JP5128523B2 - Crimp terminal for high strength thin wire - Google Patents
Crimp terminal for high strength thin wire Download PDFInfo
- Publication number
- JP5128523B2 JP5128523B2 JP2009053042A JP2009053042A JP5128523B2 JP 5128523 B2 JP5128523 B2 JP 5128523B2 JP 2009053042 A JP2009053042 A JP 2009053042A JP 2009053042 A JP2009053042 A JP 2009053042A JP 5128523 B2 JP5128523 B2 JP 5128523B2
- Authority
- JP
- Japan
- Prior art keywords
- serration
- wire
- thin wire
- strength thin
- crimp terminal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
Description
本発明は、自動車のワイヤーハーネス等に使用される高強度細径線用圧着端子に関するものである。 The present invention relates to a crimp terminal for a high-strength thin wire used for a wire harness or the like of an automobile.
昨今の地球温暖化における対策として自動車には、車両軽量化によるCO2排出量削減が求められている。一方、安全・快適・利便性のニーズに応えるため電装システムの多機能・高機能化が進められており、これらを支えるワイヤーハーネスの使用量が増加する傾向にある。そのため車両軽量化には、ワイヤーハーネスの軽量化が不可欠であり、その7割弱を占める電線を、より軽くする技術開発が重要となっている。具体的な施策の一つは導体の細径化であるが、細くする分、導体の強度を向上させる必要がある。 As countermeasures against recent global warming, automobiles are required to reduce CO 2 emissions by reducing vehicle weight. On the other hand, in order to meet the needs of safety, comfort, and convenience, the electrical system has been developed with multiple functions and high functions, and the amount of wire harnesses that support these functions tends to increase. For this reason, it is indispensable to reduce the weight of the wire harness in order to reduce the weight of the vehicle, and it is important to develop a technology that makes the electric wire that accounts for less than 70% lighter. One specific measure is to reduce the diameter of the conductor, but it is necessary to improve the strength of the conductor by making it thinner.
このような背景から、従来の軟銅線に代わり例えばコルソン合金線等の細くて引張強度の高い銅合金線が採用され始めている。細径線に用いられるコルソン合金線の引張強度は1200MPaであり、これまでワイヤーハーネス用の端子材料として用いられてきた銅合金の引張強度(例えば、FAS680(古河電気工業株式会社製の銅合金板)の引張強度は600〜700MPa)を大幅に上回る。 From such a background, instead of the conventional annealed copper wire, a thin copper alloy wire having a high tensile strength such as a Corson alloy wire has begun to be adopted. The tensile strength of the Corson alloy wire used for the thin wire is 1200 MPa, and the tensile strength of the copper alloy that has been used as a terminal material for wire harnesses so far (for example, FAS680 (a copper alloy plate manufactured by Furukawa Electric Co., Ltd.) ) Significantly exceeds the tensile strength of 600 to 700 MPa).
細径線の引張強度が端子材料の引張強度よりも高い場合には、端子圧着により細径線の酸化皮膜を破壊することが難しいので、何らかの対策が必要となる。 When the tensile strength of the thin wire is higher than the tensile strength of the terminal material, it is difficult to destroy the oxide film of the thin wire by crimping the terminal, so some measure is required.
図9に従来の圧着端子の一例を示す。圧着端子1は一般に、相手方端子との接触部2と、電線の導体端部に圧着されるワイヤーバレル部3と、電線の絶縁被覆端部に圧着されるインシュレーションバレル部4とを有している(特許文献1、2参照)。ワイヤーバレル部3の内面にはセレーション5が形成されている。セレーション5は、端子圧着により導体の酸化皮膜を破壊して良好な電気的接続状態を得ると共に、圧着強度を高めるために形成される。図示の例は接触部2が雌型の場合であるが、接触部2は雄型の場合、締め付け端子型の場合もある。
FIG. 9 shows an example of a conventional crimp terminal. The
特許文献1には、セレーションを、断面形状が逆台形で且つ外側の角部が内側の角部より大きな鈍角で左右非対称形に形成すると、端部寄りのセレーションの導体に対するせん断力が小さくなり、導体に与えるダメージが減少するので、導体保持力が強化され、安定な電気的接続状態を得ることができる旨、開示されている。
In
また特許文献2には、セレーションの溝に導体の食い込み量が異なるように、溝の深さを異ならせること、そして中央寄りに位置する溝より端部寄りに位置する溝の深さを浅くすることで、導体径にかかわらずセレーション溝への導体の食い込みを適度にして、機械的、電気的接続性能の向上を図ることが開示されている。 In Patent Document 2, the depth of the groove is made different so that the amount of the conductor biting into the groove of the serration is different, and the depth of the groove located closer to the end is made shallower than the groove located closer to the center. Thus, it has been disclosed that the biting of the conductor into the serration groove is made appropriate regardless of the conductor diameter to improve the mechanical and electrical connection performance.
特許文献1では、導体ダメージを減少させることに着目しているが、高強度細径線の場合は、端子材料より高強度細径線の方が引張強度が高い(硬い)ので、圧着端子側のダメージが問題となる。
また特許文献2では、セレーションの溝深さを異ならせることが提案されているが、高強度細径線に用いる圧着端子の板厚は0.1〜0.3mmと薄く、溝深さを異ならせることは困難である上、高強度細径線は変形し難いので、深い溝に入り込ませることは難しい。 Further, Patent Document 2 proposes that the serration groove depth is different, but the thickness of the crimp terminal used for the high-strength thin wire is as thin as 0.1 to 0.3 mm, and the groove depth is different. In addition, the high-strength thin wire is difficult to be deformed, so that it is difficult to enter the deep groove.
このようなことから、これまでの技術では高強度細径線に通常の端子材料からなる圧着端子を圧着して、良好な電気的接続状態を得ることは困難である。 For this reason, it is difficult to obtain a good electrical connection state by crimping a crimp terminal made of a normal terminal material to a high-strength thin wire with conventional techniques.
本発明の目的は、高強度細径線に、それより引張強度の低い端子材料からなる圧着端子を圧着して、良好な電気的接続状態を得ることができる高強度細径線用圧着端子を提供することにある。 An object of the present invention is to provide a high-strength thin wire crimping terminal capable of obtaining a good electrical connection state by crimping a high-strength thin wire with a crimping terminal made of a terminal material having a lower tensile strength. It is to provide.
圧着端子を圧着する細径線の引張強度が圧着端子材料の引張強度より高い場合は、圧着の際に細径線がセレーションに押し付けられてセレーションのエッジ部が潰れやすいので、セレーションのエッジ部によるせん断効果は期待できず、この場合の細径線の酸化皮膜破壊のメカニズムはセレーションによる細径線の伸びが支配的となる。したがって圧着端子を圧着する細径線の引張強度が圧着端子材料の引張強度より高い場合は、圧着の際に、セレーションが潰れないように、また細径線を伸ばし易いようにすることが重要である。そこで、ワイヤーバレル部のセレーションの幅と、深さと、両側壁面の角度が、圧着部の接触抵抗に及ぼす影響について実験を重ねた結果、本発明を完成するに至った。 If the tensile strength of the narrow wire that crimps the crimp terminal is higher than the tensile strength of the crimp terminal material, the narrow wire is pressed against the serration during crimping, and the edge of the serration tends to collapse. The shear effect cannot be expected, and in this case, the elongation of the thin wire due to serration is the dominant mechanism of the oxide film breakage of the thin wire. Therefore, when the tensile strength of the narrow wire that crimps the crimp terminal is higher than the tensile strength of the crimp terminal material, it is important to make sure that the serrated wire is not collapsed during crimping and that the thin wire is easy to stretch. is there. Therefore, as a result of repeated experiments on the influence of the serration width and depth of the wire barrel portion and the angle of the side wall surfaces on the contact resistance of the crimping portion, the present invention has been completed.
すなわち、本発明に係る圧着端子は、圧着端子材料の引張強度より高い引張強度を有する高強度細径線に、ワイヤーバレル部を圧着する圧着端子であって、前記ワイヤーバレル部の内面に形成したセレーションの幅が前記高強度細径線の直径の0.8倍以上、1.3倍以下であることを特徴とするものである。 That is, the crimp terminal according to the present invention is a crimp terminal that crimps the wire barrel part to a high-strength thin wire having a tensile strength higher than the tensile strength of the crimp terminal material, and is formed on the inner surface of the wire barrel part. The serration width is not less than 0.8 times and not more than 1.3 times the diameter of the high-strength thin wire.
実験によれば、セレーション幅が高強度細径線の直径の0.8倍以上、1.3倍以下の範囲で、圧着部の接触抵抗を減少させる効果が高く、0.8倍未満では圧着部の接触抵抗を減少させる効果が低くなることが分かった。また1.3倍より広くなるとワイヤーバレル部に形成できるセレーションの本数が少なくなるので好ましくない。 According to experiments, the effect of reducing the contact resistance of the crimping part is high when the serration width is in the range of 0.8 times to 1.3 times the diameter of the high-strength thin wire. It turned out that the effect which reduces the contact resistance of a part becomes low. On the other hand, when the width is larger than 1.3 times, the number of serrations that can be formed in the wire barrel portion is not preferable.
本発明に係る圧着端子は、セレーションの深さが前記高強度細径線の素線の直径の40〜60%であることが好ましい。 In the crimp terminal according to the present invention, the serration depth is preferably 40 to 60% of the diameter of the strand of the high-strength thin wire.
実験によれば、セレーション深さは、高強度細径線の素線の直径の40〜60%の範囲で、圧着部の接触抵抗を減少させる効果が高く、40%より小さくなると、又は60%を超えると圧着部の接触抵抗を減少させる効果が低くなることが分かった。 According to the experiment, the serration depth is in the range of 40 to 60% of the diameter of the strand of the high-strength thin wire, and the effect of reducing the contact resistance of the crimping portion is high. It has been found that the effect of reducing the contact resistance of the crimping portion is reduced when the value exceeds.
また本発明に係る圧着端子は、セレーションの断面形状が逆台形であり、その両側壁面の傾き角が5〜25°であることが好ましい。 Moreover, it is preferable that the crimp terminal which concerns on this invention is the cross-sectional shape of a serration being an inverted trapezoid, and the inclination angle of the both-sides wall surface is 5-25 degrees.
実験によれば、セレーションの両側壁面の傾き角は、5〜25°の範囲で、圧着部の接触抵抗を減少させる効果が高く、5°より小さくなると、又は25°を超えると圧着部の接触抵抗を減少させる効果が低くなることが分かった。 According to the experiment, the inclination angle of the both side walls of the serration is in the range of 5 to 25 °, and the effect of reducing the contact resistance of the crimping portion is high, and when it becomes smaller than 5 ° or exceeds 25 °, the contact of the crimping portion It has been found that the effect of reducing the resistance is reduced.
本発明によれば、高強度細径線に、それより引張強度の低い端子材料からなる圧着端子を圧着して、圧着部の接触抵抗が低い、良好な電気的接続状態を得ることができる。 According to the present invention, a good electrical connection state in which the contact resistance of the crimping portion is low can be obtained by crimping a crimp terminal made of a terminal material having a lower tensile strength to a high-strength thin wire.
以下、本発明の実施例について図面を参照して詳細に説明する。前述のように、高強度細径線に、それより引張強度の低い端子材料からなる圧着端子を圧着して、良好な電気的接続状態を得るためには、ワイヤーバレル部内面に形成するセレーションの幅と、深さと、両側壁面の角度を適切に設定することが重要である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. As described above, in order to obtain a good electrical connection state by crimping a crimp terminal made of a terminal material having a lower tensile strength to a high-strength thin wire, the serration formed on the inner surface of the wire barrel portion is used. It is important to set the width, depth, and angle of both side walls appropriately.
ここで、高強度細径線は、線径(直径)dが0.45mm以下(断面積で0.13mm2以下)で、圧着端子1の材料の引張強度よりも高い引張強度を有している。なお、ここで圧着端子1の材料の引張強度は、当該材料でJISZ2201に準拠してJIS5号形状のサンプルをJISZ2241に準拠して測定したものである。高強度細径線6の引張強度も、JISZ2241に準拠して測定したものである。
Here, the high-strength thin wire has a wire diameter (diameter) d of 0.45 mm or less (cross-sectional area of 0.13 mm 2 or less) and a tensile strength higher than the tensile strength of the material of the
<セレーション幅について>
セレーション幅とは、図1に示すように、圧着端子のワイヤーバレル部3の内面に周方向に形成されたセレーション5のエッジ部6間の距離aである。セレーション幅aを広くすれば圧着の際に細径線7がセレーションに押し込まれ易くなり、細径線7を伸ばし易くなる。一方、ワイヤーバレル部の軸線方向寸法は限られているから、セレーション幅を広くすると、セレーションの数が減って細径線7の酸化皮膜が破壊される箇所が少なくなる。また、ワイヤーバレル部の限られた寸法の中で、セレーションの数を減らさずにセレーション幅を広くしようとすると、セレーション間隔sが狭くなり、逆にセレーション5の間の山部8が潰れやすくなってしまう。
<About serration width>
As shown in FIG. 1, the serration width is a distance a between the
そこで、まず高強度細径線に好適なセレーション幅aを検討した。使用した高強度細径線は、直径0.11mmコルソン合金素線を7本撚り合わせた直径d=0.31mmの撚線で、その引張強度は約1200MPaである。 Therefore, first, a serration width a suitable for a high-strength thin wire was examined. The high-strength thin wire used is a twisted wire having a diameter d = 0.31 mm obtained by twisting seven 0.11 mm Corson alloy strands, and has a tensile strength of about 1200 MPa.
なお、高強度細径線の材料としては、コルソン合金以外に、Cu−Ni−Si合金(コルソン合金)をベースに微量元素(Zn、Sn、Mgなど)を添加した合金(例えば、Cu−2.3Ni−0.55Si−0.15Sn−0.5Zn−0.1Mg合金、Cu−3.75Ni−0.9Si−0.15Sn−0.5Zn−0.1Mg合金)や、ベリリウム銅合金(C1720W)などが使用されることもある。 In addition, as a material of the high-strength thin wire, an alloy (for example, Cu-2.3) added with a trace element (Zn, Sn, Mg, etc.) based on a Cu-Ni-Si alloy (Corson alloy) in addition to a Corson alloy. Ni-0.55Si-0.15Sn-0.5Zn-0.1Mg alloy, Cu-3.75Ni-0.9Si-0.15Sn-0.5Zn-0.1Mg alloy), beryllium copper alloy (C1720W), or the like may be used.
一方、圧着端子の試作品は次のとおりである。STEP1の実験では、端子材料としてコルソン合金(Cu−Ni−Si合金)をベースに微量元素(Zn、Sn、Mg)を添加した合金(古河電気工業株式会社製:FAS680H)の板を使用し、セレーション間隔sが0.2mm、0.4mm、0.6mm、セレーション本数が1〜3本、セレーション深さwが0.03mm、0.05mm、0.07mmの圧着端子について、それぞれセレーション幅0.1mm、0.2mm、0.3mmの圧着端子を試作した。STEP2の実験では、端子材料として、(1) C2600RH=黄銅(古河電気工業株式会社製、JIS H 3100参照)、(2)
C5210−8PEH=リン青銅(古河電気工業株式会社製、JIS H 3130参照)、(3) STEP1と同じコルソン合金(FAS680H)の、3種類の板を使用し、セレーション間隔sが0.3mm、0.35mm、0.4mm、セレーション本数が3本の圧着端子について、それぞれセレーション幅0.2mm、0.3mm、0.4mmの圧着端子を試作した。圧着端子材料の引張強度はいずれも600〜700MPaである。試作した圧着端子をそれぞれ高強度細径線に圧着して測定試料とした。
On the other hand, prototypes of crimp terminals are as follows. In the experiment of STEP1, a plate of an alloy (Furukawa Electric Co., Ltd .: FAS680H) added with trace elements (Zn, Sn, Mg) based on a Corson alloy (Cu—Ni—Si alloy) as a terminal material is used. For crimp terminals with serration intervals s of 0.2 mm, 0.4 mm, 0.6 mm, 1 to 3 serrations, and serration depths w of 0.03 mm, 0.05 mm, and 0.07 mm, the serration width is 0. 1 mm, 0.2 mm, and 0.3 mm crimp terminals were prototyped. In the experiment of STEP2, as a terminal material, (1) C2600RH = brass (Furukawa Electric Co., Ltd., JIS H 3100 reference), (2)
C5210-8PEH = Phosphor bronze (Furukawa Electric Co., Ltd., JIS H 3130), (3) The same corson alloy (FAS680H) as
それぞれの試料について圧着部の接触抵抗を測定した。接触抵抗の測定は図2に示す測定器で行った(JIS K 7194準拠)。この測定器は次のようにして圧着部の接触抵抗を求めるものである。まず高強度細径線7に圧着端子1を圧着した測定試料9に10mAの電流を流して(電流計A1で測定)、圧着部10と、そこから長さ100mmの高強度細径線7とを含む区間の電圧降下を電圧計V1で測定することにより抵抗R1を求める。その一方で、基準となる高強度細径線7Sに電流を流して(電流計A2で測定)、基準高強度細径線7Sの長さ100mm区間の電圧降下を電圧計V2で測定することにより抵抗R2を求める。次にR1−R2の計算で、長さ100mmの高強度細径線7の抵抗を除外して、圧着部10の接触抵抗Rを求めるのである。試験条件は−40℃×15分←→120℃×15分のヒートサイクルを経た後である。
The contact resistance of the crimping part was measured for each sample. The contact resistance was measured with a measuring instrument shown in FIG. 2 (based on JIS K 7194). This measuring instrument determines the contact resistance of the crimping part as follows.
測定結果を図3に示す。図3によれば、STEP1、STEP2ともセレーション幅が0.2mmを超えると接触抵抗が減少し始めることが分かる。セレーション幅0.2mmから0.3mmにかけての接触抵抗減少傾向はSTEP1、STEP2とも同じであるので、STEP2の値に、セレーション幅0.2mmの値がSTEP1のセレーション幅0.2mmの値と同じになるように一定係数を掛けて、STEP1のグラフにSTEP2のグラフを重ね合わせると図4のようになる。図4によれば、セレーション幅が0.25mm(線径0.31mmの0.8倍)になると接触抵抗減少の効果が確実に現れることが分かる。さらにセレーション幅が0.3mm(線径の1倍)、0.4mm(線径の1.3倍)と広くなるに従い、接触抵抗低下の効果が顕著に現れる。したがってセレーション幅は線径の0.8倍以上にすることが好ましく、1倍以上にすることがさらに好ましい。
The measurement results are shown in FIG. According to FIG. 3, it can be seen that both STEP1 and STEP2 start to decrease in contact resistance when the serration width exceeds 0.2 mm. Since the contact resistance decreasing tendency from the serration width 0.2 mm to 0.3 mm is the same for both
一方、セレーション幅は、ワイヤーバレル部のサイズが限られているため、線径の1.3倍より広くすると、セレーションの数を減らさざるを得なくなり、効果的に高強度細径線の酸化皮膜の破壊ができなくなる。またセレーションの数を減らさないようにすると、セレーション間隔sが狭くなり、圧着時にセレーション5の間の山部8が潰れてしまう。このようなことからセレーション幅は1.3mm以下にすることが好ましい。
On the other hand, since the serration width is limited by the size of the wire barrel part, if the serration width is wider than 1.3 times the wire diameter, the number of serrations must be reduced, and the oxide film of the high-strength thin wire effectively Can no longer be destroyed. Further, if the number of serrations is not reduced, the serration interval s becomes narrow, and the
なお、実験では直径0.31mmの高強度細径線を用いたが、細径線の直径dとセレーション幅aは以下に説明するように比例関係にあるので、直径の異なる細径線についても同様に考えることができる。すなわち、断面形状が円の断面2次モーメントIは、直径をdとすると、I=πd4/64となる。2点で支持された断面円形のはりに長手方向に均等な分布加重が(圧力)pが加えられた時のはりの最大たわみ量vは、はりのヤング率をEとすると、v=5pa4/384EI=5pa4/6Eπd4となる(機械工学便覧より)。ここで、最大たわみ量vがセレーション深さwより大きければ接触抵抗を小さくすることができる。したがって、a≧(6Eπw/5p)1/4d=kd〔ただしk=(6Eπw/5p)1/4〕となる。よって、導体径dとセレーション幅aは比例関係にある。 In the experiment, a high-strength thin wire having a diameter of 0.31 mm was used, but the diameter d of the thin wire and the serration width a are in a proportional relationship as will be described below. The same can be considered. In other words, the cross-sectional secondary moment I of the cross section circle, when the diameter is d, the I = πd 4/64. The maximum deflection amount v of a beam having a uniform distribution weight (pressure) p in the longitudinal direction applied to a beam having a circular cross section supported at two points is represented by v = 5 pa 4 where E is the Young's modulus of the beam. / 384EI = 5pa 4 / 6Eπd 4 (from the mechanical engineering manual). Here, if the maximum deflection amount v is larger than the serration depth w, the contact resistance can be reduced. Therefore, a ≧ (6Eπw / 5p) 1/4 d = kd [where k = (6Eπw / 5p) 1/4 ]. Therefore, the conductor diameter d and the serration width a are in a proportional relationship.
<セレーション深さについて>
次に高強度細径線に好適なセレーションの深さを検討した。セレーション深さとは、図5に示すように、ワイヤーバレル部3の内面からセレーション5の底面までの距離wである。セレーション深さwは、浅すぎると高強度細径線7がセレーション5に入り込まず、深すぎると圧着力でセレーション5のエッジ部6が破壊されるおそれがある。セレーション間隔sが0.2、0.4mm、0.6mm、セレーション本数が1〜3本、セレーション幅aが0.1mm、0.2mm、0.3mmの圧着端子について、それぞれセレーション深さwが0.03mm、0.05mm、0.07mmの圧着端子を試作した(端子材料は前記STEP1と同じ)。
<About serration depth>
Next, the serration depth suitable for high-strength thin wires was examined. The serration depth is a distance w from the inner surface of the wire barrel portion 3 to the bottom surface of the
これらの圧着端子を高強度細径線(セレーション幅の場合と同じ)に圧着して測定試料とし、各試料について圧着部の接触抵抗を測定した。その結果を図6に示す。図6によれば、セレーション深さは、約0.04mm〜0.06mm(高強度細径線7の素線7aの直径ds=0.11mmの約40〜60%)の範囲で接触抵抗低減の効果が現れており、0.05mm(素線径dsの50%)のときに接触抵抗が最低になることが分かる。したがってセレーションの深さは高強度細径線の素線径dsの40〜60%にすることが好ましく、高強度細径線の素線径dsの50%にすることがさらに好ましい。 These crimp terminals were crimped to high-strength thin wires (same as in the case of serration width) to obtain measurement samples, and the contact resistance of the crimp portion was measured for each sample. The result is shown in FIG. According to FIG. 6, the serration depth is about 0.04 mm to 0.06 mm (the contact resistance is reduced in the range of about 40 to 60% of the diameter ds = 0.11 mm of the strand 7a of the high strength thin wire 7). It can be seen that the contact resistance is lowest when the thickness is 0.05 mm (50% of the strand diameter ds). Therefore, the serration depth is preferably 40 to 60% of the strand diameter ds of the high-strength thin wire, and more preferably 50% of the strand diameter ds of the high-strength thin wire.
<セレーションの両側壁面の傾き角について>
次に高強度細径線に好適なセレーションの両側壁面の傾き角を検討した。セレーションの両側壁面の傾き角とは、図7に示すように、断面逆台形のセレーション5の両側壁面11の、ワイヤーバレル部3の軸線方向に垂直な面に対する傾き角θである。両側壁面11の傾き角θは、小さいほど圧着時にセレーション5のエッジ部6が壊れやすくなると考えられる。そこで、セレーション間隔sが0.2、0.4mm、0.6mm、セレーション本数が1〜3本、セレーション幅aが0.1mm、0.2mm、0.3mmの圧着端子について、それぞれセレーションの両側壁面11の傾き角θが1°、15°、30°の圧着端子を試作した(端子材料は前記STEP1と同じ)。
<Inclination angle on both side walls of serration>
Next, the inclination angle of both side walls of serration suitable for high-strength thin wire was examined. As shown in FIG. 7, the inclination angle of the both side wall surfaces of the serration is an inclination angle θ with respect to a plane perpendicular to the axial direction of the wire barrel portion 3 of the both side wall surfaces 11 of the
これらの圧着端子を高強度細径線7(セレーション幅の場合と同じ)に圧着して測定試料とし、各試料について圧着部の接触抵抗を測定した。その結果を図8に示す。図8によれば、セレーションの両側壁面の傾き角は、5〜25°の範囲で接触抵抗低減の効果が現れており、15°のときに接触抵抗が最低になることが分かる。したがってセレーションの両側壁面の傾き角は、5〜25°にすることが好ましく、15°にすることがさらに好ましい。 These crimp terminals were crimped to a high-strength thin wire 7 (same as in the case of serration width) to obtain measurement samples, and the contact resistance of the crimp portion was measured for each sample. The result is shown in FIG. According to FIG. 8, it can be seen that the effect of reducing the contact resistance appears in the range of 5 to 25 ° of the inclination angle of the both side walls of the serration, and the contact resistance becomes the lowest when the angle is 15 °. Therefore, the inclination angle of both side wall surfaces of the serration is preferably 5 to 25 °, and more preferably 15 °.
1:圧着端子
2:接触部
3:ワイヤーバレル部
4:インシュレーションバレル部
5:セレーション
6:エッジ部
7:高強度細径線
8:山部
9:測定試料
10:圧着部
11:側壁面
d:高強度細径線の直径
ds:高強度細径線の素線の直径
a:セレーション幅
s:セレーション間隔
w:セレーション深さ
θ:側壁面の傾き角
1: Crimp terminal 2: Contact portion 3: Wire barrel portion 4: Insulation barrel portion 5: Serration 6: Edge portion 7: High-strength thin wire 8: Peak portion 9: Measurement sample 10: Crimp portion 11: Side wall surface d : Diameter of high-strength thin wire ds: Diameter of strand of high-strength thin wire a: Serration width s: Serration interval w: Serration depth θ: Angle of inclination of side wall surface
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2009053042A JP5128523B2 (en) | 2009-03-06 | 2009-03-06 | Crimp terminal for high strength thin wire |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2009053042A JP5128523B2 (en) | 2009-03-06 | 2009-03-06 | Crimp terminal for high strength thin wire |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2010205697A JP2010205697A (en) | 2010-09-16 |
| JP5128523B2 true JP5128523B2 (en) | 2013-01-23 |
Family
ID=42966973
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2009053042A Active JP5128523B2 (en) | 2009-03-06 | 2009-03-06 | Crimp terminal for high strength thin wire |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP5128523B2 (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5890992B2 (en) * | 2011-10-05 | 2016-03-22 | 矢崎総業株式会社 | Crimp terminal |
| JP6020336B2 (en) * | 2013-04-25 | 2016-11-02 | 株式会社オートネットワーク技術研究所 | Crimp terminal |
| JP7145735B2 (en) * | 2018-11-15 | 2022-10-03 | 古河電気工業株式会社 | Crimping terminal, electric wire with terminal, and method for manufacturing electric wire with terminal |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2649741B2 (en) * | 1990-11-30 | 1997-09-03 | 住友電装 株式会社 | Crimp terminal |
| JP5008821B2 (en) * | 2004-08-05 | 2012-08-22 | 株式会社オートネットワーク技術研究所 | Electric wire with terminal and manufacturing method thereof |
| JP5027022B2 (en) * | 2008-03-19 | 2012-09-19 | 古河電気工業株式会社 | Crimp terminals and crimp terminal connectors |
-
2009
- 2009-03-06 JP JP2009053042A patent/JP5128523B2/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| JP2010205697A (en) | 2010-09-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5078567B2 (en) | Crimp terminal for aluminum wire | |
| US9484640B2 (en) | Wire with a crimp terminal with a bottom plate with an inclined portion and a raised portion | |
| CN110021828B (en) | Terminal-equipped electric wire and method for manufacturing terminal-equipped electric wire | |
| US9252505B2 (en) | Terminal connector, electric wire with terminal connector, and method of connecting terminal connector and electric wire | |
| KR101525305B1 (en) | Crimping structure of terminal to electrical cable | |
| WO2010024033A1 (en) | Terminal metal fitting and method of manufacturing terminal metal fitting | |
| KR102521413B1 (en) | A method for crimping an electrical contact to a cable and a tool for carrying out the method | |
| JP5074984B2 (en) | Crimp terminal | |
| US9028284B2 (en) | Crimping sleeve for crimped connections | |
| JP5225794B2 (en) | Crimp structure of crimp terminal | |
| JP5065124B2 (en) | Crimp terminal | |
| JP5030232B2 (en) | Crimp terminal for aluminum wire | |
| JP5128523B2 (en) | Crimp terminal for high strength thin wire | |
| JP6156185B2 (en) | Electric wire with terminal | |
| JP5116512B2 (en) | Crimping method using crimp terminals | |
| JP2017130330A (en) | Electric wire with terminal, wire harness | |
| JP5786590B2 (en) | Electric wire, electric wire with terminal fittings, and method of manufacturing electric wire with terminal fittings | |
| JP5041537B2 (en) | Connection structure of crimp terminal to covered wire | |
| WO2015053182A1 (en) | Crimp terminal | |
| JP6605970B2 (en) | Electric wire with terminal, wire harness | |
| JP5008821B2 (en) | Electric wire with terminal and manufacturing method thereof | |
| JP2010044913A (en) | Crimp connection terminal | |
| JP5290812B2 (en) | Crimp terminal for high strength thin wire | |
| JP5151936B2 (en) | Terminal fitting and manufacturing method thereof | |
| JP2009176547A (en) | Terminal crimping structure to aluminum wire |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110519 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120831 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121002 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121031 |
|
| R151 | Written notification of patent or utility model registration |
Ref document number: 5128523 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151109 Year of fee payment: 3 |
|
| S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |