[go: up one dir, main page]

JP5017627B2 - Cylindrical coil and cylindrical micromotor using the same - Google Patents

Cylindrical coil and cylindrical micromotor using the same Download PDF

Info

Publication number
JP5017627B2
JP5017627B2 JP2007517907A JP2007517907A JP5017627B2 JP 5017627 B2 JP5017627 B2 JP 5017627B2 JP 2007517907 A JP2007517907 A JP 2007517907A JP 2007517907 A JP2007517907 A JP 2007517907A JP 5017627 B2 JP5017627 B2 JP 5017627B2
Authority
JP
Japan
Prior art keywords
coil
cylindrical
base material
coil pattern
micromotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007517907A
Other languages
Japanese (ja)
Other versions
JPWO2006126662A1 (en
Inventor
一也 中村
善人 桧山
伸夫 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Adamant Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Adamant Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd, Adamant Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP2007517907A priority Critical patent/JP5017627B2/en
Publication of JPWO2006126662A1 publication Critical patent/JPWO2006126662A1/en
Application granted granted Critical
Publication of JP5017627B2 publication Critical patent/JP5017627B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/26DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by the armature windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/26Windings characterised by the conductor shape, form or construction, e.g. with bar conductors consisting of printed conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/47Air-gap windings, i.e. iron-free windings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

本発明は、極小径かつ、微細なコイルパターンを有する円筒状コイル及びそれを用いた円筒型マイクロモータに関する。   The present invention relates to a cylindrical coil having an extremely small diameter and a fine coil pattern, and a cylindrical micromotor using the cylindrical coil.

近年、医療機器分野、分析機器分野、マイクロマシン分野等にて、アクチュエータ搭載による機器の高機能化を目的とした、マイクロモータの小型化が望まれている。   In recent years, in the medical device field, the analytical device field, the micromachine field, and the like, it is desired to reduce the size of the micromotor for the purpose of enhancing the function of the device by mounting the actuator.

このマイクロモータの小型化、特に小径化に伴い、同マイクロモータに内蔵されるコイルの小型・微細化が必要不可欠となる。   With the miniaturization of the micromotor, in particular with a reduction in diameter, it is essential to reduce the size and miniaturization of the coil built into the micromotor.

通常、前記コイルは、スロットを設けたコアに、例えばポリウレタン等の絶縁被膜を施した銅線を巻回して形成するか、あるいは、前記絶縁被覆銅線の最表層にさらに融着層を設けた自己融着銅線を、カップ状あるいはベル状に形成するコアレスコイルとするのが一般的である。また、円筒型マイクロモータの小径化を考えた場合、コアのないコアレスコイルが好適である。   Usually, the coil is formed by winding a copper wire coated with an insulating film such as polyurethane around a core provided with a slot, or further provided with a fusion layer on the outermost layer of the insulating coated copper wire. In general, the self-bonding copper wire is a coreless coil formed in a cup shape or a bell shape. Further, when considering a reduction in the diameter of the cylindrical micromotor, a coreless coil without a core is preferable.

従来より、カップ状コアレスコイルの作製にあたり、図3に示すような、コダック方式又はファールハーバー方式と呼ばれる巻線方式が採用されている。更に、消費電流を最小限に抑え、トルク特性の向上を図るために、上記方式にて作製したコイルを並列に複数個配置し並列コイルを形成したものがある(特許文献1)。
特開2004−007938
Conventionally, in manufacturing a cup-shaped coreless coil, a winding method called a Kodak method or a foul harbor method as shown in FIG. 3 has been adopted. Furthermore, in order to minimize current consumption and improve torque characteristics, there is a type in which a plurality of coils manufactured by the above method are arranged in parallel to form a parallel coil (Patent Document 1).
JP2004007938

しかしながら、自己融着銅線を用いてコアレスコイルを形成する場合、基本的に線材を配列しながら構成するため、円筒型マイクロモータ外径が1.5mm以下、特に1.0mm以下の場合、以下のような理由でコイル形成が困難となる。   However, when a coreless coil is formed using a self-bonding copper wire, it is basically configured by arranging wires, so that the outer diameter of the cylindrical micromotor is 1.5 mm or less, particularly 1.0 mm or less, For this reason, coil formation becomes difficult.

第一に、概して、コイル形成時に形が崩れる傾向にあり、真円度やフレ等の機械的精度が低下する。また、自己融着銅線の製造限界から、径0.02mm以下の配線を形成することが困難である。   First, in general, the shape tends to be lost during coil formation, and mechanical accuracy such as roundness and flare is reduced. Moreover, it is difficult to form a wiring having a diameter of 0.02 mm or less due to the production limit of the self-bonding copper wire.

