[go: up one dir, main page]

JP5130686B2 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP5130686B2
JP5130686B2 JP2006263719A JP2006263719A JP5130686B2 JP 5130686 B2 JP5130686 B2 JP 5130686B2 JP 2006263719 A JP2006263719 A JP 2006263719A JP 2006263719 A JP2006263719 A JP 2006263719A JP 5130686 B2 JP5130686 B2 JP 5130686B2
Authority
JP
Japan
Prior art keywords
gas
porous
layer
fuel cell
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006263719A
Other languages
Japanese (ja)
Other versions
JP2008084703A (en
Inventor
正也 小境
務 奥澤
秀和 藤村
宏 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006263719A priority Critical patent/JP5130686B2/en
Publication of JP2008084703A publication Critical patent/JP2008084703A/en
Application granted granted Critical
Publication of JP5130686B2 publication Critical patent/JP5130686B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池に係わり、特に導電性の多孔質体からなるセパレータに関する。   The present invention relates to a fuel cell, and more particularly to a separator made of a conductive porous body.

固体高分子形燃料電池は、固体高分子電解質膜とその両側を燃料極(以下アノードとする)触媒層と酸化剤極(以下カソードとする)触媒層とで被覆した電解質膜・電極触媒複合体の両側を多孔質のカーボン材からなるガス拡散層で挟む。さらにその両側に燃料ガスおよび酸化剤ガスを供給するためのセパレータを配置して構成する単位セルを複数個設置して積層体を形成し、この積層体の両端を締付板により締め付けて燃料電池セルスタックを構成する。この燃料電池セルスタックを電解質膜・電極触媒複合体の面内方向が水平方向に対して垂直となるように積層設置する。   The polymer electrolyte fuel cell is an electrolyte membrane / electrode catalyst composite in which a solid polymer electrolyte membrane and both sides thereof are coated with a fuel electrode (hereinafter referred to as an anode) catalyst layer and an oxidant electrode (hereinafter referred to as a cathode) catalyst layer. Are sandwiched between gas diffusion layers made of a porous carbon material. Further, a plurality of unit cells each having a separator for supplying fuel gas and oxidant gas are arranged on both sides to form a laminated body, and both ends of the laminated body are clamped by a clamping plate to form a fuel cell. Configure the cell stack. This fuel cell stack is stacked and installed such that the in-plane direction of the electrolyte membrane / electrode catalyst composite is perpendicular to the horizontal direction.

セパレータは、その片面に燃料ガス又は酸化剤ガスの流路溝を、もう片方の面に冷却水流路溝を備えた波型形状をしている。このセパレータを用いた燃料電池の場合、アノード側では燃料ガス流路の凸面が、カソード側では酸化剤ガス流路の凸面がガス拡散層に接する。この接触部分において、反応で生じた電子の授受を行い、電気化学反応により生じた熱を冷却水へ伝える。また、燃料ガス又は酸化剤ガスは凹部を流れ、ガス拡散層を介して触媒電極へ供給される。冷却水は隣接する2つのセパレータの冷却水流路側凸面同士が接することにより対向する凹部によって形成されている。   The separator has a corrugated shape with a flow path groove for fuel gas or oxidant gas on one side and a cooling water flow path groove on the other side. In the fuel cell using this separator, the convex surface of the fuel gas channel is in contact with the gas diffusion layer on the anode side, and the convex surface of the oxidant gas channel is in contact with the cathode side. At this contact portion, the electrons generated by the reaction are transferred, and the heat generated by the electrochemical reaction is transferred to the cooling water. Further, the fuel gas or oxidant gas flows through the recess and is supplied to the catalyst electrode via the gas diffusion layer. The cooling water is formed by concave portions facing each other when the convex surfaces on the cooling water flow path side of two adjacent separators are in contact with each other.

固体高分子形燃料電池では、セパレータ流路を流れる燃料ガス中の水素がガス拡散層内を拡散し、アノードに至ると触媒反応により電子を放出してプロトンになる。プロトンはアノード側からカソード側に固体高分子電解質膜を経て移動するが、電子はアノード側からカソード側に移動することができないため、導電性のガス拡散層とセパレータを介して外部回路を経由してカソード側に移動する。   In the polymer electrolyte fuel cell, hydrogen in the fuel gas flowing through the separator channel diffuses in the gas diffusion layer, and when it reaches the anode, it emits electrons by a catalytic reaction to become protons. Proton moves from the anode side to the cathode side through the solid polymer electrolyte membrane, but electrons cannot move from the anode side to the cathode side, so it passes through an external circuit via a conductive gas diffusion layer and a separator. Move to the cathode side.

一方、カソード側では、前記の固体高分子電解質膜を経て移動したプロトンと外部回路から送られてくる電子と、セパレータ流路を流れ、ガス拡散層内を拡散してきた酸化剤ガス(空気)中の酸素とが反応して水を生成する。その生成水の大部分は未反応ガス中に蒸発し、そのままセルスタック外に排出されるが、過飽和となる状態では液相の水として残留する。電気化学反応により生じた液相の水がガス拡散層から滲み出してきた場合、反応ガス流路内に滞留し、反応ガスの拡散を妨げることが考えられる。特許文献1では、多孔質体によってセパレータを構成し、ガス拡散層から滲み出してきた水を効果的に移動させ、反応ガス流路の閉塞を防止している。   On the other hand, on the cathode side, protons moved through the solid polymer electrolyte membrane, electrons sent from an external circuit, and the oxidant gas (air) flowing through the separator channel and diffusing in the gas diffusion layer. Reacts with oxygen to produce water. Most of the generated water evaporates in the unreacted gas and is directly discharged out of the cell stack, but remains as liquid phase water in a supersaturated state. When liquid phase water generated by the electrochemical reaction oozes out from the gas diffusion layer, it is conceivable that the liquid phase water stays in the reaction gas flow path and hinders diffusion of the reaction gas. In Patent Document 1, a separator is formed of a porous material, and water that has oozed out of the gas diffusion layer is effectively moved to prevent the reaction gas passage from being blocked.

特開2005−142015号公報JP-A-2005-142015

従来の燃料電池構造において燃料ガス又は酸化剤ガスを電極触媒へ供給する際に、セパレータ凹部からなるガス流路からガス拡散層へ供給していた。しかしながらガス拡散層と接するセパレータ凸部では十分にガスの拡散がされず、ガスの供給が電極触媒層面内で不均一になる可能性がある。同様に、複数あるガス流路に燃料ガス又は酸化剤ガスを均等に配分できない場合は、ガス拡散層のみで電極触媒へ一様に供給することは難しい。このように、反応ガスの一様な供給ができない状況で燃料電池を高電流密度で作動させた際に、流量の少ない部分で反応ガスが欠乏し、出力電圧の低下が生じる。さらに、反応ガス供給のセパレータ面内分布は、電気化学反応による発熱の面内分布の発生にもつながる。特に、高電流密度作動において、反応ガス供給量の多い部分で温度が高くなり、固体高分子電解質膜などのセル構成材の局所的な寿命低下を招くため、最高温度を抑えるために許容運転温度範囲を広く設定できないという問題がある。   In the conventional fuel cell structure, when the fuel gas or the oxidant gas is supplied to the electrode catalyst, the fuel gas or the oxidant gas is supplied to the gas diffusion layer from the gas flow path formed by the separator recess. However, the separator projections in contact with the gas diffusion layer do not sufficiently diffuse the gas, and there is a possibility that the gas supply becomes non-uniform in the surface of the electrode catalyst layer. Similarly, when fuel gas or oxidant gas cannot be evenly distributed to a plurality of gas flow paths, it is difficult to supply the electrode catalyst uniformly with only the gas diffusion layer. As described above, when the fuel cell is operated at a high current density in a situation where the reactant gas cannot be supplied uniformly, the reactant gas is deficient at a portion where the flow rate is small, and the output voltage is lowered. Furthermore, the in-plane distribution of the reaction gas supplied to the separator also leads to the generation of an in-plane distribution of heat generated by the electrochemical reaction. In particular, in high current density operation, the temperature increases at the part where the reaction gas supply is large, which causes a local decrease in the service life of cell components such as solid polymer electrolyte membranes. There is a problem that the range cannot be set wide.

カソード電極で電気化学反応により生成された水は、ガス拡散層を通してセパレータ流路へ排出される。排出された水がセパレータ流路を閉塞するとその流路でガス供給が出来なくなり、出力低下につながっていた。   Water generated by an electrochemical reaction at the cathode electrode is discharged to the separator channel through the gas diffusion layer. When the discharged water closed the separator channel, gas could not be supplied through the channel, leading to a decrease in output.

また、波型流路構造においては、セパレータ流路溝の凸部でのみ、ガス拡散層又は隣接するセパレータと接触している。このため、発電面積に比べ、セパレータとガス拡散層との接触面積が小さくなり、接触電気抵抗の増加による損失が燃料電池出力の低下につながっていた。   In the corrugated channel structure, only the convex portion of the separator channel groove is in contact with the gas diffusion layer or the adjacent separator. For this reason, compared with the power generation area, the contact area between the separator and the gas diffusion layer is reduced, and the loss due to the increase in the contact electrical resistance has led to a decrease in the fuel cell output.

本発明の燃料電池は、セパレータの燃料ガスおよび酸化剤ガス流路に、異なる細孔径分
布を有する複数層からなる多孔質体を適用する。このような構成にすることで、生成水の保持とガス拡散に必要な流路を確保することが可能である。また、多孔質体を適用することで電解質膜・電極触媒複合体との間の接触面積を増大させており、電極触媒へガスの均一な供給を行うと共に、接触電気抵抗を低減し、出力密度を向上させることが可能である。さらに、接触面積の増大により伝熱特性が向上し、発電で生じた熱は均一にかつ速やかに冷却部に伝えることが可能となる。
The fuel cell of the present invention, the fuel gas and the oxidant gas flow path of the separator, applying a porous body consisting of multiple several layers that have a different pore size distributions. By adopting such a configuration, it is possible to secure a flow path necessary for holding the generated water and gas diffusion. In addition, the contact area between the electrolyte membrane and electrode catalyst composite is increased by applying a porous material, and the gas is supplied uniformly to the electrode catalyst, and the contact electrical resistance is reduced, and the output density is reduced. It is possible to improve. Furthermore, the heat transfer characteristics are improved by increasing the contact area, and the heat generated by the power generation can be transmitted uniformly and quickly to the cooling unit.

本発明によれば、セパレータガス流路を複数層からなる多孔質体から構成することにより、発電反応で生じた液相の水と反応ガスの分離共存をすることで、高電流密度でも高効率な発電が可能となる燃料電池を提供する。 According to the present invention, by constructing the separator gas flow path from the porous body made of double several layers, by a separation coexistence of water and the reaction gas resulting liquid phase in the power generation reaction, high even at a high current density Provided is a fuel cell capable of efficient power generation.

