[go: up one dir, main page]

JP5076936B2 - Hybrid vehicle - Google Patents

Hybrid vehicle Download PDF

Info

Publication number
JP5076936B2
JP5076936B2 JP2008025639A JP2008025639A JP5076936B2 JP 5076936 B2 JP5076936 B2 JP 5076936B2 JP 2008025639 A JP2008025639 A JP 2008025639A JP 2008025639 A JP2008025639 A JP 2008025639A JP 5076936 B2 JP5076936 B2 JP 5076936B2
Authority
JP
Japan
Prior art keywords
secondary battery
power
output
output power
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008025639A
Other languages
Japanese (ja)
Other versions
JP2009184476A (en
Inventor
隆生 伊藤
春樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008025639A priority Critical patent/JP5076936B2/en
Publication of JP2009184476A publication Critical patent/JP2009184476A/en
Application granted granted Critical
Publication of JP5076936B2 publication Critical patent/JP5076936B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/06Limiting the traction current under mechanical overload conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress charging to a secondary battery in completion of engine starting and protect the secondary battery effectively in a hybrid vehicle. <P>SOLUTION: A maximum permissible output power from the secondary battery is increased to a level above the reference output power by the engine starting. The output voltage of the secondary battery does not fall below a predetermined lower limit voltage, the difference between the maximum permissible output power from the secondary battery and the output instruction power from the secondary battery is changed. In performing limitation of the output power from the secondary battery in which the output power from the secondary battery is limited, the difference between the maximum permissible output power from the secondary battery and the output instruction power from the secondary battery is reduced by the completion of the engine starting, canceling out the limitation of the output power from the secondary battery so that the output instruction power from the secondary battery is not in a charging state. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、ハイブリッド車両に関し、特にエンジン始動の際の制御に関する。   The present invention relates to a hybrid vehicle, and more particularly to control at engine start.

車両用ハイブリッドシステムは、エンジンとモータの2種類の動力源を組み合わせて走行するもので、エンジンで発電機を駆動し、発電した電力によってモータが車輪を駆動するシリーズハイブリッドシステムと、エンジンとモータが車輪を駆動する方式で、二つの駆動力を状況に応じて使うことができるパラレルハイブリッドシステムとこの双方の特徴を組み合わせたシリーズ・パラレルハイブリッドシステムがある。このような、ハイブリッド車両は、モータ又はモータジェネレータを駆動するために充電、放電の可能な2次電池を備えており、要求動力が小さいときや車速が低いときなどには、エンジンの運転を停止して2次電池の電力を用いてモータ又はモータジェネレータからの動力だけを駆動軸に出力する全電動走行モードにより走行を行うことができるものがある。   A hybrid system for a vehicle travels by combining two types of power sources, an engine and a motor. A series hybrid system in which a generator is driven by the engine and a motor drives wheels by the generated power, and an engine and a motor There are a parallel hybrid system that can use two driving forces depending on the situation, and a series / parallel hybrid system that combines the features of both. Such a hybrid vehicle has a secondary battery that can be charged and discharged to drive the motor or motor generator, and stops the engine operation when the required power is low or the vehicle speed is low. Then, there is a battery that can run in an all-electric running mode in which only the power from the motor or motor generator is output to the drive shaft using the power of the secondary battery.

パラレルハイブリッドシステムを備えるハイブリッド車両では、遊星歯車装置を応用し、エンジンの動力を車両走行用の動力と発電機の駆動動力とに分割する動力分割装置が多く用いられている。この遊星歯車式の動力分割装置は、一部の遊星歯車の回転を固定することによって車両駆動用のモータジェネレータでエンジンを回転させることができるので、車両停止状態でのエンジンの始動あるいは全電動走行状態からエンジン走行に移行する際のエンジンの始動の際に、車両駆動用モータジェネレータによってエンジンを始動する方法が用いられている(たとえば、特許文献1参照)。   In a hybrid vehicle including a parallel hybrid system, a power split device that uses a planetary gear device and divides engine power into power for driving the vehicle and drive power for the generator is often used. In this planetary gear type power split device, the engine can be rotated by a motor generator for driving the vehicle by fixing the rotation of some of the planetary gears. A method of starting the engine by a vehicle drive motor generator when starting the engine when shifting from the state to the engine running is used (for example, see Patent Document 1).

特開2006−296183号公報JP 2006-296183 A

モータジェネレータに電力を供給する2次電池は、温度が低下すると内部抵抗の増加によって使用可能電力が少なくなってくるので、2次電池の温度が低い場合でも確実にエンジンのクランキング、始動ができるように、エンジン始動の際には2次電池の最大許容出力電力を基準の許容出力電力よりも増大させる出力電力拡大制御が行われる。一方、2次電池では、劣化防止のために出力電圧が所定の下限電圧以下にならないよう、出力電圧を比例積分制御によってフィードバックして出力電力を制限する制御が行われている。   The secondary battery that supplies power to the motor generator can be used to reliably crank and start the engine even when the temperature of the secondary battery is low because the available power decreases due to an increase in internal resistance when the temperature drops. As described above, when the engine is started, output power expansion control is performed to increase the maximum allowable output power of the secondary battery beyond the reference allowable output power. On the other hand, in the secondary battery, control is performed to limit the output power by feeding back the output voltage by proportional integral control so that the output voltage does not fall below a predetermined lower limit voltage in order to prevent deterioration.

エンジン始動の際には、2次電池の最大許容出力電力が拡大され、2次電池から大きな電力が出力されると、2次電池の出力電圧が低下してくるので、2次電池の出力電圧が所定の下限電圧を下回らないように出力電力を低減する制御が行われる。そして、エンジンの始動が完了すると、2次電池の出力電力拡大制御が解除され、2次電池からの最大許容出力電力は基準の許容出力電力に低減される。   When starting the engine, the maximum allowable output power of the secondary battery is expanded, and if a large amount of power is output from the secondary battery, the output voltage of the secondary battery decreases. Is controlled so as to reduce the output power so as not to fall below a predetermined lower limit voltage. When the start of the engine is completed, the output power expansion control of the secondary battery is canceled, and the maximum allowable output power from the secondary battery is reduced to the reference allowable output power.

ところが、出力電圧に基づく制御は比例積分制御を用いていることから、フィードバックによる電力低減量には時間遅れが出る。このため、2次電池の出力電力拡大制御が解除され、最大許容出力電力が低減されても、フィードバックによる電力低減量がゼロとならず、最大許容出力電力の低減とフィードバッによる電力低減量とが重なって、2次電池への出力指令電力がマイナスになってしまうことがある。2次電池への出力指令電力がマイナスになると、モータジェネレータからの電力が2次電池の充電方向に流れてしまう。そして、この充電電力が大きい場合には過充電となって2次電池の性能の低下あるいは劣化を引き起こす場合がある。 However, since the control based on the output voltage uses proportional-integral control, there is a time delay in the amount of power reduction by feedback. Therefore, the output power expansion control of the secondary battery is released, the maximum allowable output even power is reduced, regardless such power reduction amount by the feedback to zero, power reduction by reducing the feedback of the maximum allowable output power In some cases, the output command power to the secondary battery may become negative due to overlap with the amount. When the output command power to the secondary battery becomes negative, the power from the motor generator flows in the charging direction of the secondary battery. And when this charging power is large, it may become an overcharge and the fall of the performance or deterioration of a secondary battery may be caused.

本発明は、ハイブリッド車両において、エンジン始動完了の際の2次電池への充電を抑制し、2次電池を効果的に保護することを目的とする。   An object of the present invention is to suppress the charging of the secondary battery when the engine start is completed in the hybrid vehicle and effectively protect the secondary battery.

本発明のハイブリッド車両は、車両を駆動するエンジンと、エンジンに接続され、車両を駆動するとともにエンジンの始動を行うモータジェネレータと、モータジェネレータに電力を供給する2次電池と、2次電池よりの出力電力を増減する制御部と、を含むハイブリッド車両であって、制御部は、エンジン始動開始により2次電池からの最大許容出力電力を基準出力電力よりも増大させ、エンジン始動完了により2次電池からの最大許容出力電力を基準出力電力に低減する2次電池最大許容出力電力増減手段と、2次電池の出力電圧が所定の下限電圧を下回らないように、2次電池の出力電圧と所定の下限電圧との差に基づく比例積分制御によって、2次電池の最大許容出力電力と2次電池の出力指令電力との差を変化させて2次電池からの出力電力を制限する出力電力制限手段と、エンジン始動完了によって2次電池の最大許容出力電力と2次電池の出力指令電力との差を減少させて、2次電池からの出力電力の制限の一部または全部を相殺する出力電力制限相殺手段と、を有すること、を特徴とする。 The hybrid vehicle of the present invention includes an engine that drives the vehicle, a motor generator that is connected to the engine and drives the vehicle and starts the engine, a secondary battery that supplies electric power to the motor generator, and a secondary battery. And a controller that increases or decreases the output power. The controller increases the maximum allowable output power from the secondary battery by the start of engine start over the reference output power, and the secondary battery by the completion of engine start. The secondary battery maximum allowable output power increase / decrease means for reducing the maximum allowable output power from the reference battery to the reference output power, and the secondary battery output voltage and the predetermined voltage so that the output voltage of the secondary battery does not fall below a predetermined lower limit voltage . By proportional-integral control based on the difference from the lower limit voltage, the difference between the maximum allowable output power of the secondary battery and the output command power of the secondary battery is changed. Output power limiting means for limiting the output power of the secondary battery, and by reducing the difference between the maximum allowable output power of the secondary battery and the output command power of the secondary battery upon completion of engine start, Output power limit canceling means for canceling part or all of the output power.

本発明のハイブリッド車両において、出力電力制限相殺手段は、最大許容出力電力と2次電池の出力指令電力との差を最大許容出力電力と基準出力電力との差分だけ減少させること、としても好適であるし、出力電力制限相殺手段は、最大許容出力電力と2次電池の出力指令電力との差を出力電力制限手段の積分項に基づく制限電力分だけ減少させること、としても好適である。
In the hybrid vehicle of the present invention, the output power limit canceling means is also suitable for reducing the difference between the maximum allowable output power and the output command power of the secondary battery by the difference between the maximum allowable output power and the reference output power. it is, the output power limiting cancellation means, the maximum allowable output power and be reduced by limiting the power amount based on the integral term output power limiting means the difference between the output command power of the secondary battery, it is also preferable.

本発明は、ハイブリッド車両において、エンジン始動完了の際の2次電池への充電を抑制し、2次電池を効果的に保護することができるという効果を奏する。   The present invention has an effect that the secondary battery can be effectively protected by suppressing charging of the secondary battery when the engine start is completed in the hybrid vehicle.

以下、図面を参照しながら本発明の好適な実施形態について説明する。本発明のハイブリッド車両10は、ハイブリッド車両10を駆動するエンジン11と、エンジン11の出力軸12とモータジェネレータ15の出力軸14とが接続され、エンジン11の出力をモータジェネレータ15への出力と駆動軸18への出力とに分割するプラネタリギヤ13と、モータジェネレータ15に電力を供給すると共にモータジェネレータ15の発電電力を蓄電する2次電池17と、2次電池17の直流出力をモータジェネレータ15への三相交流電力に変換すると共にモータジェネレータ15の発電した交流電力を2次電池17に蓄電する直流電力に変換するインバータ16と、を備えている。プラネタリギヤ13は複数の遊星歯車と、そのうちのいくつかの歯車を停止させるブレーキを備え、ブレーキのオンオフを行うことによってエンジン11の出力をモータジェネレータ15と駆動軸18とに分配する運転モードと、モータジェネレータ15の出力によってエンジン11を回転させる始動モードとを切り替えることができるように構成されている。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the hybrid vehicle 10 of the present invention, an engine 11 that drives the hybrid vehicle 10, an output shaft 12 of the engine 11, and an output shaft 14 of a motor generator 15 are connected, and the output of the engine 11 and the output to the motor generator 15 are driven. A planetary gear 13 that is divided into an output to the shaft 18, a secondary battery 17 that supplies electric power to the motor generator 15 and stores electric power generated by the motor generator 15, and a DC output of the secondary battery 17 to the motor generator 15 And an inverter 16 that converts AC power generated by the motor generator 15 into DC power stored in the secondary battery 17 while converting the AC power into three-phase AC power. The planetary gear 13 includes a plurality of planetary gears and a brake for stopping some of the gears, and an operation mode for distributing the output of the engine 11 to the motor generator 15 and the drive shaft 18 by turning on and off the brake, and a motor A start mode for rotating the engine 11 can be switched by the output of the generator 15.

エンジン11の出力軸12にはエンジン11の出力トルクを測定するトルクセンサ21と、エンジン11の回転数を検出する回転数センサ22が取付けられている。また、エンジン11にはエンジン11内部のシリンダ内の燃焼状態を検出する失火センサ23が取付けられている。モータジェネレータ15には出力トルクを検出するトルクセンサ24が設けられている。2次電池17とインバータ16との間は2本の電力ケーブルによって接続され、2本の電力ケーブルの間には2次電池17の出力電圧を測定する電圧センサ25が設けられ、何れか一方の電力線には電流を測定する電流センサ26が設けられている。   A torque sensor 21 that measures the output torque of the engine 11 and a rotation speed sensor 22 that detects the rotation speed of the engine 11 are attached to the output shaft 12 of the engine 11. The engine 11 is provided with a misfire sensor 23 for detecting the combustion state in the cylinder inside the engine 11. The motor generator 15 is provided with a torque sensor 24 that detects output torque. The secondary battery 17 and the inverter 16 are connected by two power cables, and a voltage sensor 25 for measuring the output voltage of the secondary battery 17 is provided between the two power cables. A current sensor 26 for measuring a current is provided on the power line.

エンジン11と、プラネタリギヤ13と、インバータ16と、2次電池17とは、制御部30に接続され、制御部30の指令によって制御することができるように構成されている。また、トルクセンサ21,24、回転数センサ22、失火センサ23、電圧センサ25、電流センサ26はそれぞれ制御部30に接続され、制御部30は各センサの信号データを取得することができるよう構成されている。   The engine 11, the planetary gear 13, the inverter 16, and the secondary battery 17 are connected to the control unit 30 and configured to be controlled by commands from the control unit 30. Further, the torque sensors 21 and 24, the rotation speed sensor 22, the misfire sensor 23, the voltage sensor 25, and the current sensor 26 are each connected to the control unit 30, and the control unit 30 can acquire signal data of each sensor. Has been.

制御部30は内部に信号の処理、演算を行うCPUと、記憶装置であるメモリと、各機器、センサとのインターフェースを行う各インターフェースを含む構成のコンピュータである。   The control unit 30 is a computer that includes a CPU that processes and calculates signals, a memory that is a storage device, and interfaces that interface each device and sensor.

以上のように構成されたハイブリッド車両10が全電動走行状態から、エンジン11を起動してエンジン走行に移行する場合のエンジン11の始動について説明する。図2の(a)の折れ線41は、2次電池からの最大許容出力電力の変化を示す線であり、曲線42は2次電池17の出力指令電力を示し、図2(b)の曲線43は2次電池17の出力電圧を示し、図2(c)の曲線44は、2次電池17の最大許容出力電力と2次電池17の出力指示電力との差分の電力の時間変化を示している。   The start of the engine 11 when the hybrid vehicle 10 configured as described above starts the engine 11 and shifts to engine running from the all-electric running state will be described. 2A is a line showing a change in the maximum allowable output power from the secondary battery, a curve 42 shows the output command power of the secondary battery 17, and a curve 43 in FIG. 2B. 2 represents the output voltage of the secondary battery 17, and the curve 44 in FIG. 2C represents the time variation of the power difference between the maximum allowable output power of the secondary battery 17 and the output command power of the secondary battery 17. Yes.

図2(a)に示すように、エンジン11が始動される時間t以前は、ハイブリッド車両10は、モータジェネレータ15の出力のみによって走行しており、図2(a)の折れ線41の点aと点bとの間のように、2次電池17の最大許容出力電力は基準出力電力で一定値となっており、2次電池17からの出力電力は図2(a)の曲線42の点fからgのように許容最大出力電力よりも低い電力となっている。 As shown in FIG. 2 (a), the time t 1 before the engine 11 is started, the hybrid vehicle 10 is traveling by only the output of the motor generator 15, a point of the polygonal line 41 in FIGS. 2 (a) 2 and the point b, the maximum allowable output power of the secondary battery 17 is a constant value at the reference output power, and the output power from the secondary battery 17 is the point of the curve 42 in FIG. The power is lower than the allowable maximum output power as indicated by f to g.

時間tになると、制御部30からエンジン11の始動指令が出力される。これは、例えば、運転者がアクセルを踏み込んだため、ハイブリッド車両10を加速するためにはモータジェネレータ15のみの出力のみでは不足するので、エンジン11を始動し、エンジン11からの出力と共に加速することが必要となった場合であったり、2次電池17の残存容量が低下し、エンジン11を起動して2次電池17を充電することが必要になったりする場合である。 At time t 1 , a start command for the engine 11 is output from the control unit 30. This is because, for example, the driver has stepped on the accelerator, so that only the output of the motor generator 15 is insufficient to accelerate the hybrid vehicle 10, so the engine 11 is started and accelerated together with the output from the engine 11. Or when the remaining capacity of the secondary battery 17 is reduced, and it becomes necessary to start the engine 11 and charge the secondary battery 17.

制御部30からのエンジン始動指令が出力されると、その指令信号により、図2(a)の折れ線41の点bから点cに向かって、2次電池17の最大許容出力電力が拡大される。拡大される電力の大きさはΔWである。そして、制御部30は、プラネタリギヤ13のブレーキの状態をモータジェネレータ15の出力によってエンジン11を回転させる始動モードに変更し、図2(a)の曲線42の点gに示すように、エンジン11のクランキングを開始し、エンジン始動を開始する。エンジン11のクランキングを開始すると、図2(a)の曲線42の点gから点hに示すように、制御部30は2次電池17の電流センサ26と電圧センサ25とによって2次電池17からの出力電力を監視しながら2次電池17からモータジェネレータ15への出力指令電力を最大許容出力電力まで増加させてエンジン11の始動動作を行う。この際、2次電池からの出力指令電力が増加してくると、2次電池17からの実際の出力電力も増加し、図2(b)の曲線43の点mから点lに示すように、2次電池17の出力電圧は次第に低下してくる。しかし、2次電池17の出力電圧が下限電圧まで電圧が低下していないので、図2(a)の点hから点iに示すように、2次電池17の出力指令電力は最大許容電力と同一の電力となっている。   When an engine start command is output from the control unit 30, the command signal increases the maximum allowable output power of the secondary battery 17 from the point b to the point c of the broken line 41 in FIG. . The magnitude of the electric power to be enlarged is ΔW. Then, the control unit 30 changes the braking state of the planetary gear 13 to a start mode in which the engine 11 is rotated by the output of the motor generator 15, and as shown by a point g of the curve 42 in FIG. Start cranking and start engine. When the cranking of the engine 11 is started, the control unit 30 uses the current sensor 26 and the voltage sensor 25 of the secondary battery 17 as shown in the point g to the point h of the curve 42 in FIG. The output command power from the secondary battery 17 to the motor generator 15 is increased to the maximum allowable output power while monitoring the output power from the engine 11, and the engine 11 is started. At this time, when the output command power from the secondary battery increases, the actual output power from the secondary battery 17 also increases, as shown from the point m to the point l of the curve 43 in FIG. The output voltage of the secondary battery 17 gradually decreases. However, since the output voltage of the secondary battery 17 has not decreased to the lower limit voltage, the output command power of the secondary battery 17 is the maximum allowable power as shown from the point h to the point i in FIG. The power is the same.

そして、図2(b)の点lに示すように、時間tにおいて2次電池17の出力電圧は下限電圧を下回ってしまうので、2次電池17の出力指令電力に2次電池17の電圧フィードバックによる制限がかかり始める。電圧フィードバックは電圧センサ25の信号に基づく比例積分制御となっているので、図2(c)の曲線44の点sから点tに示すように、時間と共に2次電池17の最大許容出力電力と出力指令電力との差、すなわち、最大許容出力電力からの低減量が多くなり、2次電池の出力指令電力が次第に減少してくる。2次電池17の出力指令電力の低減は、インバータ16に対する2次電池17からの出力電流指令を低減することによって行う。また、制御部30は電流センサ26、電圧センサ25によって2次電池17の出力電流と出力電圧とを監視する。この間、2次電池17の出力電圧は略下限電圧に保持され、モータジェネレータ15によるエンジン11のクランキング、始動動作が継続される。 Then, as shown in the l point in FIG. 2 (b), the time since the output voltage of the t 2 in the secondary battery 17 falls below the lower limit voltage, the voltage of the secondary battery 17 to output command power of the secondary battery 17 Start to be limited by feedback. Since the voltage feedback is proportional-integral control based on the signal of the voltage sensor 25, the maximum allowable output power of the secondary battery 17 with time is obtained as shown from the point s to the point t of the curve 44 in FIG. The difference from the output command power, that is, the amount of reduction from the maximum allowable output power increases, and the output command power of the secondary battery gradually decreases. The output command power of the secondary battery 17 is reduced by reducing the output current command from the secondary battery 17 to the inverter 16. Further, the control unit 30 monitors the output current and output voltage of the secondary battery 17 with the current sensor 26 and the voltage sensor 25. During this time, the output voltage of the secondary battery 17 is maintained at a substantially lower limit voltage, and the cranking and starting operations of the engine 11 by the motor generator 15 are continued.

図2(c)の曲線44の点sから点tに示すように、モータジェネレータ15によるエンジン11のクランキング、始動動作が継続している間は、2次電池17の出力電圧が下限電圧以下とならないようなフィードバック制御によって2次電池17からモータジェネレータ15への出力指令電力の制限が行われているため、最大許容出力電力と2次電池の出力指令電力との差は時間と共に大きくなり、図2(a)の曲線42の点iから点jに示すように、2次電池17の出力指令電力は最大許容出力電力よりも大きく低減された状態となっている。   As shown from the point s to the point t of the curve 44 in FIG. 2C, while the cranking and starting operation of the engine 11 by the motor generator 15 continues, the output voltage of the secondary battery 17 is lower than the lower limit voltage. Since the output command power from the secondary battery 17 to the motor generator 15 is limited by feedback control that does not occur, the difference between the maximum allowable output power and the output command power of the secondary battery increases with time, As shown from the point i to the point j of the curve 42 in FIG. 2A, the output command power of the secondary battery 17 is in a state of being greatly reduced from the maximum allowable output power.

エンジン11のクランキング中、制御部30は回転数センサ22、トルクセンサ21、失火センサ23によってエンジン11の運転状態を監視している。そして、例えば、制御部30は、各センサ21,22,23の信号がエンジン11の回転数が所定の回転数以上で、エンジン11の出力トルクが所定のトルク以上で、エンジン11が失火状態ではなく正常に燃焼している状態を示すものである場合、エンジン11の始動が完了したものと判断する。本実施形態では、時間tにおいて、制御部30はエンジン11が始動完了したものと判断する。 During cranking of the engine 11, the control unit 30 monitors the operating state of the engine 11 by the rotation speed sensor 22, the torque sensor 21, and the misfire sensor 23. Then, for example, the control unit 30 indicates that the signals of the sensors 21, 22, and 23 indicate that the engine 11 has a rotational speed equal to or higher than a predetermined speed, the engine 11 output torque is equal to or higher than a predetermined torque, and the engine 11 is in a misfire state. If it indicates a normal combustion state, it is determined that the engine 11 has been started. In the present embodiment, at time t 3, the control unit 30 determines that the engine 11 is started completed.

図2(a)の点dから点eに示すように、制御部30はエンジン11の始動が完了したものと判断すると、2次電池17の電力拡大制御を解除し、2次電池17の最大許容出力電力を電力拡大量ΔW分だけ低減して、当初の基準出力電力に2次電池からの出力電力を制限する。   As shown from the point d to the point e in FIG. 2A, when the control unit 30 determines that the start of the engine 11 has been completed, the control unit 30 cancels the power expansion control of the secondary battery 17 and the maximum of the secondary battery 17 is reached. The allowable output power is reduced by the power expansion amount ΔW, and the output power from the secondary battery is limited to the initial reference output power.

時間tにおいて、2次電池17の出力指令電力は図2(a)の点jに示すように、基準出力電力よりも下まわった電力となっている。2次電池17の最大許容出力電力が電力拡大量ΔWだけ低減され、図2(c)の曲線44の点tに示すように最大許容出力電力と2次電池17の出力指令電力との差が大きい場合には、電力拡大制御の解除により2次電池17の出力指令電力の基準となる最大許容出力電力が低減されることから、2次電池17の出力指令電力は図2(a)の点j’まで低下し、2次電池17へ充電電力が流れてしまう。しかし、図2(c)の曲線44の点tから点uに示すように、エンジン11の起動が完了すると、制御部30は最大許容出力電力と2次電池の出力指令電力との差、すなわち2次電池17の出力電力の制限量を電力拡大量ΔWだけ低減する指令を出力する。 At time t 3 , the output command power of the secondary battery 17 is lower than the reference output power, as indicated by a point j in FIG. The maximum allowable output power of the secondary battery 17 is reduced by the power expansion amount ΔW, and the difference between the maximum allowable output power and the output command power of the secondary battery 17 is indicated by a point t on the curve 44 in FIG. In the case of being large, the maximum allowable output power that becomes the reference of the output command power of the secondary battery 17 is reduced by canceling the power expansion control, so the output command power of the secondary battery 17 is the point of FIG. The power drops to j ′ and the charging power flows to the secondary battery 17. However, as shown from the point t to the point u of the curve 44 in FIG. 2C, when the start of the engine 11 is completed, the control unit 30 determines the difference between the maximum allowable output power and the output command power of the secondary battery, that is, A command for reducing the limit amount of the output power of the secondary battery 17 by the power expansion amount ΔW is output.

これによって、図2(a)の曲線42の点j’からjに示すように、電力拡大制御解除による電力拡大量ΔWの低減と、最大許容出力電力と2次電池17の出力指令電力との差のΔWとの相殺により、2次電池17の出力電力の制限が相殺され、2次電池17の出力指令電力は、点jの位置からほとんど動かなくなる。そして、2次電池への出力指令電力が2次電池17への充電指令電力とならずに2次電池17を過充電から保護することができる。また、2次電池17の出力指令電力がほとんど変動しないので、2次電池からの出力電力の変動を抑えることができる。   As a result, as indicated by points j ′ to j of the curve 42 in FIG. 2A, the reduction of the power expansion amount ΔW due to the cancellation of the power expansion control, the maximum allowable output power, and the output command power of the secondary battery 17 By offsetting the difference from ΔW, the limit of the output power of the secondary battery 17 is canceled, and the output command power of the secondary battery 17 hardly moves from the position of the point j. Further, the output command power to the secondary battery does not become the charge command power to the secondary battery 17, and the secondary battery 17 can be protected from overcharging. Further, since the output command power of the secondary battery 17 hardly fluctuates, fluctuations in output power from the secondary battery can be suppressed.

以上説明したように、本実施形態は、ハイブリッド車両10において、エンジン11始動完了の際の2次電池17への充電を抑制し、2次電池17を効果的に保護することができるという効果を奏する。   As described above, the present embodiment has an effect that the hybrid battery 10 can effectively protect the secondary battery 17 by suppressing the charging of the secondary battery 17 when the engine 11 is started. Play.

本実施形態では、エンジン始動完了によって2次電池17の電力拡大量ΔW分だけ最大許容出力電力と2次電池17の出力指令電力との差を低減することとして説明したが、2次電池17の出力指令電力が2次電池17への充電とならなければ低減量はΔWに限らず、ハイブリッド車両10の運転状態によって変更してもよいし、比例積分制御のうちの積分項によって低減している電力分だけ低減するようにして、2次電池からの出力電力の制限の一部を相殺させるようにしても良い。   In the present embodiment, it has been described that the difference between the maximum allowable output power and the output command power of the secondary battery 17 is reduced by the amount of power expansion ΔW of the secondary battery 17 when the engine start is completed. If the output command power does not charge the secondary battery 17, the reduction amount is not limited to ΔW, but may be changed depending on the driving state of the hybrid vehicle 10, and is reduced by an integral term in the proportional integral control. A part of the limitation on the output power from the secondary battery may be offset by reducing the power.

本発明の実施形態におけるハイブリッド車両の構成を示す図である。It is a figure which shows the structure of the hybrid vehicle in embodiment of this invention. 本発明のハイブリッド車両において、時間に対する2次電池の出力電力、出力指令電力、出力電圧、最大許容出力電力と出力指令電力との差とを示すグラフである。In the hybrid vehicle of this invention, it is a graph which shows the output electric power of secondary battery with respect to time, output command power, output voltage, and the difference of maximum permissible output power and output command power.

符号の説明Explanation of symbols

10 ハイブリッド車両、11 エンジン、12 出力軸、13 プラネタリギヤ、14 出力軸、15 モータジェネレータ、16 インバータ、17 2次電池、18 駆動軸、21,24 トルクセンサ、22 回転数センサ、23 失火センサ、25 電圧センサ、26 電流センサ、30 制御部、ΔW 電力拡大量。   DESCRIPTION OF SYMBOLS 10 Hybrid vehicle, 11 Engine, 12 Output shaft, 13 Planetary gear, 14 Output shaft, 15 Motor generator, 16 Inverter, 17 Secondary battery, 18 Drive shaft, 21, 24 Torque sensor, 22 Speed sensor, 23 Misfire sensor, 25 Voltage sensor, 26 Current sensor, 30 Control unit, ΔW Power expansion amount.

Claims (3)

車両を駆動するエンジンと、エンジンに接続され、車両を駆動するとともにエンジンの始動を行うモータジェネレータと、モータジェネレータに電力を供給する2次電池と、2次電池よりの出力電力を増減する制御部と、を含むハイブリッド車両であって、
制御部は、
エンジン始動開始により2次電池からの最大許容出力電力を基準出力電力よりも増大させ、エンジン始動完了により2次電池からの最大許容出力電力を基準出力電力に低減する2次電池最大許容出力電力増減手段と、
2次電池の出力電圧が所定の下限電圧を下回らないように、2次電池の出力電圧と所定の下限電圧との差に基づく比例積分制御によって、2次電池の最大許容出力電力と2次電池の出力指令電力との差を変化させて2次電池からの出力電力を制限する出力電力制限手段と、
エンジン始動完了によって2次電池の最大許容出力電力と2次電池の出力指令電力との差を減少させて、2次電池からの出力電力の制限の一部または全部を相殺する出力電力制限相殺手段と、を有すること、
を特徴とするハイブリッド車両。
An engine for driving a vehicle, a motor generator connected to the engine for driving the vehicle and starting the engine, a secondary battery for supplying electric power to the motor generator, and a controller for increasing or decreasing output power from the secondary battery And a hybrid vehicle including:
The control unit
The maximum allowable output power from the secondary battery is increased from the reference output power when the engine starts, and the maximum allowable output power from the secondary battery is reduced to the reference output power when the engine is completed. Means,
The maximum allowable output power of the secondary battery and the secondary battery are controlled by proportional integral control based on the difference between the output voltage of the secondary battery and the predetermined lower limit voltage so that the output voltage of the secondary battery does not fall below the predetermined lower limit voltage. Output power limiting means for limiting the output power from the secondary battery by changing the difference from the output command power of
Output power limit canceling means for canceling a part or all of the limit of the output power from the secondary battery by reducing the difference between the maximum allowable output power of the secondary battery and the output command power of the secondary battery upon completion of engine start And having
A hybrid vehicle characterized by
請求項1に記載のハイブリッド車両であって、
出力電力制限相殺手段は、最大許容出力電力と2次電池の出力指令電力との差を最大許容出力電力と基準出力電力との差分だけ減少させること、
を特徴とするハイブリッド車両。
The hybrid vehicle according to claim 1,
The output power limit canceling means reduces the difference between the maximum allowable output power and the output command power of the secondary battery by the difference between the maximum allowable output power and the reference output power;
A hybrid vehicle characterized by
請求項1または2に記載のハイブリッド車両であって
力電力制限相殺手段は、最大許容出力電力と2次電池の出力指令電力との差を出力電力制限手段の積分項に基づく制限電力分だけ減少させること、
を特徴とするハイブリッド車両。
A hybrid vehicle according to claim 1 or 2 ,
Output power limiting canceling means, be reduced by limiting the power amount based a difference between the output command power maximum allowable output power and the secondary battery to the integral term output power limiting means,
A hybrid vehicle characterized by
JP2008025639A 2008-02-05 2008-02-05 Hybrid vehicle Expired - Fee Related JP5076936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008025639A JP5076936B2 (en) 2008-02-05 2008-02-05 Hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008025639A JP5076936B2 (en) 2008-02-05 2008-02-05 Hybrid vehicle

Publications (2)

Publication Number Publication Date
JP2009184476A JP2009184476A (en) 2009-08-20
JP5076936B2 true JP5076936B2 (en) 2012-11-21

Family

ID=41068193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008025639A Expired - Fee Related JP5076936B2 (en) 2008-02-05 2008-02-05 Hybrid vehicle

Country Status (1)

Country Link
JP (1) JP5076936B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180606A1 (en) * 2017-03-27 2018-10-04 パナソニックIpマネジメント株式会社 On-vehicle power supply device and vehicle having on-vehicle power supply device mounted thereon

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3859982B2 (en) * 2001-04-27 2006-12-20 株式会社神戸製鋼所 Power control device for hybrid construction machine
JP4052080B2 (en) * 2002-10-09 2008-02-27 アイシン・エィ・ダブリュ株式会社 Vehicle control device
JP2004166367A (en) * 2002-11-12 2004-06-10 Nissan Motor Co Ltd Battery control device for hybrid vehicle
JP4327143B2 (en) * 2005-09-30 2009-09-09 パナソニックEvエナジー株式会社 Secondary battery control device, secondary battery output control method, and secondary battery output control execution program

Also Published As

Publication number Publication date
JP2009184476A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
US10675985B2 (en) Fuel cell system mounted on vehicle and control method thereof
JP6969357B2 (en) Vehicle hybrid system
JP5880568B2 (en) Control device for hybrid vehicle
US9272704B2 (en) Hybrid vehicle having boost converter and control method of a hybrid vehicle having a boost converter
US9531315B2 (en) Electric vehicle and control method therefor
JP2010143310A (en) Power generation control device for series hybrid electric vehicle
US10661670B2 (en) Power supply system, transportation apparatus, and power transmission method
TW201111266A (en) Hybrid electric power source device for crane and method for controlling hybrid electric power source device for crane
JP6725880B2 (en) Control device for hybrid vehicle
JP4490173B2 (en) Start control device for internal combustion engine for vehicle
WO2016125852A1 (en) Vehicle power-source device and vehicle-power-source-device control method
US8928263B2 (en) Control apparatus in motor drive system and method of controlling motor drive system
JP7459752B2 (en) Regenerative control method and regenerative control device
JP6314863B2 (en) Electronic control unit
JP5552970B2 (en) Control device for hybrid vehicle
JP2011168226A (en) Control device for series hybrid vehicle
JP2006280161A (en) Regenerative controller for hybrid electric vehicle
JP5076936B2 (en) Hybrid vehicle
KR101926919B1 (en) Control method for electric vehicle
JP5282798B2 (en) Control device for hybrid vehicle
JP2019161922A (en) Vehicle comprising power generator and method for control of power generation of on-vehicle power generator
JP5450238B2 (en) Electric vehicle
JP6007707B2 (en) Hybrid cargo handling vehicle
JP5245524B2 (en) Cargo handling control method and apparatus for hybrid type cargo handling vehicle
JP4386003B2 (en) Battery protection control device for hybrid vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5076936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees