[go: up one dir, main page]

JP4930353B2 - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
JP4930353B2
JP4930353B2 JP2007314773A JP2007314773A JP4930353B2 JP 4930353 B2 JP4930353 B2 JP 4930353B2 JP 2007314773 A JP2007314773 A JP 2007314773A JP 2007314773 A JP2007314773 A JP 2007314773A JP 4930353 B2 JP4930353 B2 JP 4930353B2
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
electronic expansion
expansion valve
valve opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007314773A
Other languages
Japanese (ja)
Other versions
JP2009139000A (en
Inventor
祐司 鈴木
浅田  規
晴彦 須藤
勝彦 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2007314773A priority Critical patent/JP4930353B2/en
Publication of JP2009139000A publication Critical patent/JP2009139000A/en
Application granted granted Critical
Publication of JP4930353B2 publication Critical patent/JP4930353B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は、冷却装置に関し、より詳細には、通常運転の場合に、収容庫の内部温度に基づいて電子膨張弁の開度を調節し、収容庫に配設した蒸発器に対する冷媒の供給制御をおこなうことにより該収容庫を所望の温度状態にする冷却装置の改良に関する。   The present invention relates to a cooling device, and more specifically, in normal operation, the opening degree of an electronic expansion valve is adjusted based on the internal temperature of the container, and refrigerant supply control to an evaporator disposed in the container is performed. It is related with the improvement of the cooling device which makes this container the desired temperature state by performing.

たとえば、商品を冷却した状態で陳列販売するショーケースでは、収容庫の内部に蒸発器が設けられ、また収容庫の外部に圧縮機、凝縮器および電子膨張弁が設けられており、これら蒸発器、圧縮機、凝縮器および電子膨張弁が配管にて順次接続されることにより、封入された冷媒を循環させる冷却装置が構成されている。かかる冷却装置では、通常運転の場合に、収容庫の内部温度に基づいて電子膨張弁の開度が調節されて、収容庫に配設された蒸発器に対する冷媒の供給制御がおこなわれることにより該収容庫を所望の温度状態となるようにしている。   For example, in a showcase that displays and sells products in a cooled state, an evaporator is provided inside the container, and a compressor, a condenser, and an electronic expansion valve are provided outside the container. A compressor, a condenser, and an electronic expansion valve are sequentially connected by piping to constitute a cooling device that circulates the enclosed refrigerant. In such a cooling device, in the normal operation, the opening degree of the electronic expansion valve is adjusted based on the internal temperature of the container, and the refrigerant supply control to the evaporator disposed in the container is performed. The storage is brought to a desired temperature state.

このような冷却装置では、さらに蒸発器の周囲を通過する空気の温度を検出する手段(以下、吸込空気温度センサともいう)と、蒸発器に供給される冷媒の温度を検出する手段(以下、冷媒温度センサともいう)とを備え、通常運転の場合に、吸込空気温度センサの検出温度と冷媒温度センサの検出温度との温度差を演算し、かかる温度差とあらかじめ設定された基準値とを比較して、電子膨張弁の開故障、すなわち開いた状態でロックしてしまう故障や、閉故障、すなわち閉じた状態でロックしてしまう故障を検出するようにしたものが知られている(たとえば、特許文献1参照)。   In such a cooling device, a means for detecting the temperature of the air passing around the evaporator (hereinafter also referred to as an intake air temperature sensor) and a means for detecting the temperature of the refrigerant supplied to the evaporator (hereinafter, referred to as a suction air temperature sensor). In the case of normal operation, the temperature difference between the detected temperature of the intake air temperature sensor and the detected temperature of the refrigerant temperature sensor is calculated, and the temperature difference and a preset reference value are calculated. In comparison, it is known to detect an open failure of an electronic expansion valve, that is, a failure that locks in an open state, and a closed failure, that is, a failure that locks in a closed state (for example, , See Patent Document 1).

特開2000−274896号公報JP 2000-274896 A

ところが、上述したような特許文献1に提案されている冷却装置では、吸込空気温度センサの検出温度と冷媒温度センサの検出温度との温度差を演算し、かかる温度差と基準値とを比較して、電子膨張弁の故障(開故障および閉故障)を検出するために、つぎのような問題があった。すなわち、電子膨張弁が故障しても、吸込空気温度センサの検出温度と、冷媒温度センサの検出温度とがともに電子膨張弁が正常な場合と同様に推移してしまうと、両検出温度の温度差が変わらず、電子膨張弁が故障と検出されない虞れがあり、信頼性に問題があった。   However, in the cooling device proposed in Patent Document 1 as described above, the temperature difference between the detected temperature of the intake air temperature sensor and the detected temperature of the refrigerant temperature sensor is calculated, and the temperature difference is compared with a reference value. In order to detect a failure (open failure and closed failure) of the electronic expansion valve, there has been the following problem. That is, even if the electronic expansion valve fails, if both the detected temperature of the intake air temperature sensor and the detected temperature of the refrigerant temperature sensor change in the same way as when the electronic expansion valve is normal, the temperature of both detected temperatures The difference did not change, and there was a possibility that the electronic expansion valve was not detected as a failure, and there was a problem in reliability.

本発明は、上記実情に鑑みて、電子膨張弁の故障を良好に検出することにより、検出精度の信頼性を向上させることができる冷却装置を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a cooling device that can improve the reliability of detection accuracy by detecting a failure of an electronic expansion valve satisfactorily.

上記目的を達成するため、本発明の請求項1にかかる冷却装置は、通常運転の場合に収容庫の内部温度に基づいて電子膨張弁の開度を調節する開度調節手段を備え、この開度調節手段により前記収容庫に配設した蒸発器に対する冷媒の供給制御をおこなうことにより、該収容庫を所望の温度状態にする冷却装置において、前記開度調節手段は、あらかじめ設定された上限弁開度と下限弁開度との範囲内で前記収容庫の内部温度に基づいて前記電子膨張弁に対して開動作指令、あるいは閉動作指令を与える開閉指令手段と、前記開閉指令手段が上限弁開度とする旨の開動作指令をあらかじめ決められた設定時間だけ与え続けているにもかかわらず前記内部温度があらかじめ設定された目標温度を上回りつづけている場合に、前記電子膨張弁が閉故障しているものと判断する一方、前記開閉指令手段が下限弁開度にする旨の閉動作指令を前記設定時間だけ与え続けているにもかかわらず前記内部温度があらかじめ設定された目標温度を下回りつづけている場合に、前記電子膨張弁が開故障しているものと判断する故障判断手段とを備えていることを特徴とする。 In order to achieve the above object, a cooling device according to claim 1 of the present invention comprises opening degree adjusting means for adjusting the opening degree of the electronic expansion valve based on the internal temperature of the container in normal operation. In the cooling device for bringing the storage into a desired temperature state by controlling the supply of the refrigerant to the evaporator disposed in the storage by the degree adjusting means, the opening degree adjusting means includes a preset upper limit valve An opening / closing command means for giving an opening operation command or a closing operation command to the electronic expansion valve based on an internal temperature of the container within a range between an opening degree and a lower limit valve opening degree; and the opening / closing command means is an upper limit valve when the opening operation instruction to continue only given predetermined set time Runimokakawarazu the internal temperature to the effect that the opening is continuously exceeded the target temperature set in advance, the electronic expansion valve is closed While it is determined that that disabled, the switching command means target temperature Runimokakawarazu the internal temperature closing operation command continues giving only the set time of the effect that the lower limit valve opening is set in advance And a failure determination means for determining that the electronic expansion valve is in an open failure state when the voltage continues to fall .

また、本発明の請求項2にかかる冷却装置は、上述した請求項1において、前記開度調節手段は、前記通常運転開始後あらかじめ決められた時間が経過して除霜運転に移行した場合には、前記電子膨張弁を閉成させて前記蒸発器に対する冷媒の供給を停止するものであり、前記蒸発器に接続した冷媒管路のうち該蒸発器の入口部を通過する冷媒の温度を検出する入口部冷媒温度検出手段と、前記冷媒管路のうち前記蒸発器の出口部を通過する冷媒の温度を検出する出口部冷媒温度検出手段と、前記蒸発器の内部において前記出口部に近接する部位を通過する冷媒の温度を検出する中間部冷媒温度検出手段と、前記除霜運転の場合にあらかじめ決められた所定時間ごとに前記入口部冷媒温度検出手段、前記出口部冷媒温度検出手段および前記中間部冷媒温度検出手段を通じて各温度を検出し、検出温度が前回の検出温度よりも上昇しているものが少なくとも一つある場合には、前記電子膨張弁は正常であると判定する一方、前記入口部冷媒温度検出手段、前記出口部冷媒温度検出手段および前記中間部冷媒温度検出手段を通じて検出した温度が前回の検出温度よりも上昇しているものが存在しない場合には、前記電子膨張弁が開故障しているものと判定する故障判定手段とを備えたことを特徴とする。   The cooling device according to claim 2 of the present invention is the cooling device according to claim 1 described above, wherein the opening degree adjusting means moves to a defrosting operation after a predetermined time has elapsed after the start of the normal operation. Closes the electronic expansion valve and stops the supply of the refrigerant to the evaporator, and detects the temperature of the refrigerant passing through the inlet of the evaporator among the refrigerant pipes connected to the evaporator An inlet portion refrigerant temperature detecting means, an outlet portion refrigerant temperature detecting means for detecting the temperature of the refrigerant passing through the outlet portion of the evaporator in the refrigerant pipe, and the outlet portion in the vicinity of the outlet portion. An intermediate refrigerant temperature detecting means for detecting the temperature of the refrigerant passing through the site; the inlet refrigerant temperature detecting means; the outlet refrigerant temperature detecting means; and the predetermined temperature for each predetermined time in the defrosting operation. During ~ Each temperature is detected through the refrigerant temperature detection means, and if there is at least one detected temperature higher than the previous detected temperature, the electronic expansion valve is determined to be normal, while the inlet If the temperature detected through the partial refrigerant temperature detecting means, the outlet refrigerant temperature detecting means, and the intermediate refrigerant temperature detecting means is not higher than the previous detected temperature, the electronic expansion valve is opened. Failure determination means for determining that there is a failure is provided.

本発明によれば、開度調節手段が、開閉指令手段を通じてあらかじめ設定された上限弁開度と下限弁開度との範囲内で収容庫の内部温度に基づいて電子膨張弁に対して開動作指令、あるいは閉動作指令を与え、故障判断手段を通じて、開閉指令手段が上限弁開度とする旨の開動作指令をあらかじめ決められた設定時間だけ与え続けていた場合に電子膨張弁が閉故障しているものと判断する一方、開閉指令手段が下限弁開度にする旨の閉動作指令を設定時間だけ与え続けていた場合に電子膨張弁が開故障しているものと判断するので、弁開度への開閉指令とその指令時間との関係から電子膨張弁の故障を判断することになり、従来のように二つの温度の比較演算することにより故障を判断するのに比して、電子膨張弁の故障を良好に検出することにより、検出精度の信頼性を向上させることができるという効果を奏する。   According to the present invention, the opening degree adjusting means opens the electronic expansion valve based on the internal temperature of the container within the range between the upper limit valve opening degree and the lower limit valve opening degree set in advance through the opening / closing command means. The electronic expansion valve closes and fails when a command or a closing operation command is given and the opening / closing command means that the opening / closing command means sets the upper limit valve opening through the failure determination means. On the other hand, if the open / close command means continues to give the closing operation command to the lower limit valve opening for the set time, it is determined that the electronic expansion valve has failed to open. The failure of the electronic expansion valve is judged from the relationship between the opening / closing command and the command time. Compared to the conventional case where the failure is judged by comparing the two temperatures, the electronic expansion valve Good detection of valve failure Accordingly, there is an effect that it is possible to improve the reliability of the detection accuracy.

以下に添付図面を適宜参照しながら、本発明にかかる冷却装置の好適な実施の形態について詳細に説明する。   Exemplary embodiments of a cooling device according to the present invention will be described below in detail with reference to the accompanying drawings as appropriate.

図1は、本発明の実施の形態である冷却装置の構成を概念的に示したものである。ここに例示する冷却装置は、収容庫10の内部に収納した商品を冷却した状態で陳列販売するオープンショーケース11に適用するもので、複数のオープンショーケース11にそれぞれ蒸発器12および電子膨張弁13を個別に備える一方、オープンショーケース11の外部に凝縮器14および圧縮機15をそれぞれ一つずつ備えている。なお、図1には、説明の便宜上、一つのオープンショーケース11を示している。   FIG. 1 conceptually shows the configuration of a cooling device according to an embodiment of the present invention. The cooling device illustrated here is applied to an open showcase 11 that displays and sells products stored in the storage 10 in a cooled state, and includes an evaporator 12 and an electronic expansion valve in each of the multiple open showcases 11. 13 is provided separately, and one condenser 14 and one compressor 15 are provided outside the open showcase 11. FIG. 1 shows one open showcase 11 for convenience of explanation.

電子膨張弁13は、凝縮器14から吐出された液冷媒を断熱膨張して蒸発器12に供給するものである。本実施の形態では、開度指令(開動作指令および閉動作指令)が与えられた場合に開度指令に応じて開度を変更し、通過する冷媒の流量を調節することのできる電子膨張弁13を適用している。圧縮機15は、蒸発器12から吐出された低温低圧のガス冷媒を圧縮して高温高圧のガス冷媒として凝縮器14に与えるものである。   The electronic expansion valve 13 supplies the liquid refrigerant discharged from the condenser 14 to the evaporator 12 by adiabatic expansion. In the present embodiment, when an opening degree command (opening operation command and closing operation command) is given, an electronic expansion valve capable of changing the opening degree according to the opening degree command and adjusting the flow rate of the refrigerant passing therethrough 13 is applied. The compressor 15 compresses the low-temperature and low-pressure gas refrigerant discharged from the evaporator 12 and supplies it to the condenser 14 as a high-temperature and high-pressure gas refrigerant.

この冷却装置では、凝縮器14および圧縮機15に対してそれぞれのオープンショーケース11に設けた蒸発器12および電子膨張弁13を並列となる態様で冷媒供給管路16で接続することにより冷凍サイクルが構成してある。すなわち、この冷却装置では、圧縮機15から吐出された高温高圧のガス冷媒が凝縮器14において冷却されて高温高圧の液冷媒となる。この高温高圧の液冷媒は、電子膨張弁13により断熱膨張されて低温低圧の気液二相冷媒となり、収容庫10の蒸発器12に供給される。蒸発器12に供給された低温低圧の気液二相冷媒は、送風ファン17によって供給された収容庫10の内部空気と熱交換し、吸熱して低温低圧のガス冷媒となることにより収容庫10の冷却をおこなう。蒸発器12から吐出された低温低圧のガス冷媒は、圧縮機15に吸入され、再び高温高圧のガス冷媒となって凝縮器14に供給される。   In this cooling device, an evaporator 12 and an electronic expansion valve 13 provided in each open showcase 11 are connected to the condenser 14 and the compressor 15 by a refrigerant supply line 16 in a parallel manner. Is configured. That is, in this cooling device, the high-temperature and high-pressure gas refrigerant discharged from the compressor 15 is cooled in the condenser 14 to become a high-temperature and high-pressure liquid refrigerant. This high-temperature and high-pressure liquid refrigerant is adiabatically expanded by the electronic expansion valve 13 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant, and is supplied to the evaporator 12 of the container 10. The low-temperature and low-pressure gas-liquid two-phase refrigerant supplied to the evaporator 12 exchanges heat with the internal air of the storage 10 supplied by the blower fan 17 and absorbs heat to become a low-temperature and low-pressure gas refrigerant. Cool down. The low-temperature and low-pressure gas refrigerant discharged from the evaporator 12 is sucked into the compressor 15 and again becomes a high-temperature and high-pressure gas refrigerant and supplied to the condenser 14.

オープンショーケース11において蒸発器12に接続した冷媒供給管路16の入口部、出口部および中間部には、それぞれ冷媒温度センサ20,21,22が設けてある。入口部冷媒温度センサ(入口部冷媒温度検出手段)20および出口部冷媒温度センサ(出口部冷媒温度検出手段)21は、それぞれの冷媒供給管路16を通過する冷媒の温度を検出するものであり、中間部冷媒温度センサ(中間部冷媒温度検出手段)22は、蒸発器12の内部において出口部に近接した部位を通過する冷媒の温度を検出するものである。   Refrigerant temperature sensors 20, 21, and 22 are provided at an inlet portion, an outlet portion, and an intermediate portion of the refrigerant supply line 16 connected to the evaporator 12 in the open showcase 11, respectively. The inlet refrigerant temperature sensor (inlet refrigerant temperature detecting means) 20 and the outlet refrigerant temperature sensor (exit refrigerant temperature detecting means) 21 are for detecting the temperature of the refrigerant passing through the respective refrigerant supply pipes 16. The intermediate refrigerant temperature sensor (intermediate refrigerant temperature detection means) 22 detects the temperature of the refrigerant that passes through a portion close to the outlet in the evaporator 12.

収容庫10の内部には、内部温度センサ23が設けてある。内部温度センサ23は、収容庫10の内部温度を検出するものである。本実施の形態では、内部温度センサ23として、収容庫10の内部において蒸発器12を通過した後の空気、すなわち吹出空気の温度を収容庫10の内部温度として検出するものを適用している。ここで、内部温度は、吹出空気の温度ではなく、収容庫10の内部に設けられる庫内温度センサ(図示せず)により検出される温度としても構わない。あるいは、収容庫10の内部の背面に設けられる背面温度センサ24(参考)や、吸込口に設けられている吸込温度センサ25(参考)、吹出口に設けられている吹出温度センサなどから求めた平均空気温度(庫内温度)としても構わない。   An internal temperature sensor 23 is provided inside the storage 10. The internal temperature sensor 23 detects the internal temperature of the container 10. In the present embodiment, the internal temperature sensor 23 detects the air after passing through the evaporator 12 inside the storage 10, that is, the temperature of the blown air as the internal temperature of the storage 10. Here, the internal temperature may not be the temperature of the blown air but may be a temperature detected by an internal temperature sensor (not shown) provided inside the storage 10. Or it calculated | required from the back surface temperature sensor 24 (reference) provided in the back surface inside the storage 10, the suction temperature sensor 25 (reference) provided in the suction inlet, the blowing temperature sensor provided in the blower outlet, etc. The average air temperature (internal temperature) may be used.

また、上記冷却装置は、その制御系として弁開度調節手段30および故障判定手段40を備えている。   Further, the cooling device includes a valve opening degree adjusting means 30 and a failure determining means 40 as its control system.

弁開度調節手段30は、冷却装置が通常運転の場合に電子膨張弁13の開度を調節する一方、冷却装置が後述する除霜運転の場合に電子膨張弁13を閉成させるものであり、設定記憶部31、温度比較判断部32、弁開度設定処理部33、故障判断部34および時間計測部35を備えている。   The valve opening adjusting means 30 adjusts the opening of the electronic expansion valve 13 when the cooling device is in a normal operation, and closes the electronic expansion valve 13 when the cooling device is in a defrosting operation described later. , A setting storage unit 31, a temperature comparison determination unit 32, a valve opening setting processing unit 33, a failure determination unit 34, and a time measurement unit 35.

設定記憶部31は、弁開度調節手段30が後述する種々の処理内容をおこなうのに必要なデータやプログラムを記憶するとともに、収容庫10の目標温度をあらかじめ設定し、かつこれを記憶するものである。   The setting storage unit 31 stores data and programs necessary for the valve opening degree adjusting means 30 to perform various processing contents to be described later, and sets and stores the target temperature of the storage 10 in advance. It is.

温度比較判断部32は、内部温度センサ23により検出された収容庫10の内部温度と、設定記憶部31に記憶してある収容庫10の目標温度とを比較し、内部温度が目標温度未満であるか否か、さらに内部温度が目標温度未満でない場合に内部温度が目標温度を超えているか否かを判断するものである。   The temperature comparison determination unit 32 compares the internal temperature of the storage 10 detected by the internal temperature sensor 23 with the target temperature of the storage 10 stored in the setting storage unit 31, and the internal temperature is less than the target temperature. In addition, it is determined whether the internal temperature exceeds the target temperature when the internal temperature is not lower than the target temperature.

弁開度設定処理部33は、電子膨張弁13に開度指令(開動作指令および閉動作指令)を与えて電子膨張弁13の開度を設定する開閉指令手段である。より詳細に説明すると、弁開度設定処理部33は、冷却装置が通常運転の場合において、あらかじめ設定された上限弁開度(弁開度の上限値)と下限弁開度(弁開度の下限値)との範囲内で、内部温度センサ23の検出結果(検出温度)と、設定記憶部31に記憶する収容庫10の目標温度との比較結果に基づいて、電子膨張弁13に開度指令を与えて開度を設定するものである。具体的には、検出した内部温度が目標温度未満の場合には、開動作指令を与えて弁開度を大きくさせる一方、検出した内部温度が目標温度を超える場合には、閉動作指令を与えて弁開度を小さくさせ、さらに検出した内部温度が目標温度と一致する場合には、弁開度を維持させるものである。   The valve opening setting processing unit 33 is an opening / closing command means for setting an opening of the electronic expansion valve 13 by giving an opening command (an opening operation command and a closing operation command) to the electronic expansion valve 13. More specifically, when the cooling device is in normal operation, the valve opening setting processing unit 33 sets the upper limit valve opening (the upper limit value of the valve opening) and the lower limit valve opening (the valve opening of the valve opening) that are set in advance. Within the range of the lower limit value), based on the comparison result between the detection result (detected temperature) of the internal temperature sensor 23 and the target temperature of the storage 10 stored in the setting storage unit 31, the opening degree of the electronic expansion valve 13 is An opening is set by giving a command. Specifically, when the detected internal temperature is lower than the target temperature, an opening operation command is given to increase the valve opening, while when the detected internal temperature exceeds the target temperature, a closing operation command is given. The valve opening is reduced, and when the detected internal temperature matches the target temperature, the valve opening is maintained.

また、弁開度設定処理部33は、冷却装置が後述する除霜運転の場合においては、電子膨張弁13に対して全閉状態(閉成状態)になる旨の開度指令(閉動作指令)を与えて開度を設定するものである。   In addition, the valve opening setting processing unit 33, when the cooling device is in the defrosting operation to be described later, is an opening command (a closing operation command) indicating that the electronic expansion valve 13 is fully closed (closed state). ) To set the opening.

故障判断部34は、電子膨張弁13が開故障、すなわち開いた状態でロックしてしまう故障、ならびに閉故障、すなわち閉じた状態でロックしてしまう故障しているものと判断する故障判断手段である。より詳細に説明すると、故障判断部34は、弁開度設定処理部33が上限弁開度とする旨の開動作指令を与えた場合に、時間計測部35を通じて時間の計測を開始し、計測した時間があらかじめ決められた設定時間に達したとき、すなわち上限弁開度とする旨の開動作指令を設定時間だけ与え続けているにもかかわらず、内部温度が目標温度を上回りつづけている、もしくは、吹出空気温度が上昇しつづけている場合に、電子膨張弁13が閉故障しているものと判断するものである。その一方、弁開度設定処理部33が下限弁開度とする旨の閉動作指令を与えた場合に、時間計測部35を通じて時間の計測を開始し、計測した時間があらかじめ決められた設定時間に達したとき、すなわち下限弁開度とする旨の閉動作指令を設定時間だけ与え続けているにもかかわらず、内部温度が目標温度を下回りつづけている、もしくは、吹出空気温度が下降しつづけている場合に、電子膨張弁13が開故障しているものと判断するものである。   The failure determination unit 34 is a failure determination unit that determines that the electronic expansion valve 13 is open failure, that is, a failure that locks in the opened state, and a closed failure, that is, a failure that locks in the closed state. is there. More specifically, the failure determination unit 34 starts time measurement through the time measurement unit 35 when the valve opening setting processing unit 33 gives an opening operation command indicating that the upper limit valve opening is set. The internal temperature continues to exceed the target temperature even when the set time reaches the preset set time, i.e., the opening operation command for setting the upper limit valve opening is continued for the set time. Alternatively, when the blown air temperature continues to rise, it is determined that the electronic expansion valve 13 has a closed failure. On the other hand, when the valve opening setting processing unit 33 gives a closing operation command to the effect that the lower limit valve opening is set, time measurement is started through the time measuring unit 35, and the measured time is set in a predetermined time. However, the internal temperature continues to fall below the target temperature or the blown air temperature continues to fall, even though the closing operation command for setting the lower limit valve opening is continued for the set time. If the electronic expansion valve 13 is in the open state, it is determined that the electronic expansion valve 13 has an open failure.

故障判定手段40は、冷却装置が除霜運転の場合に電子膨張弁13の故障を判定するものであり、各種情報記憶部41、入力処理部42、タイマー部43および故障判定部44を備えている。   The failure determination means 40 determines a failure of the electronic expansion valve 13 when the cooling device is in the defrosting operation, and includes various information storage units 41, an input processing unit 42, a timer unit 43, and a failure determination unit 44. Yes.

各種情報記憶部41は、故障判定手段40が後述する種々の処理内容をおこなうのに必要なデータやプログラムを記憶するとともに、入力処理部42を通じて入力されたデータ(入口部冷媒温度センサ20、中間部冷媒温度センサ22および出口部冷媒温度センサ21により検出された温度データ)を記憶するものである。   The various information storage unit 41 stores data and programs necessary for the failure determination means 40 to perform various processing contents to be described later, and data input through the input processing unit 42 (inlet refrigerant temperature sensor 20, intermediate Temperature data detected by the partial refrigerant temperature sensor 22 and the outlet refrigerant temperature sensor 21).

入力処理部42は、入口部冷媒温度センサ20、中間部冷媒温度センサ22および出口部冷媒温度センサ21を通じて検出されたそれぞれの温度データ(検出温度)を入力処理するものである。より詳細には、あらかじめ設定された設定時間(たとえば1分間)ごとに入口部冷媒温度センサ20、中間部冷媒温度センサ22および出口部冷媒温度センサ21を通じて検出された温度データを入力処理するものである。タイマー部43は、上記設定時間の計測をおこなうためのものである。   The input processing unit 42 performs input processing on each temperature data (detected temperature) detected through the inlet refrigerant temperature sensor 20, the intermediate refrigerant temperature sensor 22, and the outlet refrigerant temperature sensor 21. More specifically, temperature data detected through the inlet refrigerant temperature sensor 20, the intermediate refrigerant temperature sensor 22, and the outlet refrigerant temperature sensor 21 is input at predetermined time intervals (for example, one minute). is there. The timer unit 43 is for measuring the set time.

故障判定部44は、入力処理部42を通じて入力処理され、かつ各種情報記憶部41に記憶された各検出温度に基づいて電子膨張弁13が正常であるか否か、つまり電子膨張弁13が正常、あるいは開故障しているかを判定するものである。より詳細には、除霜運転からプルダウン(冷却運転)になるまでの間、各検出温度について、前回(直近の前回)の検出温度よりも上昇しているものが少なくとも一つある場合には、電子膨張弁13は正常であると判定する一方、前回の検出温度よりも上昇しているものが存在しない、すなわち前回の検出温度よりも上昇しているものが一つも存在しない場合には、電子膨張弁13が開故障しているものと判定するものである。   The failure determination unit 44 determines whether or not the electronic expansion valve 13 is normal based on the detected temperatures that are input through the input processing unit 42 and stored in the various information storage units 41, that is, the electronic expansion valve 13 is normal. Or, it is determined whether an open failure has occurred. More specifically, when there is at least one of the detected temperatures that is higher than the previous (most recent previous) detected temperature from the defrosting operation to the pull-down (cooling operation), While it is determined that the electronic expansion valve 13 is normal, there is no one that is higher than the previous detected temperature, that is, there is no one that is higher than the previous detected temperature. It is determined that the expansion valve 13 has an open failure.

つぎに上記冷却装置の動作について説明する。ここで、冷却装置は、所定時間、あるいは収容庫10の内部温度が所定の温度(目標温度)となるまでプルダウン(冷却運転)し、その後通常運転を行い、かかる通常運転が所定時間に達した後(より詳細には、除霜運転開始時点からあらかじめ設定されたサイクル時間(たとえば6時間)が経過した後)、蒸発器12への冷媒の供給を停止して除霜運転をおこなうことになる。この除霜運転の後、再びプルダウンし、その後通常運転をおこなうサイクルを繰り返すことになる。つまり、冷却装置は、プルダウン→通常運転→除霜運転というサイクルを繰り返す。   Next, the operation of the cooling device will be described. Here, the cooling device pulls down (cooling operation) for a predetermined time or until the internal temperature of the container 10 reaches a predetermined temperature (target temperature), and then performs a normal operation, and the normal operation reaches a predetermined time. After (more specifically, after a preset cycle time (for example, 6 hours) has elapsed since the start of the defrosting operation), the supply of the refrigerant to the evaporator 12 is stopped and the defrosting operation is performed. . After this defrosting operation, the cycle of pulling down again and then performing the normal operation is repeated. That is, the cooling device repeats a cycle of pull-down → normal operation → defrost operation.

通常運転の場合、冷却装置を構成する弁開度調節手段30は、弁開度調節処理を実施する。図2は、図1に示した弁開度調節手段30が実施する弁開度調節処理の内容を示すフローチャートである。   In the normal operation, the valve opening degree adjusting means 30 constituting the cooling device performs a valve opening degree adjusting process. FIG. 2 is a flowchart showing the contents of the valve opening degree adjusting process performed by the valve opening degree adjusting means 30 shown in FIG.

弁開度調節処理における弁開度調節手段30は、内部温度センサ23を通じてオープンショーケース11における収容庫10の内部温度を検出する(ステップS101)。   The valve opening degree adjusting means 30 in the valve opening degree adjusting process detects the internal temperature of the container 10 in the open showcase 11 through the internal temperature sensor 23 (step S101).

収容庫10の内部温度を検出した弁開度調節手段30は、温度比較判断部32を通じて、該内部温度が設定記憶部31に記憶する目標温度未満であるか否かを比較判断し(ステップS102)、内部温度が目標温度未満と判断した場合には(ステップS102:Yes)、弁開度閉処理を実施する(ステップS110)。かかる弁開度閉処理については後述する。   The valve opening degree adjusting means 30 that has detected the internal temperature of the container 10 compares and determines whether or not the internal temperature is lower than the target temperature stored in the setting storage unit 31 through the temperature comparison determination unit 32 (step S102). ) When it is determined that the internal temperature is lower than the target temperature (step S102: Yes), the valve opening degree closing process is performed (step S110). Such valve opening closing processing will be described later.

一方、温度比較判断部32を通じて、内部温度が目標温度未満ではなく、目標温度を超えているものと判断した場合には(ステップS102:No,ステップS103:Yes)、弁開度開処理を実施する(ステップS130)。かかる弁開度開処理については後述する。   On the other hand, when it is determined through the temperature comparison determination unit 32 that the internal temperature is not lower than the target temperature but exceeds the target temperature (step S102: No, step S103: Yes), the valve opening degree opening process is performed. (Step S130). This valve opening opening process will be described later.

ところで、温度比較判断部32を通じて、内部温度が目標温度未満ではなく、かつ目標温度を超えていないと判断した場合には(ステップS102:No,ステップS103:No)、すなわち内部温度が目標温度に等しいと判断した場合には、弁開度調節手段30は、弁開度設定処理部33を通じて電子膨張弁13に維持指令を与えて弁開度を維持させて(ステップS104)、その後に手順をリターンさせて今回の処理を終了する。   By the way, when it is determined through the temperature comparison determination unit 32 that the internal temperature is not lower than the target temperature and does not exceed the target temperature (step S102: No, step S103: No), that is, the internal temperature becomes the target temperature. If it is determined that they are equal, the valve opening degree adjusting means 30 gives a maintenance command to the electronic expansion valve 13 through the valve opening degree setting processing unit 33 to maintain the valve opening degree (step S104), and then performs the procedure. Return and end the current process.

図3は、図2に示した弁開度閉処理の内容を示すフローチャートである。弁開度閉処理における弁開度調節手段30は、つまり、上記ステップS102において内部温度が目標温度未満と判断した場合に弁開度調節手段30は、弁開度設定処理部33を通じて電子膨張弁13に対して決められたパルスだけ閉じる閉動作指令を与える(ステップS111)。閉動作指令を与えた弁開度調節手段30は、内部温度センサ23を通じて収容庫10の内部温度を検出し(ステップS112)、その後に温度比較判断部32を通じて、該内部温度が設定記憶部31に記憶する目標温度未満であるか否かを比較判断する(ステップS113)。内部温度が目標温度未満でないと判断した場合、すなわち内部温度が目標温度以上である場合には(ステップS113:No)、後述する処理を実施することなく手順をリターンさせて今回の弁開度閉処理を終了する。   FIG. 3 is a flowchart showing the contents of the valve opening closing process shown in FIG. The valve opening degree adjusting means 30 in the valve opening degree closing process, that is, when the internal temperature is determined to be lower than the target temperature in step S102, the valve opening degree adjusting means 30 passes the electronic expansion valve through the valve opening degree setting processing unit 33. A closing operation command for closing a predetermined pulse is given to 13 (step S111). The valve opening degree adjusting means 30 that has given the closing operation command detects the internal temperature of the storage 10 through the internal temperature sensor 23 (step S112), and then the internal temperature is set and stored in the setting storage unit 31 through the temperature comparison determination unit 32. It is determined whether or not the temperature is lower than the target temperature stored in (step S113). When it is determined that the internal temperature is not lower than the target temperature, that is, when the internal temperature is equal to or higher than the target temperature (step S113: No), the procedure is returned without performing the processing described later, and the current valve opening degree is closed. End the process.

一方、内部温度が目標温度未満と判断した場合であって、ステップS111での閉動作指令が下限弁開度での閉動作指令でない場合には(ステップS113:Yes,ステップS114:No)、上記ステップS111〜ステップS113の処理を一定の時間周期で繰り返し実施する。つまり、弁開度調節手段30は、弁開度閉処理において、閉動作指令を与えても収容庫10の内部温度(検出温度)が目標温度未満の場合には、上記閉動作指令よりもさらに開度を小さくする旨の新たな閉動作指令を与え、内部温度(検出温度)が目標温度以上となるまで繰り返す。そして、下限弁開度で閉動作指令を与えた場合には(ステップS114:Yes)、開故障判断処理を実施する(ステップS120)。   On the other hand, when it is determined that the internal temperature is lower than the target temperature, and the closing operation command in step S111 is not a closing operation command at the lower limit valve opening (step S113: Yes, step S114: No), the above The processes in steps S111 to S113 are repeatedly performed at a constant time period. That is, in the valve opening degree closing process, when the internal temperature (detected temperature) of the container 10 is lower than the target temperature even in the valve opening degree closing process, the valve opening degree adjusting means 30 is more than the closing action command. A new closing operation command for reducing the opening is given, and the process is repeated until the internal temperature (detected temperature) becomes equal to or higher than the target temperature. When a closing operation command is given at the lower limit valve opening (step S114: Yes), an open failure determination process is performed (step S120).

図4は、図3に示した開故障判断処理の内容を示すフローチャートである。開故障判断処理における弁開度調節手段30は、つまり、弁開度設定処理部33を通じて下限弁開度での閉動作指令を与えていた場合に弁開度調節手段30は、時間計測部35を通じて時間の計測を開始し(ステップS121)、内部温度センサ23を通じて収容庫10の内部温度を検出し(ステップS122)、その後に温度比較判断部32を通じて、該内部温度が設定記憶部31に記憶する目標温度未満であるか否かを比較判断する(ステップS123)。内部温度が目標温度未満でないと判断した場合、すなわち内部温度が目標温度以上である場合には(ステップS123:No)、時間計測部35により時間の計測をリセットし(ステップS124)、後述する処理を実施することなく手順をリターンさせて今回の開故障判断処理を終了する。   FIG. 4 is a flowchart showing the contents of the open failure determination process shown in FIG. The valve opening degree adjusting means 30 in the open failure determination process, that is, when the closing operation command at the lower limit valve opening degree is given through the valve opening degree setting processing part 33, the valve opening degree adjusting means 30 is the time measuring part 35. Time measurement is started through (step S121), the internal temperature of the container 10 is detected through the internal temperature sensor 23 (step S122), and the internal temperature is then stored in the setting storage unit 31 through the temperature comparison determination unit 32. Whether the temperature is lower than the target temperature to be compared is determined (step S123). When it is determined that the internal temperature is not lower than the target temperature, that is, when the internal temperature is equal to or higher than the target temperature (step S123: No), the time measurement is reset by the time measuring unit 35 (step S124), and processing described later The procedure is returned without performing the above, and the current open failure determination process is terminated.

一方、内部温度が目標温度未満と判断した場合には(ステップS123:Yes)、弁開度調節手段30は、故障判断部34を通じて時間計測部35による時間の計測が設定記憶部31に記憶する所定の設定時間を経過したか否かを判断する(ステップS125)。設定時間を経過していない場合には(ステップS125:No)、弁開度調節手段30は、上記ステップS122〜ステップS125の処理を一定の時間周期で繰り返し、設定時間を経過した場合、すなわち弁開度設定処理部33が下限弁開度にする旨の閉動作指令を設定時間だけ与え続けているにもかかわらず、内部温度が目標温度を下回りつづけている、もしくは、吹出空気温度が下降しつづけている場合には(ステップS125:Yes)、開故障しているものと判断し(ステップS126)、その旨を図示しない報知手段を通じて報知して、その後に手順をリターンさせて今回の処理(開故障判断処理)を終了する。また、図示しない電磁弁を閉じて冷媒供給を停止させてもよい。   On the other hand, when it is determined that the internal temperature is lower than the target temperature (step S123: Yes), the valve opening degree adjusting unit 30 stores the time measurement by the time measurement unit 35 in the setting storage unit 31 through the failure determination unit 34. It is determined whether or not a predetermined set time has elapsed (step S125). When the set time has not elapsed (step S125: No), the valve opening degree adjusting means 30 repeats the processing of step S122 to step S125 at a constant time period, and when the set time has elapsed, that is, the valve The internal temperature continues to fall below the target temperature, or the blown air temperature falls, even though the opening setting processing unit 33 continues to give a closing operation command to the lower limit valve opening for the set time. If it continues (step S125: Yes), it is determined that an open failure has occurred (step S126), the fact is notified through a notifying means (not shown), and then the procedure is returned to the current process ( The open failure determination process) is terminated. Further, the supply of the refrigerant may be stopped by closing an electromagnetic valve (not shown).

このような開故障判断処理を実施した結果、図3に示すように手順をリターンさせて弁開度閉処理を終了し、これにより、図2に示すように手順をリターンさせて弁開度調節処理を終了する。   As a result of carrying out such an open failure determination process, the procedure is returned as shown in FIG. 3 to complete the valve opening closing process, whereby the procedure is returned as shown in FIG. 2 to adjust the valve opening. End the process.

図5は、図2に示した弁開度開処理の内容を示すフローチャートである。弁開度開処理における弁開度調節手段30は、つまり、上記ステップS103において内部温度が目標温度を超えていると判断した場合に弁開度調節手段30は、弁開度設定処理部33を通じて電子膨張弁13に対して決められたパルスだけ開ける開動作指令を与える(ステップS131)。開動作指令を与えた弁開度調節手段30は、内部温度センサ23を通じて収容庫10の内部温度を検出し(ステップS132)、その後に温度比較判断部32を通じて、該内部温度が設定記憶部31に記憶する目標温度を超えているか否かを比較判断する(ステップS133)。内部温度が目標温度を超えていないと判断した場合、すなわち内部温度が目標温度以下である場合には(ステップS133:No)、後述する処理を実施することなく手順をリターンさせて今回の弁開度開処理を終了する。   FIG. 5 is a flowchart showing the contents of the valve opening opening process shown in FIG. When the valve opening degree adjusting means 30 in the valve opening degree opening process determines that the internal temperature exceeds the target temperature in step S103, the valve opening degree adjusting means 30 passes through the valve opening degree setting processing section 33. An opening operation command for opening a predetermined pulse is given to the electronic expansion valve 13 (step S131). The valve opening degree adjusting means 30 that has given the opening operation command detects the internal temperature of the storage 10 through the internal temperature sensor 23 (step S132), and then the internal temperature is set and stored in the setting storage unit 31 through the temperature comparison determination unit 32. It is determined whether or not the target temperature stored in is exceeded (step S133). If it is determined that the internal temperature does not exceed the target temperature, that is, if the internal temperature is equal to or lower than the target temperature (step S133: No), the procedure is returned without performing the processing described later, and the current valve opening is performed. The opening process is terminated.

一方、内部温度が目標温度を超えていると判断した場合であって、ステップS131での開動作指令が上限弁開度での開動作指令でない場合には(ステップS133:Yes,ステップS134:No)、上記ステップS131〜ステップS133の処理を一定の周期で繰り返し実施する。つまり、弁開度調節手段30は、弁開度開処理において、開動作指令を与えても収容庫10の内部温度(検出温度)が目標温度を超えている場合には、上記開動作指令よりもさらに開度を大きくする旨の新たな開動作指令を与え、内部温度(検出温度)が目標温度以下となるまで繰り返す。そして、上限弁開度で開動作指令を与えた場合には(ステップS134:Yes)、閉故障判断処理を実施する(ステップS140)。   On the other hand, when it is determined that the internal temperature exceeds the target temperature, and the opening operation command in step S131 is not an opening operation command at the upper limit valve opening (step S133: Yes, step S134: No) ), Steps S131 to S133 are repeatedly performed at regular intervals. That is, in the valve opening degree opening process, if the internal temperature (detected temperature) of the storage case 10 exceeds the target temperature in the valve opening degree opening process, the valve opening degree adjusting means 30 determines whether the opening degree instruction means 30 Also, a new opening operation command for further increasing the opening degree is given, and the operation is repeated until the internal temperature (detected temperature) becomes equal to or lower than the target temperature. When an opening operation command is given at the upper limit valve opening (step S134: Yes), a closed failure determination process is performed (step S140).

図6は、図5に示した閉故障判断処理の内容を示すフローチャートである。閉故障判断処理における弁開度調節手段30は、つまり、弁開度設定処理部33を通じて上限弁開度での開動作指令を与えていた場合に弁開度調節手段30は、時間計測部35を通じて時間の計測を開始し(ステップS141)、内部温度センサ23を通じて収容庫10の内部温度を検出し(ステップS142)、その後に温度比較判断部32を通じて、該内部温度が設定記憶部31に記憶する目標温度を超えているか否かを比較判断する(ステップS143)。内部温度が目標温度を超えていると判断した場合、すなわち内部温度が目標温度以下である場合には(ステップS143:No)、時間計測部35により時間の計測をリセットし(ステップS144)、後述する処理を実施することなく手順をリターンさせて今回の閉故障判断処理を終了する。   FIG. 6 is a flowchart showing the contents of the closed failure determination process shown in FIG. The valve opening degree adjusting means 30 in the closing failure determination process, that is, when the opening operation command at the upper limit valve opening degree is given through the valve opening degree setting processing part 33, the valve opening degree adjusting means 30 is the time measuring part 35. Time measurement is started through (step S141), the internal temperature of the storage 10 is detected through the internal temperature sensor 23 (step S142), and then the internal temperature is stored in the setting storage unit 31 through the temperature comparison determination unit 32. It is determined whether or not the target temperature is exceeded (step S143). When it is determined that the internal temperature exceeds the target temperature, that is, when the internal temperature is equal to or lower than the target temperature (step S143: No), the time measurement is reset by the time measuring unit 35 (step S144), which will be described later. The procedure is returned without performing the process to complete the current closed fault determination process.

一方、内部温度が目標温度を超えていると判断した場合には(ステップS143:Yes)、弁開度調節手段30は、故障判断部34を通じて時間計測部35による時間の計測が設定記憶部31に記憶する所定の設定時間を経過したか否かを判断する(ステップS145)。設定時間を経過していない場合には(ステップS145:No)、弁開度調節手段30は、上記ステップS142〜ステップS145の処理を一定の周期で繰り返し、設定時間を経過した場合、すなわち弁開度設定処理部33が上限弁開度にする旨の開動作指令を設定時間だけ与え続けているにもかかわらず、内部温度が目標温度を上回りつづけている、もしくは、吹出空気温度が上昇しつづけている場合には(ステップS145:Yes)、閉故障しているものと判断し(ステップS146)、その旨を図示しない報知手段を通じて報知して、その後に手順をリターンさせて今回の処理(閉故障判断処理)を終了する。また、図示しない電磁弁を閉じて冷媒供給を停止してもよい。   On the other hand, when it is determined that the internal temperature exceeds the target temperature (step S143: Yes), the valve opening degree adjusting unit 30 is configured to measure the time by the time measuring unit 35 through the failure determining unit 34. It is determined whether or not a predetermined set time stored in the elapses (step S145). When the set time has not elapsed (step S145: No), the valve opening degree adjusting means 30 repeats the processing of step S142 to step S145 at a constant period, and when the set time has elapsed, that is, the valve is opened. The internal temperature continues to exceed the target temperature or the blown air temperature continues to rise, even though the degree setting processing unit 33 continues to give the opening operation command to the upper limit valve opening for the set time. If this is the case (step S145: Yes), it is determined that there is a closed failure (step S146), that effect is notified through notifying means (not shown), and then the procedure is returned to the current process (closed). The failure determination process is terminated. Further, the supply of the refrigerant may be stopped by closing a solenoid valve (not shown).

このような閉故障判断処理を実施した結果、図5に示すように手順をリターンさせて弁開度開処理を終了し、これにより、図2に示すように手順をリターンさせて弁開度調節処理を終了する。   As a result of such a closed failure determination process, the procedure is returned as shown in FIG. 5 to complete the valve opening opening process, thereby returning the procedure and adjusting the valve opening as shown in FIG. End the process.

以上説明した弁開度調節処理について総括すると、弁開度調節手段30は、収容庫10の内部温度が設定記憶部31に記憶する目標温度未満の場合には、弁開度設定処理部33を通じて電子膨張弁13に閉動作指令を与える。その結果、収容庫10の内部温度が目標温度以上となれば処理を終了する一方、収容庫10の内部温度が依然として目標温度未満であれば、弁開度をさらに小さくする旨の閉動作指令を与え、収容庫10の内部温度が目標温度以上となるまで弁開度を徐々に小さくする態様で新たな閉動作指令を継続的に与える。   When the valve opening degree adjusting process described above is summarized, the valve opening degree adjusting means 30 passes through the valve opening degree setting processing part 33 when the internal temperature of the container 10 is lower than the target temperature stored in the setting storage part 31. A closing operation command is given to the electronic expansion valve 13. As a result, if the internal temperature of the storage 10 becomes equal to or higher than the target temperature, the process is terminated. On the other hand, if the internal temperature of the storage 10 is still lower than the target temperature, a closing operation command for further reducing the valve opening is issued. Then, a new closing operation command is continuously given in such a manner that the valve opening is gradually reduced until the internal temperature of the container 10 becomes equal to or higher than the target temperature.

そして、あらかじめ設定された下限弁開度とする旨の閉動作指令を与えている場合には、時間の計測を開始し、計測時間が所定の設定時間に達したときに、すなわち、下限弁開度にする旨の閉動作指令を設定時間だけ与え続けているにもかかわらず、内部温度が目標温度を下回りつづけている、もしくは、吹出空気温度が下降しつづけている場合に、電子膨張弁13が開故障しているものと判断している。   Then, when a closing operation command for giving a preset lower limit valve opening is given, time measurement is started, and when the measurement time reaches a predetermined set time, that is, the lower limit valve opening. The electronic expansion valve 13 is used when the internal temperature continues to fall below the target temperature or the blown air temperature continues to decrease, even though the closing operation command to the extent is continued for the set time. Is determined to have an open failure.

一方、弁開度調節手段30は、収容庫10の内部温度が設定記憶部31に記憶する目標温度を超えている場合には、弁開度設定処理部33を通じて電子膨張弁13に開動作指令を与える。その結果、収容庫10の内部温度が目標温度以下となれば処理を終了する一方、収容庫10の内部温度が依然として目標温度を超えていれば、弁開度をさらに大きくする旨の開動作指令を与え、収容庫10の内部温度が目標温度以下となるまで弁開度を徐々に大きくする態様で新たな閉動作指令を継続的に与える。   On the other hand, when the internal temperature of the container 10 exceeds the target temperature stored in the setting storage unit 31, the valve opening degree adjusting unit 30 instructs the electronic expansion valve 13 to open through the valve opening setting processing unit 33. give. As a result, if the internal temperature of the storage 10 becomes equal to or lower than the target temperature, the process is terminated. On the other hand, if the internal temperature of the storage 10 still exceeds the target temperature, an opening operation command for further increasing the valve opening degree. And a new closing operation command is continuously given in such a manner that the valve opening is gradually increased until the internal temperature of the container 10 becomes equal to or lower than the target temperature.

そして、あらかじめ設定された上限弁開度とする旨の開動作指令を与えている場合には、時間の計測を開始し、計測時間が所定の設定時間に達したときに、すなわち、上限弁開度にする旨の開動作指令を設定時間だけ与え続けているにもかかわらず、内部温度が目標温度を上回りつづけている、もしくは、吹出空気温度が上昇しつづけている場合に、電子膨張弁13が閉故障しているものと判断している。   Then, when an opening operation command for giving a preset upper limit valve opening degree is given, time measurement is started, and when the measurement time reaches a predetermined set time, that is, the upper limit valve opening time is reached. The electronic expansion valve 13 is used when the internal temperature continues to exceed the target temperature or the blown air temperature continues to rise, even though the opening operation command to the extent is continued for the set time. Is determined to have a closed failure.

上述したような弁開度調節処理を通常運転で実施した冷却装置は、かかる通常運転時間が所定時間に達した後、つまり除霜運転開始時点からあらかじめ設定されたサイクル時間が経過した後、蒸発器12への冷媒の供給を停止して除霜運転をおこなうことになる。   The cooling device that has performed the valve opening adjustment process as described above in the normal operation evaporates after the normal operation time reaches a predetermined time, that is, after a preset cycle time has elapsed from the start of the defrosting operation. The supply of the refrigerant to the vessel 12 is stopped and the defrosting operation is performed.

除霜運転の場合、冷却装置を構成する弁開度調節手段30は、弁開度設定処理部33を通じて電子膨張弁13に対して全閉状態(閉成状態)となるよう閉動作指令を与える一方、故障判定手段40は、故障判定処理を実施する。図7は、図1に示した故障判定手段が実施する故障判定処理の内容を示すフローチャートである。   In the case of the defrosting operation, the valve opening degree adjusting means 30 constituting the cooling device gives a closing operation command to the electronic expansion valve 13 through the valve opening degree setting processing unit 33 so as to be in a fully closed state (closed state). On the other hand, the failure determination means 40 performs failure determination processing. FIG. 7 is a flowchart showing the contents of the failure determination process performed by the failure determination means shown in FIG.

故障判定処理における故障判定手段40は、入口部冷媒温度(以下、T1とも示す)、中間部冷媒温度(以下、T2とも示す)および出口部冷媒温度(以下、T3とも示す)のそれぞれの入力処理をおこなう(ステップS200)。   In the failure determination process, the failure determination means 40 inputs each of the inlet refrigerant temperature (hereinafter also referred to as T1), the intermediate refrigerant temperature (hereinafter also referred to as T2), and the outlet refrigerant temperature (hereinafter also referred to as T3). (Step S200).

図8は、図7に示した入口部冷媒温度、中間部冷媒温度および出口部冷媒温度の入力処理(以下、T1、T2、T3入力処理とも称する)の内容を示すフローチャートである。   FIG. 8 is a flowchart showing the contents of the input part refrigerant temperature, intermediate part refrigerant temperature, and outlet part refrigerant temperature input processes (hereinafter also referred to as T1, T2, T3 input processes) shown in FIG.

T1、T2、T3入力処理において、故障判定手段40は、入口部冷媒温度センサ20、中間部冷媒温度センサ22および出口部冷媒温度センサ21を通じて入口部冷媒温度T1、中間部冷媒温度T2および出口部冷媒温度T3を検出し(ステップS201)、入力処理部42を通じて各冷媒温度T1,T2,T3を入力処理する(ステップS202)。その後に、故障判定手段40は、入力処理部42を通じて入力処理した各冷媒温度を各種情報記憶部41に記憶し(ステップS203)、手順をリターンさせて今回の処理を終了する。   In the T1, T2, and T3 input processes, the failure determination means 40 includes the inlet refrigerant temperature T1, the intermediate refrigerant temperature T2, and the outlet through the inlet refrigerant temperature sensor 20, the intermediate refrigerant temperature sensor 22, and the outlet refrigerant temperature sensor 21. The refrigerant temperature T3 is detected (step S201), and the refrigerant temperatures T1, T2, and T3 are input through the input processing unit 42 (step S202). Thereafter, the failure determination means 40 stores each refrigerant temperature input through the input processing unit 42 in the various information storage units 41 (step S203), returns the procedure, and ends the current process.

故障判定手段40は、図には明示しないが、タイマー部43を通じて各T1,T2,T3の記憶後に時間の計測を開始し、計測時間が各種情報記憶部41にあらかじめ記憶してある設定時間(たとえば1分間)に達したときに、T1,T2,T3入力処理を繰り返すようにしている。つまり、故障判定手段40は、除霜運転時において、設定時間(たとえば1分間)ごとに検出された各冷媒温度T1,T2,T3を入力処理して記憶する、T1,T2,T3入力処理を繰り返している。このような処理を繰り返す結果、図9に示すような各冷媒温度T1,T2,T3が各種情報記憶部41に記憶されることになる。この図9において、t0は除霜運転開始時点、t1は除霜運転を開始してからたとえば1分後の時点、t2はt1から1分後の時点、t3はt2から1分後の時点を示している。また、故障判定手段40は、除霜運転が開始されてからプルダウン(冷却運転)が開始されるまでの間、あるいは決められた時間(たとえば10分間)の間、繰り返し実施する。   Although not clearly shown in the figure, the failure determination means 40 starts measuring time after storing each T1, T2, T3 through the timer unit 43, and sets the measurement time stored in the various information storage unit 41 in advance ( When, for example, 1 minute) is reached, the T1, T2, and T3 input processes are repeated. That is, the failure determination means 40 performs T1, T2, and T3 input processing for inputting and storing the refrigerant temperatures T1, T2, and T3 detected every set time (for example, 1 minute) during the defrosting operation. It is repeating. As a result of repeating such processing, the refrigerant temperatures T1, T2, T3 as shown in FIG. In FIG. 9, t0 is the defrosting operation start time, t1 is the time 1 minute after the start of the defrosting operation, t2 is the time 1 minute after t1, and t3 is the time 1 minute after t2. Show. Moreover, the failure determination means 40 is repeatedly performed during the period from when the defrosting operation is started until the pull-down (cooling operation) is started, or for a predetermined time (for example, 10 minutes).

このようなT1,T2,T3入力処理を実施した故障判定手段40は、故障判定部44を通じて、今回検出した冷媒温度T1が前回(直近の前回)に検出した冷媒温度T1′よりも上昇しているか否か、冷媒温度T2が前回(直近の前回)に検出した冷媒温度T2′よりも上昇しているか否か、ならびに冷媒温度T3が前回(直近の前回)に検出した冷媒温度T3′よりも上昇しているか否かを確認し(ステップS211,ステップS212,ステップS213)、これらのうちいずれか一つが上昇していれば、電子膨張弁13が正常であると判定して(ステップS214)、その後に手順をリターンさせて今回の処理を終了する。   The failure determination means 40 that has performed such T1, T2, T3 input processing, through the failure determination unit 44, increases the refrigerant temperature T1 detected this time higher than the refrigerant temperature T1 ′ detected last time (the latest previous time). Whether the refrigerant temperature T2 is higher than the refrigerant temperature T2 'detected last time (the latest previous time), and the refrigerant temperature T3 is higher than the refrigerant temperature T3' detected last time (the latest previous time). It is confirmed whether or not it has risen (step S211, step S212, step S213). If any one of these has risen, it is determined that the electronic expansion valve 13 is normal (step S214), Thereafter, the procedure is returned to end the current process.

その一方、冷媒温度T1,T2,T3のすべてが前回の冷媒温度T1′,T2′,T3′よりも上昇していない場合には(ステップS211:No,ステップS212:No,ステップS213:No)、故障判定手段40は、故障判定部44を通じて電子膨張弁13が開故障しているものと判定して(ステップS215)、その後に手順をリターンさせて今回の処理を終了する。   On the other hand, when all of the refrigerant temperatures T1, T2, and T3 are not higher than the previous refrigerant temperatures T1 ′, T2 ′, and T3 ′ (step S211: No, step S212: No, step S213: No) Then, the failure determination means 40 determines that the electronic expansion valve 13 has an open failure through the failure determination unit 44 (step S215), and then returns the procedure to end the current process.

つまり、故障判定手段40は、除霜運転の場合にあらかじめ決められた所定時間ごと(1分間ごと)に入口部冷媒温度センサ20、中間部冷媒温度センサ22および出口部冷媒温度センサ21を通じて各冷媒温度を検出し、検出した冷媒温度が前回検出した冷媒温度よりも上昇しているものが少なくとも一つある場合には、電子膨張弁13は正常であると判定する一方、入口部冷媒温度センサ20、中間部冷媒温度センサ22および出口部冷媒温度センサ21を通じて検出した冷媒温度が前回検出した冷媒温度よりも上昇しているものが存在しない場合には、電子膨張弁13が開故障しているものと判定している。   That is, the failure determination means 40 passes the refrigerant through the inlet refrigerant temperature sensor 20, the intermediate refrigerant temperature sensor 22, and the outlet refrigerant temperature sensor 21 every predetermined time (every minute) predetermined in the defrosting operation. When at least one of the detected refrigerant temperatures is higher than the previously detected refrigerant temperature, the electronic expansion valve 13 is determined to be normal while the inlet refrigerant temperature sensor 20 is detected. When the refrigerant temperature detected through the intermediate refrigerant temperature sensor 22 and the outlet refrigerant temperature sensor 21 is not higher than the refrigerant temperature detected last time, the electronic expansion valve 13 is malfunctioning. It is judged.

このように除霜運転を行った冷却装置は、その後にプルダウンを行い、かかるプルダウン後に再び通常運転をおこなうことになる。   The cooling device that has performed the defrosting operation in this manner performs pull-down after that, and performs normal operation again after the pull-down.

以上説明したように本発明の実施の形態における冷却装置によれば、通常運転の場合に、弁開度調節手段30が、弁開度設定処理部33を通じて上限弁開度とする旨の開動作指令をあらかじめ決められた設定時間だけ与え続けているにもかかわらず、内部温度が目標温度を上回りつづけている、もしくは、吹出空気温度が上昇しつづけている場合に、故障判断部34を通じて電子膨張弁13が閉故障しているものと判断する一方、弁開度設定処理部33を通じて下限弁開度にする旨の閉動作指令を設定時間だけ与え続けているにもかかわらず、内部温度が目標温度を下回りつづけている、もしくは、吹出空気温度が下降しつづけている場合に、電子膨張弁13が開故障しているものと判断するので、弁開度への開度指令とその指令時間との関係から電子膨張弁13の故障を判断することになり、従来のように二つの温度の比較演算することにより故障を判断するのに比して、電子膨張弁13の故障を良好に検出することにより、検出精度の信頼性を向上させることができる。   As described above, according to the cooling device in the embodiment of the present invention, in the normal operation, the valve opening adjusting means 30 opens the valve opening setting processing unit 33 to the upper limit valve opening. Electronic expansion through the failure determination unit 34 when the internal temperature continues to exceed the target temperature or the blown air temperature continues to rise despite the command being given for a predetermined set time. While it is determined that the valve 13 is in a closed failure state, the internal temperature is the target even though the closing operation command for setting the lower limit valve opening through the valve opening setting processing unit 33 is continuously given for a set time. When the temperature continues to fall below or the blown air temperature continues to fall, it is determined that the electronic expansion valve 13 is open, so the opening command to the valve opening and its command time No seki Thus, the failure of the electronic expansion valve 13 is judged, and the failure of the electronic expansion valve 13 is detected better than the conventional case where the failure is judged by comparing and calculating two temperatures. The reliability of detection accuracy can be improved.

また、上記冷却装置によれば、除霜運転の場合に、故障判定手段40が、あらかじめ決められた所定時間ごとに入口部冷媒温度センサ20、中間部冷媒温度センサ22および出口部冷媒温度センサ21を通じて各冷媒温度T1,T2,T3を検出し、冷媒温度T1,T2,T3が前回検出した冷媒温度T1′,T2′,T3′よりも上昇しているものが少なくとも一つある場合には、電子膨張弁13は正常であると判定する一方、入口部冷媒温度センサ20、中間部冷媒温度センサ22および出口部冷媒温度センサ21を通じて検出した冷媒温度T1,T2,T3が前回検出した冷媒温度T1′,T2′,T3′よりも上昇しているものが存在しない場合には、電子膨張弁13が開故障しているものと判定するので、通常運転の場合だけに限らず、除霜運転の場合にも電子膨張弁13の故障を良好に検出することが可能になる。   Further, according to the cooling device, in the case of the defrosting operation, the failure determination means 40 has the inlet refrigerant temperature sensor 20, the intermediate refrigerant temperature sensor 22, and the outlet refrigerant temperature sensor 21 at predetermined time intervals. Each refrigerant temperature T1, T2, T3 is detected, and at least one refrigerant temperature T1, T2, T3 is higher than the previously detected refrigerant temperature T1 ′, T2 ′, T3 ′. While it is determined that the electronic expansion valve 13 is normal, the refrigerant temperatures T1, T2, T3 detected through the inlet refrigerant temperature sensor 20, the intermediate refrigerant temperature sensor 22, and the outlet refrigerant temperature sensor 21 are the refrigerant temperatures T1 detected last time. When there is nothing higher than ', T2', T3 ', it is determined that the electronic expansion valve 13 is in an open failure state. Not, it is possible to satisfactorily detect the failure of the electronic expansion valve 13 even when the defrosting operation.

特に、本実施の形態における冷却装置では、故障判定手段40が、入口部冷媒温度センサ20、中間部冷媒温度センサ22および出口部冷媒温度センサ21を通じて検出した三つの冷媒温度T1,T2,T3に基づいて電子膨張弁13の正常、あるいは開故障を判定しているので、より確実に判定することが可能になる。このことについて詳しく述べると、電子膨張弁13の正常、あるいは開故障を判定するだけなら、図9から明らかなように温度分布が比較的安定している中間部冷媒温度センサ22、あるいは出口部冷媒温度センサ21により検出された冷媒温度T2,T3でも可能である。しかしながら、これらの時間ごとの温度差は比較的小さく、場合によっては温度差が限りなく少ない場合もある。そのため、電子膨張弁13の正常、あるいは開故障を正確に判定できない虞れがある。一方、入口部冷媒温度センサ20により検出された冷媒温度T1は、温度分布が不安定な部分があるものの、所定時間ごとの温度差が比較的大きく、温度差を測定することが可能である。したがって、これら三つのセンサの検出結果に基づいてより確実に電子膨張弁13の故障を良好に検出することができる。また、除霜運転に入った直後は、一時的に低圧圧力が下がるために、入口部冷媒温度センサ20により検出される冷媒温度T1は、図9に示すように、いったん下がることが確認されているが(時点t1から時点t2の間)、その経過時間の時には、中間部冷媒温度センサ22および出口部冷媒温度センサ21により所定時間ごとに検出される冷媒温度T2,T3の温度差は、十分に確保されているため、かかる経過時間の時に誤判定する虞れもない。   In particular, in the cooling device according to the present embodiment, the failure determination means 40 uses the three refrigerant temperatures T1, T2, and T3 detected through the inlet refrigerant temperature sensor 20, the intermediate refrigerant temperature sensor 22, and the outlet refrigerant temperature sensor 21. Since the normal or open failure of the electronic expansion valve 13 is determined based on this, it is possible to determine more reliably. More specifically, if only the normal or open failure of the electronic expansion valve 13 is determined, as is apparent from FIG. 9, the intermediate refrigerant temperature sensor 22 having a relatively stable temperature distribution, or the outlet refrigerant. The refrigerant temperatures T2 and T3 detected by the temperature sensor 21 are also possible. However, the temperature difference for each time is relatively small, and in some cases, the temperature difference is infinitely small. Therefore, there is a possibility that normal or open failure of the electronic expansion valve 13 cannot be accurately determined. On the other hand, the refrigerant temperature T1 detected by the inlet refrigerant temperature sensor 20 has a portion where the temperature distribution is unstable, but the temperature difference per predetermined time is relatively large, and the temperature difference can be measured. Therefore, the failure of the electronic expansion valve 13 can be detected well more reliably based on the detection results of these three sensors. Further, immediately after the start of the defrosting operation, since the low pressure is temporarily lowered, it is confirmed that the refrigerant temperature T1 detected by the inlet refrigerant temperature sensor 20 is once lowered as shown in FIG. However, during the elapsed time, the temperature difference between the refrigerant temperatures T2 and T3 detected every predetermined time by the intermediate refrigerant temperature sensor 22 and the outlet refrigerant temperature sensor 21 is sufficiently large. Therefore, there is no possibility of erroneous determination at the elapsed time.

以上のように、本発明にかかる冷却装置は、オープンショーケースの収容庫の冷却に有用である。   As described above, the cooling device according to the present invention is useful for cooling an open showcase container.

本発明の実施の形態である冷却装置の構成を概念的に示した概念図である。It is the conceptual diagram which showed notionally the structure of the cooling device which is embodiment of this invention. 図1に示した弁開度調節手段が実施する弁開度調節処理の内容を示すフローチャートである。It is a flowchart which shows the content of the valve opening degree adjustment process which the valve opening degree adjustment means shown in FIG. 1 implements. 図2に示した弁開度閉処理の内容を示すフローチャートである。It is a flowchart which shows the content of the valve opening closing process shown in FIG. 図3に示した開故障判断処理の内容を示すフローチャートである。It is a flowchart which shows the content of the open failure determination process shown in FIG. 図2に示した弁開度開処理の内容を示すフローチャートである。It is a flowchart which shows the content of the valve opening opening process shown in FIG. 図5に示した閉故障判断処理の内容を示すフローチャートである。It is a flowchart which shows the content of the closed fault judgment process shown in FIG. 図1に示した故障判定手段が実施する故障判定処理の内容を示すフローチャートである。It is a flowchart which shows the content of the failure determination process which the failure determination means shown in FIG. 1 implements. 図7に示した入口部冷媒温度、中間部冷媒温度および出口部冷媒温度の入力処理の内容を示すフローチャートである。It is a flowchart which shows the content of the input process of the inlet part refrigerant | coolant temperature shown in FIG. 7, an intermediate part refrigerant | coolant temperature, and an outlet part refrigerant | coolant temperature. 各冷媒温度の経過時間と温度との関係を示す図表である。It is a graph which shows the relationship between the elapsed time of each refrigerant temperature, and temperature.

符号の説明Explanation of symbols

10 収容庫
11 オープンショーケース
12 蒸発器
13 電子膨張弁
14 凝縮器
15 圧縮機
16 冷媒供給管路
17 送風ファン
20 入口部冷媒温度センサ
21 出口部冷媒温度センサ
22 中間部冷媒温度センサ
23 内部温度センサ
30 弁開度調節手段
31 設定記憶部
32 温度比較判断部
33 弁開度設定処理部
34 故障判断部
35 時間計測部
40 故障判定手段
41 各種情報記憶部
42 入力処理部
43 タイマー部
44 故障判定部
DESCRIPTION OF SYMBOLS 10 Container 11 Open showcase 12 Evaporator 13 Electronic expansion valve 14 Condenser 15 Compressor 16 Refrigerant supply line 17 Blower fan 20 Inlet part refrigerant | coolant temperature sensor 21 Outlet part refrigerant | coolant temperature sensor 22 Intermediate part refrigerant | coolant temperature sensor 23 Internal temperature sensor DESCRIPTION OF SYMBOLS 30 Valve opening degree adjustment means 31 Setting memory | storage part 32 Temperature comparison judgment part 33 Valve opening degree setting process part 34 Failure judgment part 35 Time measurement part 40 Failure judgment means 41 Various information storage part 42 Input processing part 43 Timer part 44 Fault judgment part

Claims (2)

通常運転の場合に収容庫の内部温度に基づいて電子膨張弁の開度を調節する開度調節手段を備え、この開度調節手段により前記収容庫に配設した蒸発器に対する冷媒の供給制御をおこなうことにより、該収容庫を所望の温度状態にする冷却装置において、
前記開度調節手段は、
あらかじめ設定された上限弁開度と下限弁開度との範囲内で前記収容庫の内部温度に基づいて前記電子膨張弁に対して開動作指令、あるいは閉動作指令を与える開閉指令手段と、
前記開閉指令手段が上限弁開度とする旨の開動作指令をあらかじめ決められた設定時間だけ与え続けているにもかかわらず前記内部温度があらかじめ設定された目標温度を上回りつづけている場合に、前記電子膨張弁が閉故障しているものと判断する一方、前記開閉指令手段が下限弁開度にする旨の閉動作指令を前記設定時間だけ与え続けているにもかかわらず前記内部温度があらかじめ設定された目標温度を下回りつづけている場合に、前記電子膨張弁が開故障しているものと判断する故障判断手段と
を備えていることを特徴とする冷却装置。
In normal operation, it is provided with an opening degree adjusting means for adjusting the opening degree of the electronic expansion valve based on the internal temperature of the storage case, and the supply control of the refrigerant to the evaporator disposed in the storage case by the opening degree adjusting means. In the cooling device that brings the container into a desired temperature state by performing,
The opening degree adjusting means is
An opening / closing command means for giving an opening operation command or a closing operation command to the electronic expansion valve based on an internal temperature of the container within a range between a preset upper limit valve opening and a lower limit valve opening;
When said switching command means it is continuously exceeded the target temperature opening operation instruction to continue only given predetermined set time Runimokakawarazu the internal temperature is preset to the effect that the upper limit valve opening, the one that electronic expansion valve is determined that that closure failure, the switching command means lower valve Runimokakawarazu the internal temperature closing operation command continues giving only the set time of the effect that the opening is preliminarily And a failure determination means for determining that the electronic expansion valve is open-failed when the set temperature continues to fall below a set target temperature .
前記開度調節手段は、前記通常運転開始後あらかじめ決められた時間が経過して除霜運転に移行した場合には、前記電子膨張弁を閉成させて前記蒸発器に対する冷媒の供給を停止するものであり、
前記蒸発器に接続した冷媒管路のうち該蒸発器の入口部を通過する冷媒の温度を検出する入口部冷媒温度検出手段と、
前記冷媒管路のうち前記蒸発器の出口部を通過する冷媒の温度を検出する出口部冷媒温度検出手段と、
前記蒸発器の内部において前記出口部に近接する部位を通過する冷媒の温度を検出する中間部冷媒温度検出手段と、
前記除霜運転の場合にあらかじめ決められた所定時間ごとに前記入口部冷媒温度検出手段、前記出口部冷媒温度検出手段および前記中間部冷媒温度検出手段を通じて各温度を検出し、検出温度が前回の検出温度よりも上昇しているものが少なくとも一つある場合には、前記電子膨張弁は正常であると判定する一方、前記入口部冷媒温度検出手段、前記出口部冷媒温度検出手段および前記中間部冷媒温度検出手段を通じて検出した温度が前回の検出温度よりも上昇しているものが存在しない場合には、前記電子膨張弁が開故障しているものと判定する故障判定手段と
を備えたことを特徴とする請求項1に記載の冷却装置。
The opening degree adjusting means closes the electronic expansion valve and stops the supply of the refrigerant to the evaporator when a predetermined time elapses after the start of the normal operation and the defrosting operation is started. Is,
Inlet refrigerant temperature detecting means for detecting the temperature of the refrigerant passing through the inlet of the evaporator among the refrigerant pipes connected to the evaporator;
Outlet refrigerant temperature detecting means for detecting the temperature of the refrigerant passing through the outlet of the evaporator in the refrigerant pipe;
An intermediate refrigerant temperature detecting means for detecting the temperature of the refrigerant passing through a portion close to the outlet in the evaporator;
Each temperature is detected through the inlet portion refrigerant temperature detecting means, the outlet portion refrigerant temperature detecting means, and the intermediate portion refrigerant temperature detecting means at predetermined time intervals determined in advance in the defrosting operation, and the detected temperature is the previous temperature. If there is at least one that is higher than the detected temperature, the electronic expansion valve is determined to be normal, while the inlet refrigerant temperature detecting means, the outlet refrigerant temperature detecting means, and the intermediate part A failure determining means for determining that the electronic expansion valve is in an open failure state when there is no one whose temperature detected through the refrigerant temperature detecting means is higher than the previous detected temperature. The cooling device according to claim 1, wherein
JP2007314773A 2007-12-05 2007-12-05 Cooling system Expired - Fee Related JP4930353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007314773A JP4930353B2 (en) 2007-12-05 2007-12-05 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007314773A JP4930353B2 (en) 2007-12-05 2007-12-05 Cooling system

Publications (2)

Publication Number Publication Date
JP2009139000A JP2009139000A (en) 2009-06-25
JP4930353B2 true JP4930353B2 (en) 2012-05-16

Family

ID=40869781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007314773A Expired - Fee Related JP4930353B2 (en) 2007-12-05 2007-12-05 Cooling system

Country Status (1)

Country Link
JP (1) JP4930353B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106500238A (en) * 2016-09-12 2017-03-15 珠海格力电器股份有限公司 Electronic expansion valve fault detection method and device and multi-online equipment system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5949839B2 (en) 2014-06-17 2016-07-13 ダイキン工業株式会社 Refrigeration equipment
ES2830277T3 (en) * 2014-07-21 2021-06-03 Lg Electronics Inc Refrigerator and its control method
JP2021127896A (en) * 2020-02-17 2021-09-02 富士電機株式会社 Cooling system
CN114963294B (en) * 2021-11-11 2024-09-10 青岛海尔新能源电器有限公司 Abnormality detection method and device for heater, heater and storage medium

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329169A (en) * 1986-07-23 1988-02-06 三菱電機株式会社 air conditioner
JPS6354557A (en) * 1986-08-20 1988-03-08 三菱電機株式会社 Air conditioner
JPS63194172A (en) * 1987-02-04 1988-08-11 ダイキン工業株式会社 Failure detection device for electric expansion valves in refrigeration equipment
JP2532937B2 (en) * 1989-02-15 1996-09-11 三洋電機株式会社 Refrigerator circuit abnormality management system
JPH02282673A (en) * 1989-04-24 1990-11-20 Daikin Ind Ltd Trouble diagnosing device for electronic expansion valve
JPH07260297A (en) * 1994-03-17 1995-10-13 Matsushita Refrig Co Ltd Freezer
JP3330017B2 (en) * 1996-05-10 2002-09-30 株式会社日立製作所 Air conditioner
JP3763735B2 (en) * 2000-11-14 2006-04-05 シャープ株式会社 Air conditioner and failure determination method thereof
JP4666956B2 (en) * 2004-06-14 2011-04-06 三洋電機株式会社 Cooling storage
JP2006284074A (en) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd Control device of cooling device
JP2006343001A (en) * 2005-06-08 2006-12-21 Saginomiya Seisakusho Inc Pressure detection device, superheat detection device, and control device for cooling system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106500238A (en) * 2016-09-12 2017-03-15 珠海格力电器股份有限公司 Electronic expansion valve fault detection method and device and multi-online equipment system
CN106500238B (en) * 2016-09-12 2019-06-14 珠海格力电器股份有限公司 Electronic expansion valve fault detection method and device and multi-online equipment system

Also Published As

Publication number Publication date
JP2009139000A (en) 2009-06-25

Similar Documents

Publication Publication Date Title
AU2019243005B2 (en) Refrigerator and method for controlling same
CN114777395B (en) Control method of refrigerator
US20090090117A1 (en) System and method for monitoring overheat of a compressor
JP4329858B2 (en) Refrigeration equipment
JP4930353B2 (en) Cooling system
CN102032714A (en) Heat pump device
JP2009133572A (en) Refrigeration equipment
US20120167604A1 (en) Refrigeration cycle apparatus
JP2007255845A (en) Refrigerating cycle device
KR102365378B1 (en) Air conditioner and control method thereof
JP2008138914A (en) Refrigeration apparatus and refrigerating machine oil return method
JP2010054094A (en) Air conditioning device
JP2003314907A (en) Expansion valve control device
JP6095155B2 (en) Refrigeration apparatus and refrigerant leakage detection method for refrigeration apparatus
JP4952535B2 (en) Cooling system
US12215905B2 (en) Air conditioning apparatus
CN111156653B (en) Fault detection method for hot defrosting electromagnetic bypass valve, storage medium and air conditioner
CN114761742B (en) Control device for refrigeration cycle device, and refrigeration cycle device
CN112212462A (en) Air conditioner and control method thereof
KR102368987B1 (en) Air conditional and control method thereof
JP2008249240A (en) Condensing unit and refrigeration apparatus provided with the same
JP4798116B2 (en) Refrigerant flow control device
JP4935414B2 (en) Cooling system
JP7259962B2 (en) refrigeration cycle system
JP2008008555A (en) Refrigerant flow controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100316

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100818

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100819

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100819

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

R150 Certificate of patent or registration of utility model

Ref document number: 4930353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees