JP5194218B2 - Preservation method of hydrous contact lens and hydrous contact lens preserved by the preservation method - Google Patents
Preservation method of hydrous contact lens and hydrous contact lens preserved by the preservation method Download PDFInfo
- Publication number
- JP5194218B2 JP5194218B2 JP2006156254A JP2006156254A JP5194218B2 JP 5194218 B2 JP5194218 B2 JP 5194218B2 JP 2006156254 A JP2006156254 A JP 2006156254A JP 2006156254 A JP2006156254 A JP 2006156254A JP 5194218 B2 JP5194218 B2 JP 5194218B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- contact lens
- water
- preservation method
- hydrous contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Eyeglasses (AREA)
Description
本発明は、含水性コンタクトレンズの保存方法および当該保存方法により保存された含水性コンタクトレンズに係り、特に、含水性コンタクトレンズ表面にポリエチレングリコールとシクロデキストリンとからなるプソイドロタキサン構造を形成することにより、レンズの保水性を向上させ、レンズ装用者の乾燥感や不快感を軽減し、良好なうるおい感の持続を図る保存方法に関するものである。 The present invention relates to a method for preserving a hydrous contact lens and a hydrous contact lens preserved by the preserving method, and in particular, forming a pseudorotaxane structure composed of polyethylene glycol and cyclodextrin on the surface of the hydrous contact lens. Thus, the present invention relates to a storage method that improves the water retention of the lens, reduces the dryness and discomfort of the lens wearer, and maintains a good moist feeling.
コンタクトレンズの素材および表面構造は、コンタクトレンズ装用者に特別な影響を与える。当然であるがソフトかハードかの相違により患者の受ける装用感の差異は大きく、個人差はあるものの、ソフト系レンズの方が装用当初から異物感を感じる患者は少ない。これはハード系レンズが硬くて物体として認識されやすいことに加えて、角膜表面に載置された後もソフト系レンズよりもよく動くことから、それを異物感として捉えるためである。もちろんハード系レンズは視力矯正、眼疾患発症の発見容易さなどの点でソフト系レンズに比較して優れた特性を有し、どちらを選択するかは患者の眼の状態、涙液量、涙液の質、用途など様々な要素をもとに決定される。また、レンズの表面構造は、水濡れ性、角膜との摩擦、涙液成分の吸着などとの関係で重要であり、前記素材自体だけでなく角膜との接触部位あるいは涙液の三層構造への影響を考える上においても充分考慮されなければならない。 Contact lens material and surface structure have a special impact on contact lens wearers. Needless to say, the difference in wear feeling received by the patient is large due to the difference between soft and hard, and although there are individual differences, there are fewer patients who feel a foreign body feeling from the beginning of wearing the soft lens. This is because the hard lens is hard and easily recognized as an object, and also moves better than the soft lens after being placed on the corneal surface, so that it can be regarded as a foreign object sensation. Of course, hard lenses have superior characteristics compared to soft lenses in terms of vision correction and ease of detection of the onset of eye diseases. Which one to choose depends on the patient's eye condition, tear volume, tears It is determined based on various factors such as the quality and use of the liquid. In addition, the lens surface structure is important in relation to water wettability, friction with the cornea, adsorption of tear fluid components, etc., not only the material itself but also the contact area with the cornea or the three-layer structure of tear fluid. Consideration should be taken into account when considering the effects of
ところで、近年の傾向として使い捨てタイプの含水性コンタクトレンズが登場してからはソフト系レンズ分野においてはその主流となりつつあるが、レンズ装用者において装用中に乾燥感や不快感を訴える患者が増加しているように思われる。これはレンズの装用という要因だけでなく、レンズを使用する環境、特にIT(情報技術)化が急速に進むなか、パソコン等のVDT(Visual Display Terminals)作業が広く職場に導入されてきたことに伴い作業中の凝視による瞬目回数の減少や、空調の効いた室内の湿度の低下などにも原因があるものと考えられる。レンズ装用の影響以外については別途の対策を検討する(例えばVDTについては厚生労働省発表の「VDT作業における労働衛生管理のためのガイドライン」など参照)として、レンズの装用中の乾燥感を解消する手段としては、前記の素材および表面構造と関連してその改善方法が種々提案されている。 By the way, as a trend in recent years, disposable type hydrous contact lenses have become mainstream in the field of soft lenses since the emergence of them, but the number of patients who complain of dryness and discomfort during wearing has increased among lens wearers. Seems to be. This is not only due to lens wear, but also due to the rapid development of the environment in which lenses are used, especially IT (information technology), VDT (Visual Display Terminals) work such as personal computers has been widely introduced in the workplace. Along with this, it is thought that there are also causes such as a decrease in the number of blinks due to gaze during work and a decrease in humidity in an air-conditioned room. As a means to eliminate the feeling of dryness while wearing the lens as a separate measure other than the effect of wearing the lens (for example, see “Guidelines for Occupational Health Management in VDT Work” published by the Ministry of Health, Labor and Welfare for VDT). In connection with the above-mentioned materials and surface structures, various improvement methods have been proposed.
具体的には、ポリビニルアルコール系レンズの共重合分子内にイオン性のカルボキシル基及びその塩を導入することにより、レンズの保水性を向上させたもの(特開2004−70066号公報)、重合可能な界面活性剤と架橋剤、ラジカル重合開始剤の水分散系にレンズを浸漬し紫外線を照射して耐久性の表面コーティングを形成して表面を改質する方法(特表平6−503118号公報)、重合開始剤基をレンズ表面に共有結合させてそこにグラフト重合により一次ポリマー被覆を形成し、さらに該一次ポリマー被覆の反応性基と共反応性である官能基を有する親水性テロマーとを反応させて表面を改質する方法(特開2001−163932号公報)、イオン性のコンタクトレンズにポリビニルピロリドンを吸着させて、イオン性コンタクトレンズの周囲に存在する涙液層を安定化するシステム(特開2001−247466号公報)、高分子化合物とシクロデキストリン類とを含有してなるコンタクトレンズ装着液(特開2001−125052号公報)、酸性ムコ多糖類およびグリセリンを含有する含水性ソフトコンタクトレンズの含水率低下防止組成物(特開2004−77953号公報)などが上げられる。 Specifically, the water retention of the lens is improved by introducing an ionic carboxyl group and a salt thereof into the copolymerized molecule of the polyvinyl alcohol lens (Japanese Patent Laid-Open No. 2004-70066), which can be polymerized. A method for modifying a surface by immersing a lens in an aqueous dispersion of a surfactant, a crosslinking agent and a radical polymerization initiator and irradiating with ultraviolet rays to form a durable surface coating (Japanese Patent Publication No. 6-503118) ), A polymerization initiator group is covalently bonded to the lens surface, a primary polymer coating is formed thereon by graft polymerization, and a hydrophilic telomer having a functional group that is co-reactive with the reactive group of the primary polymer coating. A method of modifying the surface by reacting (Japanese Patent Laid-Open No. 2001-163932), adsorbing polyvinylpyrrolidone on an ionic contact lens, A system for stabilizing the tear film existing around the lens (Japanese Patent Laid-Open No. 2001-247466), a contact lens mounting liquid containing a polymer compound and cyclodextrins (Japanese Patent Laid-Open No. 2001-125052) And a composition for preventing a decrease in the water content of a hydrous soft contact lens containing acidic mucopolysaccharide and glycerin (Japanese Patent Application Laid-Open No. 2004-77953).
これらの提案によれば改善効果が期待されるにしても、各方法にはそれぞれの課題もまた内在する。例えば、前記イオン性のカルボキシル基を導入する方法については、ポリビニルアルコール系レンズ以外のレンズにも普遍的に応用できるのか。重合可能な界面活性剤による表面コーティングや一次ポリマーの被覆と親水性テロマーとの反応による表面改質による方法については、レンズを形成する以外に後処理としてこれらの操作が必要になりコストアップに繋がるのではないか。また、ポリビニルピロリドンを吸着させる方法には開示されるようなレンズの種類に限定があり他の非イオン性コンタクトレンズに対する対策はどうするのか、効果の持続性はどうか。さらに高分子化合物とシクロデキストリン類とを含有するコンタクトレンズ装着液は、粘性のある従来の装着液に対してべとつき感を抑え、レンズの表面濡れ性を向上させたものであり、レンズの保水効果、乾燥感の改善を考慮したものではない、などの課題が存在するのである。さらには、もっと本質的な問題として、そもそも涙液成分や涙液量その他は患者それぞれに千差万別なのであり、すべての患者に適応できるような改善方法というものを求めること事態至難であると言わざるを得ないのである。 Even if an improvement effect is expected according to these proposals, each method also has its own problems. For example, can the method of introducing the ionic carboxyl group be universally applied to lenses other than polyvinyl alcohol lenses? For surface coating with a polymerizable surfactant and surface modification by reaction of the primary polymer coating with a hydrophilic telomer, these operations are required as post-treatment in addition to forming a lens, leading to increased costs. Isn't it? Also, the method for adsorbing polyvinylpyrrolidone is limited in the types of lenses as disclosed, what are the measures against other non-ionic contact lenses, and how is the effect sustained? In addition, contact lens mounting fluids that contain polymer compounds and cyclodextrins are less sticky than conventional viscous mounting fluids and have improved lens surface wettability. However, there are problems such as not considering the improvement of dryness. Furthermore, as a more essential problem, tear components and tear volume are all different for each patient, and it is difficult to seek an improvement method that can be applied to all patients. I must say it.
そして、前記アプローチが提案されてはいるものの、既存の方法に依存せず、他に安全で経済的・効果的な方法が未だに求められているのが現状である。 Although the approach has been proposed, there is still a need for a safe, economical, and effective method that does not depend on existing methods.
本発明は、含水性コンタクトレンズに保水性を与えて装用時にはうるおい感をもたせるような保存方法を提供することを目的とし、該方法は工程が簡略かつ、保水効果およびその持続性に優れ、安全性の高い含水性コンタクトレンズの保存方法並びに該方法を用いた含水性コンタクトレンズを提供することにある。 An object of the present invention is to provide a preservation method that gives water retention to a water-containing contact lens so as to give a moist feeling when worn, and the method has a simple process, excellent water retention effect and its sustainability, and is safe. Another object of the present invention is to provide a method for storing a highly water-containing contact lens and a water-containing contact lens using the method.
そして、本発明にあっては前記課題を解決するために検討を行った結果、ポリエチレングリコールを含有する含水性コンタクトレンズを、シクロデキストリンを含む液剤に浸漬保存することにより、レンズからの水分蒸発が抑制されることを見出した。ポリエチレングリコールとシクロデキストリンはよく知られているように、ポリエチレングリコール鎖を軸としてシクロデキストリンの環状分子を貫いたプソイドロタキサン構造を形成する。本発明の効果は該構造によりシクロデキストリンがレンズ表面を被覆することとなる結果、レンズからの水分蒸発が抑制されるのだと思われる。
The results In the present invention was investigated in order to solve the above problems, a water-absorptive contact lenses containing Po triethylene glycol, by immersing stored in liquid containing cyclodextrin, moisture from the lens It has been found that evaporation is suppressed. As is well known, polyethylene glycol and cyclodextrin form a pseudorotaxane structure penetrating a cyclic molecule of cyclodextrin with a polyethylene glycol chain as an axis. It is considered that the effect of the present invention is that the cyclodextrin coats the lens surface by the structure, so that water evaporation from the lens is suppressed.
ポリエチレングリコールは、マクロゴール4
0 0 、マクロゴール1 5 0 0 、マクロゴール4 0 0 0 などの名称で日本薬局方に収載されている。医薬品及び化粧品の基剤として繁用され、点眼薬にも等張化剤、溶解補助剤などとして用いられる安全性の高い高分子である。この高分子体をそのままレンズの素材中に相互侵入の構造で固定する。
Polyethylene glycol is
It is listed in the Japanese Pharmacopoeia with names such as 0 0,
一方、シクロデキストリンはD−グルコースがα−1,4結合で環状に連なった化合物で、6個、7個、8個で構成されたものをそれぞれα−シクロデキストリン、β−シクロデキストリン、γ−シクロデキストリンと呼んでいる。シクロデキストリンは医薬品添加物規格に収載され、医薬への応用研究はいわゆるシクロデキストリンと薬剤とのホスト・ゲストの関係の利用をはじめとして、様々な試みにより用いられている。これも前記ポリエチレングリコール同様安全性の高い化合物なのである。 On the other hand, cyclodextrin is a compound in which D-glucose is linked cyclically with α-1,4 bonds, and those composed of 6, 7, and 8 are respectively α-cyclodextrin, β-cyclodextrin, γ- It is called cyclodextrin. Cyclodextrins are listed in the Pharmaceutical Additives Standard, and pharmaceutical application research has been used in various attempts including the use of the so-called host-guest relationship between cyclodextrins and drugs. This is also a highly safe compound like the polyethylene glycol.
そしてポリエチレングリコールとシクロデキストリンが形成するプソイドロタキサン構造は、特別な操作や化学反応を必要とせず、単純に混合することにより生成する。従ってコンタクトレンズの製造に際して新たな設備を導入する必要はなく、製造コストを従来と同様に維持しつつ新たに保水効果を付与することができる。 The pseudorotaxane structure formed by polyethylene glycol and cyclodextrin does not require any special operation or chemical reaction, and is produced by simple mixing. Therefore, it is not necessary to introduce new equipment when manufacturing the contact lens, and a new water retention effect can be imparted while maintaining the manufacturing cost as in the conventional case.
本発明による含水性コンタクトレンズの保存方法は、レンズ素材にポリエチレングリコール鎖を導入しておくことにより、シクロデキストリンを含有する保存液に浸漬するだけでレンズ表面をプソイドロタキサン構造が覆うため、レンズからの水分蒸発を抑制することができる。またポリエチレングリコール、シクロデキストリンともに安全性の高い化合物なので、得られるレンズについても安全性に問題が生じる懸念はない。さらに、操作が単純であるために従来と同等の製造コストを維持することができるので、経済的にも優れた方法である。 The method for preserving a water-containing contact lens according to the present invention is such that by introducing a polyethylene glycol chain into a lens material, the lens surface is covered with a pseudorotaxane structure simply by immersing in a preservative solution containing cyclodextrin. It is possible to suppress moisture evaporation from the water. In addition, since both polyethylene glycol and cyclodextrin are highly safe compounds, there is no concern that the resulting lens may have a problem with safety. Furthermore, since the operation is simple, it is possible to maintain the same manufacturing cost as the conventional method, which is an economical method.
以下、本発明についてさらに詳細に説明する。
ポリエチレングリコール( 以下P E G という) の高分子鎖は、単にポリマーブレンドによりレンズ素材中に固定することで良い。このようなP
E G として例えば三洋化成工業株式会社のマクロゴール1 0 0 0 、マクロゴール4 0 0 0 、マクロゴール6 0 0 0などのマクロゴールシリーズがある。これらの好ましい添加量は前記P
E G モノマーと同様であるが、分子量の低いP E G では分子鎖の相互侵入構造が形成し難く、保存液中においてレンズ素材内に留まることなく溶出してしまう為に、保水性の効果が維持できなくなる。従って分子鎖の絡み合いによりレンズ素材内に固定できるだけの高分子量のものが好ましい。具体的には分子量は1
0 0 0 以上、好ましくは4 0 0 0 以上であるが、レンズ形成用モノマーとの相溶性の問題から分子量の上限が決定される。一般的に含水性コンタクトレンズに用いられるN
− ビニルピロリドンやN , N − ジメチルアクリルアミドなどの親水性モノマーと、P E G とは相溶性が良いのであるが、レンズに強度を持たせるためのメチルメタクリレートなど疎水性モノマーとは相溶性が悪い。従って組み合わせる既存のレンズ形成用モノマーによっては2
0 0 0 0 以上の高分子P E G を用いることができない場合もある。ただし、P E G のホモポリマーではなくポリオキシプロピレンなどとのブロック共重合体を用いれば、疎水性モノマーとの相溶性も向上するために、全体として2
0 00 0 以上の高分子を用いることも可能となる。要するに、分子量は大きい方がレンズ素材内への固定が容易である反面、レンズ形成モノマー溶液との相溶性が損なわれない程度に調整する必要があるのである。
Hereinafter, the present invention will be described in more detail.
Polymer chain of polyethylene glycol (hereinafter referred to as P E G) is not good by fixing in the lens material by polymer blends in a single. P like this
Examples of E G include macro goal series such as Macro Goal 1 0 0 0, Macro Goal 4 0 0 0, Macro Goal 6 0 0 0, etc. of Sanyo Chemical Industries, Ltd. These preferable addition amounts are the above-mentioned P.
It is the same as E G monomer, but P E G with a low molecular weight is difficult to form an interpenetrating structure of molecular chains, and it is eluted in the preservation solution without remaining in the lens material. It cannot be maintained. Accordingly, those having a high molecular weight that can be fixed in the lens material by entanglement of molecular chains are preferable. Specifically, the molecular weight is 1.
Although it is 0 0 0 or more, preferably 4 0 0 0 or more, the upper limit of the molecular weight is determined from the problem of compatibility with the lens-forming monomer. N commonly used for hydrous contact lenses
-Hydrophilic monomers such as vinylpyrrolidone and N, N-dimethylacrylamide are compatible with PEG, but are not compatible with hydrophobic monomers such as methylmethacrylate to give the lens strength. . Therefore, depending on the existing lens-forming monomer to be combined, 2
In some cases, a polymer P E G of 0 0 0 0 or more cannot be used. However, if a block copolymer with polyoxypropylene or the like is used instead of a homopolymer of P E G, compatibility with the hydrophobic monomer is also improved.
It is also possible to use a polymer having 0 00 0 or more. In short, the molecular weight although larger is easily fixed into the lens material, Ru Nodea that need to be adjusted to the extent that compatibility with the lens-forming monomer solution is not impaired.
一方、レンズ重合段階よりP E G を導入する上記の方法以外に、レンズ形成後、P E G をレンズ素材表面に固定する方法を採用することも可能である。一例として、ポリオキシエチレン鎖を有する界面活性剤(
例えばポリオキシエチレン− ノニルフェニルエーテルなど) をレンズ表面に吸着させる方法なども考えられる。これらの方法によれば、レンズ表面部分にのみP E G 鎖を固定するので、P
E G 含有量は前記範囲よりもさらに低く設定することとなる。この方法は後処理工程を設けることとなるので製造コストが高くなる傾向があるが、既存レンズの素材には変更がないため同等の物性を有するレンズが得られかつ保水性向上という付加価値を与えることができる。
On the other hand, in addition to the above methods for introducing Ri P E G I lens polymerization step, after the lens forming, it is also possible to employ a method of securing a P E G lens material surface. And an example, surfactants having a polyoxyethylene chain (
For example, a method of adsorbing polyoxyethylene nonylphenyl ether or the like on the lens surface is also conceivable. According to these methods, the P E G chain is fixed only to the lens surface portion.
The E G content is set lower than the above range. This method tends to increase the manufacturing cost because a post-processing step is provided, but since there is no change in the material of the existing lens, a lens having the same physical properties can be obtained, and the added value of improving the water retention is provided. be able to.
上記各手段のいずれかひとつ以上を選択して、本発明に用いられるP E G を「固定」したレンズを準備することができるが、各手段のいづれを選択するかは、得られるレンズ素材に白濁や変形などの悪影響を及ぼさないこと、製造コストを抑えること、などを基準として適宜選択される。なお、本発明におけるP
E G の「固定」とは、前記記載から明らかなように、レンズ構成分子とP E G 分子とが絡み合いによってレンズに保持された状態のことをいう。
Select or any one of the above means, or is a P E G that is used in the present invention can be prepared lenses "fixed", selects the Izure of each unit is obtained lens material It is appropriately selected on the basis of having no adverse effects such as white turbidity and deformation, and suppressing the manufacturing cost. In the present invention, P
The "fixed" in E G, as is clear from the foregoing description refers to a state of being held by the lens by entanglement and the lenses constituting molecule and P E G molecules.
本発明による保存方法には、レンズの保存液にCDを含有する。CDは前述の通りグルコースがα−1,4結合で環状に連なった化合物であり、グルコースが5個以上結合したものが知られている。一般的なものは前示α、β、γの3種であり、水への溶解度は25℃でα体が14.5g/100mL、β体が1.8g/mL、γ体が23.2g/100mLで、β体が最も低い。CDの環状構造の内部は他の比較的小さな分子を包接できる程度の大きさの空孔となっており、この空孔をPEGが貫通することによってプソイドロタキサン構造が形成される。本発明ではレンズにPEGが固定されているが、少なくとも一端はフリーな状態であるので、この自由端を通してCDがレンズに被覆されることとなる。CDとPEGとは弱い分子間相互作用によって超分子構造を形成し簡単には外れないが、PEG末端にストッパーを設けてロタキサン構造にすることも可能である。しかし、そのためには更に処理工程が必要になりそれに伴い製造コストが高くなるので、必要に応じて任意に行いうるのであって、本発明では必ずしも必要ではない。 In the storage method according to the present invention, the lens storage solution contains CD. As described above, CD is a compound in which glucose is linked in a cyclic manner with α-1,4 bonds, and a compound in which five or more glucoses are bonded is known. The general ones are α, β, and γ shown above, and the solubility in water is 14.5 g / 100 mL for α form, 1.8 g / mL for β form, and 23.2 g for γ form at 25 ° C. / 100 mL, β-form is the lowest. The inside of the cyclic structure of CD is a pore that is large enough to include other relatively small molecules, and a pseudorotaxane structure is formed by PEG penetrating through this pore. In the present invention, PEG is fixed to the lens, but since at least one end is in a free state, the CD is covered on the lens through this free end. CD and PEG form a supramolecular structure by weak intermolecular interaction and cannot be easily removed, but it is also possible to provide a rotaxane structure by providing a stopper at the PEG end. However, further processing steps are required for this purpose, and the manufacturing cost is increased accordingly. Therefore, it can be performed as required, and is not necessarily required in the present invention.
本発明のCDは、前記一般的なα体などのほかに、CDの糖類環状構造を有するCD誘導体を用いることができる。このようなCD誘導体としては、例えばアルキルCD、ヒドロキシアルキルCD、スルホアルキルCD、スルホブチルCD、硫酸化CDなどが挙げられる。これらは一種以上を適宜組み合わせて用いることができ、その濃度は0.05〜5%、より好ましくは0.5〜2%である。β−CDを使用する場合には溶解度との関係で1.8%以上の濃度にすることは基本的に困難であるが、α−CDやγ−CDを用いることにより前記濃度範囲の保存液を調製することができる。これらのCD濃度が0.05%より低いと、レンズ表面のPEGとプソイドロタキサンを形成し難くなり、PEGによる表面被覆効果すなわち水分蒸発抑制効果が期待できなくなる。一方、5%より多量のCDを含有させても、プソイドロタキサン形成に寄与しないCDが溶液中に溶解しているだけとなって、不要なCDを含有することになるため保存液のコストアップにつながるおそれがある。 For the CD of the present invention, a CD derivative having a saccharide cyclic structure of CD can be used in addition to the general α-form. Examples of such CD derivatives include alkyl CD, hydroxyalkyl CD, sulfoalkyl CD, sulfobutyl CD, and sulfated CD. One or more of these can be used in appropriate combination, and the concentration thereof is 0.05 to 5%, more preferably 0.5 to 2%. When β-CD is used, it is basically difficult to achieve a concentration of 1.8% or more in relation to solubility, but by using α-CD or γ-CD, a storage solution having the above concentration range is used. Can be prepared. When the CD concentration is lower than 0.05%, it becomes difficult to form PEG and pseudorotaxane on the lens surface, and the surface covering effect by PEG, that is, the moisture evaporation suppressing effect cannot be expected. On the other hand, even if a larger amount of CD is contained than 5%, the CD that does not contribute to the formation of pseudorotaxane is only dissolved in the solution and contains unnecessary CD. May lead to
本発明のCD含有保存液には、必要に応じてレンズ用液剤に慣用されている各種添加成分を添加することができる。それらの成分としては、等張化剤、緩衝剤、キレート剤、防腐剤、増粘剤、界面活性剤などがあり、これらは一種以上を適宜組み合わせて使用できる。 Various additive components commonly used in lens solutions can be added to the CD-containing preservation solution of the present invention as necessary. These components include isotonic agents, buffering agents, chelating agents, preservatives, thickeners, surfactants, and the like, and these can be used in appropriate combination of one or more.
より具体的には、等張化剤として、例えば塩化ナトリウム、塩化カリウム、プロピレングリコール、グリセリンなどが挙げられ、緩衝剤としては、クエン酸塩緩衝剤、ホウ酸塩緩衝剤、リン酸塩緩衝剤、コハク酸塩緩衝剤、シュウ酸塩緩衝剤、トリス−クエン酸緩衝剤、トリス−グリシン緩衝剤、トリス−EDTA緩衝剤、トリス−塩酸緩衝剤などが挙げられる。また、キレート剤としてはEDTAおよびその塩、クエン酸、ポリリン酸などが、防腐剤としてクロロヘキシジン、塩化ベンザルコニウム、ポリヘキサメチレンビグアニド、ポリクワテリウム−1などが、増粘剤としてポリビニルピロリドン、ポリビニルアルコール、ヒドロキシメチルセルロース、ヒドロキシプロピルメチルセルロース、コンドロイチン硫酸ナトリウム、ヒアルロン酸塩などが上げられる。さらに界面活性剤としてポリオキシエチレン−ポリオキシプロピレンブロック共重合体、ポリオキシエチレン硬化ヒマシ油、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンソルビタンアルキルエステルなどがあげられる。 More specifically, examples of the isotonic agent include sodium chloride, potassium chloride, propylene glycol, and glycerin. Examples of the buffer include citrate buffer, borate buffer, and phosphate buffer. Succinate buffer, oxalate buffer, tris-citrate buffer, tris-glycine buffer, tris-EDTA buffer, tris-hydrochloric acid buffer and the like. Further, EDTA and salts thereof, citric acid, polyphosphoric acid and the like as chelating agents, chlorohexidine, benzalkonium chloride, polyhexamethylene biguanide, polyquaterium-1 and the like as preservatives, polyvinylpyrrolidone, polyvinyl alcohol, Examples thereof include hydroxymethylcellulose, hydroxypropylmethylcellulose, sodium chondroitin sulfate, and hyaluronate. Furthermore, examples of the surfactant include polyoxyethylene-polyoxypropylene block copolymer, polyoxyethylene hydrogenated castor oil, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene sorbitan alkyl ester and the like.
さらにまた、その他の添加成分としてマレイン酸クロルフェニラミン、アミノエチルスルホン酸、メチル硫酸ネオスチグミンなどの各種薬効成分、メントール、カンフル、ボルネオールなどの清涼化剤、ビタミンA、ビタミンB等のビタミン類などを挙げることができ、それらは、生体に対して安全であり、取り扱うレンズの材質に悪影響を与えないものであれば、従来より公知のいかなるものも用いることが可能で、それらを、必要に応じて、本発明の作用・効果を阻害しない量的範囲において組み合わせて用いることができる。 In addition, as other additive ingredients, various medicinal ingredients such as chlorpheniramine maleate, aminoethylsulfonic acid, neostigmine methylsulfate, refreshing agents such as menthol, camphor and borneol, vitamins such as vitamin A and vitamin B, etc. As long as they are safe for the living body and do not adversely affect the material of the lens to be handled, any conventionally known materials can be used, and they can be used as necessary. , And can be used in combination within a quantitative range that does not inhibit the action and effect of the present invention.
本発明の方法によれば、PEGを固定したレンズを前記CD含有保存液に浸漬することにより、レンズ表面にプソイドロタキサン構造に基づくCD被覆が形成されることとなるが、保存条件は特に特定されることはなく、例えば室温で1晩保存すればよい。当該保存によって形成されたCD被覆は、レンズ表面からの水分蒸発を抑制する効果があり、レンズ装用による乾燥感、異物感をやわらげて患者の眼にうるおい感を与え、しかもその効果が持続する。 According to the method of the present invention, by immersing the lens with PEG immobilized in the CD-containing storage solution, a CD coating based on the pseudorotaxane structure is formed on the lens surface. For example, it may be stored overnight at room temperature. The CD coating formed by the storage has an effect of suppressing moisture evaporation from the lens surface, softens the feeling of dryness and foreign matter caused by wearing the lens, and gives a moist feeling to the patient's eyes, and the effect continues.
以下本発明をより具体的に明らかにするために、本発明に係るレンズの保存方法について幾つかの実施例を例示する。 In order to clarify the present invention more specifically, several examples of the lens storage method according to the present invention are illustrated below.
−PEG固定レンズ材の作成−
表1記載の各組成について、以下の条件によりPEGを固定したレンズ素材の棒材を重合した。重合条件としては30℃で16時間、40℃、50℃、60℃で各3時間、70〜120℃まで18時間かけて徐々に昇温した。こうして得られた各棒材から切削により乾燥時の厚さ1mm、径11mmの円盤状プレートをサンプルとして各10枚作成した。このプレートを生理食塩水中で煮沸処理することにより、素材中の未反応モノマーを溶出させ以下の試験に用いた。これらいずれのプレートも含水状態において、レンズとして十分な透明性を有していた。なお、表1記載の試験例No.5はレンズ素材にPEG鎖を固定したものではなく、本例においては比較例として用いた。
-Creation of PEG fixed lens material-
For each composition shown in Table 1, a rod of a lens material on which PEG was fixed was polymerized under the following conditions. As the polymerization conditions, the temperature was gradually increased from 30 ° C. for 16 hours, 40 ° C., 50 ° C., 60 ° C. for 3 hours, and 70 to 120 ° C. over 18 hours. Each of the rods obtained in this manner was cut to prepare 10 disc-shaped plates each having a thickness of 1 mm and a diameter of 11 mm when dried. By boiling this plate in physiological saline, unreacted monomers in the material were eluted and used for the following tests. All of these plates were sufficiently transparent as lenses in a water-containing state. In addition, test example No. of Table 1 is shown. No. 5 was not a PEG chain fixed to the lens material, but was used as a comparative example in this example.
−水分蒸発抑制効果試験−
前記により準備した含水プレートを用いて、表2記載の各種保存液(プレート5枚/50ml)中に1晩浸漬し保存する。保存後のプレートを取り出して、表面の水分をキムワイプでふき取り、プレートの側面を下にして精密天秤の上に静かに置き、プレートからの水分蒸発速度を一枚づつ経時的(1分毎)に測定して、重量減少の速度を比較した。表2記載の保存液No.5は、シクロデキストリンを含有しない保存液で、本発明の効果を示す際のコントロールとした。そして、コントロールは常に各保存液の効果を調べる際の比較として測定した。なぜなら水分蒸発速度は当然のことながら周囲環境に大きく影響されるので、同じサンプルでも測定日の温・湿度等によって蒸発量に大きな差異を生じる。天秤周囲の環境を恒温恒湿の状態に保持できれば試験日の相違すなわち測定環境が問題となることは少ないが、そのような環境下で試験を行うことができない場合においても、常にコントロールを置くことにより、それとの比較で同一環境下での相対的評価が可能となるからである。本試験例は、コントロールとサンプルの測定(1プレートにつき1分毎に10分間の経時変化を測定)をそれぞれ交互に5サイクル(1プレート1サイクルで5プレート分測定)行い、図1〜5には水分蒸発量(mg)の変化を各5サイクル測定時の平均値として、コントロールのそれと対比して示した。
-Moisture evaporation suppression effect test-
Using the water-containing plate prepared as described above, it is immersed and stored overnight in various storage solutions shown in Table 2 (5 plates / 50 ml). Remove the plate after storage, wipe the surface moisture with a Kimwipe, place it gently on a precision balance with the side of the plate facing down, and gradually evaporate the moisture from the plate one by one (every minute). Measured and compared the rate of weight loss. Preservative solution No. in Table 2 No. 5 is a preservation solution containing no cyclodextrin, and was used as a control when showing the effect of the present invention. And control was always measured as a comparison when examining the effect of each preservation solution. This is because the moisture evaporation rate is naturally greatly influenced by the surrounding environment, so that even the same sample has a large difference in evaporation amount depending on the temperature, humidity, etc. on the measurement day. If the environment around the balance can be maintained at a constant temperature and humidity, there will be little difference in the test date, that is, the measurement environment will be a problem, but even if the test cannot be performed in such an environment, always keep control. This makes it possible to make a relative evaluation under the same environment in comparison with it. In this test example, control and sample measurement (measurement of aging for 10 minutes per minute per plate) were performed alternately for 5 cycles (measurement for 5 plates per cycle per plate). The change in water evaporation (mg) was shown as an average value at the time of measurement for 5 cycles, compared with that of the control.
なお、本来はレンズ形状にて水分蒸発速度を測定することが望ましいのであるが、レンズ1枚あたりの重量は極めて軽い(約30mg程度)ためにそこから蒸発する水分も少なくなって、測定値に誤差が生じやすい。そこで本実施例においては全体重量を重く(含水時プレート1枚330mg前後)して、スケールを大きくした水分蒸発の変化を測定した。各図からは、本発明の保存方法によれば効果的な水分蒸発抑制効果が認められる。例えば、図1はレンズにPEGが相互侵入により固定されたものと、CDを含有する液剤に保存したものであるが、保存液にCDを含んでいない(コントロール)よりも水分蒸発の抑制効果が認められる。また、例えば図4はレンズ構成分子としてPEG側鎖を有する場合に、保存液にCDを含んでいると水分蒸発の抑制効果が認められることを示している。 Originally, it is desirable to measure the water evaporation rate in the shape of a lens. However, since the weight per lens is extremely light (about 30 mg), the amount of water evaporated from the lens is reduced, resulting in a measured value. Error is likely to occur. Therefore, in this example, the change in water evaporation was measured by increasing the overall weight (around 330 mg per wet plate) and increasing the scale. From each figure, according to the storage method of the present invention, an effective water evaporation suppression effect is recognized. For example, Fig. 1 shows the case where PEG is fixed to the lens by mutual intrusion and the case where it is stored in a liquid containing CD, but the water evaporation is more effectively suppressed than when the storage liquid does not contain CD (control). Is recognized. For example, FIG. 4 shows that when a PEG side chain is used as a lens constituent molecule and the preservation solution contains CD, an effect of suppressing moisture evaporation is recognized.
次に、比較例1として、PEGを固定していないレンズ材(試験例No.5のプレート)を、CD及びPEGを含有する保存液(No.6)に浸漬したとき、コントロールと比較して水分蒸発の変化を測定し、その結果を図6に示した。この試験では、レンズにPEGが固定されていない場合においては、CDとPEGが保存液に存在しているだけでは水分の蒸発を抑制する効果が認められないことを示している。 Next, as Comparative Example 1, when a lens material not fixed with PEG (the plate of Test Example No. 5) was immersed in a storage solution (No. 6) containing CD and PEG, it was compared with the control. Changes in water evaporation were measured and the results are shown in FIG. In this test, when PEG is not fixed to the lens, it is shown that the effect of suppressing the evaporation of moisture is not observed only when CD and PEG are present in the storage solution.
Claims (2)
. 0 5 % 〜 1 0 %含有する該含水性コンタクトレンズを、シクロデキストリンを0 . 0 5 〜 5 % 含有する液剤に保存することを特徴とする、含水性コンタクトレンズの保存方法。 Polyethylene glycol with a molecular weight of 4000 or more in hydrous contact lens material 0
. The water-containing contact lens containing 0.5% to 10% is treated with cyclodextrin 0. A method for preserving a hydrous contact lens, wherein the preservative is preserved in a liquid containing 5 to 5% .
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2006156254A JP5194218B2 (en) | 2006-06-05 | 2006-06-05 | Preservation method of hydrous contact lens and hydrous contact lens preserved by the preservation method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2006156254A JP5194218B2 (en) | 2006-06-05 | 2006-06-05 | Preservation method of hydrous contact lens and hydrous contact lens preserved by the preservation method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2007323010A JP2007323010A (en) | 2007-12-13 |
| JP5194218B2 true JP5194218B2 (en) | 2013-05-08 |
Family
ID=38855838
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2006156254A Expired - Fee Related JP5194218B2 (en) | 2006-06-05 | 2006-06-05 | Preservation method of hydrous contact lens and hydrous contact lens preserved by the preservation method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP5194218B2 (en) |
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10213395B2 (en) | 2013-01-23 | 2019-02-26 | Aldeyra Therapeutics, Inc. | Toxic aldehyde related diseases and treatment |
| US10414732B2 (en) | 2017-03-16 | 2019-09-17 | Aldeyra Therapeutics, Inc. | Polymorphic compounds and uses thereof |
| US10426790B2 (en) | 2016-02-28 | 2019-10-01 | Aldeyra Therapeutics, Inc. | Treatment of allergic eye conditions with cyclodextrins |
| US10550085B2 (en) | 2015-08-21 | 2020-02-04 | Aldeyra Therapeutics, Inc. | Deuterated compounds and uses thereof |
| US11040039B2 (en) | 2017-10-10 | 2021-06-22 | Aldeyra Therapeutics, Inc. | Treatment of inflammatory disorders |
| US11129823B2 (en) | 2016-05-09 | 2021-09-28 | Aldeyra Therapeutics, Inc. | Combination treatment of ocular inflammatory disorders and diseases |
| US11197821B2 (en) | 2018-09-25 | 2021-12-14 | Aldeyra Therapeutics, Inc. | Formulations for treatment of dry eye disease |
| US11312692B1 (en) | 2018-08-06 | 2022-04-26 | Aldeyra Therapeutics, Inc. | Polymorphic compounds and uses thereof |
| US11724987B2 (en) | 2005-05-26 | 2023-08-15 | Aldeyra Therapeutics, Inc. | Compositions and methods of treating retinal disease |
| US11786518B2 (en) | 2019-03-26 | 2023-10-17 | Aldeyra Therapeutics, Inc. | Ophthalmic formulations and uses thereof |
| US12029735B2 (en) | 2019-05-02 | 2024-07-09 | Aldeyra Therapeutics, Inc. | Polymorphic compounds and uses thereof |
| US12064516B2 (en) | 2020-05-13 | 2024-08-20 | Aldeyra Therapeutics, Inc. | Pharmaceutical formulations and uses thereof |
| US12097188B2 (en) | 2009-12-11 | 2024-09-24 | Aldeyra Therapeutics, Inc. | Compositions and methods for the treatment of macular degeneration |
| US12098132B2 (en) | 2019-05-02 | 2024-09-24 | Aldeyra Therapeutics, Inc. | Process for preparation of aldehyde scavenger and intermediates |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113527581B (en) * | 2020-04-13 | 2024-08-02 | 晶硕光学股份有限公司 | Water gel composition and water gel lens |
| TWI759050B (en) * | 2020-12-31 | 2022-03-21 | 財團法人工業技術研究院 | Contact lens with sustained release property |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS58114013A (en) * | 1981-12-28 | 1983-07-07 | Toyo Contact Lens Co Ltd | Water-containing contact lens and its manufacture |
| BR9106193A (en) * | 1990-10-22 | 1993-03-23 | Bausch & Lomb | METHOD AND COMPOSITION TO CLEAN CONTACT LENSES |
| CA2407290C (en) * | 2000-04-28 | 2011-01-18 | Center For Advanced Science And Technology Incubation, Ltd. | Compound comprising crosslinked polyrotaxane |
| US6528464B1 (en) * | 2001-08-17 | 2003-03-04 | Bausch & Lomb Incorporated | Composition and method for inhibiting uptake of biguanide antimicrobials by hydrogels |
| EP1623269B2 (en) * | 2003-04-24 | 2022-08-31 | CooperVision International Limited | Hydrogel contact lenses and package systems and production methods for same |
| EP1750157B1 (en) * | 2004-05-28 | 2010-10-13 | Menicon Co., Ltd. | Contact lens |
-
2006
- 2006-06-05 JP JP2006156254A patent/JP5194218B2/en not_active Expired - Fee Related
Cited By (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11724987B2 (en) | 2005-05-26 | 2023-08-15 | Aldeyra Therapeutics, Inc. | Compositions and methods of treating retinal disease |
| US12097188B2 (en) | 2009-12-11 | 2024-09-24 | Aldeyra Therapeutics, Inc. | Compositions and methods for the treatment of macular degeneration |
| US10213395B2 (en) | 2013-01-23 | 2019-02-26 | Aldeyra Therapeutics, Inc. | Toxic aldehyde related diseases and treatment |
| US12128013B2 (en) | 2013-01-23 | 2024-10-29 | Aldeyra Therapeutics, Inc. | Toxic aldehyde related diseases and treatment |
| US10543181B2 (en) | 2013-01-23 | 2020-01-28 | Aldeyra Therapeutics, Inc. | Toxic aldehyde related diseases and treatment |
| US11771664B2 (en) | 2013-01-23 | 2023-10-03 | Aldeyra Therapeutics, Inc. | Toxic aldehyde related diseases and treatment |
| US10588874B2 (en) | 2013-01-23 | 2020-03-17 | Aldeyra Therapeutics, Inc. | Toxic aldehyde related diseases and treatment |
| US11007157B2 (en) | 2013-01-23 | 2021-05-18 | Aldeyra Therapeutics, Inc. | Toxic aldehyde related diseases and treatment |
| US11701331B2 (en) | 2013-01-23 | 2023-07-18 | Aldeyra Therapeutics, Inc. | Toxic aldehyde related diseases and treatment |
| US11459300B2 (en) | 2015-08-21 | 2022-10-04 | Aldeyra Therapeutics, Inc. | Deuterated compounds and uses thereof |
| US11845722B2 (en) | 2015-08-21 | 2023-12-19 | Aldeyra Therapeutics, Inc. | Deuterated compounds and uses thereof |
| US12240816B2 (en) | 2015-08-21 | 2025-03-04 | Aldeyra Therapeutics, Inc. | Deuterated compounds and uses thereof |
| US10550085B2 (en) | 2015-08-21 | 2020-02-04 | Aldeyra Therapeutics, Inc. | Deuterated compounds and uses thereof |
| US11046650B2 (en) | 2015-08-21 | 2021-06-29 | Aldeyra Therapeutics, Inc. | Deuterated compounds and uses thereof |
| US10426790B2 (en) | 2016-02-28 | 2019-10-01 | Aldeyra Therapeutics, Inc. | Treatment of allergic eye conditions with cyclodextrins |
| US11129823B2 (en) | 2016-05-09 | 2021-09-28 | Aldeyra Therapeutics, Inc. | Combination treatment of ocular inflammatory disorders and diseases |
| US10414732B2 (en) | 2017-03-16 | 2019-09-17 | Aldeyra Therapeutics, Inc. | Polymorphic compounds and uses thereof |
| US11583529B2 (en) | 2017-10-10 | 2023-02-21 | Aldeyra Therapeutics, Inc. | Treatment of inflammatory disorders |
| US11040039B2 (en) | 2017-10-10 | 2021-06-22 | Aldeyra Therapeutics, Inc. | Treatment of inflammatory disorders |
| US12006298B2 (en) | 2018-08-06 | 2024-06-11 | Aldeyra Therapeutics, Inc. | Polymorphic compounds and uses thereof |
| US11312692B1 (en) | 2018-08-06 | 2022-04-26 | Aldeyra Therapeutics, Inc. | Polymorphic compounds and uses thereof |
| US11197821B2 (en) | 2018-09-25 | 2021-12-14 | Aldeyra Therapeutics, Inc. | Formulations for treatment of dry eye disease |
| US11786518B2 (en) | 2019-03-26 | 2023-10-17 | Aldeyra Therapeutics, Inc. | Ophthalmic formulations and uses thereof |
| US12029735B2 (en) | 2019-05-02 | 2024-07-09 | Aldeyra Therapeutics, Inc. | Polymorphic compounds and uses thereof |
| US12098132B2 (en) | 2019-05-02 | 2024-09-24 | Aldeyra Therapeutics, Inc. | Process for preparation of aldehyde scavenger and intermediates |
| US12064516B2 (en) | 2020-05-13 | 2024-08-20 | Aldeyra Therapeutics, Inc. | Pharmaceutical formulations and uses thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2007323010A (en) | 2007-12-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5194218B2 (en) | Preservation method of hydrous contact lens and hydrous contact lens preserved by the preservation method | |
| Van Beek et al. | Hyaluronic acid containing hydrogels for the reduction of protein adsorption | |
| EP2821841B1 (en) | Contact lens care preparation and packaging solution | |
| JP5707843B2 (en) | Contact lens care formulation and packaging solution | |
| TWI745389B (en) | Slipperiness imparting agent and method for imparting slipperiness | |
| JP2004515813A (en) | Prevention of incorporation of preservatives into biomaterials | |
| JPWO2008001872A1 (en) | Ophthalmic composition containing alginic acid or a salt thereof | |
| JP6871334B2 (en) | Compositions for contact lenses and contact lens packages using them | |
| JP5609525B2 (en) | Contact lens care formulation and packaging solution | |
| JP4739022B2 (en) | Ophthalmic composition | |
| EP3395376A1 (en) | Device and production method for same | |
| JP2011203665A (en) | Defogging product and defogging method for contact lens | |
| JP2008024701A (en) | Composition for soft contact lens comprising alginic acid or salt thereof | |
| JP2008510568A (en) | Composition comprising trialkanolamine alkoxylate buffer | |
| JP4850513B2 (en) | Ophthalmic composition | |
| CN101490599B (en) | Liquid agent for contact lens and method for hydrophilizing contact lens by using the same | |
| CA2396524C (en) | System for stabilizing lacrimal fluid layer | |
| JP7017030B2 (en) | Solution for silicone hydrogel contact lenses | |
| WO2008056786A1 (en) | Composition for skin or mucosal application | |
| EP3640270A1 (en) | Lipoic acid hydrogels | |
| JP5398452B2 (en) | Eye drops | |
| JP5678530B2 (en) | Ophthalmic composition for soft contact lenses | |
| JP4618443B2 (en) | Tear fluid stabilization system | |
| JP7099077B2 (en) | Contact lens solution | |
| JP2015504181A (en) | Methods and kits for extending the use of contact lenses |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090528 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110805 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110920 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120330 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120523 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120524 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121221 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121226 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160215 Year of fee payment: 3 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 5194218 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| LAPS | Cancellation because of no payment of annual fees |