まず、全体の実施例に共通する項目について述べる。また、実施例として2つの層からなるセパレータについて説明する。   First, items common to all the embodiments will be described. Moreover, the separator which consists of two layers is demonstrated as an Example.

本発明のセパレータにおいては、2種の流体を分離するガス不透過層と反応ガスの流路の全部または一部に導電性の多孔質体を備え、例えば、鉄,アルミニウム,ニッケル,チタン,マグネシウム,クロム,モリブデン等およびこれらの合金から形成され、前記多孔質体は、細孔径や空隙率が異なる複数層から構成されている。ここで、少なくとも1つの多孔質層は2つの細孔径分布を有し、他の層は単一の細孔径分布を有する。
In the separator of the present invention, a gas-impermeable layer that separates two kinds of fluids and a reactive porous body in all or part of the reaction gas flow path are provided, for example, iron, aluminum, nickel, titanium, magnesium. , chromium, molybdenum and formed from these alloys, the porous body, the pore diameter and porosity and a different Do that multiple several layers. Here, at least one porous layer has two pore size distributions, and the other layer has a single pore size distribution.

多孔質体の細孔分布測定の一例としては、水銀圧入法を適用することで可能である。水銀圧入法による細孔分布測定は細孔内に浸入した水銀の体積により細孔の容積を算出する方法であり、以下のように行う。測定用の容器に多孔質体を入れ、容器に水銀を充填する。水銀液面に圧力を加えると、多孔質体の大きな細孔から小さな細孔径に次第に水銀が満たされていく。細孔径の算出には次式で示される、加えられた圧力とその圧力において水銀が侵入できる細孔径の関係を用いる。
D=−4γcosθ/P
ここで、Dは細孔直径、γは水銀の表面張力、θは細孔壁と水銀との接触角、Pは圧力である。
As an example of the pore distribution measurement of the porous body, it is possible to apply a mercury intrusion method. The pore distribution measurement by the mercury intrusion method is a method for calculating the volume of the pores based on the volume of mercury that has entered the pores, and is performed as follows. Put a porous material in a container for measurement, and fill the container with mercury. When pressure is applied to the mercury liquid surface, mercury gradually fills from the large pores of the porous body to the small pore diameter. For the calculation of the pore diameter, the relationship between the applied pressure and the pore diameter through which mercury can enter at that pressure is used as shown in the following equation.
D = -4γcosθ / P
Here, D is the pore diameter, γ is the surface tension of mercury, θ is the contact angle between the pore wall and mercury, and P is the pressure.

本発明における多孔質体は単一の細孔径分布を有する多孔質体と、2つの細孔径分布を有する多孔質体から構成される。単一の細孔径分布を有する多孔質体とは、図1に示されるような細孔分布測定により得られた細孔径とlog微分細孔容積の関係に1つの極大値を持つことであり、2つの細孔径分布とは図2に示されるような細孔分布測定により得られた細孔径とlog微分細孔容積の関係に2つの極大値を持つことを指す。   The porous body in the present invention is composed of a porous body having a single pore size distribution and a porous body having two pore size distributions. The porous body having a single pore size distribution is to have one maximum value in the relationship between the pore diameter obtained by the pore distribution measurement as shown in FIG. 1 and the log differential pore volume, The two pore diameter distributions indicate that the relation between the pore diameter obtained by the pore distribution measurement as shown in FIG. 2 and the log differential pore volume has two maximum values.

本発明における多孔質体の細孔径の関係として、単一の細孔径分布を有する多孔質体は相対的に最も大きな細孔径分布である。2つの細孔径分布を有する多孔質体は、相対的に大きな細孔径と、相対的に小さな細孔径となる構成とする。2つの細孔径分布を有する多孔質体の細孔径として、望ましくは、相対的に大きな細孔径は5μm以上とする。   As the relationship of the pore diameter of the porous body in the present invention, a porous body having a single pore diameter distribution has a relatively largest pore diameter distribution. The porous body having two pore size distributions has a relatively large pore size and a relatively small pore size. As the pore diameter of the porous body having two pore diameter distributions, the relatively large pore diameter is desirably 5 μm or more.

2つの細孔径分布を有する多孔質体の製造方法の一例としては、上述の金属からなる金属粉末を用いる。毛管力による生成水の輸送を行うためには粒径の小さな金属粉末、平均粒径が200μm以下、望ましくは100μm以下を用いる。この金属粉末に規定の温度で蒸発する樹脂等を混入する。混入した樹脂が熱処理により蒸発し、反応ガスの流路や生成水の保持を担う空孔が形成される。このため、混入する樹脂の粒径により任意の大きさの空孔を形成することが可能となる。   As an example of a method for producing a porous body having two pore size distributions, metal powder made of the above-described metal is used. In order to transport the generated water by capillary force, a metal powder having a small particle size and an average particle size of 200 μm or less, preferably 100 μm or less are used. Resin that evaporates at a specified temperature is mixed into the metal powder. The mixed resin evaporates by the heat treatment, and holes for holding the reaction gas flow path and the generated water are formed. For this reason, it becomes possible to form pores of an arbitrary size depending on the particle diameter of the mixed resin.

本発明では、前述のとおり反応ガス流路となる空孔および生成水の保持を行う2種類の空孔から形成されることから、少なくとも2種類の粒径の樹脂を混入する。これらを前記金属からなる平板上へ印刷または溶射し熱処理をすることで樹脂を蒸発させ、多孔質体を形成する。又、樹脂粉末を混入させた金属粉末を脱脂,焼結させ、多孔質体を形成し、平板上へレーザー溶接により接合することも可能である。   In the present invention, as described above, the resin is formed from two kinds of holes for holding the generated water and the holes for forming the reaction gas channel, and therefore, at least two kinds of resin having a particle diameter are mixed therein. These are printed or sprayed on a flat plate made of the metal and heat-treated to evaporate the resin, thereby forming a porous body. It is also possible to degrease and sinter metal powder mixed with resin powder to form a porous body, which can be joined on a flat plate by laser welding.

単一の細孔径分布を持つ多孔質体の形成には、前記多孔質体の製造方法において混入する樹脂の粒径をほぼ等しい大きさとすればよい。   In order to form a porous body having a single pore size distribution, the particle diameter of the resin mixed in the method for producing a porous body may be made substantially equal.

2層からなる多孔質層の厚さの関係は、単一の細孔径分布を有する多孔質層の厚さが全体の1/2以上の厚さとなるように構成する。反応ガスの面方向の流れは、主に単一の細孔径分布を有する多孔質体内であることから、圧力損失を必要以上に増大させないためである。   The relationship between the thicknesses of the two porous layers is such that the thickness of the porous layer having a single pore size distribution is ½ or more of the total thickness. This is because the flow in the surface direction of the reaction gas is mainly in a porous body having a single pore size distribution, so that the pressure loss is not increased more than necessary.

多孔質体の濡れ性に関しては、単一の細孔径分布を有する多孔質体は疎水処理を、2つの細孔径分布を有する多孔質体は親水処理を行う。疎水処理の方法として例えば、フッ素樹脂であるポリテトラフルオロエチレン(PTFE)を含有した分散液を適度な濃度に希釈し含浸または塗布する。その後PTFEの溶融する275℃以上、且つPTFEが分解する750℃以下で焼成する。親水処理の方法として例えば、TiO2 などの親水性物質を含浸又は塗布する。 Regarding the wettability of the porous body, a porous body having a single pore size distribution is subjected to a hydrophobic treatment, and a porous body having two pore diameter distributions is subjected to a hydrophilic treatment. As a hydrophobic treatment method, for example, a dispersion containing polytetrafluoroethylene (PTFE), which is a fluororesin, is diluted to an appropriate concentration and impregnated or coated. Thereafter, firing is performed at 275 ° C. or higher where PTFE melts and 750 ° C. or lower where PTFE decomposes. As a hydrophilic treatment method, for example, a hydrophilic substance such as TiO 2 is impregnated or applied.

濡れ性は表面の水滴の接触角により評価可能であることから、単一の細孔径分布を有する多孔質体の接触角をφ1、2つの細孔径分布を有する多孔質体の接触角をφ2とすると、φ2<φ1を満たす撥水処理を行えばよい。ただし、接触角が90°付近は細孔の毛管力による吸水と排水の境目となることから、確実に水分を移動させるためには、単一の細孔径分布を有する多孔質体の接触角は100°<φ1<180°の範囲とすることが好ましい。   Since the wettability can be evaluated by the contact angle of water droplets on the surface, the contact angle of a porous body having a single pore size distribution is φ1, and the contact angle of a porous body having two pore size distributions is φ2. Then, a water repellent treatment satisfying φ2 <φ1 may be performed. However, when the contact angle is around 90 °, it becomes the boundary between water absorption and drainage due to the capillary force of the pores, so in order to move moisture reliably, the contact angle of the porous body having a single pore diameter distribution is A range of 100 ° <φ1 <180 ° is preferable.

以下に本発明の詳細な実施形態について図面を用いて説明する。   Hereinafter, detailed embodiments of the present invention will be described with reference to the drawings.

図3は、本発明の第1実施例の断面図である。ここで、単一の細孔径分布を有する多孔質層4はガス不透過層1側に、2つの細孔径分布を有する多孔質層3は電解質膜・電極触媒複合体2に設ける。セパレータはガス不透過層1と第一の多孔質層3および第二の多孔質層4から構成され、共に金属等の導電性物質で形成されている。電解質膜・電極触媒複合体2は、H とe とO2 から電気化学反応で水と電気と熱を発生させる部分、多孔質体アノード流路3aおよび4aは水素を含む燃料ガスを、電解質膜・電極触媒複合体2に送る部分、多孔質体カソード流路3bおよび4bは、酸素を含む酸化剤ガスを電解質膜・電極触媒複合体2に送る部分、ガス不透過層1は、冷却水と反応ガスを物理的に分離し、ガスの漏洩を防止する。 FIG. 3 is a cross-sectional view of the first embodiment of the present invention. Here, the porous layer 4 having a single pore size distribution is provided on the gas-impermeable layer 1 side, and the porous layer 3 having two pore size distributions is provided on the electrolyte membrane / electrode catalyst composite 2. The separator is composed of a gas-impermeable layer 1, a first porous layer 3, and a second porous layer 4, both of which are formed of a conductive material such as a metal. The electrolyte membrane / electrode catalyst composite 2 is a portion that generates water, electricity, and heat by electrochemical reaction from H + , e −, and O 2 , and the porous body anode channels 3 a and 4 a are made of a fuel gas containing hydrogen, The portion to be sent to the electrolyte membrane / electrode catalyst composite 2, the porous body cathode channels 3 b and 4 b are the portions to send the oxidant gas containing oxygen to the electrolyte membrane / electrode catalyst composite 2, and the gas impermeable layer 1 is cooled Physical separation of water and reaction gas to prevent gas leakage.

多孔質層3および4は空隙率または細孔径の異なる多孔質体から形成されている。電解質膜・電極触媒複合体2に接する第一の多孔質層3aおよび3bは2つの細孔径分布を有する多孔質体であり、ガス不透過層1に接する多孔質層4aおよび4bは単一の細孔径分布を有する多孔質体である。この構成における燃料電池の作動は次のとおりとなる。   The porous layers 3 and 4 are formed of porous bodies having different porosity or pore diameter. The first porous layers 3a and 3b in contact with the electrolyte membrane / electrode catalyst composite 2 are porous bodies having two pore diameter distributions, and the porous layers 4a and 4b in contact with the gas-impermeable layer 1 are a single porous layer. It is a porous body having a pore size distribution. The operation of the fuel cell in this configuration is as follows.

供給された燃料ガスは、まず、セパレータの多孔質アノード流路3aおよび4aに入る。単一細孔径分布を有する多孔質層4aは空隙率,細孔径共に2つの細孔径分布を有する多孔質層3aよりも大きいことから、セパレータ面方向の流れの大部分は単一細孔径分布を有する多孔質層4a内を流れる。   The supplied fuel gas first enters the porous anode channels 3a and 4a of the separator. Since the porous layer 4a having a single pore size distribution is larger than the porous layer 3a having two pore size distributions in terms of both porosity and pore size, most of the flow in the separator surface direction has a single pore size distribution. It flows through the porous layer 4a.

多孔質層4a内を流れる燃料ガスは様々な方向に連通する多孔質流路によりセパレータの面と垂直方向にも拡散されていく。多孔質層3aに到達した燃料ガスは相対的に大きな径の孔を通り電解質膜・電極触媒複合体2に到達する。   The fuel gas flowing in the porous layer 4a is diffused also in the direction perpendicular to the surface of the separator by the porous flow path communicating in various directions. The fuel gas that has reached the porous layer 3a reaches the electrolyte membrane / electrode catalyst composite 2 through a hole having a relatively large diameter.

その後、電解質膜・電極触媒複合体2の触媒上で電気化学反応によりプロトンになり、電子を放出することによって電力を発生する。プロトンは電解質膜を介してカソード側に移動する。未反応のガスは、燃料ガス出口から排出される。同じように、供給された酸化剤ガスも単一の細孔分布を有す多孔質層4bから2つの細孔径分布を有する多孔質層3b内を電解質膜・電極触媒複合体2に向かい拡散し、そこで上記プロトンと外部回路を経由して供給される電子と化合して水と熱を生じる。この水は、2つの細孔径分布を有する多孔質層3bに排出される。一部の水は、電気浸透流または濃度差に基づく浸透流によりアノード側にも排出されるため、2つの細孔径分布を有する多孔質層3aに排出される。また、熱は、冷却水流路6を流れる水で冷却除去する。   Then, it becomes a proton by an electrochemical reaction on the catalyst of the electrolyte membrane / electrode catalyst complex 2 and generates electric power by releasing electrons. Protons move to the cathode side through the electrolyte membrane. Unreacted gas is discharged from the fuel gas outlet. Similarly, the supplied oxidant gas also diffuses from the porous layer 4b having a single pore distribution toward the electrolyte membrane / electrocatalyst composite 2 in the porous layer 3b having two pore diameter distributions. Therefore, it combines with the protons and electrons supplied via an external circuit to produce water and heat. This water is discharged to the porous layer 3b having two pore size distributions. A part of the water is also discharged to the anode side by the electroosmotic flow or the osmotic flow based on the concentration difference, and thus is discharged to the porous layer 3a having two pore diameter distributions. The heat is cooled and removed by water flowing through the cooling water flow path 6.

電解質膜・電極触媒複合体2のアノード側で電気化学反応により発生した電荷は多孔質アノード流路3aおよび4a、ガス不透過層1などを介して外部負荷に供給される。この際、燃料電池の各構成要素の接触面で接触電気抵抗が生じ、外部に取り出す電気エネルギーの損失に繋がる。本発明における燃料電池に適用するセパレータでは、電解質膜・電極触媒複合体2と2つの細孔径分布を有する多孔質層3の接触面積が増大することから、接触電気抵抗の低減に寄与し、燃料電池の高効率化が可能である。   The electric charge generated by the electrochemical reaction on the anode side of the electrolyte membrane / electrode catalyst composite 2 is supplied to an external load through the porous anode flow paths 3a and 4a, the gas impermeable layer 1, and the like. At this time, a contact electric resistance is generated at the contact surface of each component of the fuel cell, which leads to a loss of electric energy extracted to the outside. In the separator applied to the fuel cell in the present invention, the contact area between the electrolyte membrane / electrode catalyst composite 2 and the porous layer 3 having two pore diameter distributions increases, which contributes to the reduction of the contact electric resistance, and the fuel The battery can be made highly efficient.

本実施例のような構成にすることにより、発電により生成された水が電極表面で凝縮した場合、電極触媒層と多孔質層との濡れ性の違いにより、電極から2つの細孔径分布を有する多孔質層3へ移動させることが可能である。さらに、2つの細孔径分布を有する多孔質層3へ移動した液相の水は、多孔質内部において細孔径の違いによる毛管力により細孔径の小さな孔へ移動する。このとき、多孔質体は親水処理されているため、水は多孔質を構成している金属表面を伝わり移動する。このため、相対的に大きな径の孔は反応ガスの拡散流路としての役割を保つことが可能である。   When the water generated by the power generation is condensed on the electrode surface by adopting the configuration as in this example, the electrode catalyst layer and the porous layer have two pore diameter distributions due to the difference in wettability between the electrode catalyst layer and the porous layer. It is possible to move to the porous layer 3. Further, the liquid-phase water that has moved to the porous layer 3 having two pore size distributions moves to pores having a small pore size due to the capillary force due to the difference in pore size inside the porous material. At this time, since the porous body has been subjected to a hydrophilic treatment, water moves along the metal surface constituting the porous body. For this reason, it is possible to maintain the role of a relatively large diameter hole as a reaction gas diffusion channel.

従来の構成の燃料電池を高電流密度で運転した場合、反応による生成水が増加し、ガス流路を閉塞してしまい発電電圧が低下してしまうことが問題であった。本発明のセパレータを用いた燃料電池では、生成水と反応ガスの分離がされるため、高電流密度での運転において従来のセパレータ構成の燃料電池よりも発電電圧の低下は抑えられる。特に、生成水が多く生成される酸化剤ガス側セパレータとして本発明を適用することが有効である。   When a conventional fuel cell is operated at a high current density, the amount of water produced by the reaction is increased, the gas flow path is blocked, and the power generation voltage is lowered. In the fuel cell using the separator of the present invention, the generated water and the reaction gas are separated from each other, so that a decrease in the generated voltage can be suppressed when operating at a high current density as compared with a fuel cell having a conventional separator configuration. In particular, it is effective to apply the present invention as an oxidant gas side separator that produces a large amount of produced water.

相対的に小さな径の孔に保持された水は、反応ガスが加湿不足になった際の加湿に利用でき、さらに、電解質膜・電極触媒複合体2が水分不足とならないように水分を供給することが出来る。このことから本実施例のような構成によるセパレータは水管理機能を備えることになる。このような構成のセパレータを用いた燃料電池の場合、導入する反応ガスを低加湿で供給することが可能となり、燃料電池システムの加湿部負荷を低減できる。   The water held in the relatively small-diameter holes can be used for humidification when the reaction gas becomes insufficiently humidified, and further supplies water so that the electrolyte membrane / electrode catalyst complex 2 does not become insufficiently moisture. I can do it. Therefore, the separator having the configuration as in the present embodiment has a water management function. In the case of a fuel cell using a separator having such a configuration, the introduced reaction gas can be supplied with low humidification, and the load on the humidifying portion of the fuel cell system can be reduced.

本発明の第2実施例では、図4に示すように疎水処理された単一の細孔径分布を有する多孔質層4は電解質膜・電極触媒複合体2側に、親水処理された2つの細孔径分布を有する多孔質層3はガス不透過層1に設ける。   In the second embodiment of the present invention, as shown in FIG. 4, the porous layer 4 having a single pore size distribution that has been subjected to hydrophobic treatment is disposed on the side of the electrolyte membrane / electrode catalyst complex 2 with two finely-treated hydrophilic layers. The porous layer 3 having a pore size distribution is provided in the gas impermeable layer 1.

このような構成にすることで、電極触媒上で凝縮した水が単一の細孔径分布を有する多孔質層4に排出されると、疎水処理された多孔質内部を速やかに移動し2つの細孔径分布を有する多孔質層3や下流へ移動させることが可能であり、生成水による流路閉塞を防止出来る。2つの細孔径分布を有する多孔質層3では前記実施例1と同様に水分を保持することが可能であり、反応ガスの加湿を行うことが出来る。このような構成は生成水の多い高電流密度の運転を行う燃料電池に有効である。   With such a configuration, when the water condensed on the electrode catalyst is discharged to the porous layer 4 having a single pore size distribution, the inside of the hydrophobic-treated porous material moves quickly, and the two fine particles are moved. It is possible to move to the porous layer 3 having a pore size distribution or downstream, and blockage of the flow path by generated water can be prevented. In the porous layer 3 having two pore size distributions, moisture can be retained in the same manner as in Example 1, and the reaction gas can be humidified. Such a configuration is effective for a fuel cell that operates at a high current density with a large amount of produced water.

本発明の第3実施例を図5に示す。本実施例では、燃料ガスと酸化剤ガスは対向した流れのケースである。多孔質体の構成としては、燃料ガスおよび酸化剤ガス共に流路の上流側では2つの細孔径分布を有する多孔質層が電解質膜・電極触媒複合体2側に、下流側ではガス不透過層1側に設ける。   A third embodiment of the present invention is shown in FIG. In the present embodiment, the fuel gas and the oxidant gas are in the case of opposing flows. As for the structure of the porous body, both the fuel gas and the oxidant gas have a porous layer having two pore diameter distributions on the upstream side of the flow path on the electrolyte membrane / electrode catalyst composite 2 side and a gas impermeable layer on the downstream side. Provided on one side.

セパレータ面内で均一な発電反応が生じても、ガスの流れにより生成水は下流に滞留しやすい。そのため、セパレータ上流部分では電解質膜が乾燥し易く、下流側では生成水によるガス流路の閉塞が生じやすい。   Even if a uniform power generation reaction occurs in the separator surface, the generated water tends to stay downstream due to the gas flow. Therefore, the electrolyte membrane is easily dried in the upstream portion of the separator, and the gas flow path is likely to be blocked by the generated water on the downstream side.

本実施例のように多孔質層を構成することにより、反応ガス流の上流では生成された水を電解質膜・電極触媒複合体2側で保持することにより電解質膜の乾燥を防止し、下流では疎水処理された単一の細孔径分布を有する多孔質層が生成水を出口方向や2つの細孔径分布を有する多孔質層に速やかに移動させることが可能であり、生成水による流路閉塞が防止可能である。   By configuring the porous layer as in the present embodiment, the generated water is retained on the side of the electrolyte membrane / electrode catalyst complex 2 upstream of the reaction gas flow, and drying of the electrolyte membrane is prevented downstream. The porous layer having a single pore size distribution that has been subjected to hydrophobic treatment can quickly move the generated water to the outlet layer or the porous layer having two pore size distributions. It can be prevented.

上流から下流へ向かい反応ガスは発電反応により次第に消費される。ガス拡散性が十分でないセパレータの場合、下流において電極触媒層へのガス供給が不十分となり、セパレータ面内において発電反応に偏りが生じる。本実施例の構成では、下流側で主にガス流路の役割を果たす単一の細孔径分布を有する多孔質層が電解質膜・電極触媒複合体2側に配置されることから、電極触媒層へのガス拡散性を維持することが出来、安定した発電が可能である。   From upstream to downstream, the reaction gas is gradually consumed by the power generation reaction. In the case of a separator with insufficient gas diffusibility, gas supply to the electrode catalyst layer is insufficient downstream, and the power generation reaction is biased within the separator surface. In the configuration of this example, since the porous layer having a single pore size distribution that mainly plays the role of the gas flow path on the downstream side is disposed on the electrolyte membrane / electrode catalyst composite 2 side, the electrode catalyst layer The gas diffusivity can be maintained and stable power generation is possible.

本実施例の効果は反応ガス流れが同一方向,直交方向であっても、上流で2つの細孔径分布を有する多孔質層が電解質膜・電極触媒複合体2側に、下流側ではガス不透過層1側に設けることが有効である。   The effect of this example is that, even if the reaction gas flows are in the same direction and orthogonal directions, the porous layer having two pore diameter distributions upstream is on the electrolyte membrane / electrode catalyst complex 2 side, and the gas impermeable on the downstream side It is effective to provide it on the layer 1 side.

本実施例に係わる単一の細孔径を有する多孔質体の細孔径とlog微分細孔容積の関係。The relationship between the pore diameter of the porous body which has a single pore diameter concerning a present Example, and a log differential pore volume. 本実施例に係わる2つの細孔径を有する多孔質体の細孔径とlog微分細孔容積の関係。The relationship of the pore diameter and log differential pore volume of the porous body which has two pore diameters concerning a present Example. 本発明に係わる燃料電池の第一の実施形態に適用するセパレータの電解質膜・触媒電極複合体側構造を示す模式的平面図。1 is a schematic plan view showing an electrolyte membrane / catalyst electrode complex side structure of a separator applied to a first embodiment of a fuel cell according to the present invention. 本発明に係わる燃料電池の第二の実施形態に適用するセパレータの電解質膜・触媒電極複合体側構造を示す模式的平面図。The typical top view which shows the electrolyte membrane and catalyst electrode composite side structure of the separator applied to 2nd embodiment of the fuel cell concerning this invention. 本発明に係わる燃料電池の第三の実施形態に適用するセパレータの電解質膜・触媒電極複合体側構造を示す模式的平面図。The typical top view which shows the electrolyte membrane and catalyst electrode composite side structure of the separator applied to 3rd embodiment of the fuel cell concerning this invention.

符号の説明Explanation of symbols

1 ガス不透過層
2 電解質膜・電極触媒複合体
3 2つの細孔径分布を有する多孔質体
4 単一の細孔径分布を有する多孔質体
5 セパレータ冷却水側多孔質リブ
6 冷却水流路

DESCRIPTION OF SYMBOLS 1 Gas impermeable layer 2 Electrolyte membrane and electrode catalyst composite body 3 Porous body which has two pore diameter distribution 4 Porous body which has single pore diameter distribution 5 Separator cooling water side porous rib 6 Cooling water flow path

Claims (4)

プロトン導電性の電解質を燃料極と空気極とで挟持した電解質膜・電極触媒複合体と、前記燃料極に燃料ガスを供給する燃料ガス流路を備えた第1の導電性セパレータと、前記酸化剤極に酸化剤ガスを供給する酸化剤ガス供給流路を備えた第2の導電性セパレータとを有する燃料電池において、
前記第1の導電性セパレータ及び前記第2の導電性セパレータは厚さ方向に複数の層から形成される多孔質体と、前記多孔質体の前記電解質膜・電極触媒複合体と接する面反対の面に配置された2種の流体を分離するガス不透過層を有し、
前記多孔質体は、表面および内部が親水処理された異なる2つ以上の細孔径分布を有する第1の多孔質層と、表面および内部が撥水処理された単一の細孔径分布を有する第2の多孔質層を備え、前記第2の多孔質層の細孔径は前記第1の多孔質層の細孔径よりも大きく、
前記燃料ガス又は前記酸化剤ガスは前記多孔質体の細孔を流れることを特徴とする燃料電池。
An electrolyte membrane / electrode catalyst composite in which a proton conductive electrolyte is sandwiched between a fuel electrode and an air electrode, a first conductive separator having a fuel gas flow path for supplying fuel gas to the fuel electrode, and the oxidation In a fuel cell having a second conductive separator having an oxidant gas supply channel for supplying an oxidant gas to the agent electrode,
Said first conductive separator及beauty before Symbol second conductive separator in contact with the porous body formed from a plurality of layers in the thickness direction, and the membrane electrode catalyst composite of the porous body have a gas impermeable layer separating the two fluids, which is disposed on a surface opposite to the surface,
The porous body has a first porous layer having two or more different pore size distributions whose surfaces and inside are subjected to hydrophilic treatment, and a first pore layer having a single pore size distribution whose surfaces and inside are subjected to water repellent treatment. 2 porous layers, the pore diameter of the second porous layer is larger than the pore diameter of the first porous layer,
The fuel cell, wherein the fuel gas or the oxidant gas flows through pores of the porous body .
前記第1の多孔質層が前記電解質膜・電極触媒複合体に接して配置されることを特徴とする請求項に記載の燃料電池。 2. The fuel cell according to claim 1 , wherein the first porous layer is disposed in contact with the electrolyte membrane / electrode catalyst composite. 前記第1の多孔質層が前記ガス不透過層側に配置されることを特徴とする請求項に記載の燃料電池。 2. The fuel cell according to claim 1 , wherein the first porous layer is disposed on the gas impermeable layer side. 前記第1の多孔質層が反応ガス流れの上流側では電解質膜・電極触媒複合体側に配置され、反応ガス流れの下流側ではガス不透過層側に配置されることを特徴とする請求項に記載の燃料電池。 Claim 1 wherein the first porous layer is in the upstream side of the reaction gas stream are arranged in the membrane electrode catalytic composite side, the downstream side of the reaction gas stream, characterized in that arranged in the gas-impermeable layer side A fuel cell according to claim 1.
JP2006263719A 2006-09-28 2006-09-28 Fuel cell Expired - Fee Related JP5130686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006263719A JP5130686B2 (en) 2006-09-28 2006-09-28 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006263719A JP5130686B2 (en) 2006-09-28 2006-09-28 Fuel cell

Publications (2)

Publication Number Publication Date
JP2008084703A JP2008084703A (en) 2008-04-10
JP5130686B2 true JP5130686B2 (en) 2013-01-30

Family

ID=39355335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006263719A Expired - Fee Related JP5130686B2 (en) 2006-09-28 2006-09-28 Fuel cell

Country Status (1)

Country Link
JP (1) JP5130686B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07320753A (en) * 1994-05-27 1995-12-08 Mitsubishi Heavy Ind Ltd Solid polymer electrolyte membrane type fuel cell
JPH07326373A (en) * 1994-05-31 1995-12-12 Aisin Seiki Co Ltd Fuel cell device
JP4739504B2 (en) * 2000-11-20 2011-08-03 三洋電機株式会社 Manufacturing method of fuel cell substrate and fuel cell
JP4321039B2 (en) * 2002-10-25 2009-08-26 アイシン精機株式会社 Polymer electrolyte fuel cell, oxidant gas separator for polymer electrolyte fuel cell
JP4321040B2 (en) * 2002-10-25 2009-08-26 アイシン精機株式会社 Polymer electrolyte fuel cell
JP4300455B2 (en) * 2002-10-29 2009-07-22 アイシン精機株式会社 Polymer electrolyte fuel cell
JP2005116538A (en) * 2004-12-20 2005-04-28 Sanyo Electric Co Ltd Fuel cell unit and fuel cell
JP5076343B2 (en) * 2006-03-29 2012-11-21 株式会社日立製作所 Fuel cell separator and fuel cell
JP2007311089A (en) * 2006-05-17 2007-11-29 Hitachi Ltd Fuel cell separator

Also Published As

Publication number Publication date
JP2008084703A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
JP6408562B2 (en) Self-humidifying membrane / electrode assembly and fuel cell equipped with the same
CN101501900B (en) Fuel cell
JP5011362B2 (en) Bipolar plate for fuel cell and fuel cell
WO2007148761A1 (en) Fuel cell
JP7192148B2 (en) Fuel cell plates, bipolar plates and fuel cell devices
JP2015207549A (en) Separation plate and fuel cell including the same
JP2007311089A (en) Fuel cell separator
JP5153159B2 (en) Fuel cell
KR101075518B1 (en) Bipolar plate with nano and micro structures
CA2909932A1 (en) Membrane electrode assembly and fuel cell
JP5066911B2 (en) FUEL CELL AND METHOD FOR PRODUCING THE FUEL CELL
JP5130686B2 (en) Fuel cell
JP4635462B2 (en) Fuel cell with porous separator
JP4923386B2 (en) Fuel cell with porous separator
JP4923387B2 (en) Fuel cell with porous separator
JP2010232083A (en) Fuel cell
JP2005135763A (en) Fuel cell and fuel cell separator
JP2014036012A (en) Separator for fuel cell
JP2009048905A (en) Fuel cell
JP2013097872A (en) Fuel cell separator
JP4678830B2 (en) Fuel cell stack
JP2009277385A (en) Fuel cell
JP2008288068A (en) Fuel cell, fuel cell anode, and membrane electrode assembly
JP2009043623A (en) Fuel cell
JP2005142015A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees