility and header workability, but a thin wrinkle pattern having a level of no practical problem was generated after header processing. This is because the wire drawing area reduction ratio exceeds 15%, and the strength slightly increases and the ductility slightly decreases due to cold working. These results are at a level that is practically acceptable, but for parts that require both high header workability and precise shear cutting ability, the cold drawing of the final product is reduced by 15% or less. It is clear that it is more preferable to appropriately manage the work hardening amount by carrying out at a rate.

本発明のチタン合金棒線は、耐食性と、ヘッダー加工、シャー加工に代表される冷間加工性を要求される用途でのボルト、ナットなどのネジ部品を含む、冷間鍛造加工を受ける部品に、特に活用することができる。   The titanium alloy bar wire of the present invention is suitable for parts subjected to cold forging, including screw parts such as bolts and nuts in applications that require corrosion resistance and cold workability such as header processing and shearing. , Especially can be utilized.

Claims (4)

質量%で0.3〜1.8%のCu、0.18%以下のO、0.30%以下のFe、残部Tiおよび不可避的不純物元素からなり、長径10〜1000nmのTi2Cuおよび不可避的析出相を体積分率で0.05〜3.5%含むことを特徴とする、シャー切断性および冷間鍛造性に優れる機械部品用または装飾部品用チタン合金棒線。 It consists of 0.3 to 1.8% Cu, 0.18% or less O, 0.30% or less Fe, the balance Ti and unavoidable impurity elements, and a major axis of 10 to 1000 nm of Ti 2 Cu and unavoidable. A titanium alloy bar wire for a machine part or a decorative part having excellent shear cutting ability and cold forgeability, characterized by containing a precipitating phase in a volume fraction of 0.05 to 3.5%. 請求項1に記載のチタン合金棒線の製造において、最終焼鈍を480〜750℃の温度域にて行うことを特徴とする、シャー切断性および冷間鍛造性に優れる機械部品用または装飾部品用チタン合金棒線の製造方法。   In the manufacture of the titanium alloy bar wire according to claim 1, the final annealing is performed in a temperature range of 480 to 750 ° C, and for mechanical parts or decorative parts having excellent shear cutting ability and cold forgeability. Manufacturing method of titanium alloy bar wire. さらに、前記最終焼鈍後に、減面率15%以下の冷間伸線を行うことを特徴とする、請求項2に記載のシャー切断性および冷間鍛造性に優れる機械部品用または装飾部品用チタン合金棒線の製造方法。   Further, after the final annealing, cold drawing with a surface reduction rate of 15% or less is performed. Titanium for machine parts or decorative parts having excellent shear cutting ability and cold forgeability according to claim 2 Manufacturing method of alloy bar wire. 請求項1に記載のチタン合金棒線を用い、シャー切断を行い、その後ヘッダー加工を行うことを特徴とするチタン製品の製造方法。   A method for producing a titanium product, wherein the titanium alloy bar wire according to claim 1 is subjected to shear cutting and then header processing.
JP2007234201A 2007-09-10 2007-09-10 Titanium alloy bar wire for machine parts or decorative parts suitable for manufacturing cold-worked parts and method for manufacturing the same Expired - Fee Related JP4987640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007234201A JP4987640B2 (en) 2007-09-10 2007-09-10 Titanium alloy bar wire for machine parts or decorative parts suitable for manufacturing cold-worked parts and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007234201A JP4987640B2 (en) 2007-09-10 2007-09-10 Titanium alloy bar wire for machine parts or decorative parts suitable for manufacturing cold-worked parts and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2009068025A JP2009068025A (en) 2009-04-02
JP4987640B2 true JP4987640B2 (en) 2012-07-25

Family

ID=40604603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007234201A Expired - Fee Related JP4987640B2 (en) 2007-09-10 2007-09-10 Titanium alloy bar wire for machine parts or decorative parts suitable for manufacturing cold-worked parts and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4987640B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001973A (en) * 2011-06-17 2013-01-07 Nippon Steel & Sumitomo Metal Corp Titanium alloy welded pipe having excellent hydrogen absorption resistance and pipe-formability and hoop product for welled pipe, and methods for manufacturing them

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013041A (en) * 1983-07-01 1985-01-23 Nippon Gakki Seizo Kk Titanium alloy for decoration
JPH1180867A (en) * 1997-09-08 1999-03-26 Sumitomo Metal Ind Ltd Ti alloy excellent in antibacterial property and bioadhesion resistance and method for producing the same
JP2000254150A (en) * 1999-03-05 2000-09-19 Osamu Okuno Dental free cutting titanium alloy
JP4094395B2 (en) * 2002-04-10 2008-06-04 新日本製鐵株式会社 Titanium plate for electrolytic Cu foil production drum and production method thereof
JP4486530B2 (en) * 2004-03-19 2010-06-23 新日本製鐵株式会社 Heat-resistant titanium alloy plate excellent in cold workability and method for producing the same

Also Published As

Publication number Publication date
JP2009068025A (en) 2009-04-02

Similar Documents

Publication Publication Date Title
JP5421613B2 (en) High strength aluminum alloy wire rod excellent in softening resistance and manufacturing method thereof
JP5335056B2 (en) Aluminum alloy wire for bolt, bolt and method for producing the same
JP5287062B2 (en) Low specific gravity titanium alloy, golf club head, and method for manufacturing low specific gravity titanium alloy parts
CN111868287A (en) Method for producing Ni-based superalloy and Ni-based superalloy
JP6719216B2 (en) α-β type titanium alloy
JP7401760B2 (en) Manufacturing method of α+β type titanium alloy bar material
JP6696202B2 (en) α + β type titanium alloy member and manufacturing method thereof
JPWO2018193810A1 (en) High strength low thermal expansion alloy wire
US4657601A (en) Thermomechanical processing of beryllium-copper alloys
JP2009167464A (en) Method for producing aluminum alloy material with excellent toughness
JP7658921B2 (en) Aluminum alloys, aluminum alloy wires, aluminum alloy members, and bolts
JP2024518681A (en) Materials for manufacturing high strength fasteners and methods for manufacturing same
JP7448777B2 (en) Production method of α+β type titanium alloy bar and α+β type titanium alloy bar
JP2020100863A (en) Aluminum alloy for compressor slide component, forging product of compressor slide component and production method thereof
JP2005076098A (en) HIGH-STRENGTH alpha-beta TITANIUM ALLOY
KR20210119507A (en) bar
JP6432328B2 (en) High strength titanium plate and manufacturing method thereof
JP4715048B2 (en) Titanium alloy fastener material and manufacturing method thereof
JP5802114B2 (en) Aluminum alloy wire for bolt, bolt and method for producing aluminum alloy wire for bolt
JP5605273B2 (en) High strength α + β type titanium alloy having excellent hot and cold workability, production method thereof, and titanium alloy product
JP7387139B2 (en) Titanium alloy, its manufacturing method, and engine parts using it
JP4798943B2 (en) Aluminum alloy plate for forming and method for producing the same
JP4987640B2 (en) Titanium alloy bar wire for machine parts or decorative parts suitable for manufacturing cold-worked parts and method for manufacturing the same
JP7705744B2 (en) Aluminum alloy, hot-worked aluminum alloy material and its manufacturing method
JP2000169927A (en) Aluminum alloy plastic processed product having excellent partial corrosion resistance and high fatigue strength, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120425

R151 Written notification of patent or utility model registration

Ref document number: 4987640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees