JP5040728B2 - Manufacturing method of sheet-like heat conductive material - Google Patents
Manufacturing method of sheet-like heat conductive material Download PDFInfo
- Publication number
- JP5040728B2 JP5040728B2 JP2008050154A JP2008050154A JP5040728B2 JP 5040728 B2 JP5040728 B2 JP 5040728B2 JP 2008050154 A JP2008050154 A JP 2008050154A JP 2008050154 A JP2008050154 A JP 2008050154A JP 5040728 B2 JP5040728 B2 JP 5040728B2
- Authority
- JP
- Japan
- Prior art keywords
- sheet
- heat conductive
- conductive material
- substrate
- liquid polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004020 conductor Substances 0.000 title claims description 73
- 238000004519 manufacturing process Methods 0.000 title claims description 30
- 239000007788 liquid Substances 0.000 claims description 59
- 239000002861 polymer material Substances 0.000 claims description 59
- 239000002041 carbon nanotube Substances 0.000 claims description 55
- 239000000758 substrate Substances 0.000 claims description 55
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 46
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 26
- 239000000463 material Substances 0.000 claims description 8
- 230000005484 gravity Effects 0.000 claims description 3
- 102100023116 Sodium/nucleoside cotransporter 1 Human genes 0.000 description 32
- 101710123675 Sodium/nucleoside cotransporter 1 Proteins 0.000 description 17
- 101000685663 Homo sapiens Sodium/nucleoside cotransporter 1 Proteins 0.000 description 15
- 239000004745 nonwoven fabric Substances 0.000 description 12
- 229920000742 Cotton Polymers 0.000 description 11
- 239000007789 gas Substances 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- -1 etc.) Substances 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- NEBFBVFMEJNMTO-UHFFFAOYSA-N acetylene;benzene Chemical compound C#C.C1=CC=CC=C1 NEBFBVFMEJNMTO-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004634 thermosetting polymer Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000003631 wet chemical etching Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Landscapes
- Carbon And Carbon Compounds (AREA)
Description
本発明は、シート状熱伝導材料の製造方法に関する。 The present invention relates to a method for producing a sheet-like heat conductive material.
高い熱輸送能力を持つとされるカーボンナノチューブ(CNT)を垂直に配向させ、シートの表から裏までCNTを貫通させることで、熱伝導性の高いシートを得ることが提案されている(特許文献1、2参照)。これらの技術は、シートの表面からCNTを露出させ、放熱対象物との熱的な接触を向上させることで、熱伝導性の高いシートを実現している。
しかしながら、上記特許文献1、2の技術では、シートの表面からCNTを露出させるために、特殊な工程を行う必要があり、製造コストが高くなるという問題がある。
すなわち、特許文献1の技術では、CNTを垂直配向合成させた後、(i)CNTの両端部に保護膜を形成、(ii)ポリマー材料をCNT間に充填、(iii)保護膜の除去、といった工程が必要となる。
However, the techniques disclosed in Patent Documents 1 and 2 have a problem that a special process needs to be performed to expose the CNTs from the surface of the sheet, which increases the manufacturing cost.
That is, in the technique of Patent Document 1, after CNTs are vertically aligned and synthesized, (i) a protective film is formed on both ends of the CNT, (ii) a polymer material is filled between the CNTs, and (iii) the protective film is removed. Such a process is required.
また、特許文献2の技術では、基材にCNTを垂直配向合成させた後、(i)化学蒸着、物理蒸着、プラズマ蒸着、イオンスパッタリング、電気化学的析出および液層からのキャスティングにより充填材を充填、(ii)端部を機械研磨、化学ー機械研磨、湿式化学エッチング、電気化学エッチング、乾式プラズマエッチングのいずれかを実施する、といった工程が必要となる。 In the technique of Patent Document 2, after vertically aligning and synthesizing CNTs on a base material, (i) a filler is formed by chemical vapor deposition, physical vapor deposition, plasma vapor deposition, ion sputtering, electrochemical deposition, and casting from a liquid layer. A process of filling, (ii) performing mechanical polishing, chemical-mechanical polishing, wet chemical etching, electrochemical etching, or dry plasma etching of the end portion is required.
これらの工程は、大規模な設備が必要となる特殊な工程であるから、熱伝導性の高いシートを容易に製造することはできなかった。
本発明は以上の点に鑑みなされたものであり、熱伝導性の高いシート状熱伝導材料を容易に製造できる製造方法を提供することを目的とする。
Since these processes are special processes that require large-scale equipment, a sheet having high thermal conductivity could not be easily manufactured.
This invention is made | formed in view of the above point, and it aims at providing the manufacturing method which can manufacture a sheet-like heat conductive material with high heat conductivity easily.
本発明に係るシート状熱伝導材料の製造方法では、基板に一端が固定された複数のカーボンナノチューブに対し、前記基板とは反対側から液状ポリマー材料を接触させ、前記のカーボンナノチューブの表面に前記液状ポリマー材料を付着させる(第1工程)。 In the method for producing a sheet-like heat conductive material according to the present invention, a liquid polymer material is contacted from the opposite side to the plurality of carbon nanotubes, one end of which is fixed to the substrate, and the surface of the carbon nanotubes A liquid polymer material is deposited (first step).
その後、前記カーボンナノチューブの表面に付着した前記液状ポリマー材料を、前記基板の側に移動させ、前記複数のカーボンナノチューブのうち、少なくとも一部については、前記基板とは反対側の端部が前記液状ポリマー材料で覆われない状態とする(第2工程)。 Thereafter, the liquid polymer material attached to the surface of the carbon nanotube is moved to the substrate side, and at least a part of the plurality of carbon nanotubes has an end portion on the side opposite to the substrate at the liquid state. The state is not covered with the polymer material (second step).
その後、前記液状ポリマー材料を固体化し、前記複数のカーボンナノチューブ、及び固体化したポリマー材料から成るシート状熱伝導材料を形成する(第3工程)。
本発明に係るシート状熱伝導材料の製造方法によれば、CNTを含み、そのCNTが、両面でそれぞれ露出しているシート状熱伝導材料を、特殊な工程を用いることなく容易に製造することができる。また、本発明に係るシート状熱伝導材料の製造方法によれば、熱伝導性が非常に高いシート状熱伝導材料を製造することができる。
Thereafter, the liquid polymer material is solidified to form a sheet-like heat conductive material composed of the plurality of carbon nanotubes and the solidified polymer material (third step).
According to the method for manufacturing a sheet-like heat conductive material according to the present invention, a sheet-like heat conductive material containing CNTs, and the CNTs are exposed on both sides, can be easily manufactured without using a special process. Can do. Moreover, according to the manufacturing method of the sheet-like heat conductive material according to the present invention, it is possible to produce a sheet-like heat conductive material having extremely high thermal conductivity.
本発明において、例えば、前記基板を、放熱対象物とすれば、基板上で製造したシート状熱伝導材料をそのまま用いることができる。
また、シート状熱伝導材料を、上記のように、基板上で形成した後、基板から取り外してもよい(第4工程)。こうすることにより、製造したシート状熱伝導材料を任意の場所に取り付け、使用することができる。シート状熱伝導材料を基板から取り外す方法としては、例えば、ナイフのような器具で、シート状熱伝導材料と基板との界面を切断する方法が挙げられる。
In the present invention, for example, if the substrate is a heat dissipation object, the sheet-like heat conductive material manufactured on the substrate can be used as it is.
Moreover, after forming a sheet-like heat conductive material on a board | substrate as mentioned above, you may remove from a board | substrate (4th process). By carrying out like this, the manufactured sheet-like heat conductive material can be attached and used in arbitrary places. As a method for removing the sheet-like heat conductive material from the substrate, for example, there is a method of cutting the interface between the sheet-like heat conductive material and the substrate with an instrument such as a knife.
前記第1工程では、例えば、毛細管現象を利用して、複数のカーボンナノチューブの表面に液状ポリマー材料を付着させることができる。
前記第1工程において、例えば、複数のカーボンナノチューブを、吸湿性材料に含浸させた液状ポリマー材料に接触させることで、複数のカーボンナノチューブの表面に液状ポリマー材料を付着させることができる。この方法をとることにより、CNTに液状ポリマー材料が過剰に付着し、前記第2工程においてCNTの端部が液状ポリマー材料で覆われてしまうことを防止できる。上記の方法をとる場合、液状ポリマー材料の液面が、吸湿性材料の表面より内側であることが好ましい。こうすることにより、CNTに液状ポリマー材料が過剰に付着し、前記第2工程においてCNTの端部が液状ポリマー材料で覆われてしまうことを一層効果的に防止できる。
In the first step, for example, a liquid polymer material can be attached to the surfaces of the plurality of carbon nanotubes by utilizing a capillary phenomenon.
In the first step, for example, by bringing a plurality of carbon nanotubes into contact with a liquid polymer material impregnated with a hygroscopic material, the liquid polymer material can be attached to the surface of the plurality of carbon nanotubes. By adopting this method, it is possible to prevent the liquid polymer material from adhering excessively to the CNT and covering the end portion of the CNT with the liquid polymer material in the second step. When taking said method, it is preferable that the liquid level of a liquid polymer material is inside the surface of a hygroscopic material. By doing so, it is possible to more effectively prevent the liquid polymer material from adhering excessively to the CNT and covering the end portion of the CNT with the liquid polymer material in the second step.
前記吸湿性材料としては、液状ポリマー材料を含浸できるものを広く用いることができるが、例えば、不織布、多孔体(例えば、ゼオライト、シリカゲル、活性炭等)、織布等が挙げられる。 As the hygroscopic material, materials that can be impregnated with a liquid polymer material can be widely used. Examples thereof include a nonwoven fabric, a porous body (eg, zeolite, silica gel, activated carbon, etc.), and a woven fabric.
前記第2工程では、例えば、基板が複数のカーボンナノチューブの下側となるようにし、重力により、液状ポリマー材料を、基板の側に移動させることができる。この方法を用いれば、液状ポリマー材料を容易に基板の側に移動させることができる。また、上記の方法の他に、種々の方法(例えば、遠心力、静電気力、磁力等)を用いて、液状ポリマー材料を、基板の側に移動させてもよい。 In the second step, the liquid polymer material can be moved to the substrate side by gravity, for example, so that the substrate is located below the plurality of carbon nanotubes. If this method is used, the liquid polymer material can be easily moved to the substrate side. In addition to the above method, the liquid polymer material may be moved to the substrate side using various methods (for example, centrifugal force, electrostatic force, magnetic force, etc.).
前記液状ポリマー材料の粘度は、1.0Pa・S以下であることが好ましい。この範囲であることにより、CNTに液状ポリマー材料が過剰に付着し、前記第2工程において、CNTの端部が液状ポリマー材料で覆われてしまうことを防止できる。前記液状ポリマー材料としては、例えば、熱硬化性ポリマー、光(紫外線)硬化性ポリマーなどを広く用いることが出来る。より具体的には、シリコーン樹脂、ポリスチレン、アクリル(PMMA)等を用いることができる。 The viscosity of the liquid polymer material is preferably 1.0 Pa · S or less. By being in this range, it is possible to prevent the liquid polymer material from being excessively attached to the CNT and covering the end portion of the CNT with the liquid polymer material in the second step. As said liquid polymer material, a thermosetting polymer, a photo (ultraviolet) curable polymer, etc. can be widely used, for example. More specifically, silicone resin, polystyrene, acrylic (PMMA) or the like can be used.
前記基板は、例えば、複数のカーボンナノチューブの一端が固定された領域と、その領域間に設けられた、カーボンナノチューブが固定されていない隙間部とを有するものとすることができる。このようにすれば、液状ポリマー材料をCNTに付着させるとき、隙間部が液状ポリマー材料の通路となるので、液状ポリマー材料がCNTの層に浸透し易い。その結果、シート状熱伝導材料におけるポリマーの付着度合いを均一化することができる。 The substrate may have, for example, a region where one ends of a plurality of carbon nanotubes are fixed, and a gap provided between the regions where the carbon nanotubes are not fixed. In this way, when the liquid polymer material is attached to the CNT, the gap portion becomes a passage for the liquid polymer material, so that the liquid polymer material easily penetrates into the CNT layer. As a result, the degree of polymer adhesion in the sheet-like heat conductive material can be made uniform.
本発明におけるCNTは、例えば、以下のようにして製造することができる。CNTを成長させる基板として、基板上に、その表面積1m2当り、0.001〜0.005モル、好ましくは0.001〜0.002モルの割合で触媒金属を化学蒸着させて形成した活性基板を用いる。この場合、基板材料としては、耐熱性のもの、例えば、石英、アルミナ、シリコ−ン等が用いられる。前記触媒金属としては、従来公知の各種のもの、例えば、パラジウム、鉄、コバルト、ニッケル等の各種の遷移金属を1種又は2種以上を組合せて用いることができる。 The CNT in the present invention can be produced, for example, as follows. An active substrate formed by chemically vapor-depositing a catalytic metal on a substrate at a rate of 0.001 to 0.005 mol, preferably 0.001 to 0.002 mol per 1 m 2 of the surface area, as a substrate for growing CNTs. Is used. In this case, a heat-resistant material such as quartz, alumina, silicon or the like is used as the substrate material. As said catalyst metal, various conventionally well-known things, for example, various transition metals, such as palladium, iron, cobalt, nickel, can be used 1 type or in combination of 2 or more types.
CNTを製造するには、前記活性基板の存在下において、有機炭素原料の気体を流通させながら熱分解させる。この場合の反応温度(熱分解温度)は、1100〜1250℃、好ましくは1150〜1200℃である。有機炭素原料の気体の流通速度は、ガス空間速度(GHSV)で、20000〜200000hr-1、好ましくは30000〜150000hr-1である。前記有機炭素原料としては、特に制約されず、高温で炭素化されるものであればよい。このようなものとしては、メタン、エタン、プロパン、ブタン等の飽和炭化水素;エチレン、プロピレン、ブテン、イソブテン等の不飽和炭化水素;アセチレン等のアセチレン系化合物;ベンゼン、トルエン、キシレン、ナフタレン等の芳香族炭化水素、これらの混合物(例えば、ナフサや軽油等)等が包含される。前記有機炭素原料を熱分解する場合、その気体中にはアルゴンガスや水素ガスをキャリアーガスとして混入することができる。また、有機炭素原料には、硫化水素やメルカプタン等のイオウ化合物を適量加えることができる。 In order to produce CNTs, they are thermally decomposed in the presence of the active substrate while circulating a gas of the organic carbon raw material. The reaction temperature (thermal decomposition temperature) in this case is 1100 to 1250 ° C, preferably 1150 to 1200 ° C. The flow rate of the organic carbon raw material gas is a gas space velocity (GHSV) of 20000 to 200000 hr −1 , preferably 30000 to 150,000 hr −1 . The organic carbon raw material is not particularly limited as long as it is carbonized at a high temperature. Examples include saturated hydrocarbons such as methane, ethane, propane, and butane; unsaturated hydrocarbons such as ethylene, propylene, butene, and isobutene; acetylenic compounds such as acetylene; benzene, toluene, xylene, naphthalene, and the like. Aromatic hydrocarbons, mixtures thereof (for example, naphtha, light oil, etc.) and the like are included. When pyrolyzing the organic carbon raw material, argon gas or hydrogen gas can be mixed in the gas as a carrier gas. In addition, an appropriate amount of a sulfur compound such as hydrogen sulfide or mercaptan can be added to the organic carbon raw material.
前記反応により、その活性基板上にはCNTが生成されるが、このCNTは、その基板上に均一方向(通常、その基板表面に対して垂直方向)に成長した高品質のものである。
製造するCNTは、シングルウォール(グラファイト層が1層のみ、直径0.3〜5nm)であってもよいし、マルチウオール(グラファイト層が2層以上、直径10〜100nm)であってもよい。
The reaction generates CNTs on the active substrate, and the CNTs are of high quality grown on the substrate in a uniform direction (usually perpendicular to the substrate surface).
The CNT to be manufactured may be a single wall (only one graphite layer, a diameter of 0.3 to 5 nm) or a multiwall (two or more graphite layers, a diameter of 10 to 100 nm).
本発明で製造するシート状熱伝導材料の厚みは、20μm〜1mmの範囲が好適であり、100μm〜1mmの範囲が一層好適である。20μm(100μm)以上であることにより、製造工程におけるハンドリングが一層容易となる。また、1mm以下であることにより、シート状熱伝導材料の熱抵抗が過大になりにくい。 The thickness of the sheet-like heat conductive material produced in the present invention is preferably in the range of 20 μm to 1 mm, and more preferably in the range of 100 μm to 1 mm. When the thickness is 20 μm (100 μm) or more, handling in the manufacturing process is further facilitated. Moreover, when it is 1 mm or less, the thermal resistance of the sheet-like heat conductive material is unlikely to be excessive.
本発明の実施形態を説明する。 An embodiment of the present invention will be described.
1.シート状熱伝導材料の製造方法
(1)CNTの垂直配向膜の作成
縦:8mm、横:2mm、厚さ1mmのSi基板の片面(面積:16mm2)に、1m2当り、ニッケル0.002モルを真空蒸着法により蒸着させ、活性Si基板を得た。この活性Si基板を電気炉に挿通し、1200℃に加熱し、メタンガスを30cc/分、水素ガスを70cc/分及びアルゴンガスを400cc/分の流通速度で5分間流通させた。その結果、Si基板上には、多数のCNTが堆積した。図1に示すように、堆積したCNT1は、その一端が基板3に固定されており、また、基板3に対して垂直方向に均一に配向した。個々のCNT1の直径は100nm程度であった。また、CNT1は、基板3の全面にわたって均等に分布していた。
(2)液状ポリマー材料の浸透
図2に示すように、容器5内に、コットン系不織布7を敷き、そのコットン系不織布7に、液状ポリマー材料(硬化前)9を含浸させた。含浸量は10〜100μL/cm2とした。このとき、液状ポリマー材料9の液面は、コットン系不織布7の表面よりも下側となった。液状ポリマー材料9としては、シリコ−ン系樹脂を用いたが、その代わりに、PMMA、ポリスチレン等を用いてもよい。液状ポリマー材料9の粘度は0.8Pa・Sであった。
1. Manufacturing method of sheet-like heat conduction material (1) Preparation of vertical alignment film of CNT Length: 8 mm, width: 2 mm, 1 mm thickness of one side (area: 16 mm 2 ) of nickel 0.002 per 1 m 2 Mol was deposited by a vacuum deposition method to obtain an active Si substrate. This active Si substrate was inserted into an electric furnace and heated to 1200 ° C., and methane gas was circulated at a rate of 30 cc / min, hydrogen gas at 70 cc / min, and argon gas at a flow rate of 400 cc / min for 5 minutes. As a result, a large number of CNTs were deposited on the Si substrate. As shown in FIG. 1, the deposited CNT 1 has one end fixed to the substrate 3 and is uniformly oriented in the vertical direction with respect to the substrate 3. The diameter of each CNT1 was about 100 nm. Further, the CNTs 1 were evenly distributed over the entire surface of the substrate 3.
(2) Permeation of Liquid Polymer Material As shown in FIG. 2, a cotton-based nonwoven fabric 7 was laid in the container 5, and the cotton-based nonwoven fabric 7 was impregnated with a liquid polymer material (before curing) 9. The amount of impregnation was 10 to 100 μL / cm 2 . At this time, the liquid level of the liquid polymer material 9 was lower than the surface of the cotton nonwoven fabric 7. As the liquid polymer material 9, a silicon-based resin is used, but PMMA, polystyrene or the like may be used instead. The viscosity of the liquid polymer material 9 was 0.8 Pa · S.
そして、CNT1が下側となる向きとしておき、基板3を、コットン系不織布7の上に2分間静置した。このとき、図3に示すように、CNT1のうち、基板3とは反対の端部は、コットン系不織布7に接触した。すると、毛細管現象により、コットン系不織布7に含浸されていた液状ポリマー材料9が、CNT1の表面に付着した。なお、上述したように、液状ポリマー材料9の液面はコットン系不織布7の表面よりも下側であるから、CNT1が、コットン系不織布7に含浸されていない液状ポリマー材料9に直接触れることはない。
(3)液状ポリマー材料の移動
基板3をコットン系不織布7から離し、図4に示すように、基板3の上下を逆にし(すなわち、CNT1が上側となる向きとし)、10分間以上静置した。すると、重力により、CNT1に付着している液状ポリマー材料9が基板3側に移動した。この結果、CNT1のうち、基板3とは反対側の端部1aは、液状ポリマー材料9が付着せず、露出した状態となった。また、液状ポリマー材料9は、基板3の側では連続的に広がり、複数のCNT1の間を満たした。
(4)液状ポリマー材料の固化
基板3を、CNT1が上側となる向きのまま、120℃の雰囲気下に60分放置し、液状ポリマー材料9を硬化させた。その結果、図4に示すように、複数のCNT1と、それら複数のCNT1を結合する、硬化したポリマーとからなるシート状熱伝導材料11が形成された。シート状熱伝導材料11において、CNT1の端部1aは、硬化したポリマーに覆われず、露出した状態となった。このことは、基板3及びシート状熱伝導材料11の断面SEM写真によって確かめられた。すなわち、図5に示すように、硬化したポリマーは、CNT1の間にのみ存在し、CNT1における基板3とは反対側の端部(端部1a)を覆っていない。
(5)基板からの取り外し
図6に示すように、シート状熱伝導材料11を基板3から剥ぎ取った。具体的には、シート状熱伝導材料11と基板3との界面をナイフで切断することで、シート状熱伝導材料11を取り外した。得られたシート状熱伝導材料11において、先に基板3に接していた側の面11bには、CNT1の端部1bが露出している。また、シート状熱伝導材料11において、面11bとは反対側の面11aには、CNT1の端部1aが露出している。すなわち、個々のCNT1は、シート状熱伝導材料11の両面11a、11bにおいて、それぞれ露出している。
Then, the substrate 3 was placed on the cotton-based nonwoven fabric 7 for 2 minutes with the CNT 1 facing downward. At this time, as shown in FIG. 3, the end of CNT 1 opposite to substrate 3 was in contact with cotton-based nonwoven fabric 7. Then, the liquid polymer material 9 impregnated in the cotton nonwoven fabric 7 adhered to the surface of the CNT 1 by capillary action. As described above, since the liquid surface of the liquid polymer material 9 is lower than the surface of the cotton nonwoven fabric 7, the CNT1 cannot directly touch the liquid polymer material 9 not impregnated with the cotton nonwoven fabric 7. Absent.
(3) Movement of liquid polymer material The substrate 3 is separated from the cotton nonwoven fabric 7, and as shown in FIG. 4, the substrate 3 is turned upside down (that is, the CNT1 is directed upward) and left for 10 minutes or more. . Then, the liquid polymer material 9 adhering to CNT1 moved to the substrate 3 side by gravity. As a result, the liquid polymer material 9 did not adhere to the end portion 1a on the opposite side of the substrate 3 in the CNT 1 and was exposed. In addition, the liquid polymer material 9 spread continuously on the substrate 3 side and filled between the plurality of CNTs 1.
(4) Solidification of the liquid polymer material The substrate 3 was left in an atmosphere of 120 ° C. for 60 minutes with the CNT1 facing upward to cure the liquid polymer material 9. As a result, as shown in FIG. 4, a sheet-like heat conductive material 11 composed of a plurality of CNTs 1 and a cured polymer that binds the plurality of CNTs 1 was formed. In the sheet-like heat conductive material 11, the end portion 1a of the CNT 1 was not covered with the cured polymer and was exposed. This was confirmed by cross-sectional SEM photographs of the substrate 3 and the sheet-like heat conductive material 11. That is, as shown in FIG. 5, the cured polymer exists only between the CNTs 1 and does not cover the end portion (end portion 1 a) of the CNT 1 opposite to the substrate 3.
(5) Removal from Substrate As shown in FIG. 6, the sheet-like heat conductive material 11 was peeled off from the substrate 3. Specifically, the sheet-like heat conductive material 11 was removed by cutting the interface between the sheet-like heat conductive material 11 and the substrate 3 with a knife. In the obtained sheet-like heat conductive material 11, the end portion 1 b of the CNT 1 is exposed on the surface 11 b on the side that was previously in contact with the substrate 3. In the sheet-like heat conductive material 11, the end 1a of the CNT 1 is exposed on the surface 11a opposite to the surface 11b. That is, each CNT 1 is exposed on both surfaces 11 a and 11 b of the sheet-like heat conductive material 11.
2.シート状熱伝導材料の使用方法
シート状熱伝導材料11は、図7に示すように、ICチップ13と、放熱フィン15との間に取り付けることができる。このとき、シート状熱伝導材料11の片面はICチップ13に接触し、反対側の面は放熱フィン15に接触する。よって、シート状熱伝導材料11は、ICチップ13で発生した熱を、放熱フィン15へ伝導する機能を奏する。なお、上述したように、CNT1は、シート状熱伝導材料11の両面11a、11bにおいて露出しているため、ICチップ13と放熱フィン15にそれぞれ接触する。
2. Method for Using Sheet-like Heat Conducting Material The sheet-like heat conducting material 11 can be attached between the IC chip 13 and the radiation fin 15 as shown in FIG. At this time, one surface of the sheet-like heat conductive material 11 is in contact with the IC chip 13, and the opposite surface is in contact with the radiation fin 15. Therefore, the sheet-like heat conductive material 11 has a function of conducting heat generated in the IC chip 13 to the heat radiating fins 15. Note that, as described above, the CNT 1 is exposed on the both surfaces 11 a and 11 b of the sheet-like heat conductive material 11, and thus comes into contact with the IC chip 13 and the radiation fins 15.
3.シート状熱伝導材料の製造方法が奏する効果
(i)上述したシート状熱伝導材料の製造方法によれば、CNT1を含み、そのCNT1が、両面11a、11bでそれぞれ露出しているシート状熱伝導材料11を、特殊な工程を用いることなく容易に製造することができる。
(ii) 上述した製造方法で製造されたシート状熱伝導材料11は、高い熱輸送能力を持つCNT1を含み、それがシート状熱伝導材料11の両面で露出しているので、熱伝導性が非常に高い。このことは、以下の実験結果により確かめられた。
3. Effects produced by the manufacturing method of the sheet-like heat conductive material
(i) According to the manufacturing method of the sheet-like heat conductive material described above, the sheet-like heat conductive material 11 that includes CNT1 and is exposed on both surfaces 11a and 11b can be used without using a special process. It can be manufactured easily.
(ii) The sheet-like heat conductive material 11 manufactured by the above-described manufacturing method includes CNT1 having a high heat transport capability, and since it is exposed on both surfaces of the sheet-like heat conductive material 11, the heat conductivity is high. Very expensive. This was confirmed by the following experimental results.
上記の製造方法で製造したシート状熱伝導材料11の熱拡散率と、シリコ−ン系樹脂(シート状熱伝導材料11の製造に用いたもの)のみを用いて製造した、同じ寸法のシート状熱伝導材料(以下、シート状熱伝導材料Rとする)の熱拡散率とを、レーザフラッシュ法でそれぞれ測定した。その結果、シート状熱伝導材料11の熱拡散率は、シート状熱伝導材料Rのそれの約40倍であった。 The sheet-shaped heat conductive material 11 manufactured by the above manufacturing method and the sheet-shaped sheet of the same size manufactured using only a silicone-based resin (used for manufacturing the sheet-shaped heat conductive material 11). The thermal diffusivity of the heat conductive material (hereinafter referred to as sheet-like heat conductive material R) was measured by a laser flash method. As a result, the thermal diffusivity of the sheet-like heat conductive material 11 was about 40 times that of the sheet-like heat conductive material R.
基本的には前記実施例1と同様にして、シート状熱伝導材料11を製造した。ただし、本実施例2では、図8に示すように、基板3の表面に、CNT1を形成する領域17を複数設けるとともに、領域17の間に、CNT1が形成されない隙間部19を設けた。領域17は、それぞれが正方形の形状を有し、規則正しく配列されている。図9に、上記のようにして、基板3上にCNT1を形成した状態を表すSEM写真を示す。 Basically, a sheet-like heat conductive material 11 was produced in the same manner as in Example 1. However, in Example 2, as shown in FIG. 8, a plurality of regions 17 where CNT1 is formed are provided on the surface of the substrate 3, and a gap portion 19 where CNT1 is not formed is provided between the regions 17. The areas 17 each have a square shape and are regularly arranged. FIG. 9 shows an SEM photograph showing the state in which the CNTs 1 are formed on the substrate 3 as described above.
本実施例2で製造されるシート状熱伝導材料11は、領域17に対応する部分では、前記実施例1と同様に、CNT1を含んでいるが、隙間部19に対応する部分では、CNT1を含まず、ポリマー材料のみから成る。 The sheet-like heat conductive material 11 manufactured in the second embodiment includes CNT1 in the portion corresponding to the region 17 as in the first embodiment. However, in the portion corresponding to the gap portion 19, the CNT1 is included. It does not contain and consists only of polymer material.
本実施例2の製造方法では、液状ポリマー材料9をCNT1に付着させるとき、隙間部19が液状ポリマー材料9の通路となるので、液状ポリマー材料9がCNT1の層に浸透し易い。その結果、シート状熱伝導材料11におけるポリマーの付着度合いを均一化することができる。 In the manufacturing method of the second embodiment, when the liquid polymer material 9 is attached to the CNT 1, the gap 19 serves as a passage for the liquid polymer material 9, so that the liquid polymer material 9 easily penetrates into the CNT 1 layer. As a result, the degree of polymer adhesion on the sheet-like heat conductive material 11 can be made uniform.
ただし、本実施例2で製造されるシート状熱伝導材料11は、CNT1を含まない隙間部19があることにより、熱伝導性の点では、前記実施例1の方が優れる。
(実験例1)
基本的には前記実施例1と同様にして、シート状熱伝導材料11を製造した。ただし、本実験例1では、液状ポリマー材料9の粘度を1.7Pa・Sとした。
However, the sheet-like heat conductive material 11 manufactured in the second embodiment is superior to the first embodiment in terms of heat conductivity due to the presence of the gaps 19 that do not contain CNT1.
(Experimental example 1)
Basically, a sheet-like heat conductive material 11 was produced in the same manner as in Example 1. However, in Experimental Example 1, the viscosity of the liquid polymer material 9 was 1.7 Pa · S.
図10は、本実験例1で製造したシート状熱伝導材料11(基板3から取り外す前の段階)の断面SEM写真である。図10に示すように、CNT1から成る層をポリマーが覆い、CNT1の端部1aが露出していない部分が生じている。そのため、本実験例1で製造したシート状熱伝導材料11の熱伝導性は、前記実施例1で製造したシート状熱伝導材料11より劣っていると考えられる。
(実験例2)
基本的には前記実施例1と同様にして、シート状熱伝導材料11を製造した。ただし、本実験例2では、液状ポリマー材料9をCNT1に付着させるとき、コットン系不織布7を用いず、容器5内に注いだ液状ポリマー材料9に、直接、CNT1を接触させた。
FIG. 10 is a cross-sectional SEM photograph of the sheet-like heat conductive material 11 (stage before removal from the substrate 3) manufactured in the present experimental example 1. As shown in FIG. 10, the polymer is covering the layer made of CNT1, and there is a portion where the end 1a of CNT1 is not exposed. Therefore, it is considered that the thermal conductivity of the sheet-like heat conductive material 11 manufactured in this Experimental Example 1 is inferior to that of the sheet-like heat conductive material 11 manufactured in Example 1.
(Experimental example 2)
Basically, a sheet-like heat conductive material 11 was produced in the same manner as in Example 1. However, in Experimental Example 2, when the liquid polymer material 9 was attached to the CNT 1, the CNT 1 was directly brought into contact with the liquid polymer material 9 poured into the container 5 without using the cotton nonwoven fabric 7.
この場合、図11に示すように、液状ポリマー材料9が、CNT1に過剰に付着しやすく、CNT1の端部1aが露出していない部分が生じ易くなった。そのため、本実験例2で製造したシート状熱伝導材料11の熱伝導性は、前記実施例1で製造したシート状熱伝導材料11より劣っていると考えられる。 In this case, as shown in FIG. 11, the liquid polymer material 9 tends to adhere excessively to the CNT 1, and a portion where the end portion 1 a of the CNT 1 is not exposed is likely to occur. Therefore, it is considered that the thermal conductivity of the sheet-like heat conductive material 11 manufactured in this Experimental Example 2 is inferior to that of the sheet-like heat conductive material 11 manufactured in Example 1.
尚、本発明は前記実施形態になんら限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。 In addition, this invention is not limited to the said embodiment at all, and it cannot be overemphasized that it can implement with a various aspect in the range which does not deviate from this invention.
1・・・CNT、1a、1b・・・端部、3・・・基板、5・・・容器、
7・・・コットン系不織布、9・・・液状ポリマー材料、
11・・・シート状熱伝導材料、11a、11b・・・面、13・・・ICチップ、
15・・・放熱フィン、17・・・領域、19・・・隙間部
1 ... CNT, 1a, 1b ... end, 3 ... substrate, 5 ... container,
7 ... Cotton-based nonwoven fabric, 9 ... Liquid polymer material,
11 ... Sheet-like heat conductive material, 11a, 11b ... surface, 13 ... IC chip,
15 ... radiating fins, 17 ... region, 19 ... gap
Claims (7)
前記カーボンナノチューブの表面に付着した前記液状ポリマー材料を、前記基板の側に移動させ、前記複数のカーボンナノチューブのうち、少なくとも一部については、前記基板とは反対側の端部が前記液状ポリマー材料で覆われない状態とする第2工程と、
前記液状ポリマー材料を固体化し、前記複数のカーボンナノチューブ、及び固体化したポリマー材料から成るシート状熱伝導材料を形成する第3工程と、
を含むことを特徴とするシート状熱伝導材料の製造方法。 A first step of bringing a liquid polymer material into contact with a plurality of carbon nanotubes, one end of which is fixed to the substrate, from the opposite side of the substrate, and attaching the liquid polymer material to the surface of the carbon nanotube;
The liquid polymer material attached to the surface of the carbon nanotube is moved to the substrate side, and at least a part of the plurality of carbon nanotubes has an end opposite to the substrate at the liquid polymer material. A second step of not being covered with,
A third step of solidifying the liquid polymer material to form a sheet-like heat conductive material comprising the plurality of carbon nanotubes and the solidified polymer material;
The manufacturing method of the sheet-like heat conductive material characterized by including.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2008050154A JP5040728B2 (en) | 2008-02-29 | 2008-02-29 | Manufacturing method of sheet-like heat conductive material |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2008050154A JP5040728B2 (en) | 2008-02-29 | 2008-02-29 | Manufacturing method of sheet-like heat conductive material |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2009202328A JP2009202328A (en) | 2009-09-10 |
| JP5040728B2 true JP5040728B2 (en) | 2012-10-03 |
Family
ID=41145101
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2008050154A Expired - Fee Related JP5040728B2 (en) | 2008-02-29 | 2008-02-29 | Manufacturing method of sheet-like heat conductive material |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP5040728B2 (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101996890B (en) * | 2009-08-25 | 2012-06-20 | 清华大学 | Preparation device and method of carbon nanotube radiators |
| CN103096970B (en) | 2010-01-22 | 2016-10-26 | 株式会社医药处方 | The adhesion patch aid of skin patch is adhered to for micropin |
| JP6711208B2 (en) * | 2016-08-25 | 2020-06-17 | 富士通株式会社 | Electronic device and method of manufacturing electronic device |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3868934B2 (en) * | 2003-08-01 | 2007-01-17 | 株式会社東芝 | Electrode manufacturing method |
| CN100404242C (en) * | 2005-04-14 | 2008-07-23 | 清华大学 | Thermal interface material and method of manufacturing the same |
| CN1891780B (en) * | 2005-07-01 | 2013-04-24 | 清华大学 | Thermal interface material, and its preparing method |
| JP2007059647A (en) * | 2005-08-25 | 2007-03-08 | Denso Corp | Thermoelectric conversion element and manufacturing method thereof |
| JP2007188841A (en) * | 2006-01-16 | 2007-07-26 | Osaka Prefecture Univ | Anisotropic conductive sheet and manufacturing method thereof |
| WO2007110899A1 (en) * | 2006-03-24 | 2007-10-04 | Fujitsu Limited | Device structure of carbon fiber and process for producing the same |
| JP5178509B2 (en) * | 2006-03-27 | 2013-04-10 | 日立造船株式会社 | Method for producing conductive material using carbon nanotube, and electric double layer capacitor using conductive material |
-
2008
- 2008-02-29 JP JP2008050154A patent/JP5040728B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JP2009202328A (en) | 2009-09-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Tay et al. | Growth of large single-crystalline two-dimensional boron nitride hexagons on electropolished copper | |
| JP4313377B2 (en) | Thermally conductive material and method for producing the same | |
| Kim et al. | Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil | |
| US7253442B2 (en) | Thermal interface material with carbon nanotubes | |
| JP4713301B2 (en) | Thermally conductive material and method for producing the same | |
| CN100591613C (en) | Carbon nanotube composite material and manufacturing method thereof | |
| US8580132B2 (en) | Method for making strip shaped graphene layer | |
| JP4723529B2 (en) | Composite material including carbon nanotube and method for producing the same | |
| Tan et al. | Direct growth of ultrafast transparent single‐layer graphene defoggers | |
| KR101454463B1 (en) | Method for manufacturing graphene | |
| CN104217928B (en) | Method for preparing nano-scale microstructure | |
| JP6124300B2 (en) | Method for producing graphene laminate and method for producing transparent electrode using the graphene laminate | |
| JP6648028B2 (en) | Graphene-coated electronic components | |
| US7611651B2 (en) | Method for manufacturing carbon nanotubes with uniform length | |
| CN104099577B (en) | A kind of preparation method of Graphene | |
| JP2006147801A (en) | Heat dissipating sheet, interface, electronic parts, and manufacturing method of heat dissipating sheet | |
| US8318033B2 (en) | Conductive tape and method for making the same | |
| JP5040728B2 (en) | Manufacturing method of sheet-like heat conductive material | |
| EP3321958B1 (en) | Method for manufacturing thermal interface material | |
| TWI688543B (en) | Method of transferring two-dimensional nanomaterials with carbon nanotube film | |
| TWI564242B (en) | Method for transferring nanostructure | |
| Pak et al. | Scalable integration of periodically aligned 2D-MoS2 nanoribbon array | |
| US20160137502A1 (en) | Boron nitride nanosheets and methods of making and using the same | |
| JP2009260169A (en) | Heat sink and heat radiating apparatus | |
| JP5878208B2 (en) | Nanostructure transfer method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100330 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120612 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120625 |
|
| R151 | Written notification of patent or utility model registration |
Ref document number: 5040728 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150720 Year of fee payment: 3 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| LAPS | Cancellation because of no payment of annual fees |