JP5089217B2 - Processing method of polylactic acid tube - Google Patents
Processing method of polylactic acid tube Download PDFInfo
- Publication number
- JP5089217B2 JP5089217B2 JP2007092333A JP2007092333A JP5089217B2 JP 5089217 B2 JP5089217 B2 JP 5089217B2 JP 2007092333 A JP2007092333 A JP 2007092333A JP 2007092333 A JP2007092333 A JP 2007092333A JP 5089217 B2 JP5089217 B2 JP 5089217B2
- Authority
- JP
- Japan
- Prior art keywords
- polylactic acid
- molded product
- temperature
- glass transition
- desired shape
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229920000747 poly(lactic acid) Polymers 0.000 title claims description 124
- 239000004626 polylactic acid Substances 0.000 title claims description 124
- 238000003672 processing method Methods 0.000 title claims description 3
- 238000002425 crystallisation Methods 0.000 claims description 36
- 230000008025 crystallization Effects 0.000 claims description 36
- 239000004014 plasticizer Substances 0.000 claims description 33
- 230000009477 glass transition Effects 0.000 claims description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 27
- 238000000465 moulding Methods 0.000 claims description 18
- PEDCQBHIVMGVHV-UHFFFAOYSA-N glycerol group Chemical group OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 17
- 238000012545 processing Methods 0.000 claims description 15
- 235000011187 glycerol Nutrition 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 8
- 150000002148 esters Chemical class 0.000 claims description 6
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 5
- 229930195729 fatty acid Natural products 0.000 claims description 5
- 239000000194 fatty acid Substances 0.000 claims description 5
- -1 glycerin acetic acid fatty acid ester Chemical class 0.000 claims description 5
- 239000000047 product Substances 0.000 description 70
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000010276 construction Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 229920003232 aliphatic polyester Polymers 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 229940088594 vitamin Drugs 0.000 description 3
- 229930003231 vitamin Natural products 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 229940022769 d- lactic acid Drugs 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- KMZHZAAOEWVPSE-UHFFFAOYSA-N glycerol monoacetate Natural products CC(=O)OCC(O)CO KMZHZAAOEWVPSE-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229920000223 polyglycerol Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229930182843 D-Lactic acid Natural products 0.000 description 1
- JVTAAEKCZFNVCJ-UWTATZPHSA-N D-lactic acid Chemical compound C[C@@H](O)C(O)=O JVTAAEKCZFNVCJ-UWTATZPHSA-N 0.000 description 1
- 125000002066 L-histidyl group Chemical group [H]N1C([H])=NC(C([H])([H])[C@](C(=O)[*])([H])N([H])[H])=C1[H] 0.000 description 1
- 239000004594 Masterbatch (MB) Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 229920000704 biodegradable plastic Polymers 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920001432 poly(L-lactide) Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Biological Depolymerization Polymers (AREA)
- Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
Description
この発明はポリ乳酸管の加工方法に関し、特にたとえば、可塑剤を加えたポリ乳酸によって形成されるポリ乳酸管の加工方法に関する。 The present invention relates to a method for processing a polylactic acid tube , and more particularly to a method for processing a polylactic acid tube formed of polylactic acid added with a plasticizer, for example.
近年、環境問題への関心の高まりから、植物を原料とする生分解性プラスチックであるポリ乳酸が注目され、様々な分野においてポリ乳酸の利用が開始されている。また、ポリ乳酸は、剛性に富む一方で柔軟性に乏しいため、ポリ乳酸に柔軟性を付加するための技術の開発も進んでいる。たとえば、特許文献1に開示される発明では、脂肪族ポリエステル、特にポリ乳酸に対して、ポリグリセリン酢酸エステルおよびグルセリン酢酸脂肪酸エステル等の可塑剤を添加し、脂肪族ポリエステルに柔軟性を付与している。この脂肪族ポリエステル組成物は、フィルム、シートおよび袋などの成形物に使用し得る。
特許文献1の発明によれば、柔軟性、或いは可撓性を有するポリ乳酸成形物を成形できる。しかし、ある程度の剛性を必要とする排水管等の成形物においては、単に成形物に対して柔軟性を付与するだけでは、使用時に成形物が変形する等の不具合が生じる恐れがある。たとえば、柔軟性を有するポリ乳酸管を成形し、これを用いて排水路を形成する場合には、水勾配をとるための傾斜部等においてポリ乳酸管が撓んでしまい、円滑な排水の流れに支障をきたす恐れがある。 According to the invention of Patent Document 1, a polylactic acid molded product having flexibility or flexibility can be molded. However, in a molded product such as a drain pipe that requires a certain degree of rigidity, simply giving flexibility to the molded product may cause problems such as deformation of the molded product during use. For example, when a flexible polylactic acid tube is formed and a drainage channel is formed using this, the polylactic acid tube is bent at an inclined portion or the like for taking a water gradient, so that a smooth drainage flow is achieved. There is a risk of hindrance.
また、排水路は、直管、エルボおよびS字管等を組み合わせて形成されるが、排水路の構成は各施工現場によって異なる。このため、各施工現場に合わせた多種のポリ乳酸管を用意する必要があるが、多種のポリ乳酸管の製造には、製造コストがかかる。 Moreover, although a drainage channel is formed combining a straight pipe, an elbow, and an S-shaped tube, the structure of a drainage channel changes with each construction site. For this reason, it is necessary to prepare various types of polylactic acid tubes suitable for each construction site, but manufacturing of various types of polylactic acid tubes requires manufacturing costs.
それゆえに、この発明の主たる目的は、新規な、ポリ乳酸管の加工方法を提供することである。 Therefore, a main object of the present invention is to provide a novel method for processing a polylactic acid tube .
この発明の他の目的は、製造コストを低減できる、ポリ乳酸管の加工方法を提供することである。 Another object of the present invention is to provide a method for processing a polylactic acid tube , which can reduce the manufacturing cost.
本発明は、上記の課題を解決するために、以下の構成を採用した。なお、括弧内の参照符号および補足説明などは、本発明の理解を助けるために後述する実施の形態との対応関係を示したものであって、本発明を何ら限定するものではない。 The present invention employs the following configuration in order to solve the above problems. Note that reference numerals in parentheses, supplementary explanations, and the like indicate correspondence relationships with embodiments described later to help understanding of the present invention, and do not limit the present invention in any way.
請求項1の発明は、主成分がグリセリンジアセトモノ(C8,C10)エステルであるグリセリン酢酸脂肪酸エステルを可塑剤として成形後含有量が6.9〜10%となるように加えてガラス転移温度を30℃〜45℃とし、かつ冷結晶化開始温度を90℃〜100℃としたポリ乳酸によって形成されるポリ乳酸管の加工方法であって、(a)ポリ乳酸管を湯に浸漬してそのポリ乳酸管が有するガラス転移温度以上に加熱して軟化させ、(b)ステップ(a)で軟化させたポリ乳酸管を湯に浸漬した状態で作業者が湯に手をつけて所望の形状に変形し、そして(c)ステップ(b)で所望の形状に変形したポリ乳酸管をそのポリ乳酸管が有する冷結晶化開始温度以上に加熱することによって、当該ポリ乳酸管を当該所望の形状で形状固定する、ポリ乳酸管の加工方法である。 The invention of claim 1 adds the glass transition temperature by adding glycerin acetic acid fatty acid ester whose main component is glycerin diacetomono (C8, C10) ester as a plasticizer so that the content after molding becomes 6.9 to 10%. A method for processing a polylactic acid tube formed of polylactic acid having a temperature of 30 ° C to 45 ° C and a cold crystallization start temperature of 90 ° C to 100 ° C, wherein (a) the polylactic acid tube is immersed in hot water Heating above the glass transition temperature of the polylactic acid tube and softening it, (b) With the polylactic acid tube softened in step (a) immersed in hot water, the operator touches the hot water into the desired shape deformed, and by heating above the cold crystallization initiation temperature of the polylactic acid tube deformed into a desired shape the polylactic acid tubes having at step (c) (b), the polylactic acid tubes in the desired shape Fix shape It is a processing method of the polylactic acid tubes.
請求項1の発明では、主成分がグリセリンジアセトモノ(C8,C10)エステルであるグリセリン酢酸脂肪酸エステル(実施例では、理研ビタミン株式会社製のリケマール PL−019(商品名))を可塑剤として加えてガラス転移温度や冷結晶化開始温度を適切に調整したポリ乳酸によって形成されるポリ乳酸管を所望の形状に加工する。ステップ(a)では、ポリ乳酸管のガラス転移温度以上の湯にポリ乳酸管を浸漬することによって、ポリ乳酸管をそのポリ乳酸管が有するガラス転移温度以上に加熱して軟化させる。ステップ(b)では、ステップ(a)で軟化させたポリ乳酸管を湯に浸漬させた状態で、作業者が湯に手をつけて当該ポリ乳酸管を曲げる等して所望の形状に変形する。そして、ステップ(c)では、ステップ(b)で所望の形状に変形したポリ乳酸管を、たとえば、ポリ乳酸管の冷結晶化開始温度以上の湯に浸漬することによって、このポリ乳酸管を冷結晶化開始温度以上に加熱して結晶化させ、ポリ乳酸管を所望の形状で形状固定する。このように、たとえば湯に浸漬するという簡単な作業で、ポリ乳酸管の軟化および形状固定が実行できるので、作業性に優れる。また、特別な機器を必要としないので、この加工作業を施工現場で行うこともできる。 In the invention of claim 1 , glycerin acetic acid fatty acid ester whose main component is glycerin diacetmono (C8, C10) ester (in the examples, Richemal PL-019 (trade name) manufactured by Riken Vitamin Co., Ltd.) is added as a plasticizer. Then, a polylactic acid tube formed of polylactic acid whose glass transition temperature and cold crystallization start temperature are appropriately adjusted is processed into a desired shape. In step (a), by immersing the polylactic tube above the glass transition temperature of the hot water of the polylactic acid tubes, it is softened by heating the polylactic tube above the glass transition temperature having its polylactic acid tubes. In step (b), in a state where the polylactic acid tube softened in step (a) is immersed in hot water, the operator touches the hot water and bends the polylactic acid tube to deform it into a desired shape. . In step (c), the polylactic acid tube is cooled by immersing the polylactic acid tube deformed in the desired shape in step (b) in hot water having a temperature equal to or higher than the cold crystallization start temperature of the polylactic acid tube . The polylactic acid tube is fixed in a desired shape by heating to a temperature higher than the crystallization start temperature for crystallization. Thus, for example, since the polylactic acid tube can be softened and fixed in a simple operation of immersing in hot water, workability is excellent. Further, since no special equipment is required, this processing work can be performed at the construction site.
この発明によれば、製造後に適切な温度で所望の形状に変形でき、かつその所望の形状で形状固定できる。したがって、多種のポリ乳酸成形物を製造する必要がないので、製造コストを低減できる。 According to this invention, it can be deformed into a desired shape at an appropriate temperature after production, and can be fixed in the desired shape. Therefore, since it is not necessary to manufacture various polylactic acid molded products, the manufacturing cost can be reduced.
この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の実施例の詳細な説明から一層明らかとなろう。 The above object, other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.
この発明の一実施例であるポリ乳酸成形物は、可塑剤を加えてガラス転移温度および冷結晶化開始温度を適切に下げた(調整した)ポリ乳酸によって形成される。ポリ乳酸成形物は、たとえば、押し出し成形などによって、1次成形物として円筒状の直管に形成(製造)され、その後、2次成形物に加工されて使用される。 A polylactic acid molded product according to an embodiment of the present invention is formed of polylactic acid in which a plasticizer is added to appropriately lower (adjust) the glass transition temperature and the cold crystallization start temperature. The polylactic acid molded product is formed (manufactured) as a primary molded product into a cylindrical straight pipe by, for example, extrusion molding, and then processed into a secondary molded product for use.
ポリ乳酸成形物の主成分となるポリ乳酸としては、市販のポリ乳酸樹脂を用いることができる。この実施例では、三井化学株式会社製のポリ乳酸樹脂である「レイシア」(登録商標)、「H−400」(銘柄)を用いた。なお、ポリ乳酸には、ポリL−乳酸やポリD−乳酸等のポリ乳酸ホモポリマ、ポリL/D−乳酸共重合体、およびこれらの混合体等が存在するが、これらのいずれを用いてもよい。また、ポリ乳酸には、後述する可塑剤の他に、アンチブロッキング剤、滑剤、帯電防止剤、および熱安定剤などの添加材を適宜添加することもできる。 A commercially available polylactic acid resin can be used as the polylactic acid as the main component of the polylactic acid molded product. In this example, “Lacia” (registered trademark) and “H-400” (brand), which are polylactic acid resins manufactured by Mitsui Chemicals, Inc., were used. Polylactic acid includes polylactic acid homopolymers such as poly-L-lactic acid and poly-D-lactic acid, poly-L / D-lactic acid copolymers, and mixtures thereof. Any of these may be used. Good. In addition to the plasticizer described later, additives such as an antiblocking agent, a lubricant, an antistatic agent, and a heat stabilizer can be appropriately added to the polylactic acid.
ポリ乳酸に加える可塑剤としては、ポリグリセリン酢酸エステルや下記一般式(1)で表されるグリセリン酢酸脂肪酸エステル等を用いることができる。 As a plasticizer to be added to polylactic acid, polyglycerol acetate, glycerol acetate fatty acid ester represented by the following general formula (1), or the like can be used.
一般式(1)において、R1、R2およびR3の少なくとも1つは、炭素数8〜22のアシル基であり、残りがアセチル基または水素原子である。好ましくは、R1、R2およびR3の少なくとも1つが、炭素数8〜18のアシル基であり、残りがアセチル基であるエステルである。特に好ましい化合物として、グリセリンジアセトモノカプリレート、グリセリンジアセトモノラウレート、グリセリンジアセトモノオレートおよびグリセリンジアセトモノ(C8,C10)エステル等が挙げられる。この実施例では、主成分がグリセリンジアセトモノ(C8,C10)エステルであり、ポリ乳酸に特に相溶性を合わせてある、理研ビタミン株式会社製の可塑剤、「リケマール PL−019」(商品名)を用いた。 In the general formula (1), at least one of R 1 , R 2 and R 3 is an acyl group having 8 to 22 carbon atoms, and the remainder is an acetyl group or a hydrogen atom. Preferably, it is an ester in which at least one of R 1 , R 2 and R 3 is an acyl group having 8 to 18 carbon atoms, and the rest is an acetyl group. Particularly preferred compounds include glycerin diacetomonocaprylate, glycerin diacetomonolaurate, glycerin diacetomonooleate, and glycerin diacetomono (C8, C10) ester. In this example, “Riquemar PL-019” (trade name), a plasticizer manufactured by Riken Vitamin Co., Ltd., whose main component is glycerin diacetomono (C8, C10) ester and is particularly compatible with polylactic acid. Was used.
上述したように、この実施例のポリ乳酸成形物は、可塑剤(リケマール PL−019)を加えてそのガラス転移温度および冷結晶化開始温度を調整したポリ乳酸によって形成される。表1は、ポリ乳酸成形物における可塑剤の含有量とその熱的性質との関係を示す。 As described above, the polylactic acid molded product of this example is formed of polylactic acid to which the plasticizer (Riquemar PL-019) is added to adjust the glass transition temperature and the cold crystallization start temperature. Table 1 shows the relationship between the plasticizer content in the polylactic acid molded product and its thermal properties.
表1を参照して、ここでは、複数の可塑剤添加量からなる9つのポリ乳酸のサンプル、つまりサンプルNo.1−No.9を用意し、各サンプルを用いて成形したポリ乳酸成形物の熱的性質を調べた。具体的には、サンプルNo.1は、可塑剤の添加量が0%であり、熱的性質を調べる際には、三井化学株式会社製のポリ乳酸樹脂「レイシアH−400」のペレットをそのまま使用した。サンプルNo.9は、可塑剤の添加量が20%であり、熱的性質を調べる際には、理研ビタミン株式会社製のマスターバッチペレットをそのまま使用した。サンプルNo.2−No.5は、可塑剤の添加量がそれぞれ5%、7%、8%および10%であり、熱的性質を調べる際には、押出機によって円筒状(パイプ状)に成形したものを使用した。また、サンプルNo.6−No.8は、可塑剤の添加量がそれぞれ7%、8%および9%であり、熱的性質を調べる際には、ミキシングロールによって混練して成形したものを使用した。なお、この実施例では、「%」は重量比率で示している。 Referring to Table 1, here, nine polylactic acid samples having a plurality of plasticizer addition amounts, that is, sample No. 1 to No. 9, were prepared, and the polylactic acid moldings molded using each sample were prepared. The thermal properties were investigated. Specifically, sample No. 1 has 0% of plasticizer added, and when examining thermal properties, pellets of polylactic acid resin “Lacia H-400” manufactured by Mitsui Chemicals, Inc. are used as they are. used. In sample No. 9, the amount of plasticizer added was 20%, and when examining the thermal properties, master batch pellets manufactured by Riken Vitamin Co., Ltd. were used as they were. Samples No. 2 and No. 5 have plasticizers added in amounts of 5%, 7%, 8% and 10%, respectively, and when examining thermal properties, they were formed into a cylindrical shape (pipe shape) by an extruder. The molded one was used. Samples No. 6 to No. 8 have plasticizers added in amounts of 7%, 8% and 9%, respectively, and when they are examined for thermal properties, they are kneaded with a mixing roll and molded. did. In this example, “%” is shown by weight ratio.
また、成形後の可塑剤含有量は、押出機やミキシングロールを用いて成形した後の可塑剤の含有量、すなわちポリ乳酸成形物(1次成形物)に含まれる可塑剤の含有量を示す。このように成形後の可塑剤の含有量を示すのは、可塑剤(リケマール PL−019)の沸点が低く、成形中にその一部が揮発する可能性が高いため、可塑剤の量とポリ乳酸成形物の熱的性質との関係をより厳密に表すためには、可塑剤の添加量よりも成形後の可塑剤の含有量を用いる方が適切だからである。 The plasticizer content after molding indicates the content of the plasticizer after molding using an extruder or a mixing roll, that is, the content of the plasticizer contained in the polylactic acid molded product (primary molded product). . Thus, the content of the plasticizer after the molding is shown because the plasticizer (Riquemar PL-019) has a low boiling point and is likely to partially volatilize during molding. This is because it is more appropriate to use the content of the plasticizer after molding than to add the plasticizer in order to more accurately express the relationship with the thermal properties of the lactic acid molded product.
成形後の可塑剤含有量の分析手順としては、先ず、ポリ乳酸成形物を加熱してプレスし、シート状にする。次に、シート状にしたものを裁断してポリ乳酸成形物を採取し、それに溶剤を加えて超音波振動を与えた後、しばらく静置して可塑剤を抽出する。次に、他の溶剤を加えてポリマを再沈殿させ、ろ過によってゲル状の沈殿物を取り除く。そして、ろ液から溶剤を留去してその抽出物の全量をさらに他の溶剤に溶解し、GPC(ゲル浸透クロマトグラフ分析)によって濃度分析を行い、ポリ乳酸成形物に含まれる可塑剤の含有量を得た。 As a procedure for analyzing the plasticizer content after molding, first, the polylactic acid molded product is heated and pressed to form a sheet. Next, the sheet-like material is cut to obtain a polylactic acid molded product, and a solvent is added to the product to give ultrasonic vibrations, followed by standing for a while to extract a plasticizer. Next, another solvent is added to reprecipitate the polymer, and the gel-like precipitate is removed by filtration. Then, the solvent is distilled off from the filtrate, and the total amount of the extract is further dissolved in another solvent. The concentration is analyzed by GPC (gel permeation chromatography), and the plasticizer contained in the polylactic acid molding is contained. Got the amount.
また、ポリ乳酸成形物の熱的性質として、ガラス転移温度、冷結晶化開始温度および冷結晶化温度を測定した。これらの熱的性質は、TAインスツルメント社製の示差走査熱量計DSC2010を用いて、DSC測定を行うことによって求めた。具体的には、約5mgの試験片を試料容器に密閉し、あらかじめ10℃/分で融点よりも50℃以上高い温度まで昇温して5分間保持した後、一旦装置から取り出して液体窒素で急冷することによりガラス状態のサンプルを得る。その後、JIS K 7121に基づいて、このサンプルの加熱時のガラス転移温度、冷結晶化開始温度および冷結晶化温度を求めた。なお、冷結晶化開始温度および冷結晶化温度については、JIS K 7121 9.1項に記載の「融解温度の求め方」に準拠して求めており、この項の融解温度を冷結晶化温度と読み替えている。 Further, as the thermal properties of the polylactic acid molded product, a glass transition temperature, a cold crystallization start temperature, and a cold crystallization temperature were measured. These thermal properties were obtained by performing DSC measurement using a differential scanning calorimeter DSC2010 manufactured by TA Instruments. Specifically, about 5 mg of a test piece is sealed in a sample container, heated in advance to a temperature higher than the melting point by 50 ° C. at 10 ° C./min and held for 5 minutes, and then taken out from the apparatus once with liquid nitrogen. A glassy sample is obtained by rapid cooling. Then, based on JISK7121, the glass transition temperature at the time of heating of this sample, cold crystallization start temperature, and cold crystallization temperature were calculated | required. The cold crystallization start temperature and the cold crystallization temperature are obtained in accordance with “How to obtain the melting temperature” described in JIS K 7121 9.1, and the melting temperature in this item is determined as the cold crystallization temperature. It has been read as.
図1に示すように、可塑剤の含有量(濃度)が増加するに伴い、ガラス転移温度および冷結晶化開始温度が低下することがわかる。また、ガラス転移温度(Tg)の変化は、数1に示すCouchman式にも良好に一致することがわかる。 As shown in FIG. 1, it can be seen that as the plasticizer content (concentration) increases, the glass transition temperature and the cold crystallization start temperature decrease. It can also be seen that the change in the glass transition temperature (Tg) is in good agreement with the Coachman equation shown in Equation 1.
ここで、Xiは、i成分の重量組成比(%)を示し、ΔCpiは、ガラス転移における比熱容量変化(j/g・K)を示し、Tgiは、ガラス転移温度(K)を示す。 Here, Xi represents the weight composition ratio (%) of the i component, ΔC pi represents the specific heat capacity change (j / g · K) in the glass transition, and T gi represents the glass transition temperature (K). .
このように、可塑剤を添加することによって、ポリ乳酸のガラス転移温度および冷結晶化開始温度を適切に調節できることがわかる。そこで、この実施例では、ガラス転移温度を30℃〜45℃、好ましくは38℃〜42℃に調節し、冷結晶化開始温度を90℃〜100℃、好ましくは95℃〜98℃に調節したポリ乳酸によって、ポリ乳酸成形物を形成する。なお、上述の可塑剤(リケマール PL−019)では、成形後の可塑剤含有量を7%〜10%にするとよく、好ましくは8%〜9%にするとよい。具体的には、上述の表1を参照して、サンプルNo.3−No.8のサンプルを用いることができる。 Thus, it turns out that the glass transition temperature and cold crystallization start temperature of polylactic acid can be adjusted appropriately by adding a plasticizer. Therefore, in this example, the glass transition temperature was adjusted to 30 ° C to 45 ° C, preferably 38 ° C to 42 ° C, and the cold crystallization start temperature was adjusted to 90 ° C to 100 ° C, preferably 95 ° C to 98 ° C. A polylactic acid molded product is formed with polylactic acid. In the above-mentioned plasticizer (Riquemar PL-019), the plasticizer content after molding may be 7% to 10%, preferably 8% to 9%. Specifically, referring to Table 1 described above, the sample No. 3-No. 8 can be used.
このようなポリ乳酸成形物は、上述したように、1次成形物として、たとえば押し出し成形などによって円筒状の直管に形成される。そして、所望の形状の2次成形物に加工された後に、排水管等として使用される。ポリ乳酸成形物を2次成形物に加工するときには、先ず、ポリ乳酸成形物をガラス転移温度以上に加熱して軟化させ、所望の形状に変形させる。その後、冷結晶化開始温度以上に加熱することによってポリ乳酸成形物を結晶化させ、その所望の形状で固化(形状固定)させて、所望の形状の2次成形物とする。 As described above, such a polylactic acid molded product is formed as a primary molded product into a cylindrical straight pipe by, for example, extrusion molding. And after processing into the secondary molded product of desired shape, it is used as a drain pipe etc. When a polylactic acid molded product is processed into a secondary molded product, first, the polylactic acid molded product is heated to a glass transition temperature or higher to be softened and deformed into a desired shape. Thereafter, the polylactic acid molded product is crystallized by heating to a temperature equal to or higher than the cold crystallization start temperature, and solidified (fixed in its desired shape) to obtain a secondary molded product having a desired shape.
具体的には、たとえば、ガラス転移温度を40℃程度、冷結晶化開始温度を95℃程度に調整したポリ乳酸によってポリ乳酸成形物(たとえば直管)を形成した場合には、42℃程度の湯を入れた浴槽を用意し、その湯にたとえば30秒間、ポリ乳酸成形物を浸漬する。この42℃の湯は、作業者が手をつけて作業できる温度の湯である。ポリ乳酸成形物を42℃の湯に浸漬し、ポリ乳酸成形物がガラス転移温度以上に加熱されると、ポリ乳酸成形物は軟化し、作業者の手で所望の形状に変形可能となる。作業者は、ポリ乳酸成形物が軟化した状態で、ポリ乳酸成形物を所望の形状に変形し、一旦室温で放冷して、所望の形状に変形したポリ乳酸成形物を仮固化させる。そして、予め用意した95℃以上の熱湯を入れた浴槽に、仮固化させたポリ乳酸成形物をたとえば3分間浸漬する。所望の形状に変形したポリ乳酸成形物は、冷結晶化開始温度以上に加熱されると、結晶化し、その所望の形状で形状固定される。このようにポリ乳酸成形物を加工することによって、所望の形状の2次成形物を得ることができる。 Specifically, for example, when a polylactic acid molded product (for example, a straight pipe) is formed from polylactic acid whose glass transition temperature is adjusted to about 40 ° C. and cold crystallization start temperature is adjusted to about 95 ° C., it is about 42 ° C. A bathtub containing hot water is prepared, and the polylactic acid molded product is immersed in the hot water, for example, for 30 seconds. This 42 ° C. hot water is a hot water at which the operator can work with his / her hands. When the polylactic acid molded product is immersed in hot water at 42 ° C. and the polylactic acid molded product is heated to the glass transition temperature or higher, the polylactic acid molded product is softened and can be deformed into a desired shape by the operator's hand. The worker deforms the polylactic acid molded product into a desired shape in a state where the polylactic acid molded product is softened, and then temporarily cools the polylactic acid molded product into a desired shape to temporarily solidify the polylactic acid molded product. Then, the preliminarily solidified polylactic acid molded product is immersed, for example, for 3 minutes in a bathtub containing hot water of 95 ° C. or higher prepared in advance. When the polylactic acid molded product deformed into a desired shape is heated to a temperature equal to or higher than the cold crystallization start temperature, it is crystallized and fixed in the desired shape. By processing the polylactic acid molded product in this way, a secondary molded product having a desired shape can be obtained.
この実施例によれば、可塑剤を加えてガラス転移温度および冷結晶化開始温度を適切に調整したポリ乳酸によってポリ乳酸成形物を形成したので、製造後に適切な温度で所望の形状に変形でき、かつその所望の形状で形状固定できる。たとえば、ポリ乳酸成形物として円筒状の直管を形成(製造)すれば、その直管を任意の角度に湾曲させ、その形状で形状固定できる。つまり、ポリ乳酸成形物を製造後に、所望の形状の2次成形物に容易に加工できるので、複数種類のポリ乳酸成形物を用意する必要が無く、製造コストも削減できる。 According to this example, since a polylactic acid molded product was formed from polylactic acid in which a glass transition temperature and a cold crystallization start temperature were appropriately adjusted by adding a plasticizer, it can be deformed into a desired shape at an appropriate temperature after production. And, it can be fixed in its desired shape. For example, if a cylindrical straight pipe is formed (manufactured) as a polylactic acid molded product, the straight pipe can be bent at an arbitrary angle and fixed in its shape. That is, since a polylactic acid molded product can be easily processed into a secondary molded product having a desired shape after manufacturing, it is not necessary to prepare a plurality of types of polylactic acid molded products, and the manufacturing cost can be reduced.
また、S字状などの任意の形状の排水路を形成する際には、1本の直管を製造しておけば、それをS字状などの任意の形状に加工(湾曲)できるので、直管や管継手等の複数の管部材を接続して任意の形状を形成する手間が省ける上に、細かな角度調節も可能である。したがって、施工性に優れる。 Moreover, when forming a drainage channel having an arbitrary shape such as an S shape, if one straight pipe is manufactured, it can be processed (curved) into an arbitrary shape such as an S shape. In addition to the trouble of connecting a plurality of pipe members such as straight pipes and pipe joints to form an arbitrary shape, fine angle adjustment is also possible. Therefore, it is excellent in workability.
さらに、結晶化させて形状固定したポリ乳酸成形物(2次成形物)は、その後冷却して、再びガラス転移温度以上に加熱、たとえば70℃に加熱しても軟化することは無い。したがって、この2次成形物は、高温の湯が流れる可能性のある排水管としても十分に使用可能である。 Furthermore, the polylactic acid molded product (secondary molded product) that has been crystallized and fixed in shape does not soften even after being cooled and heated again to a temperature higher than the glass transition temperature, for example, 70 ° C. Therefore, this secondary molded product can be sufficiently used as a drain pipe in which high-temperature hot water may flow.
また、ガラス転移温度を45℃以下、冷結晶化開始温度を100℃以下に調整したポリ乳酸によってポリ乳酸成形物を形成したので、ポリ乳酸成形物を加工して形状固定する際には、浴槽の湯に浸漬するという簡単な作業で、ポリ乳酸成形物の軟化および固化を実行することができる。特に、ガラス転移温度を45℃以下に調整することで、ゴム手袋などを装着した作業者が手をつけることができる温度の湯で、ポリ乳酸成形物を軟化させて所望の形状に変形できるようになる。さらに、ガラス転移温度を42℃以下に調整すれば、作業者が素手でも手をつけることができる温度の湯で加工作業を行うことができるので、作業性が向上し、より細かな2次加工が可能となる。また、冷結晶化開始温度を98℃以下に調整すれば、一旦沸騰させたお湯の温度が若干下がっても使用できる。このように、特別な機器を用いることなく、簡単な作業でポリ乳酸成形物の加工を実行できるので、この加工作業は、施工現場で行うことができる。もちろん、製造工程内、つまり工場内で加工作業を行うこともできる。 Moreover, since the polylactic acid molded product was formed from polylactic acid adjusted to a glass transition temperature of 45 ° C. or lower and a cold crystallization start temperature of 100 ° C. or lower, when processing and fixing the shape of the polylactic acid molded product, The polylactic acid molded product can be softened and solidified by a simple operation of immersing in hot water. In particular, by adjusting the glass transition temperature to 45 ° C. or less, the polylactic acid molded product can be softened and deformed into a desired shape with hot water at a temperature that can be worn by an operator wearing rubber gloves. become. Furthermore, if the glass transition temperature is adjusted to 42 ° C. or lower, the work can be performed with hot water at a temperature that can be applied even with bare hands, so that workability is improved and finer secondary processing. Is possible. Moreover, if the cold crystallization start temperature is adjusted to 98 ° C. or lower, it can be used even if the temperature of hot water once boiled is slightly lowered. Thus, since the processing of the polylactic acid molded product can be executed by a simple operation without using a special device, this processing operation can be performed at the construction site. Of course, it is also possible to perform the processing work in the manufacturing process, that is, in the factory.
また、ガラス転移温度を30℃以上に調整したポリ乳酸によってポリ乳酸成形物を形成したので、ポリ乳酸成形物(1次成形物)を常温で保管することができる。ただし、夏場などには、気温が30℃以上になる場合があるので、ポリ乳酸成形物は冷暗所に保管することが望ましい。ガラス転移温度を38℃以上に調整すれば、夏場でもポリ乳酸成形物を冷暗所に保管する必要はなくなる。 Moreover, since the polylactic acid molding was formed with polylactic acid whose glass transition temperature was adjusted to 30 ° C. or higher, the polylactic acid molding (primary molding) can be stored at room temperature. However, since the temperature may be 30 ° C. or higher in summer, it is desirable to store the polylactic acid molded product in a cool and dark place. If the glass transition temperature is adjusted to 38 ° C. or higher, there is no need to store the polylactic acid molded product in a cool and dark place even in summer.
なお、この実施例で用いた可塑剤(リケマール PL−019)でガラス転移温度を30℃より低い温度に調整しようとすると、ポリ乳酸の溶融粘度が下がりすぎ、成形機でのポリ乳酸成形物の成形ができなかった。また、リケマール PL−019を用いて、ガラス転移温度を30℃以上に調整すると、冷結晶化開始温度は90℃以上になり、ガラス転移温度を38℃に調整すると、冷結晶化開始温度は95℃となった。 In addition, when it is going to adjust a glass transition temperature to the temperature lower than 30 degreeC with the plasticizer (Riquemar PL-019) used in this Example, the melt viscosity of polylactic acid will fall too much, and the polylactic acid molded product of a molding machine Molding was not possible. Further, when the glass transition temperature is adjusted to 30 ° C. or higher by using Riquemar PL-019, the cold crystallization start temperature becomes 90 ° C. or higher, and when the glass transition temperature is adjusted to 38 ° C., the cold crystallization start temperature is 95 ° C. It became ℃.
なお、上述の実施例では、ポリ乳酸成形物を円筒状の直管、つまりパイプとして形成したが、これに限定されず、ポリ乳酸成形物は1次成形物として様々な形状に形成することができる。たとえば、1次成形物としてシート状に形成することもできる。また、ポリ乳酸成形物を任意の形状に加工することによって、日用品等を含む様々なポリ乳酸成形品を得ることができる。 In the above embodiment, the polylactic acid molded product is formed as a cylindrical straight pipe, that is, a pipe. However, the present invention is not limited to this, and the polylactic acid molded product can be formed into various shapes as a primary molded product. it can. For example, it can also be formed in a sheet form as a primary molded product. Moreover, various polylactic acid molded articles including daily necessities can be obtained by processing the polylactic acid molded article into an arbitrary shape.
また、上述の実施例では、ポリ乳酸成形物を浴槽の湯に浸漬することによって加熱したが、加熱方法はこれに限定されない。たとえば、ポリ乳酸成形物を冷結晶化開始温度以上に加熱して形状固定する場合には、水蒸気によって加熱することもできる。水蒸気を用いることによって、ポリ乳酸成形物をより高温に加熱することができ、比較的高い冷結晶化開始温度(たとえば100℃)を有するポリ乳酸によって形成されるポリ乳酸成形物にも対応できる。 Moreover, in the above-mentioned Example, although heated by immersing a polylactic acid molding in the hot water of a bathtub, a heating method is not limited to this. For example, when the polylactic acid molded product is heated to a temperature higher than the cold crystallization start temperature and fixed in shape, it can be heated with water vapor. By using water vapor, the polylactic acid molded product can be heated to a higher temperature, and can be applied to a polylactic acid molded product formed from polylactic acid having a relatively high cold crystallization start temperature (for example, 100 ° C.).
上述の実施例では、冷結晶化開始温度にてポリ乳酸成形物を結晶化させたが、この場合は、やや結晶化までに時間がかかる。そこで、水蒸気やオーブンなどを用いて、ポリ乳酸成形物を冷結晶化温度(表1および図1参照)まで加熱すれば、ポリ乳酸成形物の冷結晶化現象はより早く進むので、結晶化工程時間を短縮することができる。 In the above embodiment, the polylactic acid molded product was crystallized at the cold crystallization start temperature. In this case, however, it takes some time until crystallization. Therefore, if the polylactic acid molded product is heated to a cold crystallization temperature (see Table 1 and FIG. 1) using water vapor or an oven, the cold crystallization phenomenon of the polylactic acid molded product proceeds more quickly. Time can be shortened.
さらに、上述の実施例では、軟化させたポリ乳酸成形物を作業者の手によって所望の形状に変形(加工)するようにしたが、この際には、適宜治具等を使用してポリ乳酸成形物を変形してもよい。また、所望の形状を有する金型に密着させることによって、ポリ乳酸成形物を所望の形状に変形することもできる。 Furthermore, in the above-described embodiment, the softened polylactic acid molded product is deformed (processed) into a desired shape by an operator's hand. In this case, polylactic acid is appropriately used using a jig or the like. The molded product may be deformed. In addition, the polylactic acid molded product can be deformed into a desired shape by bringing it into close contact with a mold having a desired shape.
Claims (1)
(a)前記ポリ乳酸管を湯に浸漬してそのポリ乳酸管が有するガラス転移温度以上に加熱して軟化させ、
(b)前記ステップ(a)で軟化させた前記ポリ乳酸管を湯に浸漬させた状態で作業者が湯に手をつけて所望の形状に変形し、そして
(c)前記ステップ(b)で所望の形状に変形した前記ポリ乳酸管をそのポリ乳酸管が有する冷結晶化開始温度以上に加熱することによって、当該ポリ乳酸管を当該所望の形状で形状固定する、ポリ乳酸管の加工方法。 A glycerin acetic acid fatty acid ester whose main component is glycerol diacetomono (C8, C10) ester is added as a plasticizer so that the content after molding is 6.9 to 10%, and the glass transition temperature is set to 30 ° C. to 45 ° C., And a method of processing a polylactic acid tube formed of polylactic acid having a cold crystallization start temperature of 90 ° C. to 100 ° C.,
(A) The polylactic acid tube is immersed in hot water and heated above the glass transition temperature of the polylactic acid tube to be softened,
(B) With the polylactic acid tube softened in step (a) immersed in hot water, an operator touches the hot water to deform it into a desired shape, and (c) in step (b) by heating above the cold crystallization start temperature with the polylactic acid tube deformed into a desired shape the polylactic acid tubes, the polylactic acid tubes for form-locking in the desired shape, the processing method of the polylactic acid tubes.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2007092333A JP5089217B2 (en) | 2007-03-30 | 2007-03-30 | Processing method of polylactic acid tube |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2007092333A JP5089217B2 (en) | 2007-03-30 | 2007-03-30 | Processing method of polylactic acid tube |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2008248127A JP2008248127A (en) | 2008-10-16 |
| JP5089217B2 true JP5089217B2 (en) | 2012-12-05 |
Family
ID=39973458
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2007092333A Expired - Fee Related JP5089217B2 (en) | 2007-03-30 | 2007-03-30 | Processing method of polylactic acid tube |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP5089217B2 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9350790B2 (en) | 2010-02-04 | 2016-05-24 | International Business Machines Corporation | Utilization of target browsers |
| US9678814B2 (en) | 2011-10-04 | 2017-06-13 | International Business Machines Corporation | Implementing a java method |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3674152B2 (en) * | 1996-04-30 | 2005-07-20 | トヨタ自動車株式会社 | Polylactic acid composition |
| JP2003055484A (en) * | 2001-08-23 | 2003-02-26 | Unitika Ltd | Method of storing polylactic acid film |
| CA2488416C (en) * | 2002-07-26 | 2008-12-23 | Asahi Kasei Kabushiki Kaisha | Wrapping film |
| JP2004143268A (en) * | 2002-10-23 | 2004-05-20 | Kanebo Ltd | Polylactic acid-based resin composition and molding comprising the same |
| JP2005041980A (en) * | 2003-05-26 | 2005-02-17 | Rengo Co Ltd | Plasticizer for resin and resin composition containing the plasticizer, and molded form obtained by molding the resin composition |
| JP2005263931A (en) * | 2004-03-17 | 2005-09-29 | Asahi Kasei Life & Living Corp | Matte film with inorganic filler |
| JP4112568B2 (en) * | 2004-05-11 | 2008-07-02 | 花王株式会社 | Biodegradable resin composition |
-
2007
- 2007-03-30 JP JP2007092333A patent/JP5089217B2/en not_active Expired - Fee Related
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9350790B2 (en) | 2010-02-04 | 2016-05-24 | International Business Machines Corporation | Utilization of target browsers |
| US9473558B2 (en) | 2010-02-04 | 2016-10-18 | International Business Machines Corporation | Utilization of target browsers |
| US9678814B2 (en) | 2011-10-04 | 2017-06-13 | International Business Machines Corporation | Implementing a java method |
| US9973563B2 (en) | 2011-10-04 | 2018-05-15 | International Business Machines Corporation | Implementing a java method |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2008248127A (en) | 2008-10-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| TWI223656B (en) | Biodegradable biaxially oriented film | |
| JP6505219B2 (en) | Composition based on poly (arylene ether ketone) with improved properties | |
| JP5089217B2 (en) | Processing method of polylactic acid tube | |
| JPWO2008120722A1 (en) | Polymer and film or sheet containing the same | |
| US20100010169A1 (en) | Shape memory materials and method for fabricating the same | |
| JP5105692B2 (en) | Polylactic acid-based stretched film | |
| JP2008020037A (en) | Tearable tube made of fluororesin | |
| CN103068910B (en) | There is tetrafluoroethylene/perfluoro (alkyl vinyl ether) copolymer compositions that the melt-processable of the thermal ageing properties of improvement shapes | |
| EP3988616A1 (en) | Polytetrafluoroethylene thin film and manufacturing method therefor | |
| RU2476464C2 (en) | Composition of at least one vinylidene chloride copolymer | |
| JP7175307B2 (en) | heat shrink tubing | |
| CN1668679A (en) | wrap | |
| BR112013018428B1 (en) | strapping, and, methods for making a strapping strap, and for strapping an object | |
| WO2018090801A1 (en) | Polylactic acid 3d printing wire rod and preparation method therefor | |
| JP4583537B2 (en) | Polylactic acid resin material and heat shrinkable film | |
| CN114953398B (en) | Thermoplastic fluorine resin pipe | |
| JP2972913B2 (en) | Shape memory method and shape restoration method for biodegradable shape memory polymer molded article | |
| Wei et al. | Mechanical properties and morphology of UHMWPE/PC/HDPE-g-MAH blends | |
| JP2011042802A (en) | Polylactic acid stretched film | |
| CN103483788B (en) | A kind of composite toughening method of modifying of the polylactic acid based on crystallization control | |
| JPH0995605A (en) | Biodegradable shrink film | |
| Chen et al. | Melt rheological properties of ETFE: an attempt to illuminate the fluorine-substitution effect | |
| JP7748800B2 (en) | heat shrinkable film | |
| Wu et al. | Blends of cellulose diacetate and polyester: towards bioplastics with high melt flowability and good resistance to deformation at high temperature | |
| JP5739342B2 (en) | Polymer material and method for producing the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A625 | Written request for application examination (by other person) |
Free format text: JAPANESE INTERMEDIATE CODE: A625 Effective date: 20090924 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101025 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120410 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120608 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120626 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120824 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120911 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120911 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150921 Year of fee payment: 3 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| LAPS | Cancellation because of no payment of annual fees |