第二に、例えば、図4に示すように、円筒状のマグネット21とその中心を貫通するシャフト22からなるインナーロータ部を、円筒状のハウジングケース23の両端開口部に位置するフランジ24の軸中心位置で軸受25により回転自在に軸支し、これをハウジングケース23内周面に固定配置した界磁コイル26に転流通電することにより発生する回転磁界によりインナーロータ部を回転駆動させるDCブラシレスモータ27がある。   Secondly, for example, as shown in FIG. 4, an inner rotor portion composed of a cylindrical magnet 21 and a shaft 22 passing through the center of the magnet 21 is connected to the shaft of the flange 24 positioned at both ends of the cylindrical housing case 23. DC brushless that rotatably supports the inner rotor portion by a rotating magnetic field generated by commutating and energizing a field coil 26 fixedly arranged on the inner peripheral surface of the housing case 23 at a central position. There is a motor 27.

このとき、真円度やフレ等の機械的精度が低いコイルでは、コイルがマグネットに干渉してしまう恐れがあるため、マグネット21と界磁コイル26の間隙であるエアギャップを大きく確保しなければならない。よって、ハウジングケース23内径から、マグネット21外径までの磁気ギャップも大きく確保しなくてはならない。そのため、トルク発生効率が低下し、小径化に不向きであった。また、モータ外径が小さくなればなるほど、それに比例して、そのエアギャップが小さくなることはなく、その加工限界から所定のエアギャップを確保しなければならないため、小径化が進むほどその影響は大きくなってしまう。   At this time, in a coil with low mechanical accuracy such as roundness and flare, the coil may interfere with the magnet. Therefore, a large air gap as a gap between the magnet 21 and the field coil 26 must be secured. Don't be. Therefore, a large magnetic gap from the inner diameter of the housing case 23 to the outer diameter of the magnet 21 must be ensured. For this reason, the torque generation efficiency is lowered and it is not suitable for reducing the diameter. In addition, the smaller the motor outer diameter, the smaller the air gap will not be, and the predetermined air gap must be secured from the processing limit. It gets bigger.

本発明は、上記課題を鑑み、高精度で微細なコイルパターンを形成し、且つ、真円度やフレ等、機械的精度の優れた高精度な円筒状コイル、及び、その円筒状コイルを用いた円筒型マイクロモータを提供するものである。   In view of the above problems, the present invention uses a highly accurate cylindrical coil that forms a fine coil pattern with high accuracy and has excellent mechanical accuracy such as roundness and flare, and the cylindrical coil. The present invention provides a conventional cylindrical micromotor.

請求項1記載の発明は、円筒状コイルにおいて、円筒状基材の外周表面に、パターン幅が20μm以下である渦状のコイルパターン溝を作製し、その溝に導電体を充填することにより、コイルパターンを直接形成することによって構成されることを特徴とする円筒状コイルである。
According to the first aspect of the present invention, in the cylindrical coil, a spiral coil pattern groove having a pattern width of 20 μm or less is formed on the outer peripheral surface of the cylindrical base material, and the groove is filled with a conductor, whereby the coil A cylindrical coil is formed by directly forming a pattern.

請求項2記載の発明は、請求項1記載の円筒状コイルにおいて、円筒状基材に、ナノインプリント法を用いて、コイルパターン溝を作製し、その溝に導電体を充填することにより、コイルパターンを直接形成することによって構成されることを特徴とする円筒状コイルである。   The invention according to claim 2 is the cylindrical coil according to claim 1, wherein a coil pattern groove is formed on the cylindrical base material by using a nanoimprint method, and the groove is filled with a conductor, thereby forming a coil pattern. It is a cylindrical coil characterized by comprising by forming directly.

請求項3記載の発明は、請求項1〜請求項2のいずれかに記載の円筒状コイルにおいて、前記円筒状基材に作製されるコイルパターン溝に充填される導電体で形成されるコイルパターンと、前記円筒状基材を被覆する絶縁体が、複数層形成され、積層された前記コイルパターンは、穴加工によって得られるスルーホールに導電体を充填することによって、電気的に層間接続され、最表層は絶縁体で構成されることを特徴とする円筒状コイルである。   A third aspect of the present invention is the cylindrical coil according to any one of the first to second aspects, wherein the coil pattern is formed of a conductor filled in a coil pattern groove formed on the cylindrical base material. And a plurality of insulators covering the cylindrical base material are formed, and the laminated coil pattern is electrically connected between layers by filling a through hole obtained by drilling with a conductor, The outermost layer is a cylindrical coil characterized by comprising an insulator.

請求項4記載の発明は、請求項1〜請求項のいずれかに記載の円筒状コイルを有することを特徴とする円筒型マイクロモータである。
A fourth aspect of the present invention is a cylindrical micromotor comprising the cylindrical coil according to any one of the first to third aspects.

このとき、ナノインプリント法とは、微細な凹凸を有するモールド(型)を樹脂などの被加工材料に押し付けてその凹凸形状を転写する微細成形加工技術である。熱式と光硬化式とに分類される。熱式は、モールドをセットし、そのモールドと熱可塑性樹脂からなる被加工材料を、被加工材料のガラス転移温度以上に加熱し、モールドを被加工材料に押し付け、一定時間保持し、モールドと被加工材料を同ガラス転移温度未満に冷却し、モールドを被加工材料から剥離させ、モールドの微細な凹凸が転写された被加工材料を形成する方式である。また,光硬化式は、モールドに光硬化性樹脂からなる被加工材料を充填し、例えば、モールドを介して被加工材料に紫外線を照射し、光硬化性樹脂を硬化させ、モールドから剥離させることで、モールドの微細な凹凸が転写された被加工材料を形成する方式である。   At this time, the nanoimprint method is a micro-molding technique in which a mold having a fine unevenness is pressed against a material to be processed such as resin to transfer the uneven shape. It is classified into thermal type and photocuring type. In the thermal method, a mold is set, a work material composed of the mold and a thermoplastic resin is heated to a temperature higher than the glass transition temperature of the work material, the mold is pressed against the work material, and held for a certain period of time. In this method, the processing material is cooled to below the glass transition temperature, the mold is peeled off from the processing material, and the processing material to which the fine irregularities of the mold are transferred is formed. In the photo-curing type, a material to be processed made of a photo-curable resin is filled in a mold, and for example, the material to be processed is irradiated with ultraviolet rays through the mold to cure the photo-curable resin and peel it from the mold. In this method, a material to be processed onto which fine unevenness of the mold is transferred is formed.

熱式では、ガラス転移温度を有する被加工材料における材料自由度が高く、モールド形状の自由度が高く、高アスペクト比をもつ形状を形成することが可能となる。しかしながら、加熱冷却工程にかかる時間によるスループットの低下、温度差による寸法変化、転写パターン精度の低下、熱膨張によるアライメント精度の低下等の問題点も有する。   The thermal method has a high degree of freedom in the material to be processed having a glass transition temperature, a high degree of freedom in the shape of the mold, and a shape having a high aspect ratio can be formed. However, there are problems such as a decrease in throughput due to the time required for the heating and cooling process, a dimensional change due to a temperature difference, a decrease in transfer pattern accuracy, and a decrease in alignment accuracy due to thermal expansion.

これに対し、光硬化式では、熱式とくらべ、スループットが高く、温度による寸法変化等を防ぐことができる。また、紫外線を透過するモールドを用いるため、モールドを透過しての位置合わせが行える。しかしながら、紫外線を透過しなければならないため、モールドの材質に制限がある。   On the other hand, the photo-curing type has a higher throughput than the thermal type and can prevent a dimensional change due to temperature. In addition, since a mold that transmits ultraviolet rays is used, alignment through the mold can be performed. However, there is a limitation on the material of the mold because it must transmit ultraviolet rays.

よって、ナノインプリント法を用いる場合、熱式・光硬化式の長所・短所をよく考慮し、方式を選択する必要がある。   Therefore, when using the nanoimprint method, it is necessary to select a method in consideration of the advantages and disadvantages of the thermal and photocuring methods.

本発明の円筒状コイルは、円筒状基材表面に直接コイルパターンを形成することにより、シート状コイルを丸めて円筒形状にする工程(ローリング工程)を省略することができる。このため、微細、且つ、アスペクト比の高い円筒状コイルを作製する場合、そのシート状コイルの寸法効果(巾/厚みが小さくなる)により、同シート状コイルの剛性が高まり、ローリング工程時に、その断面形状が雫状(非真円状)となってしまうといった、真円度、フレ等の機械的精度の低下や、コイル内外径の差から生じるせん断応力による、配線、特に縦配線の破断等の不具合を容易に防止することが可能となる。   In the cylindrical coil of the present invention, the step of rolling the sheet coil into a cylindrical shape (rolling step) can be omitted by forming a coil pattern directly on the surface of the cylindrical substrate. For this reason, when producing a cylindrical coil with a fine and high aspect ratio, the rigidity of the sheet-like coil increases due to the dimensional effect (width / thickness decreases) of the sheet-like coil. Deterioration of mechanical accuracy such as roundness and flare, such as cross-sectional shape becoming saddle shape (non-circular shape), breakage of wiring, especially vertical wiring due to shear stress caused by difference of inner and outer diameter of coil It is possible to easily prevent this problem.

本発明によれば、円筒状コイルの真円度、フレ等の機械的精度を高精度に保つことが可能であるため、その円筒状コイルを用いたマイクロモータの構成において、小型化、小径化にあたって、エアギャップの縮小化、磁気ギャップの縮小化が可能となる。よって、パーミアンス係数が増加し、磁気効率の向上が得られ、その結果、トルク定数の向上等の効果を得ることが可能となる。   According to the present invention, since it is possible to maintain the mechanical accuracy such as roundness and flare of the cylindrical coil with high accuracy, in the configuration of the micromotor using the cylindrical coil, the size and diameter can be reduced. In this case, it is possible to reduce the air gap and the magnetic gap. Therefore, the permeance coefficient is increased and the magnetic efficiency is improved. As a result, it is possible to obtain effects such as an improvement in torque constant.

また、ナノインプリント法を用いることにより、微細なコイルパターン溝を作製できるため、その溝に導電体を直接充填することによってコイルパターンを形成し、微細なコイルパターンを形成することが可能となる。   Moreover, since a fine coil pattern groove | channel can be produced by using a nanoimprint method, it becomes possible to form a coil pattern by filling the groove | channel directly with a conductor, and to form a fine coil pattern.

また、コイルパターンと絶縁体が複数層形成され、積層された前記コイルパターンは、レーザー等を用いた穴加工によって得られるスルーホールに導電体を充填することによって、電気的に層間接続されることによって、多層化した円筒状コイルを形成することが可能となり、コイルの巻数を増加でき、トルク定数の向上等の効果を得ることが可能となる。   In addition, a plurality of coil patterns and insulators are formed, and the stacked coil patterns are electrically connected to each other by filling a through hole obtained by drilling using a laser or the like with a conductor. As a result, a multilayered cylindrical coil can be formed, the number of turns of the coil can be increased, and effects such as an improvement in torque constant can be obtained.

上記円筒状コイルのコイルパターンのパターン幅を20μm以下で形成することによって、従来の巻線コイルに用いていた線材の製造限界よりも微細なコイルパターンを形成することが可能となり、より小型、小径化を実現した円筒状コイルを提供することが可能となる。   By forming the pattern width of the cylindrical coil pattern to be 20 μm or less, it becomes possible to form a coil pattern that is finer than the manufacturing limit of the wire used in the conventional winding coil. It is possible to provide a cylindrical coil that achieves the above.

更には、円筒型マイクロモータに本発明の円筒状コイルを用いることによって、円筒型マイクロモータの小型化、小径化が可能となる。   Furthermore, by using the cylindrical coil of the present invention for the cylindrical micromotor, the cylindrical micromotor can be reduced in size and diameter.

本発明における最良の形態として、ナノインプリント法によるコイルパターン溝作製の概略図を図1に示す。また、ここに示す本発明の実施の形態は上述したナノインプリント法の中でも、熱式と呼ばれる方式である。   As the best mode of the present invention, a schematic diagram of coil pattern groove fabrication by the nanoimprint method is shown in FIG. In addition, the embodiment of the present invention shown here is a method called a thermal method among the nanoimprint methods described above.

これは、内周にコイルパターン状の凸部3が微細加工された断面円弧型のモールド2をセットし、絶縁体の熱可塑性樹脂からなる円筒状基材1とともに、円筒状基材1のガラス転移温度以上まで加熱し、モールド2を前記円筒状基材1に押し付け、一定時間保持し、前記円筒状基材1と前記モールド2を同ガラス転移温度以下に冷却し、前記モールド2を前記円筒状基材1から剥離させる方式である。   This is because a mold 2 having an arc-shaped cross-section in which a coil pattern-like convex part 3 is finely processed is set on the inner periphery, and a cylindrical base material 1 made of an insulating thermoplastic resin and a glass of the cylindrical base material 1. Heat to a transition temperature or higher, press the mold 2 against the cylindrical base material 1, hold it for a certain period of time, cool the cylindrical base material 1 and the mold 2 below the same glass transition temperature, and remove the mold 2 from the cylinder This is a method of peeling from the substrate 1.

次に、図2に本発明における円筒状コイルを作製する工程を、図2(a)〜(l)に模式的に示す。   Next, FIG. 2 schematically shows the steps for producing the cylindrical coil in the present invention in FIGS.

まず、図示しない心棒を挿入した、絶縁体の熱可塑性樹脂からなる円筒状基材1をセットし(図2(a))、上記の方法で、外周面にコイルパターン溝5が作製された円筒状基材4を作製する(図2(b))。   First, a cylindrical base material 1 made of an insulating thermoplastic resin, into which a mandrel (not shown) is inserted, is set (FIG. 2 (a)), and a cylinder having a coil pattern groove 5 formed on the outer peripheral surface by the above method. The base material 4 is produced (FIG. 2B).

次に、前記円筒状基材4外周表面に銅等の無電解めっき6を施す(図2(c))。さらにその表面を前記円筒状基材4表層部まで研磨することにより、ナノインプリント法で形成された前記コイルパターン溝5に、無電解めっき、すなわち導電体を充填し、コイルパターン7の形成された円筒状基材8を作製する(図2(d))。   Next, electroless plating 6 such as copper is applied to the outer peripheral surface of the cylindrical base material 4 (FIG. 2C). Further, by polishing the surface of the cylindrical base material 4 to the surface layer portion, the coil pattern groove 5 formed by the nanoimprint method is filled with electroless plating, that is, a conductor, and the cylinder in which the coil pattern 7 is formed. The substrate 8 is produced (FIG. 2 (d)).

さらに、前記円筒状基材8外周表面を絶縁体の熱可塑性樹脂にてコーティングを行い、円筒状基材9を作製する(図2(e))。次に、ナノインプリント法を用いて、前記円筒状基材9表面に、コイルパターン溝10が作製された円筒状基材11を作製する(図2(f))。同様に無電解めっき12を前記円筒状基材11外周表面に施し(図2(g))、さらにその表面を前記円筒状基材11表層部まで研磨することにより、導電体からなるコイルパターン13の形成された円筒状基材14を作製する(図2(h))。   Furthermore, the outer peripheral surface of the cylindrical base material 8 is coated with an insulating thermoplastic resin to produce a cylindrical base material 9 (FIG. 2 (e)). Next, the cylindrical base material 11 in which the coil pattern groove 10 is formed on the surface of the cylindrical base material 9 is manufactured by using a nanoimprint method (FIG. 2F). Similarly, the electroless plating 12 is applied to the outer peripheral surface of the cylindrical base material 11 (FIG. 2G), and the surface is polished to the surface layer portion of the cylindrical base material 11 to thereby form a coil pattern 13 made of a conductor. The cylindrical base material 14 formed with (1) is produced (FIG. 2 (h)).

次に、レーザー等を用いた穴加工で、前記コイルパターン13の一部に円筒状基材径方向に穴あけ加工を行い、スルーホール15が作製された円筒状基材16を作製する(図2(i))。このとき、スルーホール15は、前記コイルパターン7に到達するまで貫通させる。さらに同様に無電解めっき17を前記円筒状基材16外周表面に施す(図2(j))。   Next, by drilling using a laser or the like, a part of the coil pattern 13 is punched in the radial direction of the cylindrical base material, and the cylindrical base material 16 having the through holes 15 is manufactured (FIG. 2). (I)). At this time, the through hole 15 is penetrated until it reaches the coil pattern 7. Similarly, electroless plating 17 is applied to the outer peripheral surface of the cylindrical substrate 16 (FIG. 2 (j)).

前記円筒状基材16表層部まで表面を研磨することにより、前記スルーホール15に導電体が充填され、縦配線18が形成される円筒状基材19を作製する(図2(k))。さらに絶縁体の熱可塑性樹脂で前記円筒状基材19外周表面にコーティングを行い、円筒状基材20を作製する(図2(l))。以上の工程を繰り返し行う。   By polishing the surface of the cylindrical base material 16 to the surface layer portion, the cylindrical base material 19 in which the conductor is filled in the through hole 15 and the vertical wiring 18 is formed is produced (FIG. 2 (k)). Further, the outer peripheral surface of the cylindrical base material 19 is coated with an insulating thermoplastic resin to produce a cylindrical base material 20 (FIG. 2 (l)). The above steps are repeated.

このとき、コイルパターン7、13は、図示されない電力供給配線等により、用途に合わせ、適宜結線され、多層化した円筒状コイルを形成することが可能となる。   At this time, the coil patterns 7 and 13 are appropriately connected in accordance with the use by a power supply wiring (not shown) or the like, and a multilayered cylindrical coil can be formed.

上記に示すように、コイルパターンと絶縁体の熱可塑性樹脂を円筒状基板表面に直接形成することにより、機械的精度の優れた円筒状コイルを作製することが可能となり、また、スルーホールに充填される導電体により、積層されたコイルパターンが電気的に層間接続され、立体配線が可能となり、且つ、配線、特に縦配線の断線が生じにくい円筒状コイルを作製することが可能となる。   As shown above, by directly forming the coil pattern and insulator thermoplastic resin on the cylindrical substrate surface, it becomes possible to produce a cylindrical coil with excellent mechanical accuracy, and fill the through hole. By using the conductor, the laminated coil patterns are electrically connected to each other, so that three-dimensional wiring is possible, and it is possible to produce a cylindrical coil in which wiring, particularly vertical wiring is not easily broken.

本実施例において、ナノインプリントで形成したコイルパターン溝に導電体を充填する方法として、無電解めっきを適用した方法を示したが、その方法はその限りでない。   In the present embodiment, a method in which electroless plating is applied is shown as a method for filling a coil pattern groove formed by nanoimprinting with a conductor, but the method is not limited thereto.

また、本実施例において、コイルパターン溝を作製する手法として、ナノインプリント法を適用した例を示したが、その方法はその限りでなく、切削加工等も可能である。しかしながら、ナノインプリント法によるコイルパターン溝作製がより好ましいと考えられる。   In this embodiment, an example in which the nanoimprint method is applied as a method for producing the coil pattern groove is shown, but the method is not limited thereto, and cutting or the like is also possible. However, it is considered that the coil pattern groove production by the nanoimprint method is more preferable.

こうして得られた円筒状コイルを用いて、マイクロモータを構成することにより、より小型化、より小径化されたマイクロモータを構成することが可能となる。   By configuring the micromotor using the cylindrical coil thus obtained, it is possible to configure a micromotor with a smaller size and a smaller diameter.

本発明におけるナノインプリント法によるコイルパターン溝作製手法の説明図Explanatory drawing of coil pattern groove preparation technique by nanoimprint method in the present invention 本発明における円筒型マイクロモータのコイル作製工程の模式図Schematic diagram of coil manufacturing process of cylindrical micromotor in the present invention 従来技術によるコイル作製工程を示す説明図Explanatory drawing showing coil manufacturing process by conventional technology 従来のDCブラシレスモータの構成を示す側断面図Side sectional view showing the configuration of a conventional DC brushless motor

符号の説明Explanation of symbols

1,4,8,9,11,14,16,19,20 円筒状基材
2 モールド
3 凸部
5,10 コイルパターン溝
6,12,17 無電解めっき
7,13 コイルパターン
15 スルーホール
18 縦配線
21 マグネット
22 シャフト
23 ハウジングケース
24 フランジ
25 軸受
26 界磁コイル
27 DCブラシレスモータ
1,4,8,9,11,14,16,19,20 Cylindrical base material 2 Mold 3 Protrusion 5,10 Coil pattern groove 6, 12, 17 Electroless plating 7, 13 Coil pattern 15 Through hole 18 Vertical Wiring 21 Magnet 22 Shaft 23 Housing case 24 Flange 25 Bearing 26 Field coil 27 DC brushless motor

Claims (4)

円筒状コイルにおいて、
円筒状基材の外周表面に、パターン幅が20μm以下である渦状のコイルパターン溝を作製し、その溝に導電体を充填することにより、コイルパターンを直接形成することによって構成されることを特徴とする円筒状コイル。
In the cylindrical coil,
A spiral coil pattern groove having a pattern width of 20 μm or less is formed on the outer peripheral surface of a cylindrical base material, and the coil pattern is directly formed by filling the groove with a conductor. A cylindrical coil.
請求項1記載の円筒状コイルにおいて、
円筒状基材に、ナノインプリント法を用いて、コイルパターン溝を作製し、その溝に導電体を充填することにより、コイルパターンを直接形成することによって構成されることを特徴とする円筒状コイル。
The cylindrical coil according to claim 1, wherein
A cylindrical coil characterized in that a coil pattern groove is formed on a cylindrical substrate by using a nanoimprint method, and a conductor is filled in the groove to directly form a coil pattern.
請求項1〜請求項2のいずれかに記載の円筒状コイルにおいて、
前記円筒状基材に作製されるコイルパターン溝に充填される導電体で形成されるコイルパターンと、前記円筒状基材を被覆する絶縁体が、複数層形成され、積層された前記コイルパターンは、穴加工によって得られるスルーホールに導電体を充填することによって、電気的に層間接続され、最表層は絶縁体で構成されることを特徴とする円筒状コイル。
In the cylindrical coil in any one of Claims 1-2,
A coil pattern formed of a conductor filled in a coil pattern groove formed on the cylindrical base material and an insulator covering the cylindrical base material are formed in a plurality of layers, and the laminated coil pattern is A cylindrical coil characterized in that a through hole obtained by drilling is filled with a conductor to electrically connect the layers, and the outermost layer is made of an insulator.
請求項1〜請求項3のいずれかに記載の円筒状コイルを有することを特徴とする円筒型マイクロモータ。A cylindrical micromotor comprising the cylindrical coil according to any one of claims 1 to 3.
JP2007517907A 2005-05-27 2006-05-26 Cylindrical coil and cylindrical micromotor using the same Expired - Fee Related JP5017627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007517907A JP5017627B2 (en) 2005-05-27 2006-05-26 Cylindrical coil and cylindrical micromotor using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005156207 2005-05-27
JP2005156207 2005-05-27
JP2007517907A JP5017627B2 (en) 2005-05-27 2006-05-26 Cylindrical coil and cylindrical micromotor using the same
PCT/JP2006/310517 WO2006126662A1 (en) 2005-05-27 2006-05-26 Tubular coil and tubular micromotor employing it

Publications (2)

Publication Number Publication Date
JPWO2006126662A1 JPWO2006126662A1 (en) 2008-12-25
JP5017627B2 true JP5017627B2 (en) 2012-09-05

Family

ID=37452083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007517907A Expired - Fee Related JP5017627B2 (en) 2005-05-27 2006-05-26 Cylindrical coil and cylindrical micromotor using the same

Country Status (3)

Country Link
US (1) US7986063B2 (en)
JP (1) JP5017627B2 (en)
WO (1) WO2006126662A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112022005542T5 (en) 2021-11-18 2024-09-19 Denso Corporation ARMATURE AND ROTATING ELECTRIC MACHINE

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5017627B2 (en) * 2005-05-27 2012-09-05 並木精密宝石株式会社 Cylindrical coil and cylindrical micromotor using the same
TWI388109B (en) * 2009-08-14 2013-03-01 Metal Ind Res & Dev Ct A stator structure and a micro motor having the stator structure and a method of manufacturing the same
US8193781B2 (en) 2009-09-04 2012-06-05 Apple Inc. Harnessing power through electromagnetic induction utilizing printed coils
JP5613874B2 (en) * 2010-07-26 2014-10-29 並木精密宝石株式会社 Cylindrical micropattern coil and cylindrical micromotor using the same
DE102011111352B4 (en) * 2011-08-29 2015-11-26 Otto-Von-Guericke-Universität Magdeburg Electric motor with ironless winding
DE102017220662A1 (en) * 2016-11-30 2018-05-30 Aktiebolaget Skf Bearing arrangement with an integrated generator
JP6501026B1 (en) * 2017-07-21 2019-04-17 株式会社デンソー Electric rotating machine
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
JP6939543B2 (en) 2017-07-21 2021-09-22 株式会社デンソー Rotating machine
WO2019017495A1 (en) 2017-07-21 2019-01-24 株式会社デンソー Dynamo-electric machine
DE102017219735A1 (en) * 2017-11-07 2019-05-09 Siemens Aktiengesellschaft Stator winding with increased power density
DE112018006699T5 (en) 2017-12-28 2020-09-10 Denso Corporation Rotating electric machine
CN111512519B (en) 2017-12-28 2022-10-11 株式会社电装 Rotating electrical machine
JP7006541B2 (en) 2017-12-28 2022-01-24 株式会社デンソー Rotating machine
JP6939750B2 (en) 2017-12-28 2021-09-22 株式会社デンソー Rotating machine
JP6927186B2 (en) 2017-12-28 2021-08-25 株式会社デンソー Rotating machine
CN111565965B (en) 2017-12-28 2023-07-14 株式会社电装 Wheel driving device
JP6922868B2 (en) 2017-12-28 2021-08-18 株式会社デンソー Rotating electrical system
DE112018006717T5 (en) 2017-12-28 2020-09-10 Denso Corporation Rotating electric machine
DE112020006839T5 (en) 2020-03-05 2022-12-15 Denso Corporation Rotating electrical machines

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713716A (en) * 1980-06-30 1982-01-23 Tdk Corp Inductance element and manufacture thereof
JPH0213249A (en) * 1988-06-28 1990-01-17 Murata Mfg Co Ltd Manufacture of miniture motor coil
JPH06215950A (en) * 1993-01-13 1994-08-05 Matsushita Electric Ind Co Ltd Coil and manufacturing method thereof
JPH06267776A (en) * 1993-03-16 1994-09-22 Victor Co Of Japan Ltd Manufacture of thin film magnetic coil
JP2000173825A (en) * 1998-12-08 2000-06-23 Yokowo Co Ltd Coil element and manufacture thereof
JP2000308285A (en) * 1999-04-19 2000-11-02 Matsushita Electric Ind Co Ltd Small motor and manufacturing method thereof
JP2001258192A (en) * 2000-03-09 2001-09-21 Mitsubishi Electric Corp Winding stator and manufacturing method thereof
JP2003274619A (en) * 2002-03-12 2003-09-26 Furukawa Electric Co Ltd:The Method of forming coil for motor
JP2005101201A (en) * 2003-09-24 2005-04-14 Canon Inc Nanoimprint equipment

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE534603A (en) * 1954-01-15 1900-01-01
GB1157805A (en) * 1965-07-30 1969-07-09 Emi Ltd Improvements in or relating to Circuit Elements especially for use as Scanning Coils
US3723779A (en) * 1970-06-22 1973-03-27 Information Magnetics Corp Compensated linear motor
US3656015A (en) * 1971-05-04 1972-04-11 Information Magnetics Corp Combined linear motor and carriage
US3924466A (en) * 1974-10-21 1975-12-09 Honeywell Inc Magnetic flowmeter with improved field coil
US4271370A (en) * 1979-09-21 1981-06-02 Litton Systems, Inc. Double air gap printed circuit rotor
NZ207264A (en) * 1984-02-23 1988-10-28 New Zealand Dev Finance Flexible printed circuit coil
JPS62185555A (en) 1986-02-07 1987-08-13 Toshiba Corp Winding support device for superconducting rotating electric machines
US5084311A (en) * 1988-12-28 1992-01-28 General Electric Company Electromagnetic transducers and method of making them
FR2659178B1 (en) * 1990-03-02 1992-05-15 Ebauchesfabrik Eta Ag DRIVING COIL ASSEMBLY, METHOD FOR MANUFACTURING SUCH AN ASSEMBLY, AND ELECTROMAGNETIC MICROMOTOR EQUIPPED WITH SAME.
US6111329A (en) * 1999-03-29 2000-08-29 Graham; Gregory S. Armature for an electromotive device
JP2004007938A (en) 2002-07-04 2004-01-08 Lexin Japan Ltd Micromotor and parallel coil therefor
US7223611B2 (en) * 2003-10-07 2007-05-29 Hewlett-Packard Development Company, L.P. Fabrication of nanowires
JP4584754B2 (en) * 2005-04-06 2010-11-24 株式会社日立産機システム Nanoprint mold, method for producing the same, nanoprint apparatus using the mold, and nanoprint method
JP5017627B2 (en) * 2005-05-27 2012-09-05 並木精密宝石株式会社 Cylindrical coil and cylindrical micromotor using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713716A (en) * 1980-06-30 1982-01-23 Tdk Corp Inductance element and manufacture thereof
JPH0213249A (en) * 1988-06-28 1990-01-17 Murata Mfg Co Ltd Manufacture of miniture motor coil
JPH06215950A (en) * 1993-01-13 1994-08-05 Matsushita Electric Ind Co Ltd Coil and manufacturing method thereof
JPH06267776A (en) * 1993-03-16 1994-09-22 Victor Co Of Japan Ltd Manufacture of thin film magnetic coil
JP2000173825A (en) * 1998-12-08 2000-06-23 Yokowo Co Ltd Coil element and manufacture thereof
JP2000308285A (en) * 1999-04-19 2000-11-02 Matsushita Electric Ind Co Ltd Small motor and manufacturing method thereof
JP2001258192A (en) * 2000-03-09 2001-09-21 Mitsubishi Electric Corp Winding stator and manufacturing method thereof
JP2003274619A (en) * 2002-03-12 2003-09-26 Furukawa Electric Co Ltd:The Method of forming coil for motor
JP2005101201A (en) * 2003-09-24 2005-04-14 Canon Inc Nanoimprint equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112022005542T5 (en) 2021-11-18 2024-09-19 Denso Corporation ARMATURE AND ROTATING ELECTRIC MACHINE

Also Published As

Publication number Publication date
JPWO2006126662A1 (en) 2008-12-25
WO2006126662A1 (en) 2006-11-30
US20090079277A1 (en) 2009-03-26
US7986063B2 (en) 2011-07-26

Similar Documents

Publication Publication Date Title
JP5017627B2 (en) Cylindrical coil and cylindrical micromotor using the same
JP4699961B2 (en) Rotating electrical machine coil and manufacturing method thereof, and rotating electrical machine and manufacturing method thereof
JP5373375B2 (en) Spindle motor
US7282828B2 (en) Brushless motor stator, brushless motor having same and coil structure
US8946952B2 (en) Low profile spindle motor
US6856063B1 (en) Electromotive devices using notched ribbon windings
JP5181232B2 (en) STATOR, MOTOR, RECORDING MEDIUM DRIVE DEVICE, AND STATOR MANUFACTURING METHOD
JP6331219B2 (en) Movable electric machine, coil manufacturing method
CN114337172A (en) Axial flux type PCB winding permanent magnet synchronous motor and stator thereof
JP2010011550A (en) Coil device
JP2008251590A (en) Inductance component manufacturing method
JPWO2006120997A1 (en) Cylindrical coil and cylindrical micromotor using the same
JP2007082282A (en) Stator core, motor using the same, and method for manufacturing the same
US6943984B2 (en) Magnetic disc apparatus having stator structure with reduced distortion
JPH05284697A (en) Coil body and manufacturing method thereof
JP2001258192A (en) Winding stator and manufacturing method thereof
JP2005341791A (en) Motor, especially spindle motor
JP2007006634A (en) Disk device and disk drive device
JPH05260703A (en) Manufacture of coil
JP4709045B2 (en) Armature manufacturing method
JP2009207290A (en) Manufacturing method for rotating electrical machine coil
JP2003174752A (en) Small motor
JP3974493B2 (en) Manufacturing method of stator for inner rotor type motor
JP2003088024A (en) Motor and method of manufacturing the same
JP2006211754A (en) Coil for voice coil motor and voice coil motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120514

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120515

R150 Certificate of patent or registration of utility model

Ref document number: 5017627